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Abstract

In this work we propose Hierarchical-Masked-Attention, a stochastic extension of the
Self-Attention-Mechanism in Vision Transformer Models, that masks a number of at-
tention heads during training and thins out masking over training time, according to
a newly introduced Hyper-Parameter hp. We apply our method in a Self-Supervised
Learning framework (DINO) and evaluate it on two medical data sets, one contain-
ing Chest X-ray Scans (CheXpert) and the other containing Retina Photographs
(EyePACS). Both data sets are aimed at disease classification. We evaluate four
different tasks: Linear Evaluation on In-Distribution Data, Linear-Evaluation on
Out-of-Distribution Data, Semi-Supervised Evaluation on In-Distribution Data and
Transfer Learning. We further benchmark the results of our method against various
other methods with stochastic extensions as well as a baseline model. We show that
Hierarchical-Masked-Attention is suited to improve Classification Performance on
both data sets compared to competitor methods, while at the same time it is able
to improve Model Calibration. Beyond that we show that Hierarchical-Masked-
Attention can improve performance in Out-of-Distribution settings. For this, we
chose two suitable Out-of-Distribution Data Sets (Chest-xray14 and APTOS), that
provide a variety of Distribution Shifts. Future work could try to further explore
our method’s performance on medical data from different areas or make use of the
model’s stochastic component to incorporate methods of uncertainty qunatification
or uncertainty quantification.
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1. Introduction

Deep Learning based AI-methods have achieved impressive results across a variety
of domains. Different model types excel in computer vision tasks such as image
classification and image segmentation. Among the model types that deliver state-
of-the-art results in classification tasks is the Vision Transformer [10]. With
what seems like an ever-accelerating progress in predictive precision, questions about
secure and reliable deployment of deep learning models in real life applications
present themselves with a proportionally growing urgency. One area where not
only predictive performance, but also a sense for the models shortcomings (i.e. how
performance is affected by a shift of the distribution of the input data, or how much
we are to trust the models output for a specific sample) is of utmost importance, is
the area of healthcare and medicine, or, in the context of computer vision, medical
imaging analysis. While researchers mostly focus (and succeed) on improving
sota performance, model uncertainty often seems to be a topic that is neglected
compared to its relevance. In order to achieve high predictive performance, as well
as robust uncertainty measures, DL Models in general and the aforementioned ViT
models in particular need large amounts of data to be trained on. DL models
in computer vision usually utilize human-labelled image samples in a supervised
setting as training data. However, labelling large amounts of images is financially
and time-wise costly, even more so when working with medical images. A strategy
to overcome this difficulty is to resort to self-supervised-learning learning rather
than supervised learning. The goal of the thesis at hand is therefore to examine
ViT models for medical imaging analysis in a self-supervised training setting, that
achieve high predictive performance while addressing model calibration at the same
time.

1.1 Medical Imaging Analysis

Deep Learning based AI applications can be applied to use cases in various medi-
cal fields, including, among others, radiology [29], dermatology[11], pathology [4]and
ophthamology[9], and promise to match clinical experts in diagnosing diseases. How-
ever, there are some problems that are specific to medical imaging analysis which
need to be addressed if we are to utilize the potential of DL algorithms in a beneficial
way.

ID Generalization and OOD settings. Generalization is a primary challenge
for medical imaging applications. Models in medical applications can be evaluated
in either of two settings: In-Distribution and Out-of-Distribution. The latter refers
to data that has been subject to a Distribution Shift, while the former has not
undergone such a shift. In medical imaging, the most common Distribution Shifts are
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CHAPTER 1. INTRODUCTION

Figure 1 | Examples of Distribution Shifts. On the left visual samples of ID-Data
are shown. In the middle the type of distribution shift is described. On the right samples
of the OOD-Data are shown.

Figure Soure: [2]

technical shifts (e.g. a change of devices that are used to acquire data), population
shifts (e.g. changes in demographic or clinical settings) and behaviour shift (e.g.
changes in clinical practices) [12]. While models are able to reach performance levels
close to human-experts on ID-data classification tasks, model accuracy has been
observed to decline in OOD-settings[40, 41]. This finding poses a serious obstacle to
safe and effective deployment of deep learning models in real life, as the maintenance
of predictive performance under changed circumstances is elementary [21].

Generalization and Efficiency. The first idea that might come to mind when
trying to tackle the problem of distribution shift, is to re-train the model on data
from the shifted distribution.[8, 12]While this works well theoretically, it will be
unfeasible in most real life cases, as data being labelled by clinical experts comes
with high monetary expenses as well as a large amount of working hours. With
an estimated annotation time of 122 seconds[32], and and estimated average wage
of $205 per clinician, labelling a data set consisting of roughly 28.000 chest x-ray
scans amounts to roughly $195.000 in spending and about 790 hours in clinician
working hours [2]. Considering that the amount of data needed for training models
in a supervised way is usually significant larger, efficient generalization remains a
considerable problem.

1.2 Self-Supervised-Learning

Recent research has shown that the use of Self-Supervised-Learning can be beneficial
in multiple ways. SSL methods start to approach the predictive performance of fully
supervised models on common benchmark data sets, such as ImageNet[35], while
they were shown to improve performance on OOD-Evaluation[16]and can thus be
helpful in dealing with distribution shifts. At the same time, through SSLs’ nature
not being reliant on hard-labelled and human processed annotations of training data,
the ability of effective generalization is increased significantly.
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CHAPTER 1. INTRODUCTION

Figure 2 | Scheme of Self-Supervised-Learning. (top) The Encoder-Network
f(·) is trained to solve pretext task on the unlabelled data set (bottom) The Linear
Classifier g(·) takes z as inputs to solve downstream task

Concept of Self-Supervised-Learning. The general goal of a SSL framework is
to train an encoder network f(·) on a pretext task lpre(xn1, ..., xna) to learn a map-
ping for the input data xn to a representation zn, that in a second step, called the
downstream task ldown(xn, yn), can be utilized to learn a mapping from zn to the cor-
responding label yn for each xn via a second function (usually a linear classification
head) g(·). The final prediction for yn presents itself as the composition h = g ◦ f .
Only the second step, the training of the classification head g(·), utilizes hard labels
yn, while the pretext task operates on a loss function that derives optimization tar-
gets from the unlabelled data set X by itself by design. There are a multitude of
pretext tasks that can be used to learn the mapping to the representation space Z.
Most recent and successful methods take a number of augmentations k of an input
xn, resulting in k views xna of the same image xn, with a ∈ {1, ..., k}.

Contrastive Loss. A well researched pretext task is contrastive loss, which found
a popular adaption in SimCLR[7], defining a new standard for SSL when it was
published. Intuitively and very briefly, SimCLR trains an encoder network through
maximizing agreement between two augmented views of the same input image uti-
lizing a constrastive loss function. However, there are a few disadvantages when
utilizing contrastive loss as a pretext task: performance is heavily dependant on
batch size, and therefore learning a good representation mapping is computation-
ally expensive.

DINO. More recent research approaches try to adapt to this problem resulting in
new SSL frameworks, one of which is DINO[5]. DINO managed to reduce parameters
significantly, while also improving predictive performance. These are among the
main reasons why this works has chosen DINO as the utilized SSL framework. A
detailed description of its architecture is given in chapter 4.
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CHAPTER 1. INTRODUCTION

Figure 3 | 2D-Visualization of epistemic and aleatoric Uncertainty. In areas
where no training data was seen, epistemic uncertainty is high. Aleatoric uncertainty is
indiffeent to training data, but dependant on the data distribution itself.

