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1 Introduction
Coming up with a reliable and universal way to quantify the risk associated with a finan-
cial position continues to challenge financial institutions, regulators and investors. The
changes on the computation of minimum capital requirements for entities in the financial
sector published in 1996 by the Basel Committee on Banking Supervision (BCBS 1996)
propelled the adoption of ’Value at Risk’ (VaR) as the ’standard’ risk measure.
Today, VaR is popular in the financial industry and risk management research due to its
conceptual simplicity (relative to other risk measures), applicability and efficient com-
putation. Although popular, VaR has shortcomings, mainly (i) it lacks the sub-additive
property, thus is not a coherent risk measure (as defined in Artzner et al. (1999)) and (ii)
it is insensitive to potential losses exceeding the quantile of interest. Consequently, many
alternative risk measures were introduced in order to overcome VaR’s drawbacks. Acerbi
& Tasche (2002) provide definitions of five risk measures that include losses beyond VaR:

• Conditional VaR (CVaR), as proposed in Rockafellar & Uryasev (2001)

• Expected Shortfall (ES), Acerbi & Tasche (2002)

• Tail Conditional Expectation (TCE), Artzner et al. (1999)

• Worst Conditional Expectation (WCE), Artzner et al. (1999)

• Spectral risk measures

Today, ES is probably the most discussed alternative, being both a coherent risk measure
and sensitive to potential losses in the tail.
However, ES also has some drawbacks. ES is not elicitable, unlike VaR, meaning there
is no consistent scoring function available (such as the squared loss, consistent for the
mean). Though, ES is jointly elicitable with VaR, i.e. the tuple (ES,VaR) is elicitable
(Section 2). Another favourable risk measure property is robustness against outliers and
model misspecification, as data often deviates from underlying distribution assumptions.
As coherent risk measures cannot be robust (Cont et al. 2010), ES is not robust, while
VaR is (Section 2).
To obtain a robust risk measure that, unlike VaR, captures losses outside the specified
quantile, Cont et al. (2010) introduced ’Range Value at Risk’ (RVaR) as an alternative
risk measure (Chapter 3). RVaR is not subadditive (coherent) and not directly elicitable,
but like ES, jointly elicitable with VaR (Section 2). As RVaR is robust and includes VaR
and ES as special cases, late research in financial mathematics, economics and statistics
revolves around RVaR (e.g., Biswas & Sen (2023), Vasilev & Melnikov (2022), Fissler &
Ziegel (2021), Bairakdar et al. (2020), Barendse (2020), Bernard et al. (2020), Embrechts
et al. (2018), Li et al. (2018)).
Although recent research efforts around RVaR and its properties are considerable, few
publications address the issue of estimating RVaR. Most recently, Biswas & Sen (2023)
compares six non-parametric methods to estimate RVaR. A non-parametric approach is
favourable as it (i) is model-free and thus, model robust; (ii) allows for a wide range of
data dependency (often ’i.i.d.’ assumption is not required) and lastly (iii) the tail portion
of a loss distribution, where data is often sparse, is most relevant for practitioners and
researchers, but complicates specification of a proper parametric loss model suited for the
tail.
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This theses aims to expand on the work of Biswas & Sen (2023), Brazauskas et al. (2008),
Giannopoulos & Tunaru (2005), focusing on three non-parametric methods to estimate
RVaR. We derive and compare the estimators’ main theoretical properties as well as ana-
lyze their accuracy in an empirical and simulation study.
The theses is organized in six chapters. Chapter 1 motivates the research and scope of
this paper. The 2nd Chapter reviews relevant literature and related publications. The 3rd
Chapter outlines definitions and basic results on the risk measures in question. Chapter 4
defines three non-parametric estimation methods for RVaR and derives their main proper-
ties. Chapter 5 outlines the methodology and results of an empirical and simulation study,
aiming to compare the estimators’ behaviour and accuracy across different scenarios. The
last Chapter (6) summarizes findings of this theses and suggests ideas for future work.
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2 Literature review
This section reviews relevant literature on RVaR and its estimation, organized in reverse
chronological order.

Biswas & Sen (2023)1

Objective: To describe six non-parametric estimators for RVaR and to analyse accuracy
via simulation study and backtesting.
Method: Non-parametric estimators: Empirical estimator, Brazauskas et al.’s estimator,
Kernel estimator, Tail-Trimmed estimator, Yamai and Yoshiba’s estimator and Filtered
Historical Method. ii) Simulation study: Monte-Carlo simulation (30 ≤ n ≤ 1000) to
approximate mean squared error across five models: Generalized Pareto dist. (ξ = 1/3),
Student’s-t (df = 4), standard normal (N(0,1)) and two ARMA(1,1) with (φ = 0.95,θ =
−0.6,−0.9).
Main conclusions: i) Adapts non-parametric estimators for ES to RVaR. ii) Although no
estimator uniformly outperforms the other estimators in the simulation study, Brazauskas
et al.’s estimator and the Filtered Historical Method perform best. iii) Simulation study
and backtesting support recommendation of Filtered Historical Method to estimate RVaR
except for heavy-tailed distribution (e.g., GPD).

Fissler & Ziegel (2021)
Objectives: i) To explore joint elicitability of RVaR and to characterise corresponding
class of strictly consistent scoring functions. ii) To propose joint regression framework
for RVaR and iii) to illustrate results via simulation study.
Method: i) Proof of joint elicitability of RVaR by characterising explicit class of scor-
ing functions. ii) Comparison of predictive performance of estimators for triplet using
Diebold-Mariano test (n = 250,10000 repetitions).
Main conclusions: i) Proof that triplet of RVaR with two VaR components at different
levels is elicitable. ii) Explicit representation of class of strictly consistent scoring func-
tions for this triplet. iii) Proof that strictly consistent scoring function for triplet cannot
be translation invariant or positively homogeneous. iv) Joint regression framework utiliz-
ing proposed scoring functions allows to substantially deviate from an i.i.d. assumption,
while e.g. popular trimmed least squares method requires stationarity (a.o.).
Related publications: The notion of elicitability has been part of the debate about which
risk measure is best, specifically within the discussion around backtesting (Ziegel 2014,
Emmer et al. 2015, Davis 2016). While some argue that elicitability is not necessary for
backtesting in practical applications (Acerbi & Szekely 2014, 2017, a.o.), Fissler & Ziegel
(2016, 2021) demonstrate that elicitability is necessary for comparative backtesting. Clas-
sical backtesting aims to assess whether an estimation computed ex ante is sufficiently
accurate w.r.t. observed ex post realizations. The goal is thus to assess the accuracy of the
estimated value. In contrast, comparative backtesting uses the observed ex post sequence
(e.g. sequence of portfolio returns) to provide a ranking of the different estimated values,
hence ’comparative’.

1Initial results published April 2022 as conference paper in collection , extended results published Febru-
ary 2023 in ’Computation’.
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Cont et al. (2010)
Objective: To introduce framework for studying the robustness of risk measurement pro-
cedures.
Method: i) Apply results from robust statistics to risk measures.
Main conclusions: i) Subadditive risk measure procedures cannot be robust. ii) Intro-
duction of RVaR as a robust alternative to VaR and ES. iii) Robustness of risk measure
procedure depends on both risk measure and estimation method.
Related publications: While VaR is not coherent (subadditive) in general, Embrechts
et al. (2002) prove the subadditivity of VaR for elliptically distributed risks. Thus, un-
der commonly used distribution models such as Normal, Student’s t, Logistic or Laplace
distribution, VaR is actually coherent. The findings of Cont et al. (2010) propelled the
ongoing debate on which property is more favourable for financial risk measures, coher-
ence or robustness. We point the reader to Cont, Deguest & Scandolo (2010), Kou, Peng
& Heyde (2013) for arguments supporting robustness over coherence and Krätschmer,
Schied & Zähle (2012, 2014, 2015) for an opposing view.

Brazauskas et al. (2008)
Objectives: i) To develop (non-) parametric estimator and corresponding confidence in-
tervals for ES and ii) to compare their performance via simulation study.
Method: i) Non-parametric estimator based on empirical estimator and corresponding
confidence intervals (point-wise and simultaneous). ii) Parametric estimator: Maximum
likelihood and Delta-Method for Exponential, Pareto and Log-normal distributions and
corresponding confidence intervals. iii) Simulation study via Monte-Carlo (n=10.000, 10
iterations) for three distributions (Exponential, Pareto and Log-normal).
Main conclusions: i) The proposed empirical estimator for ES is point-wise consistent,
however not uniformly consistent over the interval [0,1]. ii) Derives closed form repre-
sentation of point-wise and simultaneous confidence intervals for the empirical estimator
and parametric estimators. iii) Coverage proportions of empirical confidence intervals
are quite low in small samples but get reasonably close to intended 95% confidence level
for n ≥ 250 . Although empirical estimator performs worse on average than parametric
estimators, performance is similar across all distribution scenarios.

