
Bachelor’s Thesis

Regularized Covariance Estimation for Functional
Data

Department of Statistics
Ludwig-Maximilians-Universität München

Anna Nazarova

Munich, 22 March 2023

Submitted in partial fulfillment of the requirements for the degree of B. Sc.
Supervised by Dr. Fabian Scheipl

Regularized Covariance Estimation for Functional Data

Covariance estimation is of great importance for functional data analysis, not least
because it is an essential part of functional principle component analysis. This paper
gives an introduction on the basic methodological framework of functional data analy-
sis and presents three methods to estimate the covariance function through penalized
tensor product spline smoothing: square smoothing, triangle smoothing and FACE.
While square smoothing applies the general procedure of tensor product smoothing of
bivariate functions, triangle smoothing and FACE exploit the covariance’s symmetry
and estimate only half of the spline coefficients, thus providing computationally
efficient alternatives. The latter even applies a joint estimation of covariance and
measurement-error-variance. In order to compare the methods, a two-part simulation
study is conducted for various data types. We find that triangle smoothing has in
general a similar accuracy compared to square smoothing and sometimes provides
even more precise estimates. Furthermore, in most examined settings, FACE shows a
clear dominance over both square and triangle smoothing, in terms of precision.

i

Regularized Covariance Estimation for Functional Data

Contents

1. Introduction 1

2. Methodological Background 2
2.1. Modeling of Functional Data . 2
2.2. Spline-based Representation of Functional Data 3
2.3. Tensor Product Smooths . 5

3. Functional Data Covariance Estimators 8
3.1. “Square” vs. “Triangle” Smoothing . 9
3.2. “FACE” Algorithm . 10
3.3. Summary of Methods . 11

4. Simulation Study 13
4.1. Simulation A . 13
4.2. Simulation B . 23
4.3. Summary and Discussion of Results . 30

5. Conclusion 32

A. Directory Structure of the GitLab Repository 33

B. Additional Plots for Simulation A 34

C. Additional Plots for Simulation B 37

ii

Regularized Covariance Estimation for Functional Data

List of Figures

1. Sim. A: Percentage comparison of square and triangle smoothing 16
2. Sim. A: Percentage comparison of square- and triangle smoothing, grouped by

grid length and number of observed curves . 17
3. Sim. A: Percentage comparison of square- and triangle smoothing, grouped by

grid length and SNR (Wasserstein) . 22
4. Sim. B: Boxplot of Wasserstein-distances for regular and irregular data, grouped

by grid length and SNR . 26
5. Sim. B: Boxplot of Frobenius-distances for fragmentary and regular data, grouped

by grid length and SNR . 27
6. Sim. B: Percentage comparison of FACE and square / triangle smoothing 29
7. Sim. A: Percentage comparison of square- and triangle smoothing, grouped by

grid length and number of observed curves (Wasserstein) 34
8. Sim. A: Boxplot of Wasserstein-distances for regular and irregular data, grouped

by grid length and SNR . 35
9. Sim. A: Boxplot of Wasserstein-distances for regular and irregular data, grouped

by penalty ord and SNR . 36
10. Sim. B: Boxplot of Wasserstein-distances for regular and irregular data, grouped

by penalty order and SNR . 37

iii

Regularized Covariance Estimation for Functional Data

List of Tables

1. Overview over the average Wasserstein-distance for different combinations 14
2. Percentage difference of average Wasserstein- and Frobenius-distances between

triangle smoothing and square smoothing, grouped by penalty order 15
3. Percentage difference of average Wasserstein- and Frobenius-distances between

triangle smoothing and square smoothing, grouped by SNR 18
4. Percentage difference of average Wasserstein- and Frobenius-distances between

triangle and square smoothing, grouped by expected grid length and SNR 19
5. Average Wasserstein- and Frobenius-distance for triangle and square smoothing,

grouped by penalty order . 19
6. Percentage difference of average Wasserstein- and Frobenius-distances between

triangle smoothing and square smoothing for square- and triangle-optimal data,
grouped by penalty order . 20

7. Average Wasserstein-distance for aggregated triangle and square smoothing . . . 21
8. Average Wasserstein- and Frobenius-distance . 23
9. Percentage difference of average Wasserstein- and Frobenius-distances between

FACE and square smoothing / triangle smoothing, grouped by SNR and grid length 24
10. Percentage difference of average Wasserstein- and Frobenius-distances between

FACE and square smoothing / triangle smoothing, grouped by penalty order and
grid length . 28

11. Percentage difference of average Wasserstein- and Frobenius-distances between
FACE and square smoothing / triangle smoothing, grouped by penalty order and
SNR . 30

iv

Regularized Covariance Estimation for Functional Data

1. Introduction

From GDP growth rates and stock prices to magnetic resonance images, functional data has
become an increasingly important data type for various scientific fields, ranging from economics
to medicine and biology. Thus, functional data analysis (FDA), which focuses on continuously
measurable and therefore functional data, such as curves, shapes, images, and higher dimensional
surfaces, has become an indispensable field of statistics. In practice, functional data is usually
observed over a countable finite set of points in the functions’ domain, commonly known as
grid points. This paper targets functional data in the form of curves, thus we consider the
observations to be realizations of a one-dimensional stochastic process.

The infinite dimensional nature of functional data makes it a rich source of information, but results
in difficulties while interpreting the data structure (Wang et al., 2016). Therefore, techniques
for dimension reduction are essential in FDA. Functional principle component analysis, which
is the most prominent tool in FDA, characterizes the covariance structure in the data and
reduces the data’s dimensionality through an eigendecomposition of the covariance operator.
The covariance operator is defined by the covariance function, which summarizes the dependence
across pairwise observations of one curve (Ramsay and Silverman, 2005). Hence, in order to
obtain functional principle components, one has to estimate the underlying covariance function
first. This thesis focuses on exactly this issue of estimating the bivariate covariance function.
Covariance estimation in FDA is carried out through smoothing empirical covariance estimates
using e.g. local linear surface smoothers (Yao et al., 2005), or tensor product splines (Wood,
2006). In this work, we will focus on the latter. A prevalent issue in smoothing is overfitting,
which results in an excessively “rough” shape of the estimated covariance surface. Therefore,
regularization in the form of penalization is required in the estimation procedure.

The outline of the thesis is as follows: Chapter 2 gives a fundamental introduction on the
methodological background of FDA by illustrating the modeling of functional data as well
as differentiating the data into three types: regular, irregular and fragmentary data. While
estimating the covariance function of regular data is fairly easy and broadly discussed in literature,
irregular and fragmentary data impose some theoretical and computational challenges. Moreover,
Chapter 2 explains penalized spline smoothing for univariate and bivariate functions.
After providing the necessary background, we describe three methods for the covariance estimation
based on tensor product splines, in Chapter 3. In order to boost computational time, Reiss and
Xu (2019) exploit the symmetry of the covariance function by a bisection of its domain along the
diagonal and estimate it on one half. This half is then mirrored on the diagonal. Reiss and Xu
(2019) refer to this procedure as “triangle” smoothing, as opposed to “square” smoothing which
aims to estimate the covariance on the entire quadratic set of grid points. As an alternative
to these two methods, Xiao et al. (2018) propose the FACE-algorithm that, similar to triangle
smoothing, considers the covariance’s symmetry while simultaneously estimating the covariance
function and the measurement-error-variances.
In Chapter 4 we provide a two-part simulation study. During the first simulation (Simulation A)
we compare square and triangle smoothing in terms of their precision and assess their differences.
The second simulation (Simulation B) compares the accuracy of FACE with triangle and square
smoothing. We conclude this paper with a discussion of the simulation results.

1

Regularized Covariance Estimation for Functional Data

2. Methodological Background

This chapter gives a general introduction on the methodological framework of (FDA). The first
subsection 2.1 gives a brief overview over the modeling of functional data and its three different
data types. Subsection 2.2 introduces a spline-based representation of individual univariate
functions using penalized spline smoothing. Extending the concepts of 2.2 to multivariate
functions, subsection 2.3 provides the nessecary background for the regularized smoothing of the
bivariate covariance function.

2.1. Modeling of Functional Data

FDA aims to examine data which arises in the form of curves, surfaces, images and shapes. In
this work, we focus on the former two types, not covering the analysis of images and shapes such
as brain and neurological data.
The curves are defined on a compact interval T ∈ R. Thus, functional data are usually observed
discretely on a grid of length Ni, over the domain T , giving us Ni pairs (tij , Yij), where Yij is the
recorded value for the function Xi(·) at tij ∈ T . In practice, Yij is often polluted by measurement
error, leading Yij to possibly deviate from the real Xi(tij).
Because the curves’ domain is infinite, functional data is infinite dimensional, making it a rich
source of information (Wang et al., 2016, Ramsay and Silverman, 2005).

In general, we model functional data as a random sample of realizations of a one-dimensional
stochastic process. Hence, we examine the real-valued functions X1(t), ..., Xn(t) defined on T ,
which are observed at some points in T . We refer to the set of points {tij ∈ T } where a function
value is recorded as grid.
Note that we often assume the underlying stochastic process to be Gaussian and in a Hilbert
space such as L2(T). Furthermore, we impose smoothness on the individual function, i.e. the
second derivative of Xi(t) exists and is continuous for all i = 1, .., n (Wang et al., 2016, p. 2 f).
A prominent model for functional data is:

Yij = Xi(tij) + εij , i = 1, ..., n, j = 1, ..., Ni,

where Yij is the value of the jth observation of the function Xi(·) made at a random point tij ∈ T .
The left summand can be specified into Xi(tij) = µ(tij) + fi(tij), where µ(tij) is the mean
function for the underlying stochastic process and fi(tij) is a smooth curve-specific variation
from µ(tij) (Cederbaum et al., 2018, Yao et al., 2005).
This gives us

Yij = µ(tij) + fi(tij) + εij , tij ∈ T (2.1)

where εij is the additional measurement error with E(εij) = 0 and var(εij) = σ2
ij . The measure-

ment errors are commonly referred to as white noise. We assume the εij to be independent across
i and j. Another popular but not strictly necessary assumption is homoscedasticity, yielding
σ2

ij = σ2 to be constant (Wang et al., 2016, p. 5).

We classify functional data into three types: regular data, irregular data and fragmentary data.
Their main difference lies in the way the observations (tij , Yij) were sampled.
Usually, we consider the observations to be recorded on a time grid, that is t1, ..., tNi are ordered
time points.