Figure Soure: [37]

1.3 Uncertainty Estimation in DL Models

The predictive uncertainty of a DL model can be seen as composed of two parts,
epistemic uncertainty and aleatoric uncertainty.

Epistemic Uncertainty. Epistemic uncertainty refers the component of uncer-
tainty that is caused by the model itself. It can be interpreted as a probability
distribution over the learned model parameters θ. [20]Therefore, epistemic uncer-
tainty can be reduced with more training data that includes the desired information.
There are various methods to capture epistemic uncertainty, of which many intro-
duce a stochastic component into the models architecture which is then exploited to
approximate the distribution of the parameters θ. We will examine different ways
of introducing stochasticity into our chosen model architecture in later sections.

Aleatoric Uncertainty. Aleatoric uncertainy refers to the component of uncer-
tainty that is not caused by the models parameters, but that rather is a property
of the data distribution itself. It is therefore also known as Data Uncertainty and
thus irreducible.[1]There are approaches tackling aleatoric uncertainty or entangling
epistemic and aleatoric uncertainties, however this work focuses on stochastic ap-
proaches aimed at epistemic uncertainty.
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2. Background and Related Work

As reliability and uncertainty estimation of DL models is an active field of research,
there are numerous concepts and methods that are related to the work of this thesis,
the two most important sub-fields being methods where a Stochastic Component
is added to the transformer architecture on the one hand, and methods of estimating
epistemic uncertainty through Deep Ensembles or Bayesian Methods on the
other hand.

2.1 Stochastic Architectures in Transformer Mod-

els and SSL

Related work that has inspired the approach of this thesis are Pretrained Large
Model Extensions [36], Hierarchical Stochastic Attention [30]and Sinkformers[31].

2.1.1 PLEX

PLEX is one of the most extensive studies of different reliability tasks that was
published yet.

An extensive Study of Reliabilty. The aim of PLEX was to test the reliability
of models, where a reliable model is seen as a model that not only achieves strong
predictive performance, but one that also performs well across a variety of other
tasks: tasks evaluated range across uncertainty tasks (e.g. selective prediction,
open set recognition), robust generalization (e.g. accuracy, log-likelihood on ID and
OOD evaulation) and adaption (e.g. active learning, few-shot uncertainty) and an
extensive amount of different data sets from vision as well as language domains.

Stochastic Extension. In order to increase performance across these tasks, adap-
tions to the base architecture of ViT were made, including an approximation of the
posterior distribution of last layer weights via a combination of a Gaussian Pro-
cess Layer [25]and a Heteroscedastic last Layer [23]. The Gaussian Process layer is
computed using SNGP, where the posterior presents itself as:

g(x) ∼ N(logit(x), var(x)) (2.1)

where logit(x) is a random feature approximation ϕ applied to the predictive func-
tion and var(x) is a Laplace-Approximation of the predictive variance.

Pretrained Weights and Finetuning. PLEX uses different large pretrained
models and fine tunes and evaluates them on downstream tasks.

7



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 4 | Plex Training Pipeline.
Figure Soure: [36]

2.1.2 Hierarchical Stochastic Attention through Gumbel Soft-
max

A straightforward and effective strategy that retains predictive performance and
enables the network of Uncertainty or Reliablity Estimation is to directly alter the
attention mechanism.

Replacing Softmax with Gumbel Softmax. The standard design of ViT uses a
Multi-Head-Attention mechanism that computes an attention score ai for each i-th
Attention Head. We can easily induce stochasticity through replacing the Softmax-
Function of the Attention computation with the Gumbel-Softmax-Function [15],
resulting in a stochastic Attention score:

âi =
G(qik

T
i )

τ
(2.2)

Figure 5 Visual Comparison of standard
and Gumbel-Softmax Attention

Hierarchical Extension.This tech-
nique can further be extended into a hi-
erarchical Attention mechanism, where
an intermediate step utilizing a learn-
able centroid vector C is introduced into
the computations of Key, Query and
Value. Through this, the model is sup-
posed to learn to pay attention to the
centroids. In this work, we consider ex-
periments with both, the simple change
in Attention as well as the hierarchical
method involving centroids.
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CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 6 | Illustration of the diferent Normalizations of Attention Ma-
trices. Applying Normalization through Sinkhorn’s Algorithm. For K∞ (Sinkhorn), all
Data Points are involved in an interaction.

Figure Soure: [31]

2.1.3 Double Stochastic Attention with Sink Formers

The learnable Attention Matrix of standard Transformer models such as ViT in-
volve pairwise interaction between Data Points. This matrix is normalized with the
Softmax-Function, resulting in a row-wise stochasticity of the matrix.

Double Stochasticity. Through application of Sinkhorn’s Algorithm [33], stochas-
ticity can be introduced not only row-wise but also column-wise, making the At-
tention Matrix effectively double-stochastic. Compared to the standard Softmax-
Operation, normalization through Sinkhorn’s Algorithm considers more interactions
between data points, as all points are matched to one another with different degrees
of intensity. Double stochasticity has been shown to improve predictive performance,
however the authors are not conducting a study of reliability or uncertainty.

2.2 Uncertainity Estimation

Uncertainty Estimation methods can be subdivided into two fields: Ensemble-
Methods and Bayesian Neuronal Networks. For the experiments of this work con-
cepts stemming from both are considered.

2.2.1 Deep Ensembles

In Deep Ensembles [24], multiple neuronal Networks are trained and the final predic-
tion is retrieved from their individual predictions. Deep Ensembles usually deliver
SOTA predictive performance. Their big disadvantage lies in their computational
cost, as each ensemble member requires it’s own full training run. Given a set of
ensemble members’ posteriors {P (y|x, θ(m))}Mm=1, where m is the number of mem-
bers, the amount of disagreement between the Ensemble members can be utilized
to produce an estimation of model uncertainty, e.g. via entropy calculation:

MI[y, θ|x∗]︸ ︷︷ ︸
KnowledgeUncertainty

= H[Ep(θ|D)[P (y|x∗, θ)]]︸ ︷︷ ︸
Total Uncertainty

− Ep(θ|D)[H[P (y|x∗, θ)]]︸ ︷︷ ︸
ExpectedDataUncertainty

(2.3)
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CHAPTER 2. BACKGROUND AND RELATED WORK

where x∗ is a sample of a data set D.[1]

2.2.2 Bayesian Neuronal Networks

The Bayesian Neuronal Networks approach is, contrary to the frequentist approach
that aims for parameter point estimates, to define a full probability distribution over
the network parameters. This posterior distribution, that semantically represents
the belief or uncertainty about the value of each parameter, presents itself through
marginalizing over all parameter settings as:∫

p(D|w)p(w) dw (2.4)

[39]

where D is a Data Set and w are the network weights, which results via Bayesian
Model Averaging in a full predictive distribution:

P (y|D, x) =

∫
p(y|w, x)p(w|D) dw (2.5)

[39]

that defines the probability for class label y given new input x. Bayesian Neuronal
Networks can therefore be used to obtain a more realistic estimation of network
uncertainties and network calibration than frequentist approaches. However, the in-
tegral of P (y|D, x) is often intractable for neuronal networkas, due to its complexity,
and thus needs to be approximated. [3]

Monte Carlo-Dropout. One common and conceptually easy approach to approx-
imating the posterior is Monte Carlo-Dropout.[14]Dropout provides stochasticity or
variation in a neural network by randomly shutting down weights during training.
It can be reinterpreted as approximate Bayesian inference and applied during test-
ing, which leads to multiple different parameter settings. This can be utilized to do
multiple forward passes of the same sample x to give an estimation of uncertainty.[3]

Figure 7 | Illustration of Dropout. In MC-Dropout, dropout is applied during
training as well as testing.