Giannopoulos & Tunaru (2005)
Objectives: i) To show that Filtered Historical Simulation (FHS) method can be used to
estimate ES and ii) Resulting estimator is well-suited to forecast ES.
Method: i) Estimator assumes robust underlying volatility model (e.g. GARCH). ii) Em-
pirical study: Daily NASDAQ100 returns for c. 5 years, fitting a modified GARCH(1,1)
model and applying FHS estimator.
Main conclusions: i) FHS method can be used to estimate ES and the resulting estimator
is a coherent measure, even converging to a spectral risk measure. ii) Derives closed form
asymptotic formula for standard errors for the ES estimators. iii) Empirical investigation
confirms that ES estimates are more uncertain than VaR under FHS and that accuracy of
estimator declines with increasing horizon.
Related publications: Dowd (2007) lists advantages of FHS applied to risk measure esti-
mation: (i) merges upside of non-parametric historical simulation with advanced volatility
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approach, accounting for market volatility conditions. (ii) fast computation, even for large
portfolios. (iii) allows for e.g. VaR estimates exceeding the maximum observed historical
loss. (iv) keeps correlation structure in return data without relying on variance-covariance
matrices or conditional return distribution. (v) modifiable to account for autocorrelation
and past cross-correlations in returns and to produce confidence interval estimates (for
e.g. VaR) through combination with overall-survival or bootstrap approach. According to
Zenti & Pallotta (2001), FHS is one of the best tools for calculating VaR.
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3 Theoretical backdrop
The chapter is divided into two sections. The first section recollects main definitions
and results on risk measures and defines VaR and ES. In the second, RVaR is formally
introduced and its properties are compared to VaR and ES.

3.1 Risk measure basics
The following definitions and results are found in Yan (2018). Let (Ω,F ,P) be a proba-
bility space with real-valued random variables on Ω. We use X ∈G to denote the potential
loss (i.e. negative realizations of X represent a gain), FX for its cumulative distribution
function (CDF) and G for the set of potential losses to be considered. Further, let D de-
note the set of CDFs of these losses, e.g. FX ∈ D. We define risk measures and some of
their properties closely following Yan (2018), Artzner et al. (1999).

Definition 3.1. A mapping ρ : G 7→ R is called monetary risk measure if it satisfies the
following conditions for all X ,Y ∈ G:

• Monotonicity: If X ≤ Y , then ρ(X)≤ ρ(Y ).

• Translation invariance: If m ∈ R, then ρ(X +m) = ρ(X)+m.

Definition 3.2. A monetary risk measure is called coherent, if it satisfies monotonicity,
translation invariance and for all X ,Y ∈ G:

• Subadditivity: It holds that ρ(X +Y )≤ ρ(X)+ρ(Y ).

• Positive homogeneity: For all λ ≥ 0, it holds that ρ(λX) = λ ·ρ(X).

We now turn to the statistical properties of risk measures. First, we introduce the
notion of robustness for risk measures, which aims to determine how resilient the measure
is towards changes in the underlying data. Intuitively, a robust risk measure should be
unaffected by (small) errors in the model assumptions or outliers in the data. The concept
of qualitative robustness proposed in Cont et al. (2010) naturally defines a risk measure as
robust, if a small change in the distribution F results in a small change in the risk estimate:

Definition 3.3 (Def. 4, Cont et al. (2010)). A risk estimator ρ is robust at a loss distribu-
tion F ∈ C2 if for any ε > 0 there exists a δ > 0 and n0 ≥ 1 such that for all G ∈ C2:

d (F,G)≤ δ =⇒ ∀n ≥ n0 : d (Ln(ρ,P)),Ln(ρ,Q))≤ ε,

where d is the Lévy distance (Appendix A.1) and Ln(ρ,F) the distribution of risk measure
ρ under CDF F .

Closely related is the breakdown point, quantifying the degree of robustness of a statis-
tic. The breakdown point is “the smallest fraction of bad observations that may cause an
estimator to take on arbitrarily large aberrant values”, thus the breakdown point of a non-
robust statistic is 0, while the breakdown point is increasing with the degree of robustness

2The set of ’plausible’ loss CDF’s C ⊆ D and assuming F is not an isolated point of C meaning there
exists a loss distribution G ∈ C that is arbitrarily close to F .
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3.1 Risk measure basics

of a statistic (Huber & Ronchetti 2009).
Second, we introduce the concepts of consistency and elicitability following Fissler &
Ziegel (2016, 2021) before turning to VaR and ES.
Evaluating predictive performance is key when coming up with point forecasts (R̂t) for
a statistical functional R (e.g. risk measure) of a quantity of interest yt (e.g. portfolio
returns). Predictive performance is generally measured in terms of the average realised
score 1/n ∑

n
t=1 S(R̂t ,yt) for a scoring or loss function S (the smaller the better). One aims

to find a scoring function that favors the correct prediction (in the limit) or is strictly con-
sistent (definition below). Prominent examples are (i) the squared loss S(x,y) = (x− y)2

consistent for the mean or (ii) the absolute loss S(x,y) = |x−y| consistent for the median.
If there exists a consistent scoring function for the statistic (risk measure), it is called
elicitable. The role of elicitability within financial risk management is debated (Section
2).

Definition 3.4 (Def. 2.1, Fissler & Ziegel (2016)). A scoring function is a D-integrable
function S : A ⊆ Rk ×Ω 7→ R. We write S̄(x,F) :=

∫
S(x,y)dF(y). It is said to be D-

consistent for a statistic T : D 7→ A if

∀F ∈ D ∀x ∈ A : S̄ (T (F),F)≤ S̄ (x,F) .

Furthermore, S is strictly D-consistent for T if it is D-consistent for T and if

∀F ∈ D ∀x ∈ A : S̄ (T (F),F) = S̄ (x,F) =⇒ x = T (F).

A functional T : D 7→ A ⊆ Rk is called k-elicitable, if there exists a strictly D-consistent
scoring function for T (also referred to as jointly elicitable for k ≥ 2).

We now formally introduce VaR and its properties.

Definition 3.5. For p ∈ (0,1), the Value at Risk (VaR) at level p is defined as

VaRp(X) = inf{x ∈ R : FX(x)≥ p}. (3.1)

We omit the random variable in some situations and denote VaRp for convenience. In
this setting, VaR is the point such that (1− p)×100% of losses are on or below VaRp(X)
(Figure 3.1). We use the left-continuous version of VaR in this paper due to technical
convenience. Moreover, we adopt the left-continuous inverse of FX as quantile function
(or F−1

X ), which therefore coincides with VaR.

As mentioned in the introduction, VaR is not a coherent risk measure as it lacks the
subadditivity property. However, VaR satisfies monotonicity, translation invariance and
positive homogeneity and is therefore a monetary risk measure (Appendix A.1). Further-
more, VaR is a robust monetary risk measure in the sense of Definition 3.3 with break-
down point min{p,1− p} (Cont et al. 2010). At last, we introduce ES and highlight its
properties.

Definition 3.6. For p ∈ (0,1), the Expected Shortfall (ES) at level p is defined as

ESp(X) =
1

1− p

1∫
p

VaRu(X)du. (3.2)

8



3.2 Range Value at Risk

This definition translates to the average loss in the worst (1− p)× 100%-cases. Again,
we omit the random variable in most situations and denote ESp. Another common repre-
sentation of ES is

ESp(X) =
E [X ;X ≥ VaRp(X)]

1− p
= E [X |X ≥ VaRp(X)] , (3.3)

which is equivalent to (3.2) for all p ∈ [0,1] if FX is continuous (Appendix A.1).

As discussed in the introduction, ES is not only a monetary risk measure, but also
coherent (Appendix A.1). Because subadditive risk measures cannot be robust (Section
2), ES is not a robust risk measure (i.e. breakdown point of 0). Lastly, ES fails to be
directly elicitable (Gneiting 2011), but is jointly elicitable, meaning the pair (VaRp,ESp) :
F 7→ R2 is elicitable for any p ∈ (0,1) subject to mild conditions on F (Fissler & Ziegel
2016).

3.2 Range Value at Risk
In this section, we formally introduce RVaR and highlight its properties. While discussing
statistical robustness of monetary risk measures, Cont et al. (2010) introduce RVaR as a
compromise between VaR and ES (Section 2).

Definition 3.7. The Range Value at Risk (RVaR) at levels 0 < p < q < 1 of a loss X is
defined as

RVaRp,q(X) =
1

q− p

q∫
p

VaRu(X) du. (3.4)

That is, RVaRp,q is the average of all VaRu with u between p and q (Figure 3.1). We
omit the random variable when appropriate, abbreviating with RVaRp,q. ES represents a
special case of RVaR, as

RVaRp,1(X) := lim
q↑1

RVaRp,q(X) = ESp(X).

Further, we set RVaR as VaR if p and q coincide, i.e.

∀0 < p = q < 1 : RVaRp,q(X) := VaRp(X).

The definition yields a useful inequality:

VaRp(X)≤ RVaRp,q(X)≤ VaRq(X), (3.5)

which holds for any loss X and 0 < p ≤ q ≤ 1, illustrated in Figure 3.1.
We can also express RVaR in terms of ES, which is particularly convenient when

deriving RVaR estimators in Chapter 4. We have for any 0 < p < q < 1,

RVaRp,q =
1

q− p

 1∫
p

VaRu du+

q∫
1

VaRm dm


=

1
q− p

1− p
1− p

1∫
p

VaRu du− 1−q
1−q

1∫
q

VaRm dm


=

(1− p)ESp − (1−q)ESq

q− p
. (3.6)

9



3.2 Range Value at Risk

Figure 3.1: PDF of N (0,1) incl. VaR, ES and RVaRp,q (p = 0.95, q = 0.99).