2

Regularized Covariance Estimation for Functional Data

In practice, regular data are observed by using a recording instrument such as an electroen-
cephalograph (Wang et al., 2016). Then, every function is observed on the same time grid, that is
tij = tj and Ni = N for every i = 1, ..., n. Although in some cases the time points are equidistant,
this is not strictly necessary as long as the time grid, which is also known as sampling schedule,
is the same for every curve.
In contrast to regular data, the sampling schedules of irregular data are not the same across
all curves and an individual’s time points are irregularly spaced. Consequently, the number of
observations Ni and the time points tj can differ from curve to curve.
This data type usually arises from longitudinal studies, where an individual is repeatedly mea-
sured over time and the number of observations as well as the several time points might vary
from individual to individual (Wang et al., 2016, p. 3).
Wang et al. (2016) also consider the distinction of “dense” and “sparse” functional data. They
define regular data being densely sampled as opposed to irregular data which is sparsely sampled.
For our analysis this extra specification is redundant, wherefore we only distinguish the data
types by their sampling schedules. Furthermore, we will assume that all three data types have
the same expected values for the number of grid points Ni.
The third data type is known as fragmentary functional data. Similar to irregular data, fragmen-
tary data commonly arises from longitudinal studies where the individual’s measurement starts
at a random time point (Lin and Wang, 2022). In this setting we only observe a fragment of
each curve Xi(t), i.e. all time points are defined on a subinterval Ti ⊂ T , which gives us a setting
of incomplete functional data (Delaigle et al., 2021). Note, that the subintervals vary from curve
to curve. Consequently, fragmentary functional data imposes some challenges in estimating the
covariance structure of the data as we will discuss in Chapter 3.

2.2. Spline-based Representation of Functional Data

Since in FDA-applications our main objectives are continous functions, it is only reasonable to
give some thoughts on how to record them. Functions are infinite-dimensional in their nature,
which prevents us from observing the full curve or surface that we are trying to examine. Hence,
our first concern is how to form functional data using the discretely sampled observations yij .
We address this challenge by approximating the univariate functions xi(t) as we smooth the
observations yij . We consider only the estimation of an individual curve x(t), thus we will
renounce the index i.
The generic approach to this estimation problem is to use a spline basis system. A spline is
constructed as polynomials of a specific orderm defined over L subintervals into which the domain
of target function x(t) is divided. These polynomials are joined together at values τ1, ..., τL−1
that are commonly known as knots. The order of the spline specifies how many parameters are
required to define it in one subinterval, that is one more than its polynomial degree, yielding
d = m+ L− 1 parameters for the whole spline function (Ramsay and Silverman, 2005, p. 47).
A spline basis, which is defined by the spline basis functions, spans the space of splines where
the true x(t) or its close approximation lies inside (Wood, 2006, p. 122). With this idea, we
can represent smooth functions as a linear combination of fully known basis functions Bk(t),
k = 1, ..., d

x(t) =
d∑

k=1
γkBk(t) (2.2)

yielding the observations to have the form of the linear model where γk are unknown parameters.

3

Regularized Covariance Estimation for Functional Data

Note, that we can re-express (2.2) in matrix terms as

d∑
k=1

γkBk(t) = γ′b(t) = b(t)′γ,

where γ is the d-vector of parameters and b is the d-vector of basis functions (Ramsay and
Silverman, 2005, p. 86).
This allows us to approximate x(t) by estimating the coefficients γk by minimizing the least
squares criterion ∑N

j=1(yj − x(tj))2 (Fahmeir et al., 2013, Wood, 2006).
While there exists a variety of spline bases, the most prominent basis system is that of the
B-splines (see e.g., Fahmeir et al., 2013, Wood, 2006, for a definition). In the following sections
we will explore the use of B-Splines to estimate the data’s covariance structure. But first we
need to contemplate some limitations of the approximation (2.2).

Penalized Spline Smoothing

An essential task in working with splines is choosing an appropriate number of knots, which
amounts to choosing the number d of basis functions. Although the fit improves with the number
of basis functions, choosing a too high value for d results in overfitting, i.e. the estimated function
is locally variable and has an excessively “rough” or “wiggly” form. To counteract this, we
formulate a penalized least squares (PLS) criterion, by adding a penalty term to the standard
least squares criterion. This additional term λJr(x) prevents the overfitting to the data by
penalizing those estimated functions x that are too rough (Fahmeir et al., 2013, Ch. 8.1.2).
To characterize a function’s roughness, we make use of its derivative. Assuming that Eq. (2.2)
holds, we define a penalty for the parameters γk as the integral of the quadratic rth-order
derivative. Our minimization criterion then becomes

PLS(λ) =
n∑

j=1
(yj − x(tj))2 + λ

∫ [
∂r

∂tr
x(t)

]2
dt, (2.3)

where λ ≥ 0 is the smoothing parameter, controlling the extend of the penalty (Ramsay and
Silverman, 2005, p. 84).
For example, a second-derivative penalty in the form of

J2(x) =
∫
x′′(t)2dt

seems appealing, because it measures of the function’s curvature (Fahmeir et al., 2013, p. 433).
The choice of the derivative’s order dictates the shape of the penalty null space, which is spanned
by the functions x(t) for which the penalty term is equal to zero. Hence, the functions in the
penalty null space are treated as “completely smooth” and consequently, as λ→∞, the functions
estimated by (2.3) are shrinked towards the penalty null space. E.g. the second-derivative penalty
term is equal to zero, when x(t) is linear, so the penalty null space is spanned by functions of the
form x(t) = a+ b · t. Analogously, the penalty null space of a first-derivative penalty is spanned
by constant functions (Wood, 2017, Wood et al., 2013). Using the matrix notation of (2.2), we
can re-express Jr(x) =

∫ [∂r

∂tr x(t)
]2
dt into

Jr(x) =
∫ [

∂r

∂tr
γ′b(t)

]2
dt = γ′Rγ,

4

Regularized Covariance Estimation for Functional Data

whereR =
∫ [∂r

∂tr b(t) ∂r

∂tr b(t)′
]
dt is referred to as rth-order penalty matrix (Ramsay and Silverman,

2005, p. 87). To apply penalized spline smoothing, we plug (2.2) into (2.3) and then minimize
(2.3) with respect to the parameters γk.
Choosing a B-Spline basis for (2.2), requires an approximation for the rth-order derivatives.
Therefore, Eilers and Marx (1996) propose P -Splines, which approximate the penalty term in
(2.3) through a difference penalty of the parameters. E.g., the proposed difference penalty that
approximates J2(x) is ∑d

j=3(∆2γj)2 with the second-order difference-operator ∆2, recursively
defined by

∆1γj = γj − γj−1

∆2γj = ∆1∆1γj = ∆1γj −∆1γj−1 = γj − 2γj−1 + γj−2.

Analogously, the rth-order differences, defined by ∆rγj = ∆r−1γj −∆r−1γj−1, are the approxi-
mations of the rth-order derivative penalty in Jr(x).
For the construction of the P -Splines’ penalty matrix R = Kr, difference matrices Dr are used,
yielding R = D′rDr. As with the difference-operator ∆r, the difference matrices are recursively
defined by first considering the first-order difference matrix

D1
(d−1)×d

=

−1 1

−1 1
.

−1 1

 .

With D1 we can then write the vector of first differences as

D1γ =

 γ2 − γ1
...

γd − γd−1

 .
Higher differences can be expressed as Dr = D1Dr−1. Accordingly, the P -Splines’ penalty term
is defined as

d∑
k=r+1

(∆rγk)2 = γ ′D′rDrγ = γ ′Krγ

(Fahmeir et al., 2013).

2.3. Tensor Product Smooths

The concepts of subsection 2.2 can be extended to multivariate functions. In this work, we are
especially interested in estimating an individual’s two-dimensional covariance function x(s, t).
Therefore, we will introduce the representation of bivariate functions using tensor product bases.
To construct a bivariate basis, we first consider the univariate bases of s and t, respectively. From
the previous szbsection we know, that we can represent the smooth functions x(s) and x(t) by
the basis expansion

x(s) =
ds∑

i=1
βiB

(1)
i (s) and x(t) =

dt∑
l=1

γlB
(2)
l (t),

5

Regularized Covariance Estimation for Functional Data

where βi and γl are the parameters and B
(1)
i (s) and B

(2)
l (t) are the known marginal basis

functions. To obtain a joint smooth for s and t, we let x(s) vary smoothly with t, by allowing its
parameters βi to vary smoothly with t, yielding

βi(t) =
dt∑

l=1
γilB

(2)
l (t).

This gives us the following representation for x(s, t):

x(s, t) =
ds∑

i=1

dt∑
l=1

γilB
(1)
i (s)B(2)

l (t) (2.4)

with the tensor product B(1)
i (s)B(2)

l (t) = Bil(s, t) (Wood, 2006).
Given the usual Kronecker product ⊗ we can rewrite (2.4) into a matrix notation using the
d-vector of basis functions b: [

b(t)′ ⊗ b(s)′
]
γ, (2.5)

with γ = (γ11, ..., γds1, ..., γ1dt , ..., γdsdt)′ and

b(t)′ ⊗ b(s)′ = (B11(s, t), ..., Bds1(s, t), ..., B1dt(s, t), ..., Bdsdt(s, t)).

We refer to the basis (2.4) as tensor product basis. When using polynomial splines such as
B-Splines as basis functions, the tensor product basis is known as tensor product splines (Fahmeir
et al., 2013).

For a given set of observations for s and t we can compute values for x(s, t) and store them in
a vector v. As with univariate functions, we estimate the parameter vector γ by setting up a
linear model of the form v = Zγ with response vector v and a model matrix Z. The jth row of
Z corresponds to the jth observation and is defined as

zj = (B11(sj , tj), ..., Bds1(sj , tj), ..., B1dt(sj , tj), ..., Bdsdt(sj , tj)) = b(tj)′ ⊗ b(sj)′

(Reiss and Xu, 2019, p. 6; Fahmeir et al., 2013, p. 505). Consider again the marginal smooths of
x(s) and x(t), respectively. Given the same set of observations for s, the model matrix for the
estimation of parameters βi is denoted as Zs. The model matrix Zt for the parameters in the
marginal smooth of x(t) is similarly defined. It is straightforward to see, that we can write zj

as:
zj = zsj ⊗ ztj ,

where zsj and ztj is the jth row of Zs and Zt, respectively. It is worth pointing out, that we
can extend this construction for as many covariates as required (Wood, 2006, p. 164).

Tensor Product Penalties

Similar to the spline-based-representation of univariate functions, we need to address for the
“roughness” of the estimated bivariate function. Therefore, recall the penalty term Jr(x) = γ′Rγ
for the roughness of the univariate smooth of x(t).

