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ABSTRACT

Objective: We aimed to develop a distributed, immutable, and highly available cross-cloud blockchain system

to facilitate federated data analysis activities among multiple institutions.

Materials and Methods: We preprocessed 9166 COVID-19 Structured Query Language (SQL) code, summary

statistics, and user activity logs, from the GitHub repository of the Reliable Response Data Discovery for COVID-

19 (R2D2) Consortium. The repository collected local summary statistics from participating institutions and

aggregated the global result to a COVID-19-related clinical query, previously posted by clinicians on a website.

We developed both on-chain and off-chain components to store/query these activity logs and their associated

queries/results on a blockchain for immutability, transparency, and high availability of research communication.

We measured run-time efficiency of contract deployment, network transactions, and confirmed the accuracy of

recorded logs compared to a centralized baseline solution.

Results: The smart contract deployment took 4.5 s on an average. The time to record an activity log on block-

chain was slightly over 2 s, versus 5–9 s for baseline. For querying, each query took on an average less than

0.4 s on blockchain, versus around 2.1 s for baseline.

Discussion: The low deployment, recording, and querying times confirm the feasibility of our cross-cloud,

blockchain-based federated data analysis system. We have yet to evaluate the system on a larger network with

multiple nodes per cloud, to consider how to accommodate a surge in activities, and to investigate methods to

lower querying time as the blockchain grows.

Conclusion: Blockchain technology can be used to support federated data analysis among multiple institutions.

Key words: COVID-19, electronic health record, blockchain distributed ledger technology, clinical information systems, decision

support systems
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BACKGROUND AND SIGNIFICANCE

Federated COVID-19 data analysis
The global COVID-19 pandemic has changed the field of healthcare

in profound ways,1 including how healthcare professionals gather

and communicate information given the exponential increase of

available data and research works related to the topic.2 For exam-

ple, natural language processing (NLP) and deep neural networks

have helped automate information retrieval tasks, such as scanning

large bodies of biomedical literature with specific human-language

questions in mind, and identifying the corresponding text-based

answers from this pool of established knowledge.3,4 Another task

that also relies on aggregated information is federated data ana-

lytics, which facilitates ongoing research by combining a larger sam-

ple size from multiple sources, thereby potentially increasing

statistical power and generalizability of findings.5,6 Specifically in

the context of COVID-19, a rapidly spreading infectious disease

with vast socioeconomic and geographic impact, the practice of

gathering information across institutions and regions in a timely

manner is desired,7,8 thus leading to the formation of data consortia

for a federated data analysis. These consortia facilitate achieving a

larger sample size from multiple sources, thereby potentially increas-

ing statistical power and generalizability of findings without sharing

individual level data in each participating institution.9,10 Mean-

while, rapid communication among participating members of data

consortia is critical to enhance clinical and public health efforts, as

they help analyze broader observational data when compared to

registries, on which large-scale analyses can be carried out to inter-

rogate clinical progression, therapeutic efficacy, and outcomes.11–13

The consortium for COVID-19 federated data analysis
The Reliable Response Data Discovery for COVID-19 (R2D2) Con-

sortium14 was established in 2020 and funded by the Gordon and

Betty Moore Foundation, consisting of 13 US health institutions—

Cedars Sinai (CS), Emory University (EMORY), Georgetown Uni-

versity (GT), San Mateo Medical Center (SMMC), University of

California Davis (UCD), University of California Irvine (UCI), Uni-

versity of California Los Angeles (UCLA), University of California

San Diego (UCSD), University of California San Francisco (UCSF),

University of Colorado Anschutz Medical Campus (CUA), Univer-

sity of South California (USC), the University of Texas (UT) Health

Science Center at Houston, Veterans Affairs (VA)—and Ludwig

Maximilian University (LMU) in Germany. The R2D2 Consortium

allowed prompt exchange of summary statistics, such as percentage

among participating institutions, and took advantage of a substan-

tially large patient pool to empower research while still maintaining

patient privacy since patient-level data never left their original

sites.14 The Consortium workflow started from a researcher who

had a clinical question about COVID-19 (eg, What percentage of

patients needed dialysis?), who then submitted the text into a web

portal (https://covid19questions.org), and ended with the researcher

receiving an email notification about a response (eg, 15% receive

dialysis at a particular institution).

Specifically, R2D2 consortium data were used to facilitate

ongoing research and patient care analytics in a privacy-preserving

manner.14 Some of the responded questions include: (1) Among

adult COVID-19 patients who were hospitalized excluding the

Intensive Care Unit and discharged alive, how many returned to the

hospital within a week, either to the Emergency Room or for

another hospital stay? The answer was 8.64%, or 279 patients out

of 3230 ones from 10 health systems. (2) Among adults hospitalized

with COVID-19, how does the in-hospital mortality rate compare

per subgroup, such as age, ethnicity, sex, and race? The result

showed that the mortality rate was higher in older age groups (26%

in age group 81 years or older vs 1% below age 40 years), Non-

Hispanic ethnicity (12.32%), male sex (13.32%), and white race

(12.25%).