Like VaR, RVaR is a monetary risk measure but not coherent, excluding the special case
RVaRp,1 = ESp here and in the following (see Appendix A.1).
RVaR is, unlike ES, a robust risk measure (Definition 3.3). Analyzing RVaRp,q’s ro-
bustness, Fissler & Ziegel (2021) conclude a breakdown point of min{p,1−q}. Thus,
RVaRp,q is less robust than VaRp (breakdown point of min{p,1− p}) and more robust
than ESp with breakdown point of 0.
Like ES, RVaR fails to be directly elicitable (Wang & Wei 2020), but is jointly elicitable
as Fissler & Ziegel (2021) show that the triplet (VaRp,VaRq,RVaRp,q) is elicitable under
weak regularity conditions (Section 2).
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4 Estimators for Range Value at Risk
Biswas & Sen (2023) evaluate six non-parametric methods for estimating RVaR, namely
the Empirical estimator (van der Vaart 2012), Brazauskas et al.’s estimator (Brazauskas
et al. 2008), Filtered Historical Method (initially applied to ES by Giannopoulos & Tunaru
(2005)), Kernel Estimator (Biswas & Sen (2019), leveraging Altman & Léger (1995)),
Tail-Trimmed estimator (Hill 2013) and Yamai and Yoshiba’s estimator (Yamai & Yoshiba
2002).
Although no estimator uniformly outperforms the other estimators in Biswas & Sen
(2023) simulation study, Brazauskas et al.’s Estimator and the Filtered Historical Method
perform best. Therefore we focus on these estimators along with the ’natural’ Empirical
estimator in the subsequent sections and our study.

4.1 Empirical estimator
Let X1, . . . ,Xn be a random sample of observed losses from a CDF FX ∈ D and X(1) ≤
X(2) ≤ ·· · ≤ X(n) be the order statistics of the random sample. We denote the empirical
distribution function by F̂(x) (Section A.2.1).
Following (van der Vaart 2012, Ch. 21.2), the empirical quantile function is defined as

F̂−1(p) = X(i), for p ∈
(

i−1
n

,
i
n

]
. (4.1)

This estimator is reasonable for F−1 (or VaR in our case), especially if the underlying
distribution is unknown. The following theorem ensures weak convergence (also known
as convergence in distribution) of the quantile estimator towards the true quantile.

Theorem 4.1 (Lemma 21.2, van der Vaart (2012)). For any sequence of cumulative dis-
tribution functions, F−1

n ⇝ F−1 if and only if Fn⇝ F, where ’⇝’ refers to weak conver-

gence, i.e. F−1
n (x) d−→ F−1(x) at every x where F−1 is continuous.

Proof (van der Vaart 2012). Let F−1
n ⇝ F−1 and let U ∼ U[0,1]. Because F−1

n has at
most countable many discontinuity points, we have F−1

n (U)
a.s.−−→ F−1(U). Consequently,

F−1
n (U) converges weakly towards F−1(U). This implies Fn⇝ F by the quantile trans-

formation property (Lemma A.1).
Now let Fn ⇝ F and let V ∼ N (0,1) with CDF Φ. Hence Fn(V )

a.s.−−→ F(V ) because
convergence can only fail at discontinuity points of F and V is continuous. Further,
Φ
(
F−1

n (x)
)
= P(Fn(V )< x) (Lemma A.2, (i)) converges to P(F(V )< x) = Φ

(
F−1(x)

)
at every x at which the limit function is continuous, especially at every x at which F−1 is
continuous. By the continuity of Φ−1, F−1

n (x) a.s.−−→ F−1(x) for every such x.

As the empirical estimator F̂(x) satisfies weak consistency for F (Equation (A.4)),
the sequence of estimators F̂−1

n is therefore weakly consistent for the quantile function
F−1. With weak consistency established, we explore the quantile estimator’s asymptotic
properties.

Theorem 4.2 (Quantile estimator is asymptotically normal; Cor. 21.5, (van der Vaart
2012)). Fix 0 < p < 1. If F is differentiable at the p-th quantile F−1(p) with positive

11



4.1 Empirical estimator

derivative f
(
F−1(p)

)
, then the quantile estimator F̂−1(p) is asymptotically normal:

√
n
(
F̂−1(p)−F−1(p)

) d−→N
(

0,
p(1− p)

f 2(F−1(p))

)
. (4.2)

Proof (Stephens 2006). We establish in the Appendix (A.3) that E
[
F̂(x)

]
= F(x). Also,

one can easily verify that Var
[
F̂(x)

]
= F(x)(1−F(x)). By the central limit theorem, we

have √
n
(
F̂(x)−F(x)

) d−→N (0,F(x)[1−F(x)]) .

Now consider the transformation through g(t) for 0 < t < 1 by g(t) := F−1(t). The first
derivative of g is

g′(t) =
d
dt

[
F−1(t)

]
=

1
f (F−1(t))

,

as

y = F−1(t) ⇐⇒ F(y) = t =⇒ f (y)dy = dt

=⇒ dy
dt

=
1

f (y)
=

1
f (F−1(t))

.

Then, using the Delta-Method (Lemma A.3), we get

√
n
(
F−1(F̂(x))−F−1(F(x))

) d−→N

(
0,F(x)[1−F(x)]

1

( f [F−1(F(x))])2

)
.

Now let F be differentiable at the p-th quantile F−1(p) with positive derivative
f
(
F−1(p)

)
and set p = F(x). This yields

√
n
(
F−1(F̂(x))−F−1(p)

) d−→N
(

0,
p(1− p)

f 2(F−1(p))

)
.

Lastly, F−1(F̂(x)) is a random variable that lies between the (p− 1)st and the pth sam-
ple quantile, thus converges almost surely to F̂−1(p) = X(i) with p ∈ ((i−1)/n, i/n] and
therefore in distribution. This concludes (4.2) and the proof.

The asymptotic variance of the empirical quantile behaves as expected, as the nu-
merator gets smaller for more extreme quantiles, i.e. more information/data is needed to
predict the tail quantiles in comparison to the central quantiles. The denominator on the
other hand is largest when the CDF F is alternating most around the pth quantile, i.e.
there is a higher probability for samples around F−1(p), thus estimation is more accurate.

Knowing that the empirical quantile is not only a reasonable, but also a consistent and
asymptotically normal estimator for VaR, we can confidently utilize it to estimate ES.
Recall from definition (3.2) that ES is the average loss in the worst (1− p)×100% cases,
thus the empirical estimator of ES is naturally defined as the weighted average of exces-
sive losses larger than F̂−1(p) = X([np]+1), i.e.

EMPp(X) =
1

⌊n(1− p)⌋+1

n

∑
i=1

XiI{Xi≥F̂−1(p)}, (4.3)

where ⌊·⌋ is the integer floor function.
Given the asymptotic and consistence properties of the empirical quantile function, it is
not surprising that EMP is not only consistent for ES, but also asymptotically normal,
ensured by the following theorem.

12



4.1 Empirical estimator

Theorem 4.3 (Theorem 1 in Chen (2007)). Let l ∈ (0,1) such that
supA∈F i

1,B∈F∞
i+k

|P(AB)− P(A)P(B) | ≤ Clk for all k ≥ 1 and a positive constant C.
Let the stationary CDF F of the stationary process {Xt} be absolutely continuous and
its PDF f have continuous second derivatives in a neighbourhood of VaRp. Also, let Fk
be the joint CDF’s of (X1,Xk+1) for k ≥ 1 with bounded second partial derivatives in a
neighbourhood of VaRp. Lastly, let E

[
|Xt |2+δ

]
< ∞ for some δ > 0. Then,

(EMPp(X)−ESp(X))
d−−−→

n→∞
N
(

0,
σ2

0 (p;n)
n(1− p)2

)
, (4.4)

where

σ
2
0 := Var

[
(X1 −VaRp)+ +2

n−1

∑
k=1

Cov [(X1 −VaRp)+;(Xk+1 −VaRp)+]

]
, (4.5)

and (a−b)+ := (a−b)I{a≥b}.

Proof. We refer the reader to Chen (2007) for a comprehensive proof, but outline the
main arguments here.
First, the author expresses the empirical estimator as a linear combination of VaR, ES, em-
pirical distribution functions and a landau term. Next, he employs the blocking technique,
re-writing the estimator as a sum of three blocks. Two of three blocks converge to zero,
which is shown directly. To establish the asymptotic behaviour of the remaining block,
the author employs Bradley’s lemma (Bosq 1998), expressing the block as a stationary
α-mixing sequence3(Rosenblatt 1956, a.o.). This allows for applying moment bounds
given in Yokoyama (1980), which ensures the Liapounov condition for the central limit
theorem of triangular arrays and together, the convergence of the last block. Applying
Slutsky’s theorem (van der Vaart 2012, Lemma 2.8) permits combining the three blocks
in limit and completes the proof.