Figure Soure: [34]
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3. Method: Hierarchical-Masked-
Attention

This work examines a Vision-Transformer architecture [10]in a Self-Supervised-
Setting, at the core of which lies a Multi-Head-Attention mechanism[38]. We propose
a stochastical extension of the Attention mechanism through masking a number of
heads during each forward pass, combined with a scheduler that works to thin out
the proportion of masking that is applied over the course of the training.

3.1 Multi-Head-Self-Attention

Self-Attention. The Attention Score of an input is calculated via the Softmax-
Score of the dot product of a Key and Query Matrix, which are divided by a scaling
factor, multiplied with the Value Matrix, which represents itself as:

Attention(Q,K, V ) = SOFTMAX(
QKT

√
dk

)V (3.1)

where Q,K and V are learnable linear transformations. As the structure of the
mechanism refers K,Q and V from the same input, it is called Self -Attention,
which could, loosely speaking, semantically be interpreted as data learning to pay
attention to itself through the Transformer Encoder.

Figure 8 | Multi-Head-Attention. (Left) Visualization of a single Attention Head
computation (Right) Visualization of multiple Attention Heads running parallel.

Figure Soure: [38]
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CHAPTER 3. METHOD: HIERARCHICAL-MASKED-ATTENTION

Figure 9 | Masked Attention. Visual comparison of standard Dropout (Top) and
masking Attention Heads (Bottom.

Figure Soure: [42]

Multi-Head-Self-Attention.

In practice, most Vision Transformers use H heads (typically between 6 and 16),
where each head creates and applies its own Attention Matrix resulting from distinct
Q,K and V matrices [38]. Thus Multi-Head-Attention is calculated as:

Attention(Qh, Kh, Vh) = SOFTMAX(
QhK

T
h√

dk
)Vh (3.2)

where h ∈ {1, ..., H}. Multi-Head-Attention is what lies at the heart of this work.
We evaluate standard Multi-Head-Attention as well as different extensions of it that
introduce stochasticity.

3.2 Hierarchical-Masked-Attention

The extension this work proposes that is original to it, and that will be benchmarked
against other methods, can be referred to as Hierarchical-Masked-Attention.

Masked-Attention. In its core, it masks a number m of attention heads during
every forward pass. A similar concept has been shown to work as an effective
regularizer and be beneficient to model performance.[42]

Hierarchical-Masked-Attention. Additionally, a scheme is added that thins out
the numbers of masks applied throughout the course of training. For this, a Hyper-
paramter hp ∈ [0, 1] is added that acts as a threshold. Each time a forward pass
is computed, a random number between [0, 1] is sampled. M masks are applied to

12



CHAPTER 3. METHOD: HIERARCHICAL-MASKED-ATTENTION

Figure 10 | Hierarchical-Masked-Attention. As the threshold lowers over pro-
gressing through training epochs, each head is masked less. The effect of different values
for hp ranging from 1.5 (Top Left) to 0.75 (Bottom Right) over 300 epochs are displayed.
Note that in order to make the effect more visible, the oversampling threshold T is not
applied in this schematic graphs.

randomly selected heads, if the sampled random number is below the threshold hp.
After each epoch, the threshold is lowered by 0.005. An additional Hyperparameter
T controls how often a single head can be masked, in order to ensure that the sam-
pling spreads out equally among all heads and a single head will not be oversampled.
This scheme results in an inverted-pyramid shape of the number of masks applied
over training time, with the amount of masking for each individual head thinning
out. A description of the algorithm in pseudo code is given below:

Algorithm 1 Hierarchical-Masked-Attention

Require:
hp >= 0 ▷ Thinning Parameter
T > 0 ▷ Oversampling Parameter
m > 0 ▷ Number of Masks to be applied
v1, ..., vH ▷ Value Outputs of each Head of current Epoch

1: for each epoch do
2: combs← {1, .., H}1 × ...× {1, .., H}m ▷ List of all Sample Combinations

13



CHAPTER 3. METHOD: HIERARCHICAL-MASKED-ATTENTION

3: sample counts← [0, .., 0] of len(combs) ▷ List of 0s

4: for each forward pass do
5: p← U [0, 1]

6: if p < hp then
7: sample m elements from combs ▷ postions to mask
8: sample counts at indices m = +1
9: mask vh at sampled positions m ▷ mask

10: if sample counts at indices m >= T then
11: remove combination from combs
12: end if
13: end if
14: end for

hp = hp − 0.005 ▷ lower thinning parameter
15: end for

The general thought behind the hiearchical application of masks is to encourage
the model to learn robust representations through the induction of stochasticity
in the early stages of the training procedure, and after it has supposedly done
so, enable it to further improve them without the stochasticity counteracting the
learning progress of the early stages.

14



4. Self-Supervised-Learning Frame-
work and Implementation

This work aims to apply the method described under chapter 3 as well as benchmark
it against similar concepts in a self supervised setting. The Self-Supervised-Learning
frame we have chosen is DINO [5].

4.1 Network Architecture

Dino utilizes Knowledge Distillation[18]between a student model s and a teacher t
model to learn representation mappings.

4.1.1 DINO

Architecture. Student and Teacher both share same the network architecture
g, which is composed of a backbone model f and a projection head h, such that
g = h ◦ f . The backbone f can be a Transformer Model (ViT in our case) or
a ResNet[17], the projection head h consists of a 3-Layer Multi-Layer-Perceptron
with hidden dimension 2048 followed by l2 Normalization and a weight normalized
fully connected layer[5].

Forward Passes and Knowledge Distillation. For each input image, a set V of
different augmented views is generated. It contains two global views, x1

g and x2
g and

several local views of smaller resolution. All crops are passed through the student
while only the global views are passed through the teacher, therefore encouraging
“local-to-global” correspondences [5].

Figure 11 | Schematic Dino Architecture. Blue arrows mark forward pass, red
arrows mark backpropagation.

Figure Soure: [5]
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CHAPTER 4. SELF-SUPERVISED-LEARNING FRAMEWORK AND
IMPLEMENTATION

The output of both networks are normalized with a Softmax-Function, after which
the loss between the resulting distributions Pt(x) and Ps(x

′) is minimized as follows:

min
θs

∑
x′∈{xg

1,x
g
2}

∑
x′∈V,
x′ ̸=x

H(Pt(x), Ps(x
′))

where H is the cross entropy:

H(a, b) = −a log b (4.1)

Note that the cross entropy is minimized w.r.t only the student network’s parameters
θs. The teacher network’s parameters θt are updated in dependance to the student’s
parameters. Details are given under 4.2. Also note that no data set given target
labels are involved. The resulting output distributions which are used to calculate
loss values are virtual K-dimensional distributions with no inherent meaning.

