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Interpretation of black box models using tree-based surrogate models

Abstract

Surrogate models allow complex but powerful black box machine learning models

to be interpreted retrospectively. In this work, the following requirement is placed

on a surrogate model: It should divide the feature space in subregions where inter-

pretable models that only include main effects can approximate the black box model.

In this way, both good interpretability and high performance should be achieved.

For the generation of such models, four different model-based tree algorithms are

compared: SLIM, GUIDE, MOB and CTree. Selection bias, performance, inter-

pretability and stability of the different methods are investigated. In the presence

of subgroup-specific main effects, SLIM and GUIDE convince with their results

regarding interpretability and performance.
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1 Introduction

Various machine learning algorithms achieve outstanding predictive performance nowa-

days. However, most of them are complex black box models that, unlike traditional statis-

tical methods such as linear regression, are not intrinsically interpretable (Hu et al., 2020).

Especially in highly regulated industries such as insurance, this is a problem (Henckaerts

et al., 2022). In order to maintain the good performance of complex black box models but

still achieve a certain degree of interpretability, there exist different methods with which

models can be interpreted post-hoc.

One option are so called surrogate models. The idea is to approximate the predictions

of black box models by intrinsically interpretable models (Molnar, 2019). But in order

for a surrogate model’s explanations to be trusted, it must itself perform well in approx-

imating the black box predictions. There are basically two approaches for generating

surrogate models: global surrogate models, which cover the entire feature space and can

be interpreted globally, but often do not perform that well, or local surrogate models,

which only explain individual observations. The focus of this work is on a mixture of the

two approaches, which are called subregional surrogate models here. The idea is to find

subregions in the feature space in which intrinsically interpretable models can be fitted.

Model-based tree (MBT) algorithms are a promising class to generate such subregional

models. The concept of MBTs is based on classical regression trees like CART (Breiman

et al., 1984) but a MBT contains models instead of constant values in the subregions

(called nodes or leaf nodes). It is hence a combination of decision rules and models. If

intrinsically interpretable models are chosen for the models, a principally interpretable

MBT is derived. The degree of interpretability and performance, though, depends on the

complexity of the decision rules (i.e. depth of the tree or number of leaf nodes) and of the

models. In order to enable a good interpretability of the models in the leaf nodes, this

thesis sets the constraint that only main effect models are fitted in the nodes. In the ideal

case, interactions should then be handled by splits, so that the models in the leaf nodes are

free from interaction effects. To ensure that the splits are actually due to interactions and

not to nonlinearities, it is necessary that potentially nonlinear main effects are modelled

appropriately. Although in some cases linear modelling of the main effects is sufficient, it

should also be possible to fit more complex models, such as (penalized) polynomial models

or generalised additive models (GAM). The goal is thus an additive decomposition of a

black box function by combining decision rules and additive main effect models. In other

words subregions in the feature space should be found, so that the global black box model

can be replaced by subregional main effect models.

In my research, I found four different algorithms that can generate MBTs. The most recent
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approach Surrogate Locally-Interpretable Models (SLIM) by Hu et al. (2020) allows a high

flexibility in the choice of model classes in the leaf nodes. SLIM uses an exhaustive search

to find the best split point through all possible splitting variables. In this thesis SLIM

is contrasted with three common algorithms for creating MBTs: Model-based recursive

Partitioning (MOB) (Zeileis et al., 2008), Conditional Inference Trees (CTree) (Hothorn

et al., 2006) and Regression tress with unbiased variable selection and interaction detection

(GUIDE) (Loh, 2002). These algorithms differ from SLIM mainly in that the search for

the best split point is a two-step process. First, the best split variable is selected by a

hypothesis test, which differs between the three algorithms. Then, in a second step, the

best split point for this variable is searched. Since certain prerequisites must be fulfilled

for the hypothesis tests, the choice of model classes for these algorithms is limited to some

extent.

The comparison of the four algorithms is made with the condition that main effect only

models are fitted in the nodes and all features are included in the search for the splitting

variable. First, it is examined how the algorithms differ in terms of selection bias. After-

wards, they are compared with regard to their performance, interpretability and stability,

as tree algorithms often suffer from poor stability (Fokkema, 2020). In the subsequent ap-

plication to data sets from the area of life insurance, their suitability as surrogate models

is examined.