Note the assumption of an absolutely continuous CDF FX , which is not needed to
establish asymptotic normality of the Brazauskas et al.’s estimator. More on this in the
subsequent section 4.2.
Furthermore, as (1− p) is typically small (usually 1−5% in financial risk management),
EMP’s asymptotic variance can be large, especially for smaller n’s. This poses a challenge
for statistical inference utilizing the EMP estimator. Nevertheless, the empirical estimator
is commonly used in practice for ES forecasting (e.g. Wu et al. (2021), Mehlitz & Auer
(2020)).
At last, we can conclude an asymptotically normal, hence consistent estimator for
RVaRp,q leveraging the identity in (3.6):

EMP(p,q)(X) =
(1− p)EMPp(X)− (1−q)EMPq(X)

q− p
. (4.6)

Implementation

Implementation of Empirical estimator for Chapter 5 is straightforward, utilizing pandas
series’ sort_values and sum methods to derive EMPp and EMPq as in Equation (4.3).
Then, Identity (4.6) yields the RVaR estimate.

3Per Chen (2007), the dependence described by α-mixing is the weakest as it is implied by other types
of mixing. Refer to Doukhan (2012) for a comprehensive review of different stochastic mixing notions.
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4.2 Brazauskas et al.’s estimator

4.2 Brazauskas et al.’s estimator
Brazauskas et al. (2008) propose an estimator for ES (or conditional tail expectation in
their paper) related to the empirical estimator. Utilizing the definition of ES in (3.2)
and replacing ’true’ VaR with the empirical quantile estimator we get Brazauskas et al.’s
estimator, i.e.

BRZp(X) =
1

1− p

∫ 1

p
F̂−1(u)du. (4.7)

The remainder of the subsection explores BRZ’s asymptotic properties and establishes it’s
consistency, following the arguments in Brazauskas et al. (2008).
We begin by showing that BRZp converges to ESp for every fixed p ∈ [0,1] almost surely.

Theorem 4.4 (Theorem 2.1 in Brazauskas et al. (2008)). Assuming that the first moment
E [X ] is finite, we have for every p ∈ [0,1] that BRZp(X) converges to ESp(X) almost
surely and thus in probability. In other words, BRZp(X) is a strongly (and thus weakly)
consistent estimator of ESp(X) for every fixed p ∈ [0,1].

Proof (p. 3601, Brazauskas et al. (2008)). Assume E [X ] < ∞. Theorem 4.4 can be sim-
plified as

∀p ∈ [0,1] :
1

1− p

∫ 1

p
F̂−1(u)du a.s−→ 1

1− p

∫ 1

p
VaRu(X)du ⇐⇒

∀p ∈ [0,1] :
∫ 1

p
F̂−1(u)du a.s.−−→

∫ 1

p
VaRu(X).

The preceding convergence follows if the L1-distance of F̂−1(u) and VaRu converges
almost surely to 0, i.e. if ∫ 1

0
|F̂−1(u)−VaRu|du a.s.−−→ 0, (4.8)

holds. The two following conditions are equivalent to (4.8) (Lemma A.4):

(i) Fn
d−−−→

n→∞
F ,

(ii)
∫
|x|dFn

a.s.−−−→
n→∞

∫
|x|dF .

The first statement follows directly from the Glivenko-Cantelli theorem (Theorem A.1),
while the second statement is equal to

1
n

n

∑
i=1

|Xi|
a.s.−−−→

n→∞
E [|X |] .

This of course holds true by the strong law of large numbers for |X | as E [|X |] < ∞ by
assumption, which concludes the proof .

With point-wise consistency established, we briefly illustrate why uniform consis-
tency across the interval [0,1] does not hold, i.e.

sup
0<p<1

|BRZp(X)−ESp(X)|> 0. (4.9)
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4.2 Brazauskas et al.’s estimator

As BRZp(X)≤ X(n) by definition, the following holds:

sup
0<p<1

|BRZp(X)−ESp(x)| ≥ sup
1−1/n<p<1

|BRZp(X)−ESp(X)|

= sup
1−1/n<p<1

|X(n)−ESp(x)|

≥ − sup
1−1/n<p<1

X(n) + sup
1−1/n<p<1

ESp(X), (4.10)

where the last inequality holds by the reverse triangle inequality. The right-hand side of
(4.10) is infinite: While the order statistic is finite (almost surely), the supremum is infinite
for distributions with infinite right-end support (e.g. normal or Student’s-t distribution).
Therefore, the right-hand side of (4.10) does not converge (is greater than zero), and thus,
in turn, the left-hand side of (4.10) does not converge either. This concludes that BRZp is
not a uniformly consistent estimator of ESp across the interval [0,1].
With BRZ’s consistency properties established, we explore its asymptotic behavior. In
fact, BRZ is an asymptotically normal estimator for ES by the following theorem.

Theorem 4.5 (Theorem 3.1 in Brazauskas et al.). Assume that the second moment E
[
X2]

is finite. Let p ∈ [0,1] be fixed, and let the CDF FX be continuous at the point F−1
X (p).

Then √
n(BRZp(X)−ESp(X))

d−→N
(
0,σ2

X(p)
)
, (4.11)

with the variance

σ
2
X(p) =

1
(1− p)2

∫
∞

F−1
X (p)

∫
∞

F−1
X (p)

(FX(x∧ y)−FX(x)FX(y)) dxdy. (4.12)

In particular, statement (4.11) holds for any fixed p ∈ [0,1] if the CDF FX is continuous
across R.

Proof (p. 3602, (Brazauskas et al. 2008)). By definition, we have

BRZp(X)−ESp(X) =
1

1− p

∫ 1

p

(
F̂−1(u)−F−1(u)

)
du. (4.13)

In the following, we extract a sum of random variables from the integral in (4.13). To do
this, we focus on the integral below for now, omitting the factor:∫ 1

p

(
F̂−1(u)−F−1(u)

)
du. (4.14)

Note that (4.14) is the difference between the empirical mean X and the expected value
E [X ] iff p = 0, as∫ 1

0
F−1(u)du

u=F(x)
=

∫
∞

−∞

F−1(F(x))
f (x)dx

dx
dx =

∫
∞

−∞

x f (x)dx = E [X ] .

Moreover, we can express the area between F̂−1 and F−1 in terms of the CDF and empir-
ical CDF for p = 0,∫ 1

0

(
F̂−1(u)−F−1(u)

)
du =−

∫
∞

−∞

(
F̂(x)−F(x)

)
dx. (4.15)
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4.2 Brazauskas et al.’s estimator

We utilize this identity to extract a sum of i.i.d. random variables from the integral. We
begin with the following statement:∫ 1

p

(
F̂−1(u)−F−1(u)

)
du =−

∫
∞

F−1(p)

(
F̂(x)−F(x)

)
dx + R̂(p), (4.16)

where R̂(p) is defined by Equation (4.16) itself. Iff p = 0, R̂(p) equals 0 as per Equation
(4.15). Next, we define

−V̂ (p) := R̂(p), (4.17)

where

V̂ (p) =−R̂(p) =−
∫ 1

p

(
F̂−1(u)−F−1(u)

)
du−

∫
∞

F−1(p)

(
F̂(x)−F(x)

)
dx

(4.15)
=

∫ p

0

(
F̂−1(u)−F−1(u)

)
du+

∫ F−1(p)

0

(
F̂(x)−F(x)

)
dx.

The reasoning behind these steps is that the process V̂ (p) is well-researched, known as
the (general) Vervaat process. In fact, V̂ (p) is non-negative for all p ∈ [0,1] (Lemma A.5)
and satisfies the following upper-bound:

V̂ (p)≤−
(
F̂(F−1(p))− p

)(
F̂−1(p)−F−1(p)

)
, (4.18)

for any CDF F (Lemma A.5). As we assume continuity of F at the point F−1(p), we of
course have p = F(F−1(p)) and the even stronger upper-bound:

|V̂ (p)| ≤ |F̂(F−1(p))−F(F−1(p))| · |F̂−1(p)−F−1(p)|
≤ sup

x∈R
|F̂(x)−F(x)| · |F̂−1(p)−F−1(p)|. (4.19)

The supremum term in (4.19) is of the order O(
√

n) by the Kolmogorov-Smirnov the-
orem (e.g. Shorack & Wellner (2009, p. 142)). Thus, if F̂−1(p) P−→ F−1(p), we have
√

n|V̂ (p)|= o(1). As we assume continuity of F at F−1(p), we have F̂−1(p) P−→ F−1(p)
by Theorem 4.1. Applying these steps to (4.13) yields for every fixed p ∈ [0,1],

√
n(BRZ(p)−ES(p)) =−

√
n

1− p

∫
∞

F−1(p)

(
F̂(x)−F(x)

)
dx−

√
n

1− p
V̂ (p) by (4.16), (4.17)

=−
√

n
1− p

∫
∞

F−1(p)

(
F̂(x)−F(x)

)
dx+o(1)

=− 1
1− p

√
n

n

∫
∞

F−1(p)

n

∑
i=1

I{Xi≤x}−F(x)dx+o(1)

=
1√
n

n

∑
i=1

Hp(Xi)+o(1),

where
Hp(Xi) :=− 1

1− p

∫
∞

F−1(p)

(
I{Xi≤x}−F(x)

)
dx. (4.20)
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4.2 Brazauskas et al.’s estimator

For every fixed p ∈ [0,1], the random variables Hp(Xi) are centered and i.i.d. (for all
1 ≤ i ≤ n), as

E [Hp(Xi)] =− 1
1− p

∫
∞

F−1(p)

(
E
[
I{Xi≤x}

]
−F(x)

)
dx = 0.