In the backend, the whole process entails several steps. First, the

received question would be assigned to one of the Consortium mem-

bers’ sites (Lead Site) and reviewed by clinicians who would work

with the database analyst to translate the clinical question from text

format to Structured Query Language (SQL) code, run the code, ver-

ify the resulting local summary statistics, and release the SQL code

to the Consortium Hub. At the other site (Responding Site), the

database analyst would download the SQL code written by Lead

Site, review, and make custom changes to the code including

Export-Translate-Load (ETL) process of local Electronic Health

Record (EHR) systems, local data harmonization, and local data

quality assurance in an iterative process of communication with the

Lead Site and local clinicians.

The full details of the workflow are described by Kim et al.14 An

example of how R2D2 and the consortium model might enable orig-

inal research is shown in Figure 1A. Upon receiving a COVID-19

research query in SQL format,15 each participating hospital would

use this SQL code to search their local database for the correspond-

ing numerical result, then submit their local statistics to a central

repository that aggregated individual numbers to yield a global sta-

tistics result.

Challenges of using GitHub to share SQL code and

summary statistics
R2D2 Consortium used a website-based GitHub,14 a widely popular

platform for a distributed version control system in both academia

and industry, to share SQL codes and query results of summary sta-

tistics.16 As the role of Lead Site was a resource-intensive task, each

institution took a turn based on clinical expertise and subject matter

proficiency. This required any consortium member to be able to sub-

mit initial SQL code, modify it, and merge with other codes at any

given time. Thus, restricting privileges to specific members was not

in the consortium’s best interest, as workflow bottlenecks could

easily happen should one have to defer their work and wait for

someone else with higher access privilege. Even for well-adapted

services such as GitHub, it is not trivial to customize access control

permissions and/or establish proper topology without defaulting to

a hierarchical setting in which some members bear more control

than others.17 This led the consortium to decide early on to democ-

ratize repository read/write permissions to all members, given the

urgency of obtaining clinical knowledge about rapidly spreading

COVID-19, the unprecedented nature of the pandemic, and the ulti-

mate goal of the consortium to facilitate rapid research progress

across institutions. However, the use of GitHub to share SQL code

and summary statistics faced several limitations.

First, it is not possible to ensure the preservation of the recorded

SQL code and summary statistics results. When all members have

read/write permission to the GitHub repository, where SQL codes

and their corresponding local summary statistics are gathered, there

is a chance some institution may accidentally delete files without

being timely noticed, causing the loss of intermediate and/or final

results of the federated data analyses.
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Second, even when the preservation issue of SQL code and query

results of summary statistics might be mitigated by the utilization of

automatic backup and the nature of version control software, the

“root” administrative user of the central repository still has the priv-

ilege to alter the submitted queries/results. While the standard prac-

tice is to avoid using “root” access, existing real-life events have

proven that exploitative “root” overreach can still occur due to

either noncompliant employees18,19 or malicious attacks on inherent

system vulnerability,20,21 posing a genuine threat to network

security.

Finally, the central repository (ie, GitHub) is a potential single-

point-of-failure, as the whole system will stop working if this central

repository becomes unavailable, as evidenced by previous incidents

of severe disruptions and damages when a central system turns non-

functional,22–25 including redundancy failures in major data-

bases.26–28 In the specific instance of GitHub, server issues causing

service disruptions have recently occurred.29,30

Blockchain technology to improve immutability,

distributedness, and availability
To overcome some of the challenges outlined above, we explored

blockchain, a practically immutable distributed technology with

desirable technological features that may ease the time-sensitive

pressure on data consortiums, by providing immutable SQL codes

and query results of summary statistics, decentralized management

without needing a central server, and highly available ledgering.

Blockchain technology,31 which originated from the financial

technology field and is now being proposed for various healthcare

applications,32,33 can be a solution to the centralized hub approach

used to integrate data from various sites.32,33 As shown in

Figure 1B, in our prototype each COVID-19 research SQL code,

local query results of summary statistics, and global (ie, aggregated)

summary statistics result were stored on a blockchain, which is

immutable because once data is recorded on chain it is very difficult,

if not impossible, to change the ledgered data.33 Beyond SQL code

and summary statistics, the immutable timestamping mechanism of

blockchain also ensures the chronological originality of SQL code

posed, allowing for both in-network collaborations and protection

of research idea ownerships. This feature may have value when we

take into consideration that it is technically possible to amend

GitHub history,34 or timestamps of other file-transferring systems

such as ext4 without leaving traces that can easily be noticed in

time.35

Next, as no centralized server controls all resources, no single

site can change the stored SQL code and summary statistics. If any

institution leaves the consortium, the whole system could still func-

tion, as opposed to the scenario in which the institution that is in

charge of integrating data leaves and the whole consortium halts

operations until a new “main governing” role is established. This

decentralized management capability is essential to support the

consortium.