The main results of this thesis are that SLIM and GUIDE are particularly successful in

terms of performance, interpretability and stability when subgroup specific maineffects

are present in the data. Smooth interactions are partially better modelled by MOB and

CTree. In general for data with smooth interactions all four algorithms produce models

with a large number of subregions when high performance is required. The MBTs are then

difficult to interpret and less suitable as surrogate models. Furthermore, when applied to

the insurance data, it is noticeable that the deeper the MBTs are, the more similar the

performance of the different algorithms becomes.

The thesis is structured as follows: In chapter 2, an overview of surrogate models is given

and MBTs are placed in this setting. Thereafter, the four MBT algorithms are described

in chapter 3. Chapter 4 examines the extent to which the algorithms suffer from selection

bias. In chapter 5, different simulation scenarios are used to examine how the algorithms

differ in terms of performance, interpretability and stability. In addition, the interpretabil-

ity and performance of the SLIM algorithm are examined when the complexity of the leaf

node models is varied. Finally, in chapter 6 the algorithms are used as surrogate models

for the modelling of insurance data and different SLIM models are used for interpretation.
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2 Related work

Surrogate models are one possibility to explain complex black box models post-hoc. Ac-

cording to Molnar (2019) the purpose of (interpretable) surrogate models is to approx-

imate the predictions of the underlying model as accurately as possible and to be in-

terpretable at the same time. Depending on whether the goal is to achieve a global

interpretation of a black box model (model explanation) or only to explain the results of

individual input instances (outcome explanation), global or local surrogate models can

be used (Maratea and Ferone, 2021). An advantage of using surrogate models as inter-

pretable machine learning (IML) -method is, that it is a model-agnostic approach, i.e.,

it does not require any information about the inner workings of the black box model

(Molnar, 2019).

The concept of global surrogate models is very simple. To explain the underlying model,

the predictions for some input data are first calculated using this black box model. Then,

an arbitrarily interpretable surrogate model is trained on the input data and the predic-

tions. Finally, it can be measured how well the surrogate model reproduces the black-box

predictions (Molnar, 2019). If the performance is good enough, the interpretation can be

made according to the chosen surrogate model.

Molnar (2019) cites the flexibility in choosing the surrogate model and the simplicity of

the approach as advantages of this method. However, this flexibility is also a challenge,

as the choice of an appropriate surrogate model is a trade-off between high performance

due to the potentially higher complexity of the model class and its interpretability. For

example, linear models are relatively easy to interpret, but cannot uncover nonlinear

relationships that may have been modeled in the underlying black box model. Molnar

(2019) provides an overview of interpretable models and their strengths and weaknesses,

such as generalized additive models (GAM), decision trees, or sparse linear models (e.g.

lasso regression).

In addition, other promising high-performance models that can be interpreted to a certain

degree are being developed. Generalized additive models plus interactions (GA2M) of Lou

et al. (2013) are an example of an extension of generalized additive models that allow a

small number of two-way interactions to be efficiently modeled in addition to the nonlinear

main effects.

One aspect that must be remembered when using global surrogate models is that only

conclusions about the underlying black box model can be drawn, not about the actual

data generating process (Molnar, 2019).

If only a single prediction is to be explained instead of the entire model, local interpretable

model-agnostic explanations (LIME) can be used (Ribeiro et al., 2016). Instead of having
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to find a (possibly highly complex) interpretable model on the entire feature space, only a

surrogate model for a small neighborhood around the instance of interest is trained. This

is realized by observing how the predictions of the black-box model behave when small

variations of the instance of interest are introduced into the model. Like global surrogates,

LIME is very flexible in the choice of an appropriate surrogate model. The advantage

over global surrogate models is that it is easier to find a good compromise between model

complexity and interpretability, since the model only needs to fit a very small range of

the feature space. Even sparse main effect models could imitate the black box model well

in the small area of the feature space, for example. One difficulty, however, is choosing an

appropriate neighborhood for the instance of interest to which the model is to be fitted.