4.1.2 Vision Transformer

Our backbone model f is a Vision Transformer [10].

ViT Overview. Vision Transformers divide an input picture into multiple patches,
to each of which a linear projection is applied. These embedding projections are
then passed into the encoder structure, alongside an additional learnable position-
ional embedding. The latter’s function can be interpreted as equivalent to BERT’s
[26]CLS-token. The encoder structure is composed of multiple layers of a Multi-
Head Attention mechanism followed by a MLP, with Normalization applied before
both. The concatenated output of the final Encoder Layer or of the n last Encoder
layers are again processed through a MLP-Head, which produces the final output
embeddings that can further be utilized for classification or other tasks. Our method
described under 3.2 is applied in the Multi-Head Attention mechanism within the
Encoder architecture.

Specifications. Specifically, we use ViT-s for the experiments presented in this
work. Important architectural parameters were set as follows:

• Patch Size of 16x16 pixels.

• Embedding Dimensions of 384.

• Depth of 12.

Patch Size determines the size of the input patches. Smaller Patch Sizes can achieve
better performance, but are also computationally more expensive. Embedding Di-
mension determines the size of projection outputs. Depth determines how many
subsequent Multi-Head Attention layers are utilized. ViT-s amounts to a total of
21M parameters, which makes it comparatively small.
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Figure 12 | ViT Architecture. (Left) Schmematic Forward Pass (Right) Transformer
Encoder Architecture

Figure Soure: [10]

4.2 Optimization

Optimization and Training Parameters. The network was optimized using
ADAMW[28]with a batch size of 64 distributed over 8 GPUS which results in an
effective batch size of 512. The learning rate was ramped up linearly to its target
value of 0.0005 during an warm up of 10 epochs, as proposed by the authors of
DINO. After the warmup the learning rate is decayed following a cosine schedule
[27]. The weight decay also follows a cosine schedule starting from 0.04 to 0.4. Other
parameters, if not stated otherwise, are kept as DINO default values.

Teacher Network Updates. As no teacher network gt is given a priori, it is
constructed during training from the student network. The weights θs of the student
network gs are learned through backpropagation, while the weights of the teacher
network θt are inferred from past iterations of the student through an exponential
moving average with the following update rule:

θt ← λθt + (1− λ)θs (4.2)

where λ follows a cosine schedule from 0.996 to 1 over the course of the training.
All evaluations are done on weights of the teacher model.

Augmentations. As proposed by DINO authors Color Jittering, Gaussian Blur
and Solarization were used as augmentations. For details on cropping views refer to
the paper and/or the official GitHub Repository.

17

https://github.com/facebookresearch/dino


5. Experiments

This work evaluates and benchmarks the proposed Self-Supervised Framework on
two medical Data Sets and a variety of downstream tasks, which are described in
the following.

5.1 Datasets

We consider CheXpert[22], a Data Set of Chest X-ray scans, and EyePACS[13]a
Data Set of retina images. For both Data Sets, a respective OOD Data Set is
considered to evaluate model performance under distribution shift. For CheXpert,
Chest-xray14[6]is used as OOD-Data Set, for EyePACS, the APTOS Data Set[19]is
considered. Both Data Sets contain the same types of diseases and class labels.

5.1.1 CheXpert

CheXpert is a large public Data Set for chest radiograph interpretation, consisting
of 223.648 chest radiographs of 65.240 patients. It was retrospectively collected by
the chest radiographic examinations from Stanford Hospital, performed between Oc-
tober 2002 and July 2017[22]. It contains labels for the presence of 14 observations,
each amounting to a different lung disease, labeled as 0 (=negative), 1 (=positive)
or -1 (=uncertain). CheXpert contains frontal as well as lateral views. Following
the CheXpert evaluation protocol[22], only 5 out of 14 disease labels will be used
to evaluate model performance. See 5.2.1 for details. The training set consists of
223.414 samples, the testing set of 234 samples. CheXpert is available in two reso-
lutions, we use the variant with lower resolution. Images are sized around 380x320
pixels.

Figure 13 | CheXpert Data. (Left) CheXpert Label Distribution over Classes.
(Right) Frontal and lateral scan samples of CheXpert Data.
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Figure 14 | Chest-xray14 Data. Chest-xray14 samples of different diseases.
Figure Soure: [6]

5.1.2 Chest-xray14

Chest-xray14 is a Data Set of chest x-ray scans similiar to CheXpert, consisting of
112.120 frontal-view X-ray images of 30.805 patients, collected from the year of 1992
to 2015. It contains labels for the same 5 disease classes that CheXpert is evaluated
on, and was collected in different clinics and with different scanning technology,
which makes it suitable to evaluate our model in an OOD-setting under population
and technology shift. Labels are given as 0 (=negative) and 1 (=positive).

5.1.3 EyePACS

EyePACS is a large set of high-resolution digital color Fundus Photographs (given in
different sizes, with the largest around 3900x2500 pixels) of the Retina taken under
a variety of imaging conditions. It contains labels for different severity levels of
Diabetic Retinopathy, which is an eye disease associated with long-standing diabetes.
Labels are given for each image on a scale of 0 to 4, according to the following scale:

• 0 = No DR

• 1 = Mild

• 2 = Moderate

• 3 = Severe

• 4 = Proliferative DR

The Data Set consists of a total of 88.702 colour Fundus Images, including 35.126
samples for training and 53.576 for testing.
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Figure 15 | EyePACS Data. Samples of EyePACS data. Each rows shows a different
level of severity, increasing from Top(=0) to Bottom(=4).

5.1.4 APTOS

APTOS is a Data Set that also contains Retina Photographs, with the same labels
and scale for Diabetic Retinopathy as EyePACS. It consists of 3663 images, and,
as it was collected by the Aravind Eye Hospital in India, can therefore be used
to evaluate out model in an OOD-setting under population shift, technology and
behaviour shift.

20



CHAPTER 5. EXPERIMENTS

Figure 16 | Label Distribution of both Retina Data Sets. (Left) EyePACS
labels (Right) APTOS labels

5.2 Downstream Tasks

We evaluate model performance on 4 different tasks:

1. Linear Evaluation on In-Distribution Data

2. Linear Evaluation on Out-of-Distribution Data

3. Semi-Supervised Evaluation

4. Transfer Learning

5.2.1 Linear Evaluation on In-Distribution Data

For Linear Evaluation, we load and freeze the weights of the ViT that was trained as
backbone model f during Self-Supervised-Training. The outputs of the Transformer
are passed into a Linear Classifier, which produces the final classification outputs
through a Sigmoid-Layer. The Linear Classifier is fine tuned supervised on train-
ing data labels for 10 epochs with the Loss Function BCEWithLogitsLoss which is
suitable for both data sets, if the number of targets are adjusted respectivley. Note
that weighting the loss function with class ratios was not beneficial during multiple
test runs.