Also, based on the blockchain mechanism, each site had a full

copy of the blockchain ledger. This in effect makes high availability

A B C

Figure 1. Comparison of different COVID-19 data analysis systems. (A) Federated system.14 This example system consists of 3 hospitals (H1, H2, and H3) and a

central repository (eg, GitHub). In Step (1), a researcher in a hospital (H1) proposed a COVID-19 research query (Q1). Next in Step (2), each hospital views and sub-

mits results (R11, R12, and R13) based on local Electronic Health Record (EHR) data. Finally in Step (3), the results are aggregated to formulate the global results

(R1G) to the original query. No patient-level data are disseminated; thus, patient privacy is protected. However, all queries, local results, and global results are

stored in the central repository, which presents a centralized management scheme, a single “root” administrative user (who may alter the research queries and

results without being noticed), and a single-point-of-failure. (B) Distributed Blockchain. Using the peer-to-peer blockchain technology, no central repository is

required, and everyone can see all “transactions (TXs)” (ie, queries, their local results, and global results) on the blockchain. This way, the system is fully distrib-

uted (no centralized management), immutable (no single user can change the transactions), and highly available (no single-point-of-failure), while it still protects

patient privacy by only sharing aggregated data. (C) Cross-Cloud Blockchain on Real Data. Since each hospital may host their real-world COVID-19 data (D1, D2,

and D3) in different types of cloud computing environment, the design of the system should also take this into account.
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a built-in part of blockchain without the need for intentional human

designs, as compared to conventional database systems where

redundancy requires conscious efforts yet may still fail.26–28

In short, the blockchain system is distributed, immutable, and

remains highly available, and thus is suitable for record clinical

research activities in the consortium. Meanwhile, the protection of

patient privacy is still maintained in this design, given that only

aggregated data, and not individual-level information, are shared.

This makes blockchain as strong a candidate for privacy protection

as any other federated systems. Additionally, proposed or proven

cases of blockchain technology for clinical and genomic applications

such as EHR access control,36,37 privacy-preserving modeling,38–43

genomic access logging,44 gene-drug interaction data sharing,45 clin-

ical image sharing,46 training certificates,47 and patient data sharing

consents48 suggest that the use of blockchain networks may support

consortium communications, adding its inherent advantages of

immutability, distributedness, and high availability to current

solutions.

Objective
We aimed to develop an immutable, distributed, and highly avail-

able blockchain system prototype on which cross-cloud, real-world

COVID-19 clinical research communications among data-

contributing members of a health consortium were logged and made

searchable.

Contributions
We showcased the technical feasibility of a blockchain-based sys-

tem, which could store and query the activities of the federated clini-

cal research data analysis in an immutable, distributed, and highly

available way. In particular, our work provided a robust architec-

ture in which federated analysis using consortium data can be car-

ried out efficiently and securely, allowing for secured collaboration

on a larger aggregated sample size without subjecting patient pri-

vacy to external risks, and ultimately leading to meaningful research

and/or quality care improvement in public health.

MATERIALS AND METHODS

To demonstrate the feasibility of a blockchain-based system for

health data consortiums, we constructed a blockchain-based plat-

form in which users could disseminate their research queries (in SQL

format) to participating sites, provide corresponding results, and

track activities through a search function that allows location of spe-

cific files meeting the search criteria (Figure 1C).

Data
During the internal workflow of the R2D2 Consortium, we stored

the SQL codes in .sql format (instead of natural language texts) and

site-level summary statistics in .csv and .txt format files in the inter-

nal private GitHub central repository.14 To prepare for the block-

chain implementation, we preprocessed these SQL codes and

summary statistics files collected between May 28, 2020 and June 7,

2021, along with 14 178 user activity logs and 3596 relevant files

(ie, SQL codes and data results). The dataset included 27 researcher-

provided questions that have been translated into SQL code by the

consortium Lead Sites. The institutional-level summary statistics

files were encrypted with a hashed value to prevent privacy leaks,

while keeping SQL code as a plaintext. Multiple activity logs were

associated with the same file when the file was modified, renamed,

or deleted after it was first added to the repository. In this case, there

were 2 activity logs for one file. The details of data fields captured

from each file are summarized and described in Table 1, with several

fields being parsed from other fields. Specifically, Institution was

extracted from the User field (35 users in total) and then mapped to

the abbreviation names of the 14 institutions (eg, “UCSD”). Also,

the Source/Target Query Number and the File Type fields were

parsed from the Source/Target File Name fields.