Moreover, Hp(Xi) has variance σ2
X(p) defined in (4.12), as

Var [Hp(Xi)] = E
[
Hp(Xi)

2]−0 =
1

(1− p)2E

[(∫
∞

F−1(p)

(
I{Xi≤x}−F(x)

)
dx
)2
]

=
1

(1− p)2E

 ∞∫
F−1(p)

∞∫
F−1(p)

I{Xi≤x∧y}− I{Xi≤x}F(y)− I{Xi≤y}F(x)+F(x)F(y)dxdy


=

1
(1− p)2

∞∫
F−1(p)

∞∫
F−1(p)

F(x∧ y)−2F(x)F(y)+F(x)F(y)dxdy = σ
2
X(p).

The variance σ2
X(p) is finite for every p ∈ [0,1], iff E

[
X2] < ∞ which holds true by

assumption. The central limit theorem concludes (4.11) and the proof.

As with the empirical estimator, we can formulate a point-wise consistent and asymp-
totically normal non-parametric estimator for RVaRp,q:

BRZ(p,q)(X) =
(1− p)BRZp(X)− (1−q)BRZq(X)

q− p
. (4.21)

Unlike the empirical estimator, we do not assume continuity of F for the consistency
argument, and merely continuity in F−1

X (p) for the asymptotic argument (vs. uniform
continuity assumption for asymptotic normality of EMP). This makes the BRZ estimator
potentially more robust when dealing with (partially) discontinuous distributions.

Implementation

As the integral in Definition (4.7) reduces to a finite sum in our empirical and numerical
study setting, implementation of Brazauskas et al.’s estimator is analogous to Empirical
estimator implementation (Section 4.1).
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4.3 Filtered Historical Method

4.3 Filtered Historical Method
The Filtered Historical Method (FHS) was introduced by Barone-Adesi et al. (1998, 1999)
and initially applied to ES estimation by Giannopoulos & Tunaru (2005) (Section 2).
FHS re-samples historical returns within a conditional volatility framework (e.g.
GARCH). The main difference to other non-parametric approaches is, that returns are
adjusted by the corresponding conditional volatility first. Then, the standardised returns
are scaled by the volatility reflecting current or future conditions (expectations).

FHS method can be implemented in four steps (Giannopoulos & Tunaru 2005):

(i) Fit conditional volatility model to historical data (e.g. Biswas & Sen (2023) use a
GARCH(1,1)).

(ii) Generate daily volatilities for each day (or any other time period) of sample period
and standardise realised returns (dividing by corresponding volatility σ ):

X̃i =
Xi

σX
t−i

, for i = 1, . . . ,n (4.22)

Standardised values should be i.i.d.

(iii) Bootstrap with replacement from set of standardised returns (X̃1, . . . , X̃n) a large
number L of drawings (X̆1, . . . , X̆L) . Then, each drawing is multiplied by the volatil-
ity forecast at the horizon σX to obtain a sample of i.i.d. values, as large as needed,
from the returns that will occur on that day yielding:(

(σX X̆1), . . . ,(σX X̆L)
)

(4.23)

Note that due to the bootstrapping procedure drawing with replacement, X̆ j can take
any of the values (X̃1, . . . , X̃n) for j = 1, . . . ,L.

(iv) The estimator for ES is then:

FHSp(X) =
σX

θ

θ

∑
i=1

X̆(i), (4.24)

where θ = ⌊pL⌋ and ⌊·⌋ the integer floor function.

Consequently, the estimator of RVaRp,q is:

FHS(p,q)(X) =
(1− p)FHSp(X)− (1−q)FHSq(X)

q− p
(4.25)

Giannopoulos & Tunaru (2005) not only show that the FHS method can be used to es-
timate ES, but also that the resulting estimator maintains the coherence property of ES.
Further, a closed form asymptotic formula for the variance of this estimator is derived.
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4.3 Filtered Historical Method

Implementation

We implement FHS estimator for Chapter 5 closely following steps (i)-(iv) above (step
(iii) is omitted for Monte-Carlo simulations).
For (i), we use a GARCH(1,1) model with normally distributed errors via the arch pack-
age. In step (ii), we standardize returns using its conditional_volatility method.
Step (iii) generates one-step ahead forecasts with arch’s fit method. Note that the
volatility forecast method has significant impact on RVaR estimates with one-step ahead
forecasts resulting in fairly volatile rolling RVaR estimates (Section 5.2.1). Bootstrapping
is achieved via pandas series’ sample method, using L = 1000 draws. After testing
various values for L, we consider L = 1000 a reasonable trade-off between computational
load and robustness of estimates. Step (iv) is implemented similar to the Empirical esti-
mator (Section 4.1).
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5 Empirical & Simulation Study

5.1 Methodology
The subsequent sections explain the methods used in the empirical and simulation study.

5.1.1 Empirical study

We conduct all computational implementations using the Python programming language,
making use of the following packages: numpy, pandas, datetime, yfinance,
arch, matplotlip. We use daily price data of the S&P 500 and DAX stock indices from
Yahoo!finance from January 1985 and January 1988 to December 2022, respectively. We
consider the daily log-loss, calculated as Xt = log(Pt−1/Pt) where Pt is the closing price
on day t. We use significance levels α,β ∈ {1%,2.5%,5%}, implying the following pairs
for p and q: {(0.95,0.975),(0.95,0.99),(0.975,0.99)} as p < q for RVaR. Significance
levels α,β ∈ {1%,5%} are common in risk management research, while BCBS recom-
mends significance level of 2.5% for ES (BCBS 2013). We employ a rolling estimation
window of 250, 500 and 1 000 daily observations, same as the sample size of the MC
simulation in 5.1.2. The study focuses on the RVaR estimators described in Chapter 4, i.e.
the Empirical estimator, Brazauskas et al.’s estimator and Filtered Historical Simulation
(FHS) estimator. In addition to the estimates, we compute 99% confidence bands using
the estimators’ observed standard deviation as there are no closed form variance formulas
available for the three RVaR estimators in question (Appendix A.6).

5.1.2 Numerical procedures

As in the empirical study, implementations use Python, utilizing scipy:stats in addi-
tion to the packages mentioned in Section 5.1.1. We use Monte Carlo (MC) simulation to
evaluate accuracy of the three RVaR estimators introduced in Chapter 4, employing Nor-
mal and Student’s-t distribution model as well as a GARCH(1,1) model with constant
mean and Gaussian residuals. Model parameters are estimated via Maximum-Likelihood
estimation utilizing the S&P 500 data described in Section 5.1.1. The significance levels
used are the same as in the empirical study. We employ 1000 MC draws, which pro-
vides sufficient results (e.g. Yi et al. (2014)) and consider 250, 500 and 1 000 samples 4,
equal to the rolling estimation window size in Section 5.1.1. To evaluate accuracy, we use
Bias, Relative Bias (R. Bias), Root-Mean-Squared-Error (RMSE) and the variance of the
estimate (σ2), see Appendix A.3 for definitions.

5.2 Results
The empirical and numerical simulation study confirm that all three estimators examined
in Chapter 4 are suitable for RVaR estimation. Empirical and Brazauskas et al.’s estimator
behave similarly across both studies as the two estimators are based on empirical quantiles
alike. FHS estimates in the empirical study are more volatile compared to Empirical and
Brazauskas et al.’s estimates, due to the one-step ahead volatility forecasting (Section 4.3).

4While 250 is the minimum sample size recommended by the BCBS, sample size of 500 and 1 000 is
common in risk management literature.
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5.2 Results

At the same time, FHS estimator accuracy in the simulation study is competitive in most
scenarios.

5.2.1 Empirical results

This subsection presents results from applying the different estimation methods outlined
in Chapter 4 to S&P 500 and DAX log-loss data. Table 5.1 outlines descriptive statistics
of S&P 500 and DAX daily returns from January 1985 and January 1988 to December
2022, respectively.

We consider daily returns in Table 5.1 for interpretability, whereas all estimation is

Index Mean Minimum Maximum Standard deviation Skewness Kurtosis
S&P 500 0.0004 -0.2047 0.1158 0.0116 -0.7719 19.8965

DAX 0.0004 -0.1314 0.1140 0.0140 -0.1113 6.4418

Table 5.1: Statistics of S&P 500 and DAX daily returns (Jan. 1985 and 1988 - Dec. 2022)

performed on log-losses. Daily returns of the S&P 500 and DAX average close to zero
with a standard deviation of c. 1.2% and 1.4%, respectively. The highest S&P 500
and DAX daily return of c. 11.6% and 11.4% occurred on 19.10.1987 and 16.10.1989,
respectively, while the worst S&P 500 and DAX daily loss (c. −20.5% and −13.1%)
materialized during the Global Financial Crises (GFC) on 13.10.2008 for both indices.
The negative Skewness of both indices indicates a fat left tail, i.e. many small gains
and select extreme losses. Lastly, Kurtosis of c. 19.9 and 6.4 suggests a leptokurtic
distribution of both indices, common for financial return series and greater than the
expected kurtosis of a normally distributed series (kurtosis = 3).