CheXpert Task. CheXpert is evaluated on Multi-Label-Classification, as each
data sample can contain multiple non-exclusive disease diagnoses. Following the
’U-Ones’ strategy of the CheXpert evaluation protocol, we set all uncertainty labels
(=-1) to 1 for the finetuning of the Linear Classifier. Furthermore, of CheXperts 14
target labels only 5 are considered to evaluate performance: Cardiomegaly, Edema
Consolidation, Atelectasis and Pleural Effusion.[22]

EyePACS Task. For EyePACS evaluation, we use the same approach as PLEX
[36]does for evaluating the country shift task: the Data Set’s 5 labels are used to
assign a new binary label as follows:
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• 0 = mild (original labels 0 and 1)

• 1 = severe (original labels 2,3 and 4)

We then evaluate Binary-Classification based on the newly assigned labels.

Metrics. For CheXpert, we report AUROC for each individual target label as well
as the average of all 5 target labels. Also reported are the Expected Calibration
Error of each individual label as well as an average of all 5 target labels, and the
Negative Log-Likelihood. For EyePACS, we report Binary Accuracy, as well as ECE
and NLL.

5.2.2 Out-of-Distribution Data

For OOD-Evaluation, the test sets are replaced with their respected OOD Data
Sets, as described in 5.1.2 and 5.1.4. Note that we do Zero-Shot-OOD-Evaluation,
as proposed in [2], which means that our model is neither trained nor fine tuned on
any OOD-data. For this task, only AUROC and Binary Accuracy are reported.

5.2.3 Semi-Supervised Evaluation

For Semi-Supervised-Evaluation, we follow the exact same approach as for Linear
Evaluation in 5.2.1, expect we only use 10% and 1% of the training data to fine
tune the linear classifier. For this task, again only AUROC and Binary Accuracy
are reported.

5.2.4 Transfer Learning

To evaluate the models capability under Transfer Learning, we followed the same
training procedure as for the Baseline Model (i.e. no stochasticity added) but initial-
ized the DINO-network with weights that were pretrained on ImageNet as released
by the authors of DINO. AUROC/Binary Accuracy, ECE and NLL are reported.

5.3 Competitors

We benchmark our method proposed in 3 against a Baseline Model as well as other
stochastic extensions of ViT.

5.3.1 Baseline

For a Baseline comparison, we evaluate both Data Sets on unchanged training runs
of DINO under the conditions specified in 4.2.
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5.3.2 Ensemble

We evaluate the performance of an ensemble of 3 individually trained ViTs. The
final prediction is obtained through averaging the outputs of the individual models
before passing to the Linear Classifier.

5.3.3 Monte-Carlo-Dropout

We evaluate a Monte-Carlo extension of the DINO network. As described in 2.2.2,
Dropout is kept during evaluation.

For CheXpert, we consider:

• Dropout-Rate 0.1

• Dropout-Rate 0.15

For EyePACS, we consider:

• Dropout-Rate 0.15

5.3.4 Gumbel Softmax

We evaluate a Gumbel-Softmax extension of the attention mechanism as described
in 2.1.2.

For CheXpert, we consider:

• Gumbel Softmax Stage 1, τ = 1

• Gumbel Softmax Stage 1, τ = 3

• Gumbel Softmax Stage 1, τ = 5

• Gumbel Softmax Stage 1, τ = 20

• Gumbel Softmax Stage 2, τ1 = 5, τ2 = 20

• Gumbel Softmax Stage 2, τ1 = 30, τ2 = 20

• Gumbel Softmax Stage 2, τ1 = 1, τ2 = 20

For ExePACS we consider:

• Gumbel Softmax Stage 1, τ = 1

Where Stage 1 refers to the replacement of the Softmax-Function in the Attention
mechanism, and Stage 2 refers to the hierarchical extentions including a centroid.
Note that due to comparatively weak results Stage 2 was omitted for EyePACS.
For EyePACS only a setting of τ=1 was considered due to time and computational
limitations. The τ -s were chosen similar to the experiments of the original paper[30].
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5.3.5 Hierachical Masked Attention

We evaluate our proposed method for multiple settings of the number of masks m
and the thinning parameter hp, as well as for an increasment of heads:

For CheXpert, we consider:

• m = 1, hp = 0.5

• m = 2, hp = 0.5

• m = 3, hp = 0.5

• m = 4, hp = 0.5

• m = 1, hp = 0.1

• m = 2, hp = 0.2

• m = 1, hp = 0.1

• m = 2, hp = 0.2

• nheads = 16, m = 4, hp = 0.5

• nheads = 16, m = 6, hp = 0.5

• nheads = 16, m = 4, hp = 0.1

• nheads = 16, m = 6, hp = 0.1

For EyePACS we consider:

• m = 1, hp = 1.5, epochs = 300

• m = 1, hp = 0.75 epochs = 300

• m = 1, hp = 0.35 epochs = 300

• m = 2, hp = 1.5, epochs = 300

• m = 1, hp = 4, epochs = 800

• m = 1, hp = 12, epochs = 2400

Training Time and Effect of hp. Note that, in the case of 100 training epochs
hp = 0.5 amounts to the masking of Attention Heads being applied over the whole
course of training, reaching 0 just as training finishes. The same is true for the
respective cases of hp being equal to 1.5, 4 and 12 for 300, 800 and 2400 training
epochs. Lower hps therefore means that masking is only applied during a fraction
of training time.
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6. Results

Below the results of the above described experiments for all tasks mentioned in 5.2
are presented.

6.1 CheXpert

In each table the Top 3 performing models are highlighted. Blue marks AUROC,
Red marks ECE and Green marks NLL.

6.1.1 In-Distribution Evaluation

Experiment Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion
Baseline, Seed 1 0.8654 0.8150 0.9283 0.9059 0.7815 0.8965
Baseline, Seed 2 0.8599 0.8456 0.9137 0.8992 0.7878 0.8534
Baseline, Seed 3 0.8534 0.8116 0.9141 0.9220 0.7785 0.8406
Baseline, 300 Epochs 0.8562 0.8150 0.9150 0.9042 0.7512 0.8957

Ensemble (100,100,100) 0.8630 0.8442 0.9132 0.9220 0.7948 0.8406
Ensemble (300,100,100) 0.8713 0.8398 0.9386 0.9093 0.7785 0.8903

Vit Base 0.8618 0.7959 0.9399 0.9119 0.8148 0.8464

MC-Dropout (0.1) 0.8450 0.7789 0.9043 0.9186 0.7971 0.8261
MC-Dropout (0.15) 0.8339 0.7776 0.8950 0.9034 0.7822 0.8116
MC-Dropout (0.2) 0.8507 0.8058 0.9172 0.9186 0.7692 0.8427

G-Softmax I, τ = 1 0.8196 0.7680 0.8936 0.8678 0.7898 0.7789
G-Softmax I, τ = 3 0.8255 0.7265 0.9114 0.8949 0.7576 0.8369
G-Softmax I, τ = 5 0.8331 0.7782 0.8789 0.8500 0.7995 0.8588
G-Softmax I, τ = 20 0.6770 0.6364 0.6337 0.7754 0.6322 0.7072
G-Softmax II, τ1 = 1, τ2 = 20 0.7488 0.6857 0.7815 0.8364 0.7090 0.7313
G-Softmax II, τ1 = 5, τ2 = 20 0.7508 0.6544 0.7988 0.8008 0.7233 0.7764
G-Softmax II, τ1 = 30, τ2 = 20 0.7587 0.6704 0.8371 0.8042 0.7233 0.7582