Method overview
An overview of our method is depicted in Figure 2. There are 4 com-

ponents in our method: (1) the data preprocessing step, which filters,

parses, and/or cleans up the activity logs and their files; (2) an off-

chain log management component that submits the parsed logs/files

to the on-chain program of our blockchain network; (3) a smart

contract (ie, programs that are stored and executed on the block-

chain) and is responsible for the actual on-chain storing/querying of

logs and files; and (4) an activity querying component, which allows

on-chain searching of stored logs/files. Together, the components

facilitate a workflow in which preprocessed activity logs and files

would be recorded, and also made available for querying such as,

“Which institutions responded to Query 26 in May 2021, and what

are the result files they sent?” The outputs are logs and files that sat-

isfy the search. The details of these 4 components are introduced in

the following 4 sections.

Data preprocessing
The 4 data preprocessing steps are as follows:

1. Filtering and splitting of logs: we removed administrative logs

that were not directly related to COVID-19 clinical research

activities (eg, dashboard statistics). This step reduced our dataset

size from 14 178 to 9433 logs.

2. Filtering and deidentifying of files: similarly, we removed admin-

istrative files to only keep the 3 file types of MD (general descrip-

tion of a particular research query), SQL (the actual code that

entails programming language-specific details), and CSV (SQL

result of institutional-level summary statistics). An example of

excluded file types is a human-readable research question in PDF

format. We also “deidentified” any personal information in the

files. Specifically, we removed the “requester” information in

each MD file and replaced the actual content of a CSV result

with a random Secure Hash Algorithm 1 (SHA-1) value with a

length of 20 bytes.49 This was for the purpose of synthetic test-

ing; in a real-world deployment, authentic data can be transmit-

ted among authorized network members securely via the SHA-1

algorithm. This step reduced our dataset size from 3596 to 2143

files.

3. Linking logs and files: the file names mentioned in the activity

logs were used to identify the associated files. For logs with oper-

ation “R” (Rename), we used the target file names for the link-

age, because after renaming the source file names would have

been outdated. This step did not change the size of our dataset.

4. Cleaning-up and parsing logs/files: in this final step, we removed

duplicated “typo” logs such as those with simple upper/lower

case issues. Then, we also removed the files that were not associ-

ated with any activity logs (eg, because of the removal of the

duplicated typo logs). Next, we parsed the fields of the logs to

derive other necessary information (ie, those with “*” as shown

in Table 1). After this step, we reduced the dataset size to 9166

logs and 2098 files, to be recorded and made available for
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searching on the blockchain. Among the 9166 logs, only 4250

logs were associated with files; this was due to the fact that one

file could be linked to multiple activity logs. For example, a

“Rename” operation would result in at least 2 activity logs for

one single file.

As shown in Figure 3, the filtering process mainly removed non-

clinical research activity logs/files, thus the impact to the effective-

ness of our dataset is minimal.

Off-chain log management
After activity logs and associated files had been preprocessed, we

developed an off-chain log management component to automate the

submissions of logs/files to the blockchain network. To make the

input data compatible with the smart contract design (detailed in the

“Smart contract” section), we parsed out necessary information

from the activity logs such as the original timestamp of the research

activity, the user email address, the institution to which the user

belonged, the operation committed (“add,” “modify,” “delete,” or

“rename”), the specific research query that the activity log per-

tained, and the content of the associated file (if any). Although the

COVID-19 clinical research activity logs are relatively small, the

files associated with such activities were up to �330 KB. As a key

consideration of storing data on blockchain is scalability,33 we com-

pressed each file before submitting it to the blockchain network to

improve the storage speed. The parsed fields and compressed files

were then ready to be passed onto the next component (ie, the on-

chain smart contract, to be described in the next section). In addi-

tion to automating the submission of logs/files to the blockchain for

storage purposes, the off-chain log management component also

automated the querying task by submitting search criteria to the

blockchain network, that is, it would “call” or “invoke” the on-

chain querying function and receive the returned matches (more

details in the “Activity querying” section).