(Molnar, 2019)

A approach that tries to combine the advantages of global and local surrogate methods,

i.e., to obtain models that are easy to understand on the one hand, but at the same

time cover the entire feature space without sacrificing performance, is summarized here

under the term subregional surrogate model. The idea is to subdivide the feature space

into appropriate subregions where fitting easy-to-interpret models is sufficient. With K-

LIME (K local interpretable model-agnostic explanations), Hall et al. (2017) pursue the

approach of unsupervised partitioning of the feature space into K subregions using a K-

means clustering algorithm. SLIM (Hu et al., 2020), on the other hand, uses a supervised

approach (MBT) to subdivides the feature space according to a given objective. According

to (Hu et al., 2018), SLIM is superior to K-LIME, which is mainly because K-LIME

does not include the objective in the clustering. Another recent approach, called maidrr

(Model-Agnostic Interpretable Data-driven suRRogate) is presented in Henckaerts et al.

(2022). There, the feature space is partitioned on the basis of partial dependence plots

and then linear models in categorical format are fitted in the subregions. The categorical

format is intended to increase interpretability, but thereby has a negative effect on the

performance.

In this thesis, the SLIM algorithm is used and compared with other algorithms that can

create MBTs.
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3 Model-based trees

In the following, MBTs are introduced and the different algorithms are presented.

3.1 Model and notation

Following (Zeileis et al., 2008) and (Seibold et al., 2016), let M((y,x), θ) be a parametric

model, that describes the target y ∈ Y as a function of a feature matrix x ∈ X with p

features x1, ...xp and a vector of parameters θ ∈ Θ. When the model is used as a surrogate

model, y is the prediction of the black box model that should be explained. If it must be

explicitly stated that the response is the prediction of a black-box model, the notation ybb

is used. Given n observations (y,x) = (y(1),x(1)), ..., (y(n),x(n)) the model can be fitted

by minimizing some objective function Ψ((y,x), θ) yielding the parameter estimate θ̂

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(y(i),x(i), θ). (1)

In this thesis M((y,x), θ) is restricted to additive main effect regression models. How-

ever, if the data includes interactions, a single global model is not sufficient to fit all n

observations well. To deal with interactions, the idea is to partition the feature space X
into subregions {Bb}b=1,...,B and search for locally well fitting main effect models in these

regions. The global objective function thus expands to

B∑
b=1

∑
i∈Ib

Ψ(y(i),x(i), θb) (2)

and has to be minimized over all partitions {Bb} (with corresponding indexes Ib, b =

1, ..., B) and local optimal parameter θb for each partition. As (Zeileis et al., 2008) points

out, it is very difficult to find the optimal partition, because the number of possible

partitions quickly becomes too large for an exhaustive search.

3.2 Model-based tree algorithms

In this chapter, four algorithms are described that aim to find a partition that is close to

the optimal one and the associated estimators for θb through binary recursive partitioning.

All approaches use a greedy forward search to optimize the objective function Ψ locally in

each step (Zeileis et al., 2008). The resulting global models are called Model-based trees .

A recursive partitioning algorithm for MBTs can generally be divided into the following

steps:

5



Interpretation of black box models using tree-based surrogate models

1. Start with the partition (node) I0 = {1, ..., n}

2. Fit the model to all observations in the current node {y(i),x(i)}, i ∈ Ib by estimating

θ̂b via minimization of the objective function Ψ

3. Find the local optimal splitpoint for this node

4. If no stop criterion is met (e.g. depth of the tree, improvement of the objective

through split, significance of parameter instability) split the node in two child nodes

and repeat the steps 2-4.