Rolling RVaR estimation of S&P 500 log-losses with Empirical, Brazauskas et al.’s
and FHS estimator (Chapter 4) confirms our theoretical findings. As both Empirical and
Brazauskas et al.’s estimator are based on empirical quantiles, both demonstrate similar
behaviour and RVaR estimates (re-confirmed in Section 5.2.2). Brazauskas et al.’s esti-
mator produces slightly lower rolling RVaR estimates compared to Empirical estimator.
Both estimators display a fairly smooth rolling estimation, especially for large window
size (e.g. = 1000).
The FHS estimator produces a more volatile rolling RVaR estimation, spiking for peri-
ods of market turmoil (Figure 5.4). FHS estimates are larger compared to the two other
estimators most of the time (re-confirmed in Section 5.2.2).

A rolling estimation window size of 250 leads to more volatility in the estimates and
wider 99% confidence bands (Appendix A.6) compared to window size of 500 or 1000.
Window size of 250 appears reasonable for the Empirical and Brazauskas et al.’s estima-
tor, but the FHS estimator seems prone to artifacts (Figure 5.1, e.g. 1988, 1992, 1994 or
2020).

Unsurprisingly, larger rolling estimation window size of 500 leads to smoother RVaR
estimates for all estimators and more narrow 99% confidence bands. However, FHS esti-
mates still seem to overestimate RVaR for some points (Figure 5.2, e.g. 1988, 1994, 2011,
2020).

We also observe smaller differences between Empirical and Brazauskas et al.’s esti-
mator and more stable rolling FHS estimates for window size = 1000 (Figure 5.3).
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5.2 Results

Figure 5.1: Rolling RVaR estimation of S&P 500 log-losses with EMP, BRZ and FHS
estimator (window size = 250, (p,q) = (0.95,0.975))

Figure 5.2: Rolling RVaR estimation of S&P 500 log-losses with EMP, BRZ and FHS
estimator (window size = 500, (p,q) = (0.95,0.975))

Figure 5.3: Rolling RVaR estimation of S&P 500 log-losses with EMP, BRZ and FHS
estimator (window size = 1000, (p,q) = (0.95,0.975))
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5.2 Results

We examine the estimators during market downturns more closely in Figure 5.4, using
Black-Monday, Dot-Com Bubble, GFC and Covid/Ukraine crises as examples for periods
of significant market movements and hence, volatile RVaR (S&P 500 price level included
as grey line). All three estimators reflect severe market downturns in the RVaR estimate.
The more volatile FHS estimator tends to spike for the periods of biggest losses but returns
to ’baseline’ fairly quickly, even if the index has not recovered. This behaviour can be
explained by the one-step volatility forecast we apply (Section 4.3). Both Empirical and
Brazauskas et al.’s estimator stay elevated throughout the recovery period, sometimes
even beyond (e.g. Covid/Ukraine crises, while S&P 500 recovers by mid-2020, RVaR
estimates remain elevated until early-2022).
For illustration of the underlying ES estimates by Empirical, Brazauskas et al.’s and FHS
estimator refer to Figure A.1 in the Appendix.

Figure 5.4: Rolling RVaR estimation of S&P 500 log-losses with EMP, BRZ, and FHS
estimator during volatile markets (window size = 500, (p,q) = (0.95,0.975))

The results of rolling RVaR estimation of DAX log-losses confirm our theoretical
findings as well and are in line with the S&P 500 results described above. As with S&P
500 estimates, Empirical and Brazauskas et al.’s estimator demonstrate similar behaviour
and RVaR estimates for the DAX index. Also as above, Brazauskas et al.’s RVaR estimates
are slightly lower compared to Empirical estimator. Both Empirical and Brazauskas et
al.’s estimators display a fairly smooth rolling estimation, while FHS estimates are more
volatile for the DAX index, spiking for periods of market turmoil (Figure 5.5).

As with S&P 500 results, smaller estimation window sizes lead to more volatility in
the DAX estimates compared to larger window sizes and the FHS estimator seems to
overestimate RVaR for some days, for window sizes 250 and 500 especially. Refer to
the Appendix for rolling RVaR estimation for window size of 250 (Figure A.2) and 1000
(Figure A.3).
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5.2 Results

Figure 5.5: Rolling RVaR estimation of DAX log-losses with EMP, BRZ and FHS esti-
mator (window size = 500, (p,q) = (0.95,0.975))

Figure 5.6: Rolling RVaR estimation of DAX log-losses with EMP, BRZ, and FHS esti-
mator during volatile markets (window size = 500, (p,q) = (0.95,0.975))
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5.2 Results

Again, we examine the estimators during market downturns (Figure 5.6) using
Dot-Com Bubble, GFC, Euro Crisis and Covid/Ukraine crises as examples for periods of
volatile RVaR (DAX index level included as grey line). As with S&P 500, all estimators
reflect severe market downturns in the RVaR estimate. The more volatile FHS estimates
tend to spike for the periods of biggest losses but return to ’baseline’ once the downward
trend is broken, even if the index has not yet recovered. Again, this behaviour can be
explained by the one-step volatility forecast we apply (Section 4.3). Both Empirical and
Brazauskas et al.’s estimator stay elevated throughout the recovery period, sometimes
even beyond (e.g. Covid/Ukraine crises, while DAX recovers by 2021, RVaR estimates
remain elevated until early-2022).
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5.2 Results

5.2.2 Numerical results

This subsection presents the Monte Carlo simulation study results. We fit model pa-
rameters via Maximum-Likelihood estimation on the S&P 500 log-loss data, yielding
N (µ =−0.000328,σ2 = 0.011653), t(ν = 15101953) and a GARCH (1,1) with constant
mean and Gaussian residuals, in particular µ = 0.100700, α0 = 0.000003, α1 = 0.099999
and β1 = 0.879987 (Appendix A.10).

No estimator uniformly outperforms across scenarios. Brazauskas et al.’s and FHS
estimator seem best for Gaussian settings, FHS estimator for Student’s-t scenarios, while
Empirical and Brazauskas et al.’s estimates seem most accurate for GARCH(1,1) settings.
In most scenarios at least one estimator predicts RVaR with good accuracy (Relative Bias
< 1%). Except FHS estimator in GARCH(1,1) scenarios, all estimators predict RVaR
with decent accuracy (Relative Bias < 10%). All estimators seem to perform better with
more data within RVaR threshold, i.e. for larger n and larger delta of α and β . As with
the empirical study, we observe similar outcomes with Empirical and Brazauskas et. al.’s
estimator. Same reasoning as in section 5.2.1 applies. While Empirical and Brazauskas et
al.’s estimator over- and underestimate true RVaR across scenarios, FHS estimator tends
to overestimate RVaR (negative Bias) for Gaussian and Students-t scenarios and underes-
timates RVaR in GARCH(1,1) scenarios. The variance of Brazauskas et al.’s estimator
is lower than the Empirical estimator’s variance in most cases, which corroborates our
theoretical finding that Brazauskas et al.’s estimator is potentially more robust than the
Empirical estimator (Section 4.2).

Across most Gaussian scenarios, Brazauskas et al.’s and FHS estimators perform best .
Accuracy is fairly similar across all three estimators, except Brazauskas et al.’s estimator
outperforms for n = 1000 for normal distribution with Relative Bias of < 1%. FHS
estimates demonstrate lowest RMSE across all Gaussian scenarios.

For Student’s-t distribution scenarios, FHS estimator perform best for almost all sig-
nificance levels and sample sizes. Again, FHS estimator displays lowest RMSE across all
Student’s-t scenarios. The difference in accuracy is small across the estimators, except for
n = 1000, where Empirical estimator falls behind Brazauskas et al.’s and FHS estimator
accuracy.

A different pattern manifests for GARCH(1,1) scenarios, for which either Empiri-
cal or Brazauskas et al.’s estimator is best, depending on significance levels and sample
size. FHS estimator underestimates RVaR across GARCH(1,1) scenarios significantly
compared to the other two estimators.

Based on this numerical study, we recommend the FHS estimator for RVaR estimation
in a Gaussian and Student’s-t setting and recommend Empirical and Brazauskas et al.’s
estimator for GARCH scenarios.

The following tables show Bias, Relative Bias, RMSE and Variance (Appendix A.3),
grouped by distribution, sample size and significance level. Best results per scenario are
bold.
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Table 5.2: Results for distribution N (µ,σ), n = 250.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.000029 -0.001401 0.001602 0.000002
(5.0%,2.5%) BRZ 0.001254 0.061139 0.001977 0.000002

FHS -0.000353 -0.017233 0.001447 0.000002
EMP 0.000490 0.022316 0.001769 0.000003

(5.0%,1.0%) BRZ 0.000520 0.023697 0.001789 0.000003
FHS -0.000132 -0.005997 0.001503 0.000002
EMP 0.001250 0.051277 0.002347 0.000004

(2.5%,1.0%) BRZ -0.000827 -0.033943 0.002278 0.000005
FHS 0.000123 0.005049 0.001892 0.000004

Table 5.3: Results for distribution N (µ,σ), n = 500.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.000415 -0.020240 0.001219 0.000001
(5.0%,2.5%) BRZ 0.000880 0.042908 0.001407 0.000001

FHS -0.000523 -0.025496 0.001143 0.000001
EMP -0.000251 -0.011419 0.001270 0.000001

(5.0%,1.0%) BRZ 0.000103 0.004680 0.001232 0.000001
FHS -0.000259 -0.011779 0.001119 0.000001
EMP -0.000322 -0.013226 0.001535 0.000002