Smart contract
We developed a smart contract to store and query the COVID-19

clinical research query/result activity logs with their corresponding

files on-chain with 2 main functions, storage and querying, to be

invoked by the off-chain log management component (described in

the “Off-chain log management” section). For the storage function,

each activity log as well as its associated compressed file content

Table 1. Information captured from the COVID-19 consortium private GitHub repository

Type Field Description Example(s)

Log Timestamp Unix timestamp of the operation 1613693792 (Friday, February 19, 2021,

12:16:32 AM)

User User who performed the operation and is identified by

their email address

tskuo@ucsd.edu

Institution* User’s institution, derived and mapped from User UCSD

Operation Operation conducted A (Add), D (Delete), M (Modify), R* (Rename)

Source File Name Full name of the source file (“N/A,” ie, “not applicable,”

for the “A” operation, and the same as the target file

name for the “M” operation)

Query_0026/results/Site01_results_new.csv

Source File Type* Type of file, derived from Source File Name MD (description of the query),

SQL (query details of the query),

CSV (local/aggregated results)

Source Query Number* Numerical reference for the COVID-19 queries, derived

from Source File Name

0, 1, 2, . . ., 26

Target File Name The full name of the target file (“N/A” for the “D” oper-

ation, and the same as the source file name for the

“M” operation)

Query_0026/results/Site01_results.csv

Target File Type* Type of file, derived from Target File Name MD, SQL, or CSV

Target Query Number* Numerical reference for COVID-19 queries, derived

from Target File Name

0, 1, 2, . . ., 26

File Compressed File Content Content of the operated file after compression Site01_results.csv

Note: The fields with asterisks (*) were derived from other fields. In the original GitHub log, there is a “similarity score” after the “R” operation (eg, “R98,” indi-

cating that the target file, after renaming, has 98% similarity with the source file). In our study we only focused on the operation and considered “R98” as “R”.

Figure 2. Method overview. The inputs include COVID-19 queries/results logs and files, and the outputs are the queried logs with associated files. There are 4

components: (1) data preprocessing, (2) off-chain log management, (3) smart contract, and (4) activity querying.
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(if any) is recorded on the blockchain in the form of a “data struct,”

which is a set of smart contract variables, to store the parsed-out

activity information and the compressed file (when appropriate).

For the querying function, our smart contract design also allowed

user-specified search criteria to filter the variables within the data

structs. The high-level data structure and functions are demon-

strated in Figure 4, and more specific details about the querying

capacity are provided in the next section.

Activity querying
To allow researchers and network auditors to search the

COVID-19 clinical research data stored on-chain, we developed

the query component with the following 6 search criteria: Begin

Date, End Date, Operation, Institution, Query Number, and

File Type. Since the target query number and file type are more

up-to-date than their source counterparts, we only focused on

target fields (eg, Query Number and File Type). The Begin

Date and the End Date were converted to Unix timestamps to

be compared with the logs and files’ Timestamp fields listed in

Table 1. After querying, logs as well as their associated files (if

any) that met the search criteria were returned to the research-

ers/auditors. Both the search criteria and the querying matches

were passed between the off-chain log management component

and the blockchain smart contract.

Figure 3. Data preprocessing flowchart. The preprocessing steps include: (1) filtering and splitting logs, (2) filtering and deidentifying files, (3) linking logs and

files, and (4) cleaning-up and parsing logs/files.

Figure 4. The high-level smart contract developed to store/query COVID-19 clinical research activity logs. The data structure mainly contains an array of “line of

log,” and each line of log consists of all fields listed in Table 1 (including the Compressed File Content if a file is associated with this line). The store/query main

functions are designed for recording and searching the logs on the blockchain.
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GitHub repository baseline
To understand the performance of our proposed solution versus a

centralized one, we developed a GitHub baseline where users initiate

SQL code to the consortium’s GitHub repository and await member

results via file commits. Since GitHub is designed to store files

(instead of data entries), fields of information regarding timestamp,

user email, institution, etc., were concatenated into a string, so as

the string could be pushed to the repository as a file commit (with

compressed file content if the specific activity log included an actual

file, empty otherwise). Taking into consideration the inner working

mechanism of GitHub, in which a file needs to be sequentially

added, committed, and pushed from a local repository that is fully

up-to-date with its remote counterpart, we first created multiple

branches/subrepositories (one for each node), to which the particu-

lar node would push a file without the need for frequent pulling.

After all nodes had finished pushing to their individual branches, a

coordination script merged the branches into a single, final reposi-

tory. Then, we queried the file commits using the search criteria

(described in the “Activity querying” section) to find matches on a

local repository that had pulled all contents from the remote reposi-

tory (ie, a “pull” action) to ensure the local repository is always up-

to-date with the remote, making the “pull” action an inherent part

of the query.

Cross-Cloud system implementation
The implementation architecture of our system is shown in Figure 5.