We consider xs|t(s) being x(s, t) as a function of s only, when t is held constant. We define
xt|s(t) similarly. Then, we can measure the bivariate function’s roughness through Wood’s tensor
product:

λs

∫
Jrs(xs|t)dt+ λt

∫
Jrt(xt|s)ds. (2.6)

6

Regularized Covariance Estimation for Functional Data

Setting rs = rt = 2 yields to the popular second-derivative penalty of the form

λs

∫∫ [
∂2

∂s2x(s, t)
]2

dsdt+ λt

∫∫ [
∂2

∂t2
x(s, t)

]2

dtds

(Wood, 2006, p. 165). Additionally, Wood (2006) derives an approximation to the integrals of
(2.6) through a reparametrization of the penalty terms. As an alternative, Reiss et al. (2014)
provide an exact evaluation of the integrals and suggest to re-express the penalty term into a
matrix notation:

P = λs(Rs ⊗Qt) + λt(Qs ⊗Rt), (2.7)

with the dt × dt-Gram matrix Qt having (l,m) entries qlm =
∫
B

(2)
l (t)B(2)

m (t)dt.
Wood’s penalty is currently implemented in the package mgcv (Wood, 2017) for R (R Core Team,
2022).

In the case of tensor product B-Splines, Eilers and Marx (2003) propose bivariate P -Splines as
an extension of the univariate P -Splines, described in subsection 2.2 to the bivariate case. The
penalty term is defined as

Ids ⊗K
rt
t +Krs

s ⊗ Idt ,

where Krs
s = D′rs

Drs and Krt
t = D′rt

Drt are univariate difference-penalty matrices of respective
order rs and rt. Idt and Ids are identity matrices (Fahmeir et al., 2013, p. 508). It is straightfor-
ward to see, that we can express this penalty term with the notation (2.7) by setting Rs = Krs

s ,
Rt = Krt

t , Qs = Ids , and Qt = Idt .

With the theoretical background provided in this chapter, we are now equipped to focus on the
centerpiece of this thesis: the covariance estimation.

7

Regularized Covariance Estimation for Functional Data

3. Functional Data Covariance Estimators

Much like the functions xi(t), we assume the covariance function C(tij , til) ∈ L2(T × T), with
tij , til ∈ T of an individual curve to be smooth and in a Hilbert space. Geometrically, the
covariance can be viewed as a surface defined on the domain T × T = T 2.
Before we start with a deliberation of the covariance estimates, we impose a further restriction on
the measurement errors εij in model (2.1): We assume εij to be homoscedastic, yielding σ2

ij = σ2
i

for all i = 1, ..., n.
The covariance is then defined as

C(tij , til) = cov(xi(tij), xi(til)) + σ2
i δjl, (3.1)

where δ = 1 if j = l and 0 otherwise. The additional term on the surface’s diagonal accounts for
the measurement errors in the observed data. Because the white noise is independent across all
observations, it does not contaminate the covariance between two distinct observations. Only if
we consider an observation’s variance, i.e. j = l, we will have to take the error variance σ2

i into
account (Yao et al., 2005).

In contrast to regular and irregular data, which are observed at time points on the whole domain
T , the time points of fragmentary data are only defined on a subinterval Ti of T . Thus, in the
case of fragmentary data, the points (tij , til) at which we observe xi(t) only cover a fragment⋃n

i=1(Ti×Ti) of the covariance’s entire domain T 2. Geometrically, the fragment ⋃n
i=1(Ti×Ti) can

be interpreted as a band around the main diagonal of T , whose size varies with the size of the
functions’ fragments. Consequently, the estimators we are about to present, can only estimate
the covariance function on this subset, rather then the whole domain. Delaigle et al. (2021)
address for this issue and propose a nonparametric method based on tensor product smooths to
estimate C(tij , til) on T 2 for data, where only a fragment of T 2 is observed, even for increasing
sampling size. Alternatively, Lin and Wang (2022) provide an approach to estimate the mean
and covariance function of relatively short fragments, which often occur in longitudinal studies.

The usual procedure begins with computing the empirical estimates of the covariance: Let µ̂ be
the smooth estimator for the mean function. Well known approaches on estimating the mean
function are P -Splines implemented in Xiao et al. (2018) or local polynomial estimates (Fan and
Gijbels, 1996) used by Yao et al. (2005).
The empirical estimates are evaluated through

G(tij , til) = (Yij − µ̂(tij))(Yil − µ̂(til)). (3.2)

We see, that E[G(tij , til)] ≈ C(tij , til) and assuming that E[ˆµ(tij)] = µ(tij) holds for all j =
1, ..., Ni, we get E[G(tij , til)] = C(tij , til) by the definition of the covariance. Thus, we can obtain
an estimation by smoothing the empirical estimates using tensor product splines. Since C(tij , til)
is contaminated by white noise, we only smooth G(tij , til) for j 6= l and treat the diagonal
separately, yielding G(tij , til) = cov(xi(tij), xi(til)) (Reiss and Xu, 2019, Yao et al., 2005).

The following subsections present two approaches for the described procedure, both of which
are based on penalized tensor product splines. In the first subsection we discuss the effect of
smoothing over different domains on the penalization, presented by Reiss and Xu (2019).
As an alternative to the approach of Reiss and Xu (2019), an estimation algorithm developed by
Xiao et al. (2018) is presented in subsection 3.2.

8

Regularized Covariance Estimation for Functional Data

3.1. “Square” vs. “Triangle” Smoothing

Being a bivariate function of tij and til, we use (2.4) and (2.5) to express the covariance matrix
into

C(tij , til) =
d∑

k=1

d∑
p=1

γkpBk(tij)Bp(til) =
[
b(til)′ ⊗ b(tij)′

]
γ. (3.3)

The symmetry of the covariance function requires us to model it in a symmetric way. That is,
we demand γkp = γpk to hold for the parameters in (3.3).

Our goal is to estimate the coefficient vector γ using a regression model.
Following the principles of the previous chapter, we compute the value of (3.2) of all curves
xi, ..., xn and distinct time points tij , til ∈ T 2 and store them into a response vector v. Then, we
set up a model matrix Z having rows b(tij)⊗ b(til). The regression model amounts into v = Zγ.
The estimated parameter vector γ are obtained by minimizing the penalized least squares criterion
‖v −Zγ‖2 + γPγ, yielding

γ̂ =
(
Z ′Z + P

)−1
Z ′v,

where P = λs(R⊗Q) + λt(Q⊗R) is a penalty matrix with symmetric d× d matrices R and Q.
Note, that this penalty matrix has the same form as (2.7), only with Rs = Rt and Qs = Qt.
Choosing a second-derivative or second-difference penalty for P, results into the penalty null
space, that is spanned by bilinear functions of s and t, having the form

C(s, t) = a+ b · (s+ t) + c · s · t, (3.4)

where a, b, c are arbitrary parameters. Analogously, a first-derivative penalty shrinks the estimated
covariance toward the two-dimensional space of constant functions on T .
The approach described above is called "square" smoothing, because E[G(tij , til)] is smoothed
for all values tij , til, j 6= l on the square region T 2 (Reiss and Xu, 2019).

Yet, the symmetry of the covariance implies G(tij , til) = G(til, tij) and γkp = γpk, wherefore
smoothing on the entire T 2 seems redundant. Instead of smoothing on the entire square region,
we can estimate C on the triangular region H = {(s, t) ∈ T : s > t}, i.e. we only consider the
values of (3.2) for which tij > til in the estimation process. Smoothing on H rather than on T 2

is referred to as "triangle" smoothing. With triangle smoothing we obtain an estimate Ĉ(tij , til)
for H, which is extended on T 2 by taking Ĉ(tij , til) = Ĉ(til, tij) for tij < til.
The geometrical interpretation of triangle smoothing is a bisection of the covariance surface’s
domain T 2 along the line s = t. The covariance surface is then estimated on one half H of the
domain T 2 and subsequently reflected on the diagonal.
Smoothing on H results in a dimension reduction of the regression model components, wherefore
triangle smoothing is computationally more efficient than square smoothing.Yet, smoothing only
on the triangular region H changes the penalty null space. Completely smooth functions on H
have the form a+ bs+ ct+ dst. Extending this function to the entire domain T 2 yields

C(s, t) = a+ b ·min(s, t) + c ·max(s, t) + d · s · t, (3.5)

where a, b, c, d are again arbitrary parameters. Geometrically, such a function has a ridge along
the diagonal and two bilinear pieces on either side (Reiss and Xu, 2019).

We see, that square smoothing and triangle smoothing shrink the estimated covariance in different
directions. A simulation study to compare these two smoothing methods is provided in chapter
4. However, we first describe a computational efficient alternative to the methods in the next
subsection.

9

Regularized Covariance Estimation for Functional Data

3.2. “FACE” Algorithm

Besides square and triangle smoothing, Xiao et al. (2018) developed another approach to estimate
the covariance using tensor product splines. Their so called “Fast Covariance Estimation”-, in
short “FACE”, -Algorithm provides a joint estimation of the covariance function C and the
measurement error variance σ2

i , hence including values tij , til with j = l in the smoothing step.
In the following we give a summary of the estimation method of FACE.

Recall the model (2.1) for functional data. We impose a further restriction on the white noise
and assume the measurement errors to be i.i.d. Gaussian distributed. Note that the measurement
errors are independent across all curves as well as from each other, yielding εij iid∼ N(0, σ2).
Now, consider again the expression (3.3) for j 6= l, in which we want to estimate the parameter
vector γ. Let Γ = (γkp)1≤k,p≤d be the according symmetric d× d parameter matrix. With Γ we
can re-write (3.3) into a matrix notation of the form

[b(tij)⊗ b(til)]′ vec(Γ). (3.6)

Similar to triangle smoothing, we can exploit the symmetry of the covariance function and Γ,
such that we only estimate the lower triangle of Γ. Let γ∗ = vech(Γ) be a vector, that contains
the stacked columns of the lower triangle of Γ. Moreover, let V be a duplication matrix, such
that vec(Γ) = V γ∗.

Similar to square and triangle smoothing, FACE estimates Γ through a penalized least squares
criterion. Hence, we compute the values of crossproducts (3.2) for every til ≥ tij for every curve
i = 1, ..., n. We denote the cross product G(tij , til) = Gijl. To get a better overview over all
pairwise crossproducts, we consider the following notation:
Gij =

[
Gijj , Gij(j+1), Gij(j+2), ..., GijNi

]′
∈ RNi−j+1 is computed for every j = 1, ..., Ni and

stored in a vector of vectors Gi =
[
G′i1, ...,G

′
iNi

]′
= [Gi11, Gi12, ..., Gi1Ni , Gi22, Gi23, ..., GiNiNi]′.

So, Gi contains all empirical estimates for some curve i. Note that Gi also contains the terms
Gijj , that are polluted by measurement error.
In the same spirit, [b(tij)⊗ b(til)] is evaluated for all grid points til ≥ til, yielding Bij =
[b(tij), b(tij+1), ..., b(tiNi)] ⊗ b(tij) for all j = 1, ..., Ni. The evaluations for all j = 1, ..., Ni are
stored in the vector of vectors Bi = [Bi1, ...,BiNi].