(2.5%,1.0%) BRZ -0.001552 -0.063672 0.002209 0.000003
FHS -0.000102 -0.004202 0.001382 0.000002
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Table 5.4: Results for distribution N (µ,σ), n = 1000.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.000185 -0.008999 0.000843 0.000001
(5.0%,2.5%) BRZ 0.000049 0.002378 0.000820 0.000001

FHS -0.000268 -0.013047 0.000774 0.000001
EMP -0.000251 -0.011422 0.000891 0.000001

(5.0%,1.0%) BRZ 0.000015 0.000668 0.000847 0.000001
FHS -0.000304 -0.013840 0.000804 0.000001
EMP -0.000291 -0.011945 0.001088 0.000001

(2.5%,1.0%) BRZ 0.000030 0.001249 0.001029 0.000001
FHS -0.000327 -0.013438 0.001011 0.000001

Table 5.5: Results for distribution t(ν), n = 250.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.006760 -0.003782 0.136945 0.018061
(5.0%,2.5%) BRZ 0.103440 0.057865 0.167781 0.017102

FHS -0.005562 -0.003111 0.121080 0.014086
EMP 0.038612 0.020194 0.151782 0.020034

(5.0%,1.0%) BRZ 0.040475 0.021168 0.150872 0.020170
FHS 0.012808 0.006698 0.129834 0.016412
EMP 0.100731 0.047525 0.192549 0.026966

(2.5%,1.0%) BRZ -0.081836 -0.038611 0.193187 0.031883
FHS 0.034318 0.016191 0.159228 0.024228
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Table 5.6: Results for distribution t(ν), n = 500.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.028623 -0.016012 0.104393 0.009081
(5.0%,2.5%) BRZ 0.082503 0.046152 0.126552 0.008205

FHS -0.013304 -0.007442 0.091128 0.007179
EMP -0.029054 -0.015195 0.107101 0.010865

(5.0%,1.0%) BRZ 0.000990 0.000518 0.102408 0.010565
FHS -0.000004 -0.000002 0.091545 0.008745
EMP -0.013251 -0.006252 0.130985 0.016569

(2.5%,1.0%) BRZ -0.119825 -0.056534 0.180645 0.018321
FHS 0.033694 0.015897 0.122551 0.013900

Table 5.7: Results for distribution t(ν), n = 1000.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.020317 -0.011366 0.072112 0.004955
(5.0%,2.5%) BRZ -0.000428 -0.000239 0.068939 0.004908

FHS -0.000198 -0.000111 0.061629 0.004075
EMP -0.021480 -0.011234 0.076852 0.005737

(5.0%,1.0%) BRZ 0.000821 0.000430 0.073266 0.005602
FHS -0.000134 -0.000070 0.065846 0.004467
EMP -0.027653 -0.013047 0.094421 0.008672

(2.5%,1.0%) BRZ -0.000825 -0.000389 0.089107 0.008439
FHS -0.000507 -0.000239 0.084236 0.007367
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Table 5.8: Results for distribution GARCH(1,1), n = 250.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP 0.002681 0.022671 0.003611 0.000033
(5.0%,2.5%) BRZ 0.004600 0.038484 0.005020 0.000027

FHS 0.099925 0.830283 0.099947 0.000031
EMP 0.004545 0.037975 0.005483 0.000038

(5.0%,1.0%) BRZ -0.000578 -0.004187 0.002865 0.000036
FHS 0.099765 0.820438 0.099802 0.000036
EMP 0.007816 0.063697 0.008612 0.000043

(2.5%,1.0%) BRZ -0.009005 -0.072140 0.009768 0.000048
FHS 0.099616 0.805543 0.099673 0.000042

Table 5.9: Results for distribution GARCH(1,1), n = 500.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.000345 -0.002462 0.002631 0.000026
(5.0%,2.5%) BRZ 0.004078 0.034187 0.004606 0.000021

FHS 0.099615 0.827844 0.099641 0.000023
EMP -0.000517 -0.003861 0.002672 0.000030

(5.0%,1.0%) BRZ -0.001264 -0.010040 0.002692 0.000028
FHS 0.099418 0.817221 0.099444 0.000027
EMP -0.001006 -0.007556 0.003801 0.000051

(2.5%,1.0%) BRZ -0.010342 -0.082853 0.011007 0.000052
FHS 0.098995 0.799146 0.099047 0.000044
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Table 5.10: Results for distribution GARCH(1,1), n = 1000.

(α,β ) Estimator Bias R. Bias RMSE σ2

EMP -0.001026 -0.008375 0.001780 0.000011
(5.0%,2.5%) BRZ -0.000857 -0.006987 0.001623 0.000010

FHS 0.099829 0.829461 0.099837 0.000010
EMP -0.001460 -0.011801 0.002338 0.000016

(5.0%,1.0%) BRZ -0.001415 -0.011447 0.002208 0.000015
FHS 0.099283 0.815697 0.099296 0.000015
EMP -0.002270 -0.017974 0.003758 0.000026

(2.5%,1.0%) BRZ -0.002426 -0.019256 0.003686 0.000023
FHS 0.098277 0.792555 0.098315 0.000023
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6 Conclusion
In the discussion around which risk measure is best, RVaR poses an interesting alternative
as a robust risk measure that is sensitive to potential losses in the tail and contains VaR
and ES as special cases. While RVaR is relevant for researchers and practitioners, peer-
reviewed publications on estimating RVaR are sparse. The thesis expands on Biswas &
Sen (2023), Brazauskas et al. (2008), Chen (2007), Giannopoulos & Tunaru (2005) a.o.,
comparing three non-parametric RVaR estimators’ theoretical properties and behaviour in
application via empirical and MC simulation study.

We establish point-wise consistency and asymptotic normality of the Empirical es-
timator, assuming absolute continuity of the loss distribution. Further, we show that
Brazauskas et al.’s estimator is point-wise consistent and asymptotically normal as well,
however, absolute continuity of the loss distribution is not assumed. Thus, Brazauskas et
al.’s estimator is more robust under partially discontinuous loss distributions compared to
the Empirical Estimator, which our numerical study corroborates.
We analyse the FHS estimator representing a numerical method in contrast to the two
closed form estimators. Although FHS estimator is not proven to be consistent or asymp-
totically normal for RVaR, FHS estimates outperform in most Gaussian and Student’s-t
settings in our numerical study. For losses following a GARCH(1,1) model however,
Empirical and Brazauskas et al.’s estimator are most accurate in our MC study.
Our empirical study shows that FHS produces more volatile rolling estimates compared
to fairly smooth Empirical and Brazauskas et al.’s estimates and is more computationally
intensive.

Future studies can apply the RVaR backtesting framework recently proposed in Biswas
& Sen (2023, amended Feb. ’23) to Empirical and Brazauskas et al.’s estimator and
test different conditional volatility models or more elaborate volatility forecasting within
FHS method. Furthermore of interest is testing more distribution scenarios in numerical
studies as Biswas & Sen (2023) suggest that e.g., FHS estimator struggles with heavy-
tailed distributions. Lastly, we suggest exploring theoretical aspects of RVaR estimation
for which peer-reviewed research is missing, such as closed form formulas for estimators’
variance, estimator behaviour for small samples and backtesting frameworks for RVaR.
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A Appendix

A.1 On risk measures
Definition A.1 (Lévy distance, (Cont et al. 2010)). The Lévy distance between two CDFs
F,G ∈ D is

d(F,G) := inf{ε > 0 | ∀x ∈ R : F(x− ε)− ε ≤ G(x)≤ F(x+ ε)+ ε} .

Proof: VaR is monotone, translation invariant and positive homogeneous but not subadditive.
Let X ,Y ∈ F , a,b ∈ R and b > 0. VaR satisfies monotonicity, as X ≤ Y implies

P(Y ≤ k) = P(X ≤ Y ≤ k)≤ P(X ≤ k) , for k ≥ 0,

therefore,
P(Y ≤ k)≥ p ⇒ P(X ≤ k)≥ p, for k ≥ 0,

which proves VaRp(X)≤VaRp(Y ) as VaR is minimal. Translation invariance and positive
homogeneity are satisfied as,

VaRp(a+bX) = inf{x|P(a+bX ≤ x)≥ p}= inf{x|P(X ≤ (x−a)/b)≥ p}
= inf{a+bs|P(X ≤ s)≥ p}= a+b · inf{s|P(X ≤ s)≥ p}
= a+b ·VaRp(X).

Thus VaR is a monetary risk measure. To illustrate VaR’s lack of subadditivity, we quote
the example given in Yan (2018, p.265): Let X and Y be two i.i.d. random variables
satisfying

P(X = 0) = 0.95, P(X = 1) = 0.05,

then
VaR0.95(X) = VaR0.95(Y ) = 0.

However, since

P(X +Y = 0) = 0.9025, P(X +Y = 1) = 0.095, P(X +Y = 2) = 0.0025,

we have VaR0.95(X +Y ) = 1 ≰ 0 = VaR0.95(X)+VaR0.95(Y ).

Proof: Statement (3.3). Closely following McNeil (2015, Lemma 2.13), let U denote a
random variable with uniform distribution on [0,1]. We use E [X ;A] := E [XIA] for any
generic set A ∈ F . It is a well-known fact from elementary probability theory that the
random variable F−1

X (U) has CDF FX (Lemma A.1). We first show that (1− p)ESp(X) =
E [X ;X ≥ VaRp(X)]. Now,

E [X ;X ≥ VaRp(X)] = E
[
F−1

X (U);F−1
X (U)≥ F−1

X (p)
]
= E

[
F−1

X (U);U ≥ p
]
.