We simultaneously deployed our system on 3 major cloud providers:

Microsoft Azure (MA), Google Cloud Platform (GCP), and Amazon

Web Services (AWS). Based on our prior reviews,50,51 we selected

the community-supported, open-source Ethereum52 blockchain plat-

form. Specifically, we adopted the Go-Ethereum (Geth) implementa-

tion,53 and used a Proof-of-Authority (PoA)54 consensus protocol

Clique55 which is designed for private blockchain (ie, only invited

institutional nodes/computers may join the network). We developed

the smart contract using the Solidity56 programming language, uti-

lized Java and Bash to develop the off-chain log management and

log querying components, and leveraged Web3j57 as the bridging

library between our off-chain Java application and the blockchain

network. The baseline methods were implemented using Python and

Bash. We deployed our system on Ubuntu Virtual Machines (VMs)

with 2 vCPUs, 8GB RAM, and 100GB Disk. This same specification

was adopted for all 3 cloud providers. Considering the fact that

cloud platforms may be susceptible to privacy leakage, we only

uploaded the deidentified files (ie, Step 2 in the “Data pre-

processing” section) to the cloud platforms to conduct the experi-

ments to protect privacy.

Experiment settings
To demonstrate its practical feasibility, we evaluated the initializa-

tion, data recording, and search time performance of the system,

and compared it with the baseline. We simulated 2 scenarios in our

experiments, referring to different cases of how the data load could

have been distributed: log-level, and institution-level data splitting.

For log-level splitting, we randomly split the 9166 logs (and any

Figure 5. Implementation architecture. We simulate a 3-node blockchain network, with each node hosted in a different cloud provider. The technology stack on

each hospital is the same (with upper being application-level and lower infrastructure-level). Ethereum is the only connection point to other nodes.
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associated files) into approximately 3 equal parts, which were stored

on the 3 VMs, each within a different cloud (ie, MA, GCP, or

AWS). This was to simulate the ideal situation in which each block-

chain node has approximately an equal number of logs/files in their

data inputs. For institutional-level splitting, we first split the 9166

logs/files to 14 bins based on their institutions. We then randomly

grouped the 14 bins of logs/files into 3 parts to be stored again on 3

VMs within a different cloud. For example, a bin might have 5 insti-

tutions, and the other 2 bins would have 4 institutions each. This

scenario simulated the more realistic situation where each block-

chain node may include a cluster of institutions with vastly different

activity loads, and thus each contains a vastly different number of

logs/files as inputs.

For both scenarios, we measured the time required for initializa-

tion (ie, deploying the smart contract on the blockchain). Next, we

measured the average recording time per log, which was measured

by the duration between the time the first recording transaction was

initiated and the time when the last transaction finished among all

VMs. This was particularly important in the institutional-level data

splitting scenario, as a node might have significantly more input logs

than other nodes, and thus would require more time to finish all

transactions. We repeated this process 30 times and conducted a

paired t test with alpha¼0.05 to understand whether there are stat-

istically significant differences (P<0.05) between our proposed

method and the baseline.

After the logs and files were recorded on-chain, we conducted

18 144 queries using the exhaustive combinations of 6 query criteria

(details in Table 2) and measured the average search time per query.

An example of a query combination could be “Find all activity logs

and files within 9/1/2020 and 3/1/2021 that are of operation type

‘Modify’ (‘M’), were initiated by UCSD for Query 9, and were CSV

extensions.” We also compared the results with the ones from the

baseline methods.

RESULTS

COVID-19 clinical research data analysis
At the institutional level, the log statistics are shown in Figure 6A.

The log count and the compressed file size both follow a long-tailed

distribution (ie, most logs/files were from the more actively partici-

pating institutions, and most files after compression were of size up

to 30 KB).58 Some institutions may store larger files per log, indi-

cated by the relatively higher compressed size value when compared

with its activity log count. The required number of transactions

(TXs) per log is shown in Figure 6B; for example, after compression,

the largest file became �90 KB, which required 3 blockchain TXs

with a size limit of �30 KB each for the Ethereum blockchain plat-

form used in our experiment. The logs without an associated file still

required 1 TX to be recorded on-chain. The compressed file sizes

ranged from 0 to 90 KB, and the corresponding numbers of required

blockchain TXs ranged from 1 to 3, both following a long-tail distri-

bution. For log-level data splitting, 9166 logs were evenly split into

3 nodes, and the maximum number of logs per node was d9166/

3e¼3056 during any of the 30 trials. For the institution-level data

splitting, the number of logs on each node may have differed due to

the randomization of institutional combinations; on an average, a

Table 2. Possible values per query criterion

Field Values Number of combinations

Begin timestamp 6/1/2020, 9/1/2020 2

End timestamp 3/1/2021, 6/1/2021 2

Operation A, D, M, R 4

Institution CS, CUA, EMORY, GT, LMU, SMMC, UCD, UCI,

UCLA, UCSD, UCSF, USC, UTH, VA

14

Query number 00–26 27

File type MD, SQL, CSV 3

Total number of combinations 18 144

Note: For Begin and End timestamps, we selected 2 candidate dates each.