The algorithms SLIM, MOB, CTree and GUIDE considered in this work can be divided

into two groups. SLIM falls into the group of biased recursive partitioning algorithms,

which also includes classical methods like AID (Morgan and Sonquist, 1963) and CART

(Breiman et al., 1984). These algorithms use an exhaustive search to select the optimal

split point in step 3. This can lead to the phenomenon that, even if the strength of all

feature effects (or in our case interaction effects) are the same, for example features with

many possible split points are more often chosen as split variables than features with few

possible split points. This phenomenon is called selection bias and is explained in more

detail in chapter 4 and examined for the four MBT algorithms. MOB, CTree and GUIDE

are assigned to unbiased recursive partitioning. Instead of comparing the objective for all

possible split points and variables, step 3 of the recursive partitioning algorithm is split

into 2 steps:

1. Select the variable that has the highest association with the response as splitting

(partitioning) variable. The tests to determine the most significant association differ

between the methods.

2. Search for the best split point only within this variable (e.g. by exhaustive search

or again by hypothesis testing)

(Schlosser et al., 2019)

3.2.1 SLIM

SLIM by Hu et al. (2020) is explicitly designed to create surrogate MBTs that contain

main effect models in the leafnodes and are split by interactions. The assumption here

is that if the main effects in the nodes are well fitted, any lack of fit must come from

interactions. Therefore, it is not necessary to specify in advance which features should be

used as splitting variables and which as regressor variables, but each feature can take on

both roles and the selection is done automatically in the recursive partition algorithm.
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After fitting the model to all observations in step 2 the objective function is calculated,

e.g. the sum of squared errors (SSE). In step 3 SLIM performs an exhaustive search to

find the optimal split point. The optimization problem in each recursion step includes

the optimization of the objective of the left node and the right node and is given by

min
j∈1,...,p

min
s∈Sj

min
θl∈Θ

∑
i∈Isl

Ψ(y(i),x(i), θl) + min
θr∈Θ

∑
i∈Isr

Ψ(y(i),x(i), θr)

 , (3)

where Sj is the set of all possible split points s (or split sets) regarding variable xj. For

numeric variables, this set consists either of all unique values of xj or, in order to reduce

the calculation effort, of sample quantiles (e.g. 100 quantiles). For a specific split point

s, the left node Isl is defined as the set of indices i ∈ 1, ..., n for which x
(i)
j ≤ s holds and

the right node Isr is its complement. For categorical variables, all possibilities of dividing

the levels of xj into two disjoint sets are considered as potential split sets Sj. I
s
l is the set

of all indices for which x
(i)
j ∈ s applies and Isr is its complement.

The feature xj and split point s which minimize (3) are selected as splitting variable and

split point, if this leads to a large enough improvement of the objective function.

Since the computational effort for estimating all possible child models becomes very large

as the number of possible partitioning variables increases, Hu et al. (2020) have developed

an efficient algorithm for estimating them for the case of linear regression, linear regression

with B-spline transformed features and ridge regression. A detailed description of this

algorithm can be found in Hu et al. (2020).

To avoid overfitting and to obtain a small interpretable tree, the use of pruning is nec-

essary. Hu et al. (2020) use the approach of backpruning, i.e. a deep tree is first fitted

and then leaves that do not fulfil certain criteria are pruned back. In order to keep the

computational effort as low as possible, prepruning is used in this thesis. This means that

a split is only performed if the improvement of the objective through the split is at least

impr ∈ [0, 1] times the improvement of the objective in the parent node. In addition, it is

possible to set a value for R2 (defined in chapter 5) above which splitting in a node will

not continue.

3.2.2 MOB

MOB generally distinguishes between regressor variables xj, which are only used to fit

the models in the nodes, and pure partitioning variables zj. In (Zeileis et al., 2008),

however, an overlapping of roles is explicitly not excluded. In order to make the method

comparable with SLIM and to have the advantage that the roles do not have to be assigned

7
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beforehand, all features should be able to enter the MBT both as main effect and in the

splits as interactions. In this way, the application of MOB in this thesis differs from other

application examples as in Seibold et al. (2016) or Thomas et al. (2018).

After an initial model has been fitted in step 2, MOB examines whether the corresponding

parameter estimates θ̂b are stable. If there is some overall instability, the feature whose

parameter estimate has the most significant instability is chosen as splitting variable.