The response vector is then given by G = [G′1, ...,G′n]′. We see, that the response vector is
similarly constructed as in triangle smoothing, with the important difference, that G contains
polluted values. Besides the response vector, the model matrix must account for the measurement
errors as well. Therefore, consider the unit vector δij = (1,0′Ni−j)′ ∈ RNi−j+1 and δi =
[δ′i1, ..., δ′iNi

]′. By the definition of the covariance and the form (3.6), we obtain a linear model of
the form

E[Gi] = [BiV, δi] ·
[
γ∗′

σ2

]
= Ziα,

where Zi = [BiV, δi] is the model matrix and α = [γ∗′σ2]′ is the coefficient vector. Let
Wi ∈ RNi×Ni be a weight matrix for capturing the correlation of Gi. A weighted least squares
formula is then defined through

WLS =
n∑

i=1
(Gi −Ziα)′Wi (Gi −Ziα) .

10

Regularized Covariance Estimation for Functional Data

Taking B = [B′1, ...,B′n]′, δ = [δ′1, ..., δ′n]′ and acknowledging that Z = [Z ′1, ...,Z ′]′ = [BV, δ]
results in a full matrix notation of the WLS-formula:

WLS = (G−Xα)′W (G−Xα) ,

where W = blockdiag(W1, ...,Wn).
Consequently, Γ and σ2 can be estimated simultaneously by minimizing the penalized weighted
least squares criterion

WLS + λ‖ΓD‖2F ,

where λ ≥ 0 is the smoothing parameter which controls the extend of the penalty, ‖·‖F denotes
the Frobenius norm, and Dr is the rth-order difference matrix which has been introduced in
subsection 2.3. The default for FACE is r = 2. The Frobenius norm is essentially the trace of
(ΓDr)′(ΓDr), thus the penalty term can be re-expressed into

‖ΓD‖2F = vec(Γ)′(Id ⊗DrD
′
r)vec(Γ)

= γ∗V ′(Id ⊗DrD
′
r)V ′γ∗

= (γ∗ σ2)Θ
(
γ∗

σ2

)
= αΘ′α,

where Θ =
(
P 0
0 0

)
and P = V ′(Id ⊗DrD

′
r)V ′. Note that the term (Id ⊗DrD

′
r) is equivalent

to the row penalty of bivariate P -Splines.

The weight matrices Wi are specified as

W−1
i = 0.5 cov(G∗i) + 0.5 diag{diag{cov(G∗i)}},

where G∗i is defined almost in the same way as Gi, except that G∗i uses the real mean function
in the computation of the crossproducts (3.2). Xiao et al. (2018) offer a derivation of cov(Gi) in
terms of C(tij , til) and σ2.
Consequently, Xiao et al. (2018) have implemented d a two-stage estimation for FACE:
In the first step, we set Wi = I for all i and minimize a penalized ordinary least squares criterion,
in order to obtain a first estimate for C(tij , til) and σ2. With this first estimate, we can derive
a suitable value for Wi. Having derived Wi, we estimate C and σ2 again, using a penalized
weighted least squares criterion (Xiao et al., 2018).

3.3. Summary of Methods

All three covariance estimators presented in this Chapter utilize the principles of bivariate
smoothing through tensor product splines. Square smoothing can be interpreted as the application
of the general penalized tensor product bivariate spline smooths, described in subsection 2.3, on
the covariance function. Exploiting the symmetry of the covariance, triangle smoothing serves as
a computationally efficient alternative, by simply estimating only half of the parameters and
consequently reducing the dimension of the regression model. The presence of measurement
errors requires square and triangle smoothing to exclude the diagonal values tij = til from the
estimation and treat them separately. FACE also considers the symmetry of the covariance
and reduces the regression model similar to triangle smoothing. Yet, in contrast to triangle

11

Regularized Covariance Estimation for Functional Data

smoothing, FACE includes the values on the diagonal to carry out a joint estimation of both the
covariance function as well as the measurement error variance. Moreover, FACE uses a special
case of difference penalty and utilizes only one summand of the penalty term (2.7), presented in
subsection 2.3.
A crucial part of penalized tensor product smoothing is the estimation of the smoothing parameter
λ. Possible techniques for choosing λ include the Un-Biased Risk Estimator (UBRE) as well
as Generalized Cross Validation (GCV) (see e.g. Wood, 2017, p. 255 ff.), which are the default
methods in mgcv. Xiao et al. (2018) propose a tuning algorithm for the leave-one-subject-out
cross-validation of the smoothing parameter in FACE.
In the next Chapter we compare the accuracy of the three estimators in a simulation study.

12

Regularized Covariance Estimation for Functional Data

4. Simulation Study

We provide a two-part simulation study to evaluate the performance of the covariance estimators
discussed in Chapter 3. In Simulation A, we assess the difference between square and triangle
smoothing (Reiss and Xu, 2019) empirically. Simulation B aims to compare the FACE-algorithm
(Xiao et al., 2018) from section 3.2 with square and triangle smoothing. Note that by performance
we mean the accuracy of the estimation rather than the computational time.

Data Generating Process

We generate Ni realizations of a Gaussian process for either n = 15, n = 30 or n = 50 curves,
with a covariance function that will be specified in the following subsections. We consider
data of all three types, as discussed in section 2.1, and choose the grid length Ni such that
E(Ni) ∈ {20, 35, 70}, i = 1, ..., n. Note that since the grid lengths differ from curve to curve in
the case of irregluar and fragmentary data, the expected value is used rather than the absolute
value. Fragmentary data is generated in analogy to Delaigle et al. (2021), who sample the
intervals of each curve’s fragment by generating its length from a uniform distribution.
Furthermore, the data is generated either weakly noisy, i.e. the variance of the measurment errors
is relatively low, or very noisy, yielding the measurement errors’ variance to be relatively high. To
quantify the noise level, we use the signal-to-noise-ratio (SNR) defined as SNR = E‖X −µ‖2/σ2

(Lin and Wang, 2022, p. 354), i.e. the lower we choose the SNR, the greater the noise becomes
in the data. After examining the data and the estimation for different noise levels visually, we
decide the SNR to have the value 8 for weakly noisy data and 3 for highly noisy data. We use
the R-package tidyfun (Scheipl et al., 2022) for the data generation step.
Next, we estimate a covariance matrix with the respective smoothing method. Since the data
was generated with a certain covariance function, we can simply derive a true covariance matrix,
by evaluating the underlying covariance function for the same grid which we have used in the
smoothing step.
To assess the performance of a method, we consider the Frobenius-distance and the Wasserstein-
distance for normal distributions between the true covariance matrix and the estimated one.
Consequently, one method is assumed to perform better than another, when its corresponding
distance measure is smaller than the other’s.
Remember that in the case of fragmentary data, the covariance cannot be estimated on its entire
domain, but only on a subset. We account for this by only considering those values of the true
covariance matrix, where the estimation values are present. Hence, the comparison over the
Wasserstein-distance is redundant, and only the Frobenius-distance is considered for fragmentary
data.

4.1. Simulation A

In subsection 3.1 we discussed the differences of square and triangle smoothing in terms of their
respective penalty null spaces. Moreover, Reiss and Xu (2019) present two real-data examples,
which display large differences between the eigendecomposition of the estimated covariance
functions. This raises the question of whether triangular smoothing is just as accurate an
estimate or even a more accurate estimate than square smoothing and how much the respective
estimations differ in practice.
To answer this, we choose two settings for the data generating process. One setting is optimal

13

Regularized Covariance Estimation for Functional Data

for square smoothing with a second-order penalty, while the other setting is optimal for triangle
smoothing with a second-order penalty. This choice amounts to choosing an appropriate covariance
function for the data generation step, that lies in the second-order penalty null space of the
respective method. The form of such a function is given by (3.4) for square smoothing and (3.5)
for triangle smoothing in subsection 3.1. We set the arbitrary parameters to a = c = d = 1 and
b = 2. Note that if b = c = d, the triange-optimal covariance function has the same form as the
square-optimal covariance function. We consider a second-order penalty as well as a first-order
penalty. Furthermore, 10 basis functions are used for the estimation step.
The estimation methods are implemented by Fabian Scheipl based on the fpca.sc function
from the R-package refund (Goldsmith et al., 2022). In order to boost computational time,
one can choose to either smooth all products of the centered data G(tij , til) = YijYil for every
curve i = 1, ...n, which is the usual procedure yet very slow for large data sets, or to smooth
the mean of all products of the centered data over every curve, yielding a reduction of the
response vector’s dimension and an increase in computational speed. We refer to the latter as
“aggregated”-smoothing.
In order to provide a clearer and straightforward presentation of the results, the values in the
following tables are rounded to two decimal digits.

Results of Simulation A

Table 1: Overview over the average Wasserstein-distance for different combinations

Regular Irregular
Sq. Optim. Tri. Optim. Sq. Optim. Tri. Optim.

SNR Cuves Grid Length Square Triangle Square Triangle Square Triangle Square Triangle
20 34.78 35.36 13.41 13.49 472.12 449.11 243.76 215.31
35 56.17 37.29 24.42 30.27 816.48 848.55 341.52 347.22

15

70 106.22 99.63 49.53 38.79 1494.77 1485.23 810.82 659.78
20 29.97 34.96 15.31 13.76 849.24 935.69 389.21 381.99
35 58.91 52.99 26.10 24.74 1627.51 1420.75 685.44 793.88

30

70 110.79 109.04 51.58 52.70 2992.44 3009.72 1013.58 1501.25
20 27.86 31.27 14.85 13.28 1502.29 1422.55 666.45 663.65
35 60.53 58.62 28.67 24.52 2458.90 2731.50 1258.20 1066.43

3

50

70 117.09 112.53 44.40 52.02 5030.64 4940.25 2294.72 2677.64
20 24.60 28.75 14.92 12.92 415.00 373.71 172.48 184.70
35 52.97 58.86 26.06 23.64 824.65 796.94 340.23 251.30

15

70 118.95 95.51 54.86 39.66 1400.27 1378.70 480.39 953.43
20 30.29 31.62 13.87 12.98 794.94 811.53 418.31 469.52
35 57.79 52.71 24.91 24.19 1550.49 1596.79 898.62 728.61

30

70 122.42 110.70 58.61 49.43 2969.38 3307.83 1287.77 1195.13
20 35.25 29.66 14.88 14.91 1354.83 1419.39 633.00 603.60
35 53.11 59.99 24.90 25.86 2538.28 2681.83 1130.51 1218.04

8

50

70 111.44 109.71 50.84 53.87 4759.22 5385.27 2263.51 2162.13

To get a quick overview over the results, we consider Table 1 which displays the average
Wasserstein-distance for different settings. It is immediately noticeable that that the average
Wasserstein-distance for irregular data is much higher compared to regular data, for every setting.
In fact, the average Wasserstein-distance for smoothing irregular data is greater than the average

14

Regularized Covariance Estimation for Functional Data

Wasserstein-distance for smoothing regular data by the value 1344.69. Therefore, a separate
analysis of data types is conducted. In the following we will examine the components of Table 1
further.
As mentioned before, our main interest is the comparison between square and triangle smoothing.
To quantify the differences between the two smoothing methods, we consider the percentage
differences of the average Wasserstein- and Frobenius-distances displayed in Table 2, where a
negative value indicates that triangle smoothing had a smaller distance than square smoothing
and thus performed better.