A B

Figure 6. Statistics of records and compressed file sizes. (A) Institutional record statistics. The X axis shows the 14 participating institutions, ordered by the record

count (left Y axis, blue bars). The total compressed file size for each institution is depicted in the right Y axis. (B) Blockchain transactions (TXs) per record. Each

blockchain transaction has a size limit of �30 KB for the Ethereum blockchain platform. Also, the logs without an associated file (ie, compressed file size¼0 KB)

still required 1 TX to be stored on the blockchain. Therefore, the X axis shows the range of the compressed file sizes for 1, 2, and 3 TXs, and the Y axis demon-

strates the frequency of the records within the corresponding size range.
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node might carry up to 6783 logs per trial, while the other nodes

had fewer input logs.

Smart contract deployment times
The average smart contract deployment time for the log-level data

splitting was 4.557 s, which is a one-time cost. The average deploy-

ment time for the institution-level splitting was 4.430 s. The stand-

ard deviations of log- and institution-level splitting were 0.354 and

0.203 s, respectively.

Storage times
The results for storage times are shown in Table 3. In general, the

total time for the baseline and the proposed blockchain method

depended on the distribution of input logs among nodes and was in

direct proportion with the largest number of input logs among the 3

nodes. However, the storage speeds between the 2 comparing meth-

ods showed statistical differences for both data splitting scenarios of

the 9166 input logs: For the log-level splitting scenario, each node

had either 3055 or 3056 input logs, indicating that each VM should

finish pushing to the blockchain or GitHub around the same time.

The GitHub baseline took �8 h with a relatively high standard devi-

ation (�43 min) over 30 trials. The proposed blockchain network

achieved consistent performance (�1.8 h) with a relatively low

standard deviation (�1.5 min) across 30 trials. For the institution-

level splitting, the GitHub baseline took an average of �10 h, versus

the proposed blockchain’s �3.7 h, averaged over their relative 30

trials each. Their corresponding standard deviations showed a simi-

lar trend (ie, the one for the blockchain method is smaller than that

of the baseline) to the log-level splitting case.

The differences in total time and consistency between the 2

methods translated to their speed differences when averaged over all

9166 input logs or the largest number of input logs assigned among

the 3 VMs during a particular trial. When averaged over the largest

number of input logs, the GitHub baseline took �9.4 s at log-level

and �5.7 s at the institution-level on an average. Meanwhile,

whether log-level or institution-level, the blockchain took �2.1 s on

an average.

Query times
For correctness, the on-chain query result from the proposed block-

chain mechanism agreed 100% with the returned matches as yielded

locally by running a Python querying script on a fully updated

GitHub local repository (a “pull” command was run as part of each

query). Each local GitHub query took �2.4 s for log-level splitting

and �1.8 s for institution-level splitting. Meanwhile, the blockchain

query would take �0.5 s for either splitting. Detailed information

on querying speed of the proposed blockchain method is illustrated

in Table 4.

DISCUSSION

Findings
In general, the deployment time (�4 s) was negligible since the smart

contract only needs to be deployed once when the blockchain net-

work is being set up. Compared to the GitHub baseline, our pro-

posed blockchain mechanism was more effective at storing federated

data analysis activities among consortium members (P<10�28 in

the log-level and P<10�14 for the institution-level splitting scenar-

ios). The difference in speed between the 2 systems might be attrib-

uted to the fact that GitHub does require frequent reconciliation of

states between local and remote repositories before each commit can

be made, and that the sequence of actions entailing “add/commit/

push” might also need more time to complete. There might also be

external factors that affected GitHub performance such as server

traffic.

Similarly, the proposed blockchain was also faster in querying

(�4 times as fast), which demonstrated the feasibility of log audit-

ing. It took advantage of the fact that a blockchain network node

always has the most up-to-date data record due to the distributed

ledger infrastructure, whereas the GitHub local/remote setting man-

dates a thorough “pull” as part of each query. The feasibility of our

cross-cloud blockchain-based system for recording clinical research

query/result activities was thus demonstrated by the low deployment

time, activity recording time, and querying time, showing that from

a technical perspective, blockchain with its native security edges can

function as the supporting infrastructure for communications among

members of clinical data consortiums.

We also implemented and tested a round-robin design of the

GitHub storage method, which in effect most closely resembled the

blockchain mechanism by letting all nodes/computers publish to the

same remote repository. Specifically, before any node could push a

file commit from local to remote, it would need to successfully pull

down the most current state of the remote repository (ie, wait for

the completion of the previous node, thus “round-robin”). The

Table 4. Query time results

Splitting Measurements Proposed

Log-level Total time 10 670.472 (4730.111)

Per-query time 0.588 (0.261)

Institution-level Total time 7537.861 (361.600)

Per-query time 0.415 (0.020)

Note: Time is measured in seconds, and per-query values are averaged over

18 144 combinations and 30 trials, with standard deviation shown in

parentheses.