To investigate this, the so called score ψ function is considered, which is defined as the

gradient of the objective function regarding the parameter vector θb - provided that it

exists:

ψ ((y,x) , θb) =
∂Ψ((y,x) , θb)

∂θb
. (4)

(Zeileis et al., 2008)

If the scores - ordered by the potential split variable - do not fluctuate randomly around

zero, this indicates that there is parameter instability which could potentially be captured

by splitting the data using this variable as partitioning variable (Schlosser et al., 2019).

To test the null hypothesis of parameter stability with the so called M-fluctuation test,

MOB captures systematic deviations from zero through the empirical fluctuation process

Wj(t) = Ĵ−1/2n−1/2

⌊nt⌋∑
i=1

ψ̂
σ(x

(i)
j )

(0 ≤ t ≤ 1), (5)

where ψ̂
σ(x

(i)
j )

are the scores ordered by xj and Ĵ is an estimate of the covariance matrix

cov(ψ(Y, θ̂)). (Zeileis et al., 2008) In contrast to the definition in Zeileis et al. (2008),

xj = zj was set in (5) as no distinction is made between regressor and partitioning

variables.

According to Zeileis et al. (2008) and Zeileis and Hornik (2007), under the null hypothesis

of parameter stability the empirical fluctuation process Wj(t) converges to a Brownian

BridgeW0. By applying a scalar test function to the empirical fluctuation process and the

Brownian Bridge, a test statistic and the theoretical limiting distribution can be derived.

An overview of possible scalar functions that can be used for this purpose can be found

in (Zeileis et al., 2008) and in more detail in (Zeileis and Hornik, 2007). The variable for

which the M-fluctuation test detects the most significant parameter instability is used as

splitting variable. The choice of the optimal split point with respect to this variable is

then made by means of an exhaustive search, analogous to SLIM. As prepruning criterion,

8
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MOB uses the Bonferroni-adjusted p-value of the M-fluctuation test. That means a split

is only performed if the instability is significant at a given significance level alpha.

A limitation of MOB is that only objective functions can be selected for which the gradient

regarding θb exists. This means, for example, that it is not possible to fit lasso models in

the nodes.

3.2.3 CTree

CTree was originally developed as a non-parametric regression tree (i.e. for constant fits

in the nodes) but can also be used for MBTs. CTree follows a very similar approach to

MOB and also tries to detect parameter instability by analysing the dependency between

potential splitting variables and a transformation h() of the response y. A common trans-

formation used in MBTs is the score function, i.e. h(y) = ψ, but other transformations

of the response variable that can detect instabilities in the estimates could also be used.

A simple alternative would be to use the residuals. According to (Schlosser et al., 2019),

however, the use of the scores - if they exist - is preferable, since instabilities can be better

detected with them.

CTree uses a linear association test to test the independence between the scores and the

potential partition variables. To measure the association between the scores ψ and a

potential splitting variable xj, j = 1, ..., p a linear statistics of the form

Tj(y,x) = vec

(
n∑

i=1

x
(i)
j ψ̂

(i)T

)
∈ Rpjq (6)

is used which is derived from the more general definition in (Hothorn et al., 2006).

To standardize the test statistic Tj, the conditional expectation and covariance of Tj under

the null hypothesis of independence between y and xj given all permutations of {y,x} are

calculated. Different transformations can be used to map the multivariate test statistic Tj

to a standardized univariate test statistic. The default setting in the R package partykit

(Hothorn et al., 2015) is a quadratic transformation for numerical features. According to

(Hothorn et al., 2006) the transformed test statistic follows an asymptotic χ2 distribution

under the null hypothesis. As in MOB, the splitting variable, for which the p-value of

the test is the smallest is selected as splitting variable. A Bonferroni-adjusted p-value is

again used as prepruning criterion.

Unlike the other methods, the split point is not selected by an exhaustive search, but with

the help of a linear test statistic. The discrepancy between two subsets is measured with

a two-sample linear test statistic for each possible binary split. The split that maximises

the discrepancy is chosen as split point. (Hothorn et al., 2006)
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Schlosser et al. (2019) state that the linear test used in CTree has higher power in detecting

smooth relationships between the scores and the splitting variables compared to the M-

fluctuation test in MOB. MOB, on the other hand, has a higher ability in detecting abrupt

changes.