Table 2: Percentage difference of average Wasserstein- and Frobenius-distances between triangle
smoothing and square smoothing, grouped by penalty order

Setting Type Wasserstein Frobenius

Fragment NaN 0.46
Irregular 3.38 0.13

Sq. Optim.

Regular -4.96 -0.91

Fragment NaN -1.03
Irregular 4.86 0.90

Tri. Optim

Regular -5.63 -1.79
Note: percentage difference = avg. distance square smooth−avg. distance triangle smooth

avg. distance square smooth × (−100)

According to the Wasserstein-distance, square smoothing performs better than triangle smoothing
for irregular data in both settings. On the other hand, we see that square smoothing has a worse
perfromance than triangle smoothing for regular data in both settings. The same observation is
made when considering the percentage differences of the Frobenius-distances. Nevertheless, it
should be noted that the percentage differences between the Frobenius-distances are relatively
low, implying an almost equal performance of triangle and square smoothing. Furthermore,
we see, that square smoothing outperforms triangle smoothing for square-optimal fragmentary
data, while triangle smoothing performs on average 1.03% better than square smoothing for
triangle-optimal fragmentary data.

A graphical visualization is given by the barplot in Figure 1. It shows the percentage of cases
where the respective smoothing method could prevail against the other, with the graphic and its
bars being grouped by setting and data type respectively. The dark shade of the bar depicts the
corresponding percentage of cases where triangle smoothing had a smaller distance than square
smoothing, while the light shade corresponds to the corresponding percentage of cases where
square smoothing outperformed triangle smoothing.
We see, that the shades of the bars change around the 50% threshold, indicating that the
percentages of cases, where the respective smoothing method could prevail against the other,
are similar. In Figure 1a), the percentage of cases, where square smoothing outperformed
triangle smoothing for irregular data in terms of the Wasserstein-distance, is slightly higher
in the square-optimal setting compared to the triangle-optimal setting. This excess of square
smoothing in the irregular data and triangle smoothing in the regular data in Figure 1 reflects
the result in Table 2.

Having examined the columns of Table 1, we now turn to its rows, which correspond to the
main features of the simulated functions. We begin with a combined analysis of the number of

15

Regularized Covariance Estimation for Functional Data

Square Optimal Triangle Optimal

Irregular Regular Irregular Regular
0

25

50

75

100

%

Square Smoothing Triangle Smoothing

(a) Wasserstein distance

Square Optimal Triangle Optimal

Fragment Irregular Regular Fragment Irregular Regular
0

25

50

75

100

%

Square Smoothing Triangle Smoothing

(b) Frobenius distance

Figure 1: Percentage of cases where the respective smoothing method outperformed the other

observed curves and grid lengths in Figure 2, which displays the percentage of cases, where the
respective method prevailed against its alternative, grouped by data type. The columns of the
figure correspond to the grid length and the rows correspond to the number of curves.
Considering the Wasserstein-distances in Figure 2a), we notice that with an increasing grid
length, triangle smoothing performs better than square smoothing for more and more regular
cases, where n = 15 or n = 30. Considering irregular cases with n = 50, we observe a decrease
in the percentage where triangle smoothing performs better than square smoothing with an
increasing grid length. Furthermore, the percentage of regular cases with E(N) = 70, where
triangle smoothing outperformed square smoothing, decreases with the increasing number of
curves.
To analyze fragmentary data, we examine Figure 2b). We obtain the same patterns for regular
and irregular data as before in 2a) and there seems to be no pattern for fragmentary data.

The next feature we consider is the noise level, defined by the SNR. Square smoothing performs
on average 2.20% better for data with high noise and 4.90% for data with low noise.
In Table 3, the results from Table 2 are further grouped by their SNR values. At first glance,
we observe that triangle smoothing performs better than square smoothing for regular data in
every setting. This becomes particularly clear for and triangle-optimal regular data with SNR=8,
since the average Wasserstein-distance obtained with triangle smoothing is 9.29% smaller than
the average Wasserstein-distance obtained with square smoothing.Moreover, triangle smoothing
outperforms square smoothing for fragmentary data in every setting, but the square-optimal one
with high noise. According to both Wasserstein- and Frobenius-distance, the two smoothing
methods have nearly an equal performance for square-optimal irregular data with high noise.
Although square smoothing outperforms triangle smoothing for irregular data with SNR = 8 in
both settings, the percentage difference of the Wasserstein-distances is smaller in the triangle-
optimal irregular data than in the square-optimal irregular data. Hence, the extend of the
outperformance of square smoothing is larger for square-optimal data than for triangle-optimal
data. The opposite is the case for triangle smoothing, where the extend of the outperfromance is
larger for triangle-optimal data than for square optimal data. Note that this pattern is not to be
seen for square-smoothing when considering the Frobenius-distance.
Furthermore we do not see this trend the noisy case with SNR=3, since triangle smoothing even
performs even better for square-optimal regular data than it does for triangle-optimal regular
data.

16

Regularized Covariance Estimation for Functional Data

E(N) = 20 E(N) = 35 E(N) = 70

n =
 15

n =
 30

n =
 50

Irregular Regular Irregular Regular Irregular Regular

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(a) Wasserstein-distance

E(N) = 20 E(N) = 35 E(N) = 70

n =
 15

n =
 30

n =
 50

Fragment Irregular Regular Fragment Irregular Regular Fragment Irregular Regular

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(b) Frobenius-distance

Figure 2: Percentage of cases where the respective smoothing technique outperformed the other,
grouped by grid length and number of observed curves

17

Regularized Covariance Estimation for Functional Data

Table 3: Percentage difference of average Wasserstein- and Frobenius-distances between triangle
smoothing and square smoothing, grouped by SNR

SNR Setting Type Wasserstein Frobenius
Fragment NaN 1.60
Irregular -0.01 0.00

Sq. Optim.

Regular -5.09 -1.29
Fragment NaN -0.53
Irregular 7.83 0.55

3

Tri. Optim

Regular -1.74 -0.56
Fragment NaN -0.63
Irregular 6.89 0.00

Sq. Optim.

Regular -4.82 -0.65
Fragment NaN -1.57
Irregular 1.86 1.69

8

Tri. Optim

Regular -9.29 -2.76
Note: percentage difference = avg. distance square smooth−avg. distance triangle smooth

avg. distance square smooth × (−100)

Additionally, we assess whether the pattern from Figure 2 becomes clearer, when a combined
analysis of grid length and SNR is considered. Therefore, the results from Table 3 are further
grouped by the expected grid length and displayed in Table 4. The values of the differences
between the average Frobenius-distances seem to be proportionate to the differences between the
average Wasserstein-distance. For each combination where the percentage difference of the mean
Wasserstein-distances is relatively high, the corresponding Frobenius-distance is relatively high
as well. Nevertheless, it is noticeable that the conclusion as to whether one method works better
than the other can deviate. For example, consider noisy (SNR = 3) regular data in the triangle-
optimal case, that has been observed on 20 grid points. According to the Wasserstein-distance
triangle smoothing perfroms on average 6.99% better than square smoothing, yet according to
the Frobenius-distance square smoothing outperfroms triangle smoothing by 0.07%. What also
stands out, are the relatively large percentage differences of the average Wasserstein-distances for
data with low noise and E(N) = 70. Beside these findings, there are no patterns to be seen.

18

Regularized Covariance Estimation for Functional Data

Table 4: Percentage difference of average Wasserstein- and Frobenius-distances between triangle
and square smoothing, grouped by expected grid length and SNR

Wasserstein Frobenius
SNR Setting Type E(Ni) = 20 E(Ni) = 35 E(Ni) = 70 E(Ni) = 20 E(Ni) = 35 E(Ni) = 70

Fragment NaN NaN NaN -0.45 3.27 1.66
Irregular -0.58 2.00 -0.87 0.07 0.16 0.06

Sq. Optim.

Regular 9.70 -15.21 -3.86 2.08 -4.73 -1.20
Fragment NaN NaN NaN 0.45 -1.11 -1.60
Irregular -2.96 -3.40 17.47 -1.55 0.01 2.74

3

Tri. Optim

Regular -6.99 0.43 -1.38 0.07 -0.63 -1.60
Fragment NaN NaN NaN -3.39 0.71 1.07
Irregular 1.55 3.30 10.33 -0.74 -0.53 1.77

Sq. Optim.

Regular -0.11 4.69 -10.46 0.18 0.94 -2.63
Fragment NaN NaN NaN -1.69 -1.17 -1.01
Irregular 2.78 -7.23 6.92 1.55 -3.56 6.63

8

Tri. Optim

Regular -6.54 -2.88 -13.00 -1.75 -1.60 -5.10
Note: percentual difference = avg. distance square smoothing−avg. distance triangle smoothing

avg. distance square smoothing × (−100)

Bear in mind that the estimation in the square-optimal setting is not penalized only when the
smoothing is conducted using a second-order penalty. Triangle-smoothing is similarly defined.
Hence, we must distinguish our analysis by the penalty orders. Table 5 displays the mean
distances of square and triangle smoothing for the two penalty orders first. Surprisingly, the
Wasserstein-distance for square smoothing with a second-order penalty is slightly higher than
smoothing with a first-order penalty. In what follows, we examine the difference between square
and triangle smoothing of square-optimal as well as triangle-optimal data for different penalty
orders.

Table 5: Average Wasserstein- and Frobenius-distance for triangle and square smoothing, grouped
by penalty order

Wasserstein Frobenius
Pen. Order Square Smooth Triangle Smooth Square Smooth Triangle Smooth

2 712.94 716.51 2.470 2.4516
1 702.09 748.47 2.472 2.4752

19

Regularized Covariance Estimation for Functional Data

Table 6: Percentage difference of average Wasserstein- and Frobenius-distances between triangle
smoothing and square smoothing for square- and triangle-optimal data, grouped by
penalty order

Pen. Order Setting Type Wasserstein Frobenius
Fragment NaN 0.00
Irregular 0.53 -0.32

Sq. Optim.

Regular -0.33 0.00
Fragment NaN -2.09
Irregular 0.85 -1.11

2

Tri. Optim

Regular -9.59 -3.30
Fragment NaN 0.95
Irregular 6.27 0.65

Sq. Optim.