Table 3. Storage time results

Splitting Measurements Baseline Proposed P value

Log-level Total time 28 811.467 (2571.143) 6405.482 (88.000) <10�28

Average time over 9166 records 3.143 (0.281) 0.699 (0.010) <10�28

Average time over the largest number of input logs 9.428 (0.841) 2.096 (0.029) <10�28

Institution-level Total time 35 769.300 (7864.710) 13 401.609 (1882.121) <10�14

Average time over 9166 records 3.902 (0.858) 1.462 (0.205) <10�14

Average time over the largest number of input logs 5.713 (1.183) 2.130 (0.201) <10�15

Note: The time was measured in seconds. The values were averaged over 30 trials, with standard deviation shown in parentheses.
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average storage time of this design is �42.4 s for log-level and

�21.8 s for institution-level splitting, which is slower than our

GitHub baseline (�9.4 s and �5.7 s, respectively) as well as our pro-

posed blockchain method (�2.1 s for both splitting scenarios).

Contribution of the blockchain-based solution
Although GitHub was not specifically designed for federated data

analysis nor team communication, we used it as our baseline in this

study to be consistent with the R2D2 Consortium’s mechanism.14

By design, GitHub is vulnerable to potential server outages (and

thus carries the single-point-of-failure threat). In comparison, our

proposed blockchain approach offers both faster storage and query-

ing speeds, and the benefit of being highly available without single-

point-of-failure; given that each network node always has a full

copy of the blockchain, our mechanism will not be impacted if any

of the participating nodes fails. This technical feature emphasizes

the benefit that our blockchain-based solution may have over other

centralized methods such as GitHub.

Based on results that demonstrated the feasibility of using block-

chain for clinical research activity logging, we anticipate our system

can be adapted for other collaborative research activities beyond

COVID-19. For example, it may be of use in modern times when

global transportation increases the risk of spreading diseases (eg,

monkeypox, Zika virus, etc.), and the data consortium model is an

ideal candidate to gather data from simultaneous, disconnected out-

bursts. We believe that blockchain-based solutions, while not being

“one-size-fits-all,” would bring the most value when multiple insti-

tutions would like to collaborate for a time-critical mission, and

where issues such as single-point-of-failure would impede such col-

laborations. Nevertheless, it is imperative to weigh the costs and

benefits of adopting this new distributed technology in lieu of a

mature and centralized one. Moreover, an experienced team that

understands how to design and develop blockchain-based solutions

in an effective and efficient way will be an important consideration

when generalizing this study for different application fields.

Limitations
There are limitations to our study:

1. The format of our queries remained in the SQL format as

described in the “Data” section, and thus is different from NLP-

based question-answering methods such as CoQUAD3 that take

natural language texts as their input. We are yet to investigate

and adopt NLP methods59,60 to automatically parse the

COVID-19 questions from their natural texts.

2. We only evaluated our system on a blockchain network with 3

nodes (one from each cloud provider), while more nodes unevenly

distributed across 3 clouds might impact system performance.

3. We assumed that the requests to store/query the COVID-19

research queries and results were spread evenly at any time. How-

ever, since multiple users may simultaneously work on one block-

chain node, chances are people may suddenly have interest in the

same research topics (eg, a new virus variant appears) in a short

time.

4. We are yet to redesign our system to accommodate such poten-

tial surges of storing/querying requests and compare our system

with its centralized counterpart.

5. With regards to the size of files that can be recorded on-chain,

we have yet to investigate the limit of the size.

6. Blockchain is a linear linked-list data structure by design. There-

fore, the query time may increase as the blockchain grows.

Methods to improve querying scalability such as ones reported

in recent benchmarking studies44,45 are yet to be investigated.

7. We are yet to evaluate our method in real-world settings such as

when pandemic data may increase exponentially. While the

direct inputs for our system are SQL queries and statistical

results, which may not scale in synchronization with the abun-

dance of patient data at each institution, the pandemic may still

impact the frequency of federated data analysis activities and/or

the number of data consortium members. Further work would

be needed to investigate both the scalability of the system and

the use cases for other pandemics such as monkeypox.

CONCLUSION

Our results show that it is feasible to store and query COVID-19

queries and results on blockchain in the way similar to conventional

platforms such as GitHub, to take advantage of blockchain’s intrin-

sic desirable technical features such as decentralization, immutabil-

ity, and high availability. Given that our experiment utilized 3

different cloud environments, they may reflect a real-world setting,

where a data-contributing consortium consists of multiple institu-

tions whose computational architectures are placed on different

cloud providers. This study can help support the recording/manage-

ment of future clinical federated data analysis activity logging and

file transferring systems, where data from as many sources as possi-

ble are required to yield a better picture of disease progression to

inform public health, and especially to better combat pandemics.
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