HM-Attention, m = 1, hp = 0.5 0.8591 0.8235 0.9217 0.9169 0.8094 0.8240
HM-Attention, m = 2, hp = 0.5 0.8698 0.8405 0.9243 0.9229 0.8151 0.8460
HM-Attention, m = 3, hp = 0.5 0.8500 0.8364 0.9150 0.8975 0.7885 0.8128
HM-Attention, m = 4, hp = 0.5 0.8508 0.8286 0.9088 0.9110 0.7788 0.8300
HM-Attention, m = 1, hp = 0.1 0.8609 0.8252 0.9230 0.9059 0.7955 0.8551
HM-Attention, m = 1, hp = 0.2 0.8525 0.8180 0.9194 0.8822 0.8021 0.8406
HM-Attention, m = 2, hp = 0.1 0.8450 0.7827 0.8945 0.9314 0.7948 0.8215
HM-Attention, m = 2, hp = 0.2 0.6407 0.5656 0.6435 0.7568 0.5361 0.7014
HM-Attention, nheads = 16,m = 4, hp = 0.5 0.8574 0.8061 0.9217 0.8958 0.8035 0.8600
HM-Attention, nheads = 16,m = 6, hp = 0.5 0.8433 0.8190 0.8936 0.9076 0.8138 0.7826
HM-Attention, nheads = 16,m = 4, hp = 0.1 0.7446 0.7337 0.8696 0.8194 0.6861 0.6145
HM-Attention, nheads = 16,m = 6, hp = 0.1 0.8325 0.8313 0.8847 0.8839 0.7483 0.8145

Table 6.1 AUROC Scores for CheXpert ID-Evaluation
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Experiment Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion NLL
Baseline, Seed 1 0.1133 0.1261 0.0961 0.0887 0.1022 0.1532 0.7270
Baseline, Seed 2 0.0987 0.1607 0.0722 0.0853 0.0631 0.1121 0.7272
Baseline, Seed 3 0.0993 0.1221 0.0660 0.0779 0.0962 0.1340 0.7278
Baseline, 300 Epochs 0.0960 0.1220 0.0566 0.0685 0.0736 0.1593 0.7268

Ensemble (100,100,100) 0.1030 0.1474 0.0890 0.1017 0.0664 0.1108 0.7279
Ensemble (300,100,100) 0.1041 0.1257 0.0877 0.0794 0.0895 0.1381 0.7260

Vit Base 0.1170 0.1337 0.0938 0.1235 0.0919 0.1421 0.7261

MC-Dropout (0.1) 0.0994 0.1179 0.0741 0.0823 0.0895 0.1335 0.7291
MC-Dropout (0.15) 0.0989 0.1164 0.0766 0.0929 0.0779 0.1307 0.7324
MC-Dropout (0.2) 0.0934 0.1149 0.0853 0.0873 0.0645 0.1151 0.7284

G-Softmax I, τ = 1 0.1033 0.1206 0.0616 0.1040 0.0901 0.1401 0.7344
G-Softmax I, τ = 3 0.0987 0.1265 0.0646 0.0851 0.0748 0.1425 0.7346
G-Softmax I, τ = 5 0.1066 0.1213 0.1213 0.0716 0.1178 0.0833 0.7355
G-Softmax I, τ = 20 0.1252 0.0869 0.1224 0.0975 0.0691 0.2500 0.7889
G-Softmax II, τ1 = 1, τ2 = 20 0.1066 0.1077 0.0560 0.1001 0.0506 0.2187 0.7624
G-Softmax II, τ1 = 5, τ2 = 20 0.1219 0.0881 0.0899 0.1110 0.0922 0.2282 0.7612
G-Softmax II, τ1 = 30, τ2 = 20 0.1087 0.0976 0.0816 0.1107 0.0733 0.1801 0.7567

HM-Attention, m = 1, hp = 0.5 0.0919 0.1311 0.0624 0.0763 0.0954 0.0954 0.7282
HM-Attention, m = 2, hp = 0.5 0.1032 0.1391 0.0753 0.0862 0.0823 0.1331 0.7284
HM-Attention, m = 3, hp = 0.5 0.1047 0.1589 0.0771 0.0837 0.0724 0.1314 0.7299
HM-Attention, m = 4, hp = 0.5 0.0958 0.1313 0.0669 0.0914 0.0591 0.1305 0.7325
HM-Attention, m = 1, hp = 0.1 0.0942 0.1265 0.0677 0.0762 0.0900 0.1107 0.7260
HM-Attention, m = 1, hp = 0.2 0.0938 0.1178 0.0700 0.0835 0.0837 0.1138 0.7278
HM-Attention, m = 2, hp = 0.1 0.1006 0.1156 0.0641 0.1052 0.0893 0.1289 0.7332
HM-Attention, m = 2, hp = 0.2 0.1114 0.0793 0.0834 0.0978 0.0513 0.2453 0.7843
HM-Attention, nheads = 16,m = 4, hp = 0.5 0.1002 0.1178 0.0725 0.0989 0.0902 0.1217 0.7301
HM-Attention, nheads = 16,m = 6, hp = 0.5 0.0985 0.1036 0.1024 0.0824 0.0735 0.1304 0.7354
HM-Attention, nheads = 16,m = 4, hp = 0.1 0.2038 0.0978 0.1788 0.1746 0.2060 0.3615 0.8069
HM-Attention, nheads = 16,m = 6, hp = 0.1 0.0879 0.1386 0.0571 0.0752 0.0616 0.1070 0.7310

Table 6.2 ECE and NLL Scores for CheXpert ID-Evaluation

All experiments were trained for 100 epochs during Self-Supervised-Training. In-
creasing epochs to 300 did not benefit the performance of the baseline model to
a high degree, which is why we did not further explore an increasement of epochs
with the other experiments. Deep Ensemble scores the highest on AUROC as ex-
pected. Hierarchical-Masked-Attention performs almost on par on AUROC with
Deep Ensemble, while surpassing MC-Dropout and Gumbel-Softmax Attention, and
improves ECE at the same time. MC-Dropout also performs strongly regarding
ECE. NLL for Hierarchical-Masked Attention is slightly below the competitors, but
still in a close range.

We can observe a beneficial effect of HMA and MC-Dropout on ECE for many
experiments. Gumbel Softmax performs comparatively weak, especially when using
Stage II and high τ -Values.
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Figure 17 | Comparison of HMA (Red) to the best Competitors (Blue).
(Top Left) Baseline (Top Right) Ensemble (Bottom Left) Gumbel-Softmax (Bottom Right)
MC-Dropout. For AUROC, closer to the Edges is better, for ECE and NLL closer to the
Center is better.