Regular -9.49 -1.93
Fragment NaN 0.00
Irregular 8.94 2.79

1

Tri. Optim

Regular -1.64 -0.56
Note: percentage difference = avg. distance square smooth−avg. distance triangle smooth

avg. distance square smooth × (−100)

Table 6 further groups the results from Table 2 by penalty order. In Table 6, we see that, compared
to a frist-order penalty, the percentage differences of the average Wasserstein-distances are smaller
for a second-order penalty. Only for the triangle-optimal regular case, the average Wasserstein-
distances differ more than 1%, where triangle smoothing outperforms square smoothing on
average by 9.59% for triangle-optimal regular data.
We depict the percentage of cases, where the respective smoothing technique outperformed the
other, in terms of the Wasserstein-distance in Figure 3. Figure 2 and Table 4 indicate that the
percentage difference of the average Wasserstein-distances between square and triangle smoothing
increase with grid length for data with low noise, hence the results in Figure 3 are grouped by
SNR and grid length.
Figure 3a) corresponds to smoothing with a second-order penalty while Figure 3b) corresponds
to smoothing with a first-order penalty. Much like Figure 2, the lower panels of Figure 3a) show
an increase of cases where triangle smoothing prevails against square smoothing with increasing
grid length, for regular data with low noise. This trend is not continued for data with SNR = 3.
Furthermore, we observe for irregular data on both noise levels, the percentage of cases, where
triangle smoothing outperformed square smoothing, is higher for data with E(N) = 35 than
for data with other expected grid lengths. It is also noticeable, that the percentage of irregular
cases with E(N) = 50, where triangle smoothing performed better than square smoothing, is
lower than 50% for data with low noise, while it is above 50% for noisy data. For regular data,
observed on roughly 70 grid points, this observation is the other way round.
In Figure 3b) we notice that, for irregular data with a high noise level, the percentage of cases,
where triangle smoothing performed better than square smoothing, decreases with an increasing
grid length for both noise levels. For regular data, observed on a grid of expected length of 70,
much more cases have triangle smoothing prevailing against square smoothing. On the other
hand, for the major part of irregular noisy data, observed on this large grid, square smoothing
with a first-order penalty performed better than triangle smoothing with a first-order penalty.
Additionally the shade change in the bar is much further away from the 50% threshold in Figure

20

Regularized Covariance Estimation for Functional Data

3b) than in Figure 3a), indicating stronger deviations of the smoothing methods’ performance.
The corresponding illustration of the Frobenius-distances is given in the Appendix B.

As mentioned before, we can smooth the mean of crossproducts across every curve and thus
reduce the dimension of the regression model.
In addition to the computational benefit, aggregated smoothing has a positive effect on the
performance of both smoothing techniques, as shown by the average Wasserstein- and Frobenius-
distance in Table 7.

Table 7: Average Wasserstein-distance for aggregated triangle and square smoothing

Aggregated Square Smooth Triangle Smooth
False 722.65 741.51
True 692.39 723.47

We see that there are only minor differences between square smoothing and triangle smoothing
in general. In the next part of the simulation, we will compare triangle and square smoothing
with the FACE-algorithm.

21

Regularized Covariance Estimation for Functional Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Irregular Regular Irregular Regular Irregular Regular

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(a) Second-Order Penalty

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Irregular Regular Irregular Regular Irregular Regular

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(b) First-Order Penalty

Figure 3: Percentage of cases where the respective smoothing technique outperformed the other
in terms of the Wasserstein-distance, grouped by grid length and SNR

22

Regularized Covariance Estimation for Functional Data

4.2. Simulation B

In this part of the simulation study, we compare the FACE-algorithm, described in subsection 3.2,
with square and triangle smoothing. As done before in Simulation A, we generate Ni realizations
of a Gaussian process for either n = 15, n = 30 or n = 50 curves such that E(Ni) ∈ {20, 35, 70}.
The domain of the curves is T = [0, 1] ∈ R. Instead of a triangle-optimal or square-optimal
setting, we choose only one covariance function, namely the squared exponential covariance in
the form of

C(s, t) = exp
(
−(s− t)2

β

)
+ σ2δst,

where σ2 is the variance of the measurement errors and δst = 1 if s = t and 0 otherwise. The
parameter β is an arbitrary scale parameter. Similar to the default implemented in tidyfun, we
set β = 1/10.
The data is then smoothed with either square smoothing, triangle smoothing or the FACE-
algorithm. As in Simulation A, we consider smoothing with a second-order penalty as well as
a first-order penalty. Furthermore, 10 basis functions are used for the spline basis. Table 7
indicates, that aggregated square and triangle smoothing has no performance issues compared
to full smoothing. Hence, we use only aggregated square and triangle smoothing, in order to
boost computational time. Smoothing with the FACE-algorithm is carried out for irregular and
fragmentary data with the face.sparse function, which is implemented in the R-package face
(Xiao et al., 2018). In case of regular data, the function fpca.face from the refund package
(Goldsmith et al., 2022) is used.

Results of Simulation B

Table 8 shows the average Wasserstein- and Frobenius-distances for the three data types, obtained
with the three methods. For every data type the average Wasserstein- and Frobenius-distance
is smaller for FACE than for square and triangle smoothing. Much like in Simulation A, the
Wasserstein-distances obtained with smoothing irregular data are much higher in comparison to
regular data. Consequently, a separate analysis is carried out.

Table 8: Average Wasserstein- and Frobenius-distance

Type Method Wasserstein Frobenius
FACE NaN 0.5552
Square NaN 0.6499

Fragment

Triangle NaN 0.6260
FACE 342.36 0.5482
Square 483.58 0.5990

Irregular

Triangle 566.66 0.6370
FACE 16.04 0.6064
Square 17.71 0.6104

Regular

Triangle 19.66 0.6483

In the following, we will assess in which settings the FACE-algorithm prevails against square and
triangle smoothing and vice versa. Therefore, we again consider the percentage differences of the

23

Regularized Covariance Estimation for Functional Data

average distances between FACE and the respective alternative.
Similar to Simulation A, we start with the main features of the generated functions, such as grid
length, number of curves, and SNR, before grouping the results by the penalty-order that was
used in the estimation step.
In Simulation A we observed that grouping the results by grid length and SNR yields quite
different outcomes. Hence, we begin with examining the percentage differences of the average
Wasserstein- and Frobenius-distances between FACE and square smoothing or FACE and triangle
smoothing respectively, in Table 9. The values in Table 9 show by how much percent the average
distance obtained with FACE is smaller than the average distance obtained with either square or
triangle smoothing. A negative value indicates that FACE is outperformed.

Table 9: Percentage difference of average Wasserstein- and Frobenius-distances between FACE
and square smoothing / triangle smoothing, grouped by SNR and grid length

Wasserstein Frobenius
SNR Grid Length Type FACE - Square FACE - Triang. FACE - Square FACE - Triang.

Fragment NaN NaN -11.99 -8.90
Irregular 13.74 28.97 5.10 3.93

20

Regular -1.36 41.16 -3.38 9.64
Fragment NaN NaN 52.01 10.71
Irregular 39.91 77.36 7.46 24.41

35

Regular -9.67 51.85 -5.32 9.79
Fragment NaN NaN 8.68 25.89
Irregular 58.17 64.09 14.59 20.71

3

70

Regular 22.73 -6.23 10.34 4.38
Fragment NaN NaN 13.39 17.19
Irregular 47.18 76.64 6.87 17.14

20

Regular 10.78 3.21 0.37 -4.02
Fragment NaN NaN 23.55 10.77
Irregular 6.58 48.21 9.12 26.69

35

Regular 26.05 20.06 3.53 11.00
Fragment NaN NaN 26.65 28.04
Irregular 54.73 81.00 13.06 5.49

8

70

Regular 2.68 40.21 -1.11 11.36
Note: percentage difference = avg. distance FACE−avg. distance triangle or square

avg. distance FACE × (−100)

At first glance, the values in Table 9 seem relatively high. For example, FACE perform on average
81% better than triangle smoothing of irregular data with low noise, recorded on a grid of length
70.
In general, FACE performs better than both triangle and square smoothing for most settings.
This is especially apparent for irregular data, where we can see FACE clearly prevailing against
triangle smoothing in every setting. For data with low noise, i.e. SNR = 8, FACE outperforms
square and triangle smoothing in every setting according to the Wasserstein-distance. Yet,
the Frobenius-distance implies that triangle smoothing on regular data with grid length 20
and square smoothing on regular data with grid length 70 performed on average better than
FACE. In the noisy case we see some more settings where FACE was outperformed. Consider
e.g. noisy (SNR = 3) regular data, recorded on 35 and 20 grid points. Both the Wasserstein-
and Frobenius-distance indicate that square smoothing performs on average better than FACE.
Furthermore, according to the Wasserstein-distance, FACE performs on average 6.23% worse

24

Regularized Covariance Estimation for Functional Data

than triangle smoothing for regular data with SNR = 3 recorded on 70 grid points, although the
corresponding Frobenius-distance indicates that FACE outperforms triangle smoothing.
In the case of fragmentary data, FACE performs better than square and triangle smoothing for
every grid length where SNR = 8 and the Frobenius-distance even increases with increasing
grid length. Yet, for noisy fragmentary data with E(N) = 20, square smoothing outperforms
FACE on average by 11.99% and triangle smoothing outperforms FACE on average by 8.90%.
Considering the two larger grid lengths, FACE performs best for noisy fragmentary data.

We display the Wasserstein-distances in Figure 4, where Figure 4a) shows the boxplots for
irregular data and Figure 4b) shows the boxplots for regular data. The red dots depict the
corresponding mean values from Table 9. In the first panel of Figure 4b), we can see that the
box, as well as the median which corresponds to square smoothing, is slightly lower than the
other two boxes and medians. This reflects the negative value in Table 9.
In the second panel, we observe an outliner of the boxplot corresponding to FACE, that distorts
the mean value. The median of FACE is a little bit below the median of square smoothing and
the box corresponding to FACE is narrower than the box corresponding to square smoothing,
hence the value in Table 9 must be treated with caution. The third panel in Figure 4b) displays
the boxplots for noisy regular data, measured on 70 grid points. The box corresponding for
triangle smoothing is slightly lower and slimmer than the box corresponding to FACE. Moreover
the median of the Wasserstein-distance obtained with triangle smoothing is lower than the
corresponding median of FACE.