In the last equality we use the fact that F−1
X is strictly increasing since FX is continuous.

Thus we get E
[
F−1

X (U);U ≥ p
]
=
∫ 1

p F−1
X (u) du. Lastly,

ESp(X) =
1

1− p
E [X ;X ≥ VaRp(X)] =

1
P
(
X ≥ F−1

X (p)
)E [X ;X ≥ VaRp(X)]

= E [X |X ≥ VaRp(X)] ,
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A.2 On estimators for Range Value at Risk

by definition of conditional expectation and density. Note that we assume continuity of
FX . A proof that (3.3) does not hold when FX is not continuous can be found in Brazauskas
et al. (2008, Appenidx A).

Proof: ES is a coherent risk measure. Monotonicity of ES follows directly by mono-
tonicity of VaR. Translation invariance and positive homogeneity are satisfied as VaR
enjoys these properties and integrals are linear. To prove subadditivity of ES, we recount
one of the arguments given in Embrechts & Wang (2015), which requires Lemma A.1, a
classic result in probability theory.

Lemma A.1 (Proposition 7.2 in McNeil (2015)). For any random variable X, there exists
a U [0,1] random variable UX such that X = F−1

X (UX) almost surely.

Following, denote AX = I{UX≥p} ∈ Ber(1− p). We now show that

E [XAX ]≥ E [XB] for all B ∈ Ber(1− p). (A.1)

Since E [AX −B] = 0, we have E [X(AX −B)] = E [(X −m)(AX −B)] for all m ∈ R.
Take m = F−1

X (p). Utilizing Lemma A.1, if F−1
X (UX) > m, then UX > p, AX =

1 and E [(X −m)(AX −B)] ≥ 0; if F−1
X (UX) < m, then UX < p, AX = 0 and

E [(X −m)(AX −B)] ≥ 0; if F−1
X (UX) = m, then E [(X −m)(AX −B)] = 0. In summary,

E [X(AX −B)] = E [(X −m)(AX −B)]≥ 0 which concludes statement (A.1).
Further, we have

ESp(X) =
1

1− p

∫ 1

p
F−1

X (u)du =
1

1− p
E
[
F−1

X (UX)I{UX≥p}
]
=

1
1− p

E [XAX ] .

From equation (A.1),

ESp(X) =
1

1− p
sup{E [XB] : B ∈ Ber(1− p)} , X ∈ L∞.

That is, ESp is the supremum of the additive maps X 7→ 1
1−pE [XB] over B ∈ Ber(1− p),

and hence is subadditive.

Proof: RVaR properties. RVaR is monotone, translation invariant and positive homoge-
neous by linearity and monotonicity of integrals and VaR’s properties. As VaR, RVaR is
not subadditive.

A.2 On estimators for Range Value at Risk
A.2.1 Empirical estimator

We define the empirical distribution function, closely following van der Vaart (2012, Ch.
19.1). Let X1, . . . ,Xn be a random sample of observed losses from a CDF FX ∈ D. The
empirical distribution function is defined as

F̂(x) =
1
n

n

∑
i=1

I{Xi≤x}. (A.2)
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If the underlying distribution F is completely unknown, this is the natural estimator. This
estimator is unbiased as nF̂(x) follows a binomial distribution with mean nFX(x),

E
[
nF̂(x)

]
= E

[
n

∑
i=1

I{Xi≤x}

]
=

n

∑
i=1

P(Xi ≤ x)

=
n

∑
i=1

FX(x) = nFX(x). (A.3)

Further, this estimator is point-wise consistent, as applying the law of large numbers
yields

∀x : F̂(x) =
1
n

n

∑
i=1

I{Xi≤x}
n→∞−−−→
a.s.

E
[
I{Xi≤x}

]
= P(Xi ≤ x) = FX(x). (A.4)

Theorem A.1 (Glivenko-Cantelli theorem; Theorem 19.1 van der Vaart (2012)). If
X1,X2, . . . are i.i.d. random variables with distribution function F, then ∥F̂ −F∥∞

a.s.−−→ 0
with F̂ as in (A.2) and ∥◦∥∞ the supremum norm.

Lemma A.2 (Lemma 21.1 in van der Vaart (2012)). For every 0 < p < 1 and x ∈ R,

(i) F−1(p)≤ x iff p ≤ F(x);

(ii) F ◦F−1(p)≥ p with equality iff p is in the range of F; equality can fail only if F is
discontinuous at F−1(p);

(iii) F_ ◦F−1(p)≤ p;

(iv) F−1 ◦ (x)≤ x; equality fails iff x is in the interior or at the right end of a ’flat’ of F;

(v) F−1 ◦F ◦F−1 = F−1; F ◦F−1 ◦F = F;

(vi) (F ◦G)−1 = G−1 ◦F−1.

Lemma A.3 (Delta method, Theorem 3.1 van der Vaart (2012)). Let φ :W⊂Rk 7→Rm be
a map defined on a subset of Rk and differentiable at θ . Let Tn be a sequence of random
vectors taking their values in the domain of φ . If rn(Tn − θ)

d−→ T for numbers rn → ∞,

then rn(φ(Tn)−φ(θ))
d−→ φ ′(T ). In particular,

√
n(Tn −θ)

d−→N
(
0,σ2) ⇒

√
n(φ(Tn)−φ(θ))

d−→N
(
0, [φ ′(θ)]2 ·σ2) .

A.2.2 Brazauskas et al.’s estimator

Lemma A.4 (Characterization of weak convergence, p.64-65 Shorack & Wellner (2009)).
Let F1 :=

{
F |Fis a CDF such that

∫
∞

−∞
|x|dF(x)< ∞

}
and F,F1,F2, . . . ∈ F1. The follow-

ing holds, ∫ 1

0
|F−1

n (t)−F−1(t)|dt a.s.−−−→
n→∞

0 if and only if

Fn
d−−−→

n→∞
F and

∫
|x|dFn

a.s.−−−→
n→∞

∫
|x|dF.
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A.3 On empirical and simulation study

Lemma A.5 (Section 3 in Csörgő & Zitikis (1996)). The Vervaat process is defined for
0 ≤ t ≤ 1 as

Vn(t) :=
∫ t

0

(
F̂−1(s)−F−1(s)

)
ds+

∫ F−1(t)

0

(
F̂(x)−F(x)

)
ds.

It holds that

0 ≤Vn(t) =
∫ F−1(t)

F̂−1(t)
F̂(x)− t dx ≤ |F̂(F−1(t)− t| · |F̂−1(t)−F−1(t)|.

A.3 On empirical and simulation study
Lemma A.6 (Confidence bands). Let ρ̂p,q be an estimator for RVaRp,q that is asymptot-
ically normal. The (1− δ )× 100% level asymptotic confidence interval for RVaRp,q is
given by:

ρ̂p,q ±
zδ/2σX(p,q)

√
n

, (A.5)

where zδ/2 is the (1−δ/2)×100% percentile of a standard normal distribution and n the
rolling estimation window size.
As the standard deviation σX(p,q) is unknown, we estimate it with the observed standard
deviation of the estimator as closed form variance formulas for the estimators outlined in
section 4 are not yet researched to our knowledge.

Figure A.1: Rolling ES estimation of S&P 500 log-losses with EMP, BRZ, and FHS
estimator (p = 0.95)
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A.3 On empirical and simulation study

Figure A.2: Rolling RVaR estimation of DAX log-losses with EMP, BRZ and FHS esti-
mator (window size = 250, (p,q) = (0.95,0.975))

Figure A.3: Rolling RVaR estimation of DAX log-losses with EMP, BRZ and FHS esti-
mator (window size = 1000, (p,q) = (0.95,0.975))
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A.3 On empirical and simulation study

Definition A.2. Let ρ̂ be an estimator used to estimate a monetary risk measure ρ . Bias,
Relative Bias, Root-Mean-Squared-Error (RMSE) and variance (σ2) are defined as:

Bias(ρ̂,ρ) = E [ρ − ρ̂] ; (A.6)

R. Bias(ρ̂,ρ) = E
[

ρ − ρ̂

ρ

]
; (A.7)

RMSE(ρ̂,ρ) = E
[√

(ρ − ρ̂)2
]

; (A.8)

σ
2(ρ̂) = E

[
(ρ̂ −E [ρ̂])2] . (A.9)

We use the following notation for GARCH models throughout the paper (McNeil
2015, Chapter 4).

Definition A.3 (GARCH process). Let (Zt)t∈Z be a strict white noise process, SWN
(0,1). The process (Xt)t∈Z is a GARCH(p,q) process if it is strictly stationary and satis-
fies for all t ∈ Z and some strictly positive-valued process (σt)t∈Z:

Xt = σtZt , σ
2
t = α0 +

p

∑
i=1

αiX2
t−i +

q

∑
j=1

β jσ
2
t− j,

where α0 > 0, αi ≥ 0, i = 1, . . . , p, and β j ≥ 0, j = 1, . . . ,q.
In particular, a GARCH(1,1) with constant mean can be written as,

Xt = σtZt (A.10)

σ
2
t = α0 +α1X2

t−1 +β1σ
2
t−1, (A.11)
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