3.2.4 GUIDE

GUIDE (Loh, 2002) uses residual-based categorical association tests to detect instabil-

ities. For this purpose, χ2- independence tests between the dichotomized residuals of

the fitted model and the categorized features are performed and the p-values of these

so-called curvature tests are calculated. In addition to the curvature tests, GUIDE ex-

plicitly searches for interactions, which is promising in the application desired here. For

this again, χ2- independence tests are performed. Instead of categorizing only one vari-

able, a new categorical variable is created for each feature pair by combining two features

for the interaction test. If the smallest p-value comes from a curvature test, the corre-

sponding feature is chosen as the partitioning variable. If the smallest p-value is from

an interaction test, the categorical feature involved, if any, is preferably chosen as the

splitting variable. If both potential features are categorical, the variable for which the

p-value of the curvature test is smaller is chosen. In the case of two numerical variables,

the choice is made by evaluating the potential child models after splitting with respect

to both variables. Subsequently, a bootstrap selection bias correction is performed. In

the original GUIDE algorithm developed by (Loh, 2002), numerical features can be used

both as regressor variables and as splitting variables. Categorical features, on the other

hand, can only take on the role of splitting variables. This is justified by the fact that

a disproportionately large number of degrees of freedom are consumed in the parameter

estimation of categorical variables. In the following simulations, unless explicitly stated

otherwise, the variant is used in which all features can fulfil both roles.

One advantage of GUIDE is that the score function does not have to exist. This makes

the choice of objective very flexible and allows, for example, to fit lasso regression models

in the nodes.

3.3 Software implementation

No implementation of SLIM was found, which is why an implementation in R (R Core

Team, 2022) was carried out as part of this work. The code from the package customtrees

from Casalicchio (2020) and from Herbinger et al. (2022) was used as basis. The source

code for the SLIM implementation and the applications in this thesis can be found at

https://github.com/slds-lmu/msc_2022_loibl_thesis.

10

https://github.com/slds-lmu/msc_2022_loibl_thesis


Interpretation of black box models using tree-based surrogate models

The software implementation of GUIDE falls in the category ”Algorithms with a closed-

source, free-of-charge implementation” (Loh, 2014). The binary executable is available un-

der https://pages.stat.wisc.edu/~loh/guide.html. Unfortunately, the source code

is not accessible and the method cannot be easily adapted to other objectives, although

this would be theoretically possible. For this reason, residual based χ2- independence

tests for finding the best split variable were incorporated as an option of the SLIM im-

plementation in R in this work. Pruning is therefore carried out in the same way as for

SLIM. Bootstrap bias correction was also adopted. Even though following all the steps

of the original paper (Loh, 2002) the replication of an experiment presented in the paper

did not lead to the same results, as can be seen in the appendix in Table 20. Whenever

GUIDE is discussed in the following, it refers to the R implementation achieved in this

work. This implementation shows good results as can be seen in the simulation in chapter

5 and the insurance use case.

MOB and CTree are implemented in the R package partykit (Hothorn and Zeileis, 2015)

in the functions mob() (Zeileis et al., 2008) and ctree() (Hothorn et al., 2006).

3.4 Comparison

In Table 1 a comparison of the different MBT algorithms is given. SLIM and GUIDE are

particularly interesting because of their flexibility in choosing different objective functions.

In the case of SLIM, one open question is whether the exhaustive search, in contrast to

the two-step methods, leads to a selection bias. This will be examined in the following

chapter 4.

Split point selection Test Flexibility Implementation
SLIM exhaustive search - high -
MOB two-step score-based fluctuation low R package
CTree two-step score-based Permutation low R package
GUIDE two-step residual-based χ2 high binary executable

Table 1: Comparison of MBT algorithms

Performance, interpretability and stability of the algorithms are empirically compared by

simulations in chapter 5.
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4 Selection bias and splitting strategies

4.1 Definition and motivation

According to (Hothorn et al., 2006) an algorithm for recursive partitioning is called unbi-

ased when, under the conditions of the null hypothesis of independence between a response

y and feature x1, ...xp the probability of selecting feature xj is 1/p for all j = 1, ..., p re-

gardless of the measurement scales or number of missing values.