6.1.2 OOD-Evaluation

Experiment Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion
Baseline, Seed 1 0.7356 0.7276 0.8460 0.8394 0.6511 0.6141
Baseline, Seed 2 0.7296 0.7344 0.8563 0.8819 0.5851 0.5905
Baseline, Seed 3 0.7391 0.7231 0.8638 0.8878 0.6208 0.5999
Baseline, 300 Epochs 0.7462 0.7745 0.8247 0.8229 0.7133 0.5956

Ensemble (100,100,100) 0.7291 0.7116 0.8465 0.8595 0.6185 0.6093
Ensemble (300,100,100) 0.7469 0.7497 0.8251 0.9032 0.6783 0.5780

Vit Base 0.7506 0.7085 0.8749 0.8158 0.7211 0.6325

MC-Dropout (0.1) 0.7335 0.6949 0.8522 0.8194 0.7125 0.5883
MC-Dropout (0.15) 0.7263 0.7269 0.8563 0.8678 0.6270 0.5536
MC-Dropout (0.2) 0.6496 0.5299 0.7499 0.7875 0.6123 0.5686

G-Softmax I, τ = 1 0.7509 0.7959 0.8843 0.7237 0.7288 0.6218
G-Softmax I, τ = 3 0.7047 0.7622 0.8411 0.6139 0.6465 0.6595
G-Softmax I, τ = 5 0.7434 0.7514 0.8505 0.8335 0.6807 0.6012
G-Softmax I, τ = 20 0.6067 0.5112 0.6702 0.6741 0.6053 0.5725
G-Softmax II, τ1 = 1, τ2 = 20 0.6943 0.6898 0.7753 0.6564 0.7420 0.6081
G-Softmax II, τ1 = 5, τ2 = 20 0.6753 0.6918 0.7454 0.7438 0.6138 0.5815
G-Softmax II, τ1 = 30, τ2 = 20 0.6549 0.6558 0.7107 0.6718 0.5742 0.6621

HM-Attention, m = 1, hp = 0.5 0.7550 0.6891 0.8598 0.8654 0.7040 0.6569
HM-Attention, m = 2, hp = 0.5 0.7329 0.7286 0.8336 0.8312 0.6706 0.6008
HM-Attention, m = 3, hp = 0.5 0.7415 0.7435 0.8607 0.8323 0.6309 0.6402
HM-Attention, m = 4, hp = 0.5 0.7331 0.7333 0.8433 0.8383 0.6193 0.6312
HM-Attention, m = 1, hp = 0.1 0.7258 0.7429 0.8545 0.8371 0.6162 0.5785
HM-Attention, m = 1, hp = 0.2 0.7387 0.7398 0.8353 0.8867 0.6317 0.5999
HM-Attention, m = 2, hp = 0.1 0.7316 0.7092 0.8327 0.8489 0.6744 0.5926
HM-Attention, m = 2, hp = 0.2 0.6158 0.5529 0.6907 0.7426 0.5882 0.5047
HM-Attention, nheads = 16,m = 4, hp = 0.5 0.7294 0.6901 0.8465 0.8040 0.6892 0.6171
HM-Attention, nheads = 16,m = 6, hp = 0.5 0.7044 0.5939 0.8465 0.7910 0.6861 0.6046
HM-Attention, nheads = 16,m = 4, hp = 0.1 0.7446 0.7337 0.8696 0.8194 0.6861 0.6145
HM-Attention, nheads = 16,m = 6, hp = 0.1 0.6743 0.5731 0.7775 0.9020 0.5921 0.5270

Table 6.3 AUROC-Scores for CheXpert OOD-Evaluation
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Hierarchical-Masked-Attention yields the best performance on OOD-evaluation, sur-
passing Gumbel-Softmax-Attention and ViT-Base.

6.1.3 Semi-Supervised-Evaluation

Experiment AUROC 0.1 ECE 0.1 NLL 0.1 AUROC 0.01 ECE 0.01 NLL 0.01
Baseline, Seed 1 0.8015 0.1074 0.7395 0.7647 0.0987 0.7457
Baseline, Seed 2 0.8369 0.1061 0.7241 0.8023 0.1147 0.7363
Baseline, Seed 3 0.8410 0.1068 0.7237 0.7826 0.1024 0.7420
Baseline, 300 Epochs 0.8381 0.0953 0.7178 0.7780 0.0958 0.7245

Ensemble (300,100,100) 0.8388 0.1034 0.7220 0.7836 0.1052 0.7386

Vit Base 0.8328 0.1016 0.7219 0.7727 0.0978 0.7395

MC-Dropout (0.1) 0.8376 0.1096 0.7257 0.7894 0.1078 0.7357
MC-Dropout (0.15) 0.8354 0.1051 0.7270 0.7999 0.1150 0.7416

G-Softmax I, τ = 1 0.8269 0.1113 0.7307 0.7882 0.1117 0.7405
G-Softmax I, τ = 3 0.8172 0.1088 0.7291 0.7333 0.1017 0.7470
G-Softmax I, τ = 5 0.8252 0.1049 0.7284 0.7637 0.1125 0.7449

HM-Attention, m = 1, hp = 0.5 0.8432 0.1108 0.7235 0.7831 0.1102 0.7439
HM-Attention, m = 2, hp = 0.5 0.8327 0.1045 0.7274 0.7893 0.1094 0.7436
HM-Attention, m = 3, hp = 0.5 0.8439 0.1051 0.7245 0.7864 0.0945 0.7393
HM-Attention, m = 4, hp = 0.5 0.8360 0.1051 0.7252 0.7870 0.1001 0.7411
HM-Attention, m = 1, hp = 0.1 0.8468 0.1091 0.7224 0.7953 0.1089 0.7377
HM-Attention, m = 1, hp = 0.2 0.8352 0.1020 0.7250 0.7711 0.1165 0.7454
HM-Attention, m = 2, hp = 0.1 0.8182 0.0982 0.7329 0.7589 0.0989 0.7446
HM-Attention, m = 2, hp = 0.2 0.8354 0.1043 0.7232 0.7824 0.0979 0.7391
HM-Attention, nheads = 16,m = 4, hp = 0.5 0.8215 0.1144 0.7385 0.7306 0.1033 0.7578
HM-Attention, nheads = 16,m = 6, hp = 0.5 0.8040 0.1117 0.7423 0.7103 0.1075 0.7596
HM-Attention, nheads = 16,m = 4, hp = 0.1 0.8232 0.1130 0.7342 0.7296 0.1060 0.7537
HM-Attention, nheads = 16,m = 6, hp = 0.1 0.8209 0.0953 0.7221 0.7575 0.0897 0.7386

Table 6.4 Average AUROC Scores for CheXpert 0.1 and 0.01 Semi-Linear-
Evaluation

All Top 3 AUROC-Scores on 0.1 Semi-Linear-Evaluation are achieved by Hierarchical-
Masked-Attention, as well as two of the three top scores for ECE and NLL. For 0.1
Semi-Linear-Evaluation it looses two of its top positions for AUROC, and all for
NLL. ECE Top 3 still includes two HMA-Experiments.

6.1.4 Transfer Learning

Experiment Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion
Baseline, Seed 1 0.8885 0.8337 0.9359 0.9619 0.8091 0.9019

Table 6.5 AUROC Scores for CheXpert Transfer-Learning

Transfer-Learning yields the best AUROC score for CheXpert, whereas ECE is
weaker than with Hierarchical-Masked-Attention and MC-Dropout:

Experiment Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion NLL
Baseline, Seed 1 0.1013 0.1560 0.0610 0.0744 0.0828 0.1323 0.7153

Table 6.6 ECE and NLL Scores for CheXpert Transfer-Learning
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6.2 Eyepacs

EyePACS needed more training time during Self-Supervised-Pretraining than CheX-
pert in order for the ViT to learn representations that perform well in evaluation.
A training time of 100 epochs failed to achieve suitable representations for all ex-
periments. At 300 epochs Baseline, MC-Dropout and HMA started to deliver good
results. Gumbel-Softmax started performing well at 800 epochs. We further ex-
plored an increasement of training time to 2400 epochs for Baseline and HMA.