The boxplots in Figure 5 display the distribution of the Frobenius-distances obtained with each
method for different SNR values and grid lengths for fragmentary data in 5a) as well as for
regular data in 5b). The red dots are again the corresponding mean values shown in Table 9.
According to the mean values, square and triangle smoothing perform better than FACE for
fragmentary data, measured on roughly 20 grid points. This case is depicted as the first panel in
5a). For FACE, we see an outliner, which distorts the mean value. Additionally, the boxplot
corresponding to FACE as well as the median, are slightly lower than the boxplot and median
of square and triangle smoothing. Thus, this result from Table 9 should also be treated with
caution. For regular data, measured on 20 grid points, the results from Table 9 are reflected in
the left panels of Figure 5b), where the boxplots and medians corresponding to square smoothing
are lower than the boxplots and medians corresponding to the other two smoothing methods.

A crucial ingredient in the estimation process is the order of the penalization. Table 10 shows
the percentage differences of the Wasserstein- and Frobenius-distance between FACE and square
smoothing as well as FACE and triangle smoothing, grouped by penalty order and grid length.
According to the Wasserstein-distance, FACE with a first-order penalty performs better than
square and triangle smoothing with a first-order penalty in every setting. Except for square
smoothing of regular data with E(N) = 70, FACE has the best performance, according to the
Frobenius-distance, in the case of first-order penalty.
When smoothing with a second-order penalty, we can see that FACE is often outperformed in
the regular case. Moreover, the Frobenius-distance indicates that square and triangle smoothing
perform better than FACE for fragmentary data with E(N) = 20.
These findings are reflected in the subfigures of Figure 6, which display the percentage of cases
where the respective smoothing method outperformed the other, grouped by grid length and
penalty order, according to either the Wasserstein- or Frobenius-distance.

25

Regularized Covariance Estimation for Functional Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle FACE Square Triangle

0

500

1000

1500

0

500

1000

1500

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(a) Irregular Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle FACE Square Triangle

0

20

40

0

20

40

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(b) Regular Data

Figure 4: Boxplots of Wasserstein-distances for irregular and regular data, grouped by grid length
and SNR

26

Regularized Covariance Estimation for Functional Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle FACE Square Triangle

0.5

1.0

1.5

0.5

1.0

1.5

Method

F
ro

be
ni

us
 d

is
ta

nc
e

(a) Fragmentary Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle FACE Square Triangle

0.3

0.5

0.7

0.9

1.1

0.3

0.5

0.7

0.9

1.1

Method

F
ro

be
ni

us
 d

is
ta

nc
e

(b) Regular Data

Figure 5: Boxplots of Frobenius-distances for fragmentary and regular data, grouped by grid
length and SNR

27

Regularized Covariance Estimation for Functional Data

Table 10: Percentage difference of average Wasserstein- and Frobenius-distances between FACE
and square smoothing / triangle smoothing, grouped by penalty order and grid length

Wasserstein Frobenius
Pen. Order Grid Length Type FACE - Square FACE - Triang. FACE - Square FACE - Triang.

Fragment NaN NaN -11.99 -15.80
Irregular 33.95 52.22 0.43 -1.04

20

Regular -12.50 14.86 -9.69 -5.28
Fragment NaN NaN 50.57 12.10
Irregular 33.53 60.54 13.60 18.18

35

Regular 9.41 56.95 -3.03 17.82
Fragment NaN NaN 2.70 3.33
Irregular 65.03 78.55 18.70 18.45

2

70

Regular 16.82 -11.39 15.03 0.60
Fragment NaN NaN 14.23 27.42
Irregular 22.13 46.96 12.13 23.19

20

Regular 23.75 27.18 6.84 10.53
Fragment NaN NaN 24.55 9.42
Irregular 13.52 64.55 3.21 32.57

35

Regular 7.53 15.90 1.19 3.01
Fragment NaN NaN 36.83 59.94
Irregular 48.84 66.74 9.33 7.79

1

70

Regular 7.74 54.43 -6.74 15.78
Note: percentage difference = avg. distance FACE−avg. distance triangle or square

avg. distance FACE × (−100)

Additionally, the percentage difference grouped by penalty order and SNR, are displayed in Table
11. What clearly stands out are the high values for irregular data compared to regular data.
Consider the second row, which indicates that the second-order penalty FACE-algorithm per-
formed on average 83.69% better than square smoothing with a second-order penalty and 90.01%
better than triangle smoothing with a second-order penalty for irregular data with SNR =
3, according to the Wasserstein-distance. Yet, for irregular data with SNR = 8, FACE is on
average “only” 17.47% better than square smoothing and 47.64% better than triangle smoothing.
While the percentage differences for irregular data decrease with increasing SNR in the case of
second-order penalty, they increase with increasing SNR for a first-order penalty.

28

Regularized Covariance Estimation for Functional Data

E(N)=20 E(N)=35 E(N)=70

P
en.=

1
P

en.=
2

Irregular Regular Irregular Regular Irregular Regular

0
25
50
75

100

0
25
50
75

100%

Square / Triangle Smoothing FACE

(a) Wasserstein distance

E(N) = 20 E(N) = 35 E(N) = 70

P
en. =

 1
P

en. =
 2

Fragment

Irre
gular

Regular

Fragment

Irre
gular

Regular

Fragment

Irre
gular

Regular

0
25
50
75

100

0
25
50
75

100%

Square / Triangle Smoothing FACE

(b) Frobenius distance

Figure 6: Percentage of cases where the respective smoothing method outperformed the other,
grouped by grid length and penalty order

29

Regularized Covariance Estimation for Functional Data

Table 11: Percentage difference of average Wasserstein- and Frobenius-distances between FACE
and square smoothing / triangle smoothing, grouped by penalty order and SNR

Wasserstein Frobenius
Pen. Order SNR Type FACE - Square FACE - Triang. FACE - Square FACE - Triang.

Fragment NaN NaN 13.28 -5.86
Irregular 83.69 90.01 17.81 17.23

3

Regular 13.66 9.00 4.63 8.10
Fragment NaN NaN 8.48 3.51
Irregular 17.47 47.64 3.62 5.79

2

8

Regular 7.12 10.87 -2.99 0.57
Fragment NaN NaN 13.92 24.52
Irregular 12.09 38.29 0.85 14.94

3

Regular 5.90 26.48 -3.76 7.88
Fragment NaN NaN 36.96 36.83
Irregular 58.96 92.51 16.31 28.03

1

8

Regular 15.38 48.94 5.04 11.47
Note: percentage difference = avg. distance FACE−avg. distance triangle or square

avg. distance FACE × (−100)

4.3. Summary and Discussion of Results

Before we begin with a summary and discussion of the simulation results, a remark about the
distance measures is required. For most cases, the percentage differences of the Frobenius-
distances between square smoothing and triangle smoothing are smaller than the corresponding
percentage differences of the Wasserstein-distances. Sometimes even the conclusion as to whether
one method works better than the other can deviate, as shown in Table 4 of Simulation A. As a
consequence, the results must be interpreted with respect to the distance measure.

The main conclusion we obtain from Simulation A, is that triangle smoothing and square
smoothing produce estimators with quite similar accuracy. Both methods perform a lot better
for regular data than for irregular data, which is not surprising since regular data has been
measured on the same equidistant time points for every curve, in contrast to irregular data where
the individual grid differs from curve to curve. Square smoothing performs slightly better than
triangle smoothing for irregular data, while triangle smoothing outperforms square smoothing
on average by 5.17% for regular data, according to the Wasserstein-distance. Furthermore, the
average Frobenius-distances obtained with square and triangle smoothing of fragmentary data
only differ 0.1% from each other.
Grouping the results further by noise-level yields larger differences of the Wasserstein-distances,
especially for a grid length E(N) = 70, compared to the whole set of results that is only grouped
by data type. However, a clear pattern indicating whether a smoothing method performs better
than the other with increasing grid length or SNR is not obvious.
For almost every setting, smoothing data with a second-order penalty results in a percentage
difference of less than 1% between the Wasserstein- and Frobenius-distances, obtained with
the respective method. Regular triangle-optimal data forms the noticeable exception, where
triangle smoothing performs on average 9.59% better than square smoothing. This exception
is no surprise, since triangle smoothing is not penalized in the triangle-optimal setting, so it
has an “advantage” against square smoothing. Considering a first-order penalty, the percentage
differences between the distance measures increase. These findings are expected, since a first-order

30

Regularized Covariance Estimation for Functional Data

penalty results in a penalty null space spanned by constant functions, resulting in square and
triangle smoothing being penalized in both the square- and triangle-optimal setting. The increase
in the percentage distances becomes especially visible for data sampled on large grids, where
square smoothing clearly prevails against triangle smoothing for irregular data and triangle
smoothing prevails against square smoothing for regular data.

Simulation B compared square and triangle smoothing with FACE using data generated with
the squared exponential function. We observe that in nearly every setting FACE outperforms
square and triangle smoothing. Especially for irregular data, we can see FACE clearly prevailing
against square and triangle smoothing. Yet, for regular data with high noise and small grids
of length 20 and 35, square smoothing seems to work better than FACE. At first glance, this
exception seems surprising, since FACE estimates the measurement-error-variance as opposed
to square smoothing, hence we would expect FACE to provide a more accurate estimation of
the covariance surface. Conversely, we compare the true covariance matrix with the estimated
covariance matrix, which are both evaluated on all grid points. Because the true covariance
matrix contains the evaluations of the covariance function without the additional nugget term,
estimating the measurement-error-variance is redundant.
In the case of a second-order penalty, we observe the absolute percentage differences of the
distance measures decreasing with increasing SNR. However, in the case of a first-order penalty
the absolute percentage differences of the distance measures increase with increasing SNR. This
is an astonishing contrast, as the penalty order changes how well FACE performs in comparison
to the other methods for different noise levels.
A possible explanation for these high values could be, that FACE utilizes only the row penalty
of bivariate P -Splines, while square and triangle smoothing use both the column and the row
penalty. Although the covariance’s symmetry implies that the column penalty is the same as
the row penalty (Xiao et al., 2018, p. 213), FACE is presumably less penalized than square and
triangle smoothing. This might also relate to the percentage differences of the distance measures
decreasing with increasing SNR for a second-order penalty estimation.

In summary, we conclude that triangle and square smoothing yield similar results, thus triangle
smoothing is an appropriate alternative to square smoothing with a computational benefit,
especially for regular data. However, both square and triangle smoothing do not provide as
accurate estimates as FACE does.