6.2.1 In-Distribution Evaluation

Experiment Binary Accuracy ECE NLL
Baseline, 300 Epochs 0.8181 0.0091 0.4405
MC-Dropout (0.15), 300 Epochs 0.8167 0.0072 0.2187
HM-Attention, m = 1, hp = 1.5, 300 Epochs 0.8255 0.0082 0.3335
HM-Attention, m = 1, hp = 0.75, 300 Epochs 0.8217 0.0087 0.3618
HM-Attention, m = 1, hp = 0.35, 300 Epochs 0.8249 0.0119 0.3612
HM-Attention, m = 2, hp = 1.5, 300 Epochs 0.8253 0.0087 0.3370

Baseline, 800 Epochs 0.8368 0.0098 0.4262
G-Softmax I, τ = 1, 800 Epochs 0.8331 0.0086 0.2245
HM-Attention, m = 1, hp = 4, 800 Epochs 0.8467 0.0111 0.2037

Baseline, 2400 Epochs 0.8643 0.0103 0.0646
HM-Attention, m = 1, hp = 12, 2400 Epochs 0.8644 0.0109 0.0859

Table 6.7 Binary Accuracy, ECE and NLL Scores for EyePACS ID-Evaluation

300 Training Epochs. Hierarchical-Masked-Attention yields the best Binary Ac-
curacy. All four HMA-Experiments surpass Baseline and MC-Dropout, as well as
Gumbel-Softmax which was not learning good representations at 300 epochs. MC-
Dropout delivers the best ECE and NLL, but Hierachical-Masked-Attention still
sees an improvement compared to the Baseline-Model.

800 Training Epochs. HMA again results in the best Binary Accuracy-Score as
well as the best NLL, however Gumbel-Softmax beats it to ECE.

2400 Training Epoch. Binary Accuracy and ECE are fairly close together for
Hierarchical-Masked-Attention and the Baseline-Model, though the Baseline-Model
achieves a better NLL.

Overall, we can see that Hierarchical-Masked-Attention increases performance on
Accuracy and at the same time can yield a better Model Calibration. With enough
training time, when the models likely have reached their capacity, performance
reaches comparable levels for Baseline and HMA.
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Figure 18 | Comparison of HMA (Red) to the best Competitors (Blue)
on equal training time. (Top Left) Baseline, 300 (Top Right) MC-Dropout, 300
(Bottom Left) Gumbel-Softmax, 800 (Bottom Right) Baseline, 2400. For Accuracy, closer
to the Edges is better, for ECE and NLL closer to the Center is better.

6.2.2 OOD-Evaluation

Experiment Binary Accuracy
Baseline, 300 Epochs 0.7608
MC-Dropout (0.15), 300 Epochs 0.7600
HM-Attention, m = 1, hp = 1.5, 300 Epochs 0.8282
HM-Attention, m = 1, hp = 0.75, 300 Epochs 0.7783
HM-Attention, m = 1, hp = 0.35, 300 Epochs 0.7769
HM-Attention, m = 2, hp = 1.5, 300 Epochs 0.8069

Baseline, 800 Epochs 0.8640
G-Softmax I, τ = 1, 800 Epochs 0.8356
HM-Attention, m = 1, hp = 4, 800 Epochs 0.8779

Baseline, 2400 Epochs 0.8987
HM-Attention, m = 1, hp = 12, 2400 Epochs 0.8949

Table 6.8 Binary Accuracy-Score for EyePACS OOD-Evaluation

Hierachical-Masked-Attention again achieves the best performance in OOD-Evaluation
for 300 and 800 epochs training time. For 2400 epochs, performance is almost on-
par.
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6.2.3 Semi-Supervised-Evaluation

Experiment Binary Accuracy 0.1 Binary Accuracy 0.01
MC-Dropout (0.15), 300 Epochs 0.8119 —-
HM-Attention, m = 1, hp = 1.5, 300 Epochs 0.8167 —-
HM-Attention, m = 1, hp = 0.75, 300 Epochs 0.8120 —-

Baseline, 800 Epochs 0.8343 —-
G-Softmax I, τ = 1, 800 Epochs 0.8203 —-
HM-Attention, m = 1, hp = 4, 800 Epochs 0.8335 0.8144

Baseline, 2400 Epochs 0.8531 0.8502
HM-Attention, m = 1, hp = 12, 2400 Epochs 0.8538 0.8220

Table 6.9 Binary Accuracy Score for EyePACS 0.1 and 0.01 Semi-Linear-Evaluation

Hierarchical-Masked-Attention achieves the highest performance for 800 Epochs
training time. For 300 and 2400, it is again almost on-par with Baseline. Ex-
periments that performed poorly were omitted.

6.2.4 Transfer Learning

Experiment Binary Accuracy ECE NLL
Baseline, 800 Epochs 0.8647 0.0100 0.0477
Baseline, 2400 Epochs 0.8682 0.0138 0.0545

Table 6.10 Binary Accuracy, ECE and NLL-Scores for EyePACS Transfer Learning

Notably, initializing the network with weights pretrained on ImageNet before Self-
Supervised-Training results in just a marginal improvement of performance.
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6.2.5 Visualization of Attention Heads

DINO has implemented a function to plot Self-Attention maps that can be used
to visualize the information contained in different heads about the segmentation
of an input image. An excerpt of these Attention maps layered over their original
input images is given below for six sampled of each Data Set. We can see that the
attention heads learn to focus on different shapes and structures or small details.

Figure 19 | Attention Visualization. (Row 1 & 2) Samples from CheXpert Vali-
dation Set (Row 3 & 4) Samples from EyePACS Training Set.
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7. Conclusion and Future Work

Our experiments have shown that our newly introduced method, Hierarchical-Masked-
Attention, is suited to improve performance on Accuracy Measures as well as Model
Calibration for Data Sets from different medical areas and can be applied effectively
in a Self-Supervised Learning Setting. Our method does not only perform well in
ID-Evaluation (Linear Evaluation as well as Semi-Supervised Linear Evaluation),
but also in OOD-Evaluation, and could therefore help to tackle problems of dis-
tribution shifts, which occur often in medical settings. Beyond that, it can boost
training efficiency compared to other methods (see training time needed to learn
useful representations of HMA vs. Gumbel Softmax in 6.2)

As Hierachical-Masked-Attention introduces two new Hyperparameters, future work
could investigate further on their effect, e.g. via a more granular experimentation
on the thinning parameter hp or an ablation study of the threshold parameter T .
A study of the influence of DINO hyper parameters to our method might also be
beneficial. Furthermore, an extension to more medical fields (e.g. Dermatoscope,
Brain MRA or Breast Ultrasound) could also be of interest to further investigate
on generalization potential. As our method introduces stochasticity to the ViT-
Architecture, it would also seem promising to incorporate techniques of uncertainty
awareness or uncertainty quantification.

As Generalization to ID and OOD-settings as well as Data-efficient training remain
unsolved problems in the field of medical imaging analysis, we hope that this work
can provide a small contribution in tackling these challenges or for future research
to build upon.
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