31

Regularized Covariance Estimation for Functional Data

5. Conclusion

In this thesis we explored the application of penalized tensor product splines to the covariance
estimation of functional data. Analogously to the approximation of univariate functions, the
general approach of covariance smoothing is to set up a regression model, where the response
vector consists of all empirical estimates for the covariance. Because the covariance is smoothed
for the squared set of all empirical estimates, this method is known as square smoothing. Yet,
the symmetry of the covariance deems smoothing the entire squared set of all empirical estimates
superfluous, as the response vector will then include double values. By smoothing only half
of the covariance and mirroring it on the diagonal, triangle smoothing reduces the dimension
of the response vector and provides a computational alternative to square smoothing. Hence,
we expect triangle and square smoothing to produce similar estimations. This expectation was
empirically studied in Simulation A and indeed the differences between both methods are in
general quite small, with triangle smoothing performing slightly better than square smoothing
for regular data and square smoothing slightly outperforming triangle smoothing for irregular
data. Considering fragmentary data the differences between the methods are infinitesimally
small. However, when a first-order penalty is applied rather than a second-order penalty, the
differences increase and become more significant. Conclusively, triangle smoothing can be viewed
as a computationally beneficial alternative to square smoothing with similar estimation accuracy.
In practice, the measurements are often polluted by errors, which are reflected on the variance
at the corresponding measurement value. In contrast to square and triangle smoothing which
exclude values on the diagonal in the response vector, FACE provides a two-stage algorithm to
estimate the covariance function as well as the measurement-error-variance. Moreover, FACE
uses a special case of the bivariate P -Spline-penalty and provides its own algorithm to choose the
smoothing parameter. Comparing the performance of FACE with square and triangle smoothing
in Simulation B, shows FACE clearly outperforming the other two methods for most settings.

32

Regularized Covariance Estimation for Functional Data

A. Directory Structure of the GitLab Repository

The submission of this bachelor thesis includes all codes, for generating and analyzing the
simulation results, in the corresponding GitLab Repository. In the following a brief overview
over the repository and its directory structure is given. The template for this thesis was provided
by Moritz Herrmann.

thesis: includes chapter-wise Rmarkdown files. 00_thesis.Rmd knits all chapters and produces
the output.

code: contains functions that are used by both parts of the simulation

• Simulation A:

– Run main_a.R to start the simulation. Input data is then loaded and simulator_a is
called on input_data

∗ simulator_a generates a tfd-object using data_generator and estimates the
covariance with the smooth_covariance function

∗ simulator_b then computes the Wasserstein- and Frobenius-distances and stores
the values as new columns of the input data

– Results stored in Simulation_Results folder

• Simulation B:

– Run main_b.R to start the simulation. Input data is then loaded and simulator_a is
called on input_data

∗ simulator_b generates a tfd-object using data_generator and estimates the
covariance with the face_smooth_covariance function

∗ simulator_b then computes the Wasserstein- and Frobenius-distances and stores
the values as new columns of the input data

– Results stored in Simulation_Results folder

• Evaluation:

– tables_a.R: creates dataframes that are sourced and used in 04_experiments_a.Rmd
for tables (Chapter 4)

– figures_a.R: creates dataframes that are sourced and used in 04_experiments_a.Rmd
for figures (Chapter 4)

– tables_b.R: creates dataframes that are sourced and used in 04_experiments_b.Rmd
for tables (Chapter 4)

– figures_b.R: creates dataframes that are sourced and used in 04_experiments_b.Rmd
for figures (Chapter 4)

• Simulation_Results: contains results in form of csv files
• temp: small pilot study to determine suitable values for the SNR
• Old: contains old files

33

https://github.com/HerrMo/thesis-template

Regularized Covariance Estimation for Functional Data

B. Additional Plots for Simulation A

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Fragment Irregular Regular Fragment Irregular Regular Fragment Irregular Regular

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(a) Second-Order Penalty

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Fragment Irregular Regular Fragment Irregular Regular Fragment Irregular Regular

0

25

50

75

100

0

25

50

75

100

%

Square Smooth Triangle Smooth

(b) First-Order Penalty

Figure 7: Percentage of cases where the respective smoothing technique outperformed the other
in terms of the Frobenius-distance. Grouped by grid length and SNR.

34

Regularized Covariance Estimation for Functional Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Square Triangle Square Triangle Square Triangle

0

2000

4000

6000

0

2000

4000

6000

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(a) Irregular Data

E(N) = 20 E(N) = 35 E(N) = 70

S
N

R
 =

 3
S

N
R

 =
 8

Square Triangle Square Triangle Square Triangle

0

50

100

150

0

50

100

150

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(b) Regular Data

Figure 8: Boxplots of Wasserstein-distances for regular and irregular data, grouped by grid length
and SNR

35

Regularized Covariance Estimation for Functional Data

Sq. Optim

Pen. order = 1

Sq. Optim

Pen. order = 2

Tri. Optim

Pen. order = 1

Tri. Optim

Pen. order = 2

S
N

R
 =

 3
S

N
R

 =
 8

Square

Triangle
Square

Triangle
Square

Triangle
Square

Triangle

0

2000

4000

6000

0

2000

4000

6000

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(a) Irregular Data

Sq. Optim

Pen. order = 1

Sq. Optim

Pen. order = 2

Tri. Optim

Pen. order = 1

Tri. Optim

Pen. order = 2

S
N

R
 =

 3
S

N
R

 =
 8

Square

Triangle
Square

Triangle
Square

Triangle
Square

Triangle

0

50

100

150

0

50

100

150

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(b) Regular Data

Figure 9: Boxplots of Wasserstein-distances for regular and irregular data, grouped by grid length
and SNR

36

Regularized Covariance Estimation for Functional Data

C. Additional Plots for Simulation B

Pen. order = 1 Pen. order = 2

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle

0

500

1000

1500

0

500

1000

1500

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(a) Irregular Data

Pen. order = 1 Pen. order = 2

S
N

R
 =

 3
S

N
R

 =
 8

FACE Square Triangle FACE Square Triangle

0

20

40

0

20

40

Method

W
as

se
rs

te
in

 d
is

ta
nc

e

(b) Regular Data

Figure 10: Boxplots of Wasserstein-distances for regular and irregular data, grouped by penalty
order and SNR. Red dots represent the mean value of corresponding method.

37

Regularized Covariance Estimation for Functional Data

References

Jona Cederbaum, Fabian Scheipl, and Sonja Greven. Fast symmetric additive covariance
smoothing. Computational Statistics and Data Analysis, 120:25–41, 2018. doi: 10.1016/j.csda
.2017.11.002.

Aurore Delaigle, Peter Hall, Wei Huang, and Alois Kneip. Estimating the covariance of fragmented
and other related types of functional data. Journal of the American Statistical Association,
116(535):1383–1401, 2021. doi: 10.1080/01621459.2020.1723597.

Paul H. C. Eilers and Brian D. Marx. Flexible smoothing with b-splines and penalties. Statistical
Science, 11(2):89–102, 1996. doi: 10.1214/ss/1038425655. URL http://www.jstor.org/stable/2
246049.

Paul H.C. Eilers and Brian D. Marx. Multivariate calibration with temperature interaction using
two-dimensional penalized signal regression. Chemometrics and Intelligent Laboratory Systems,
66(2):159–174, 2003. doi: https://doi.org/10.1016/S0169-7439(03)00029-7.

Ludwig Fahmeir, Thomas Kneib, Stefan Lang, and Brian Mark. Regression: Models, Methods
and Applications. Springer Berlin Heidelberg, 1. edition, 2013. ISBN 978-3-642-34333-9. doi:
https://doi.org/10.1007/978-3-642-34333-9.

Jianquing Fan and Irene Gijbels. Local Polynomial Modelling and Its Applications. Chapman
and Hall/CRC, 1. edition, 1996. ISBN 9780412983214.

Jeff Goldsmith, Fabian Scheipl, Lei Huang, Julia Wrobel, Chongzhi Di, Jonathan Gellar, Jaroslaw
Harezlak, Mathew W. McLean, Bruce Swihart, Luo Xiao, Ciprian Crainiceanu, and Philip T.
Reiss. refund: Regression with Functional Data, 2022. URL https://CRAN.R-project.org/pa
ckage=refund. R package version 0.1-28.

Zhenhua Lin and Jane-Ling Wang. Mean and covariance estimation for functional snippets.
Journal of the American Statistical Association, 117(537):348–360, 2022. doi: 10.1080/016214
59.2020.1777138.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/.

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer New York, NY, 2.
edition, 2005. doi: https://doi.org/10.1007/b98888.

Philip Reiss and Meng Xu. Tensor product splines and functional principal components. Journal
of Statistical Planning and Inference, 208:1–12, 10 2019. doi: 10.1016/j.jspi.2019.10.006.

Philip Reiss, Lei Huang, Huaihou Chen, and Stan Colcombe. Varying-smoother models for
functional responses, 2014. URL https://arxiv.org/abs/1412.0778.

Fabian Scheipl, Jeff Goldsmith, and Julia Wrobel. tidyfun: Tools for Tidy Functional Data, 2022.
https://github.com/tidyfun/tidyfun, https://tidyfun.github.io/tidyfun/.

Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller. Functional data analysis. Annual
Review of Statistics and Its Application, 3(1):257–295, 2016. doi: 10.1146/annurev-statistics-
041715-033624.

38

http://www.jstor.org/stable/2246049
http://www.jstor.org/stable/2246049
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/package=refund
https://www.R-project.org/
https://arxiv.org/abs/1412.0778

Regularized Covariance Estimation for Functional Data

Simon N. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC,
1. edition, 2006. ISBN 9780429093159. doi: https://doi.org/10.1201/9781420010404.

Simon N. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC,
2. edition, 2017. ISBN 9781315370279. doi: https://doi.org/10.1201/9781315370279.

Simon N. Wood, Fabian Scheipl, and Julian J. Faraway. Straightforward intermediate rank
tensor product smoothing in mixed models. Statistics and Computing, 23(3):341–360, 2013.
doi: https://doi.org/10.1007/s11222-012-9314-z.

Luo Xiao, Cai Li, William Checkley, and Ciprian Crainiceanu. Fast covariance estimation for
sparse functional data. Statistics and Computing, 28(3):511–522, 2018. doi: 10.1007/s11222-
017-9744-8.

Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association, 100(470):577–590, 2005.
doi: 10.1198/016214504000001745.

39

Declaration of authorship

I hereby declare that the report submitted is my own unaided work. All direct or indirect sources
used are acknowledged as references. I am aware that the Thesis in digital form can be examined
for the use of unauthorized aid and in order to determine whether the report as a whole or parts
incorporated in it may be deemed as plagiarism. For the comparison of my work with existing
sources I agree that it shall be entered in a database where it shall also remain after examination,
to enable comparison with future Theses submitted. Further rights of reproduction and usage,
however, are not granted here. This paper was not previously presented to another examination
board and has not been published.

Munich, 22 March 2023 Anna Nazarova

	Introduction
	Methodological Background
	Modeling of Functional Data
	Spline-based Representation of Functional Data
	Tensor Product Smooths

	Functional Data Covariance Estimators
	``Square'' vs. ``Triangle'' Smoothing
	``FACE'' Algorithm
	Summary of Methods

	Simulation Study
	Simulation A
	Simulation B
	Summary and Discussion of Results

	Conclusion
	Directory Structure of the GitLab Repository
	Additional Plots for Simulation A
	Additional Plots for Simulation B