This definition may be surprising at first, since if there is no dependency between the

target and the features, one would not want to perform a split anyway and would try to

prevent this through appropriate pruning procedures. However, the idea behind this is

that if, in the case of independence, a feature with, for example, a large number of possible

split points is selected more frequently as a splitting variable than a feature with a smaller

number of split points, the former could also be incorrectly selected more frequently as a

splitting variable if there is a dependency on the response for the second feature. (Loh,

2014)

In the discussion on the Paper Fifty Years of Classification and Regression Trees of (Loh,

2014), Carolin Strobl’s statement on selection bias is therefore very clear:

”One should think that the results shown here [...] are so clear that any statistically

educated person should never want to use a biased recursive partitioning algorithm

again.”

So if SLIM is the only biased algorithm, it would have to be discarded immediately

according to this statement. However, this will be investigated in detail in the following.

4.2 Simulation independence scenarios

In order to empirically investigate whether the four algorithms presented actually cor-

respond to the respective groups (biased and unbiased) using the definition of Hothorn

et al. (2006), two different simulation were carried out.

In the first scenario only numerical features are used, whereas in the second scenario

numerical features and additionally one binary and two categorical features are considered.

Independence numeric

The data in the first scenario is defined as follows:

• x1,x2 ∼ U(0, 1)
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• x3 uniformly distributed on the set {0, 0.1, ..., 0.9, 1}

• x4 uniformly distributed on the set {0, 0.01, ..., 0.99, 1}

• y ∼ N(0, 1)

• sample size n = 1000

• 1000 simulation runs

The resulting frequencies are shown in Figure 1 and are consistent with the expectations.

SLIM clearly prefers to select features with a higher number of split points and therefore

is biased. The other three methods seem to select all four features about the same number

of times.

Figure 1: Simulated frequencies of selected splitting features for scenario independence
numeric

Selection bias independence mixed

In the second scenario, the data is simulated as follows:

• x1,x2 ∼ U(0, 1)

• x3 uniformly distributed on the set {0, 0.1, ..., 0.9, 1}

• x4 ∼ Bern(0.5)

• x5 uniformly distributed on 5 factor levels (15 possible splits)

• x6 uniformly distributed on 8 factor levels (128 possible splits)

• y ∼ N(0, 1)

• sample size n = 1000

• 1000 simulation runs

13
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The addition of categorical features in this scenario results in a different picture for the

frequencies, as shown in Figure 2. Although the numerical variables are chosen with

approximately equal frequency in the so-called ”unbiased” methods, there are large devi-

ations in the binary and categorical variables especially for MOB and CTree, which calls

the designation ”unbiased” into question. A possible explanation for this selection bias

could be that due to the large number of parameters that have to be estimated for the

categorical features in the modelling step, random dependencies to the target variable are

already caught well in the model and therefore these variables are used less frequently as

splitting variables.

In (Hothorn et al., 2006) the unbiasedness of CTree is empirically investigated for cases,

in which a strict separation between regressor variables and partitioning variables is kept.

Therefore, the result shown here should not principally question the label, but it does not

seem appropriate when there is an overlap or, as in our case, even congruence between

the two roles.

Figure 2: Simulated frequencies of selected splitting features for scenario independence
mixed

For GUIDE two different variants were evaluated in this scenario. ”GUIDE excl cat”

corresponds to the original version, in which categorical features are only used as splitting

and not as regressor variables. In ”GUIDE incl cat”, on the other hand, the categorical

features are also used as regressors. The fact that the frequencies of the categorical

variables are smaller in ”GUIDE incl. cat” could be explained analogously to the selection

bias of MOB and CTree.

The binary feature x4 is almost never chosen as a splitting variable with SLIM, in contrast

to the other variables. However, this can be attributed to the selection bias in numerical

features with different numbers of split points, as the binary variable can be seen as

numerical variable with only one possible split point. What is more interesting is that

the numerical variable x2 with 10 possible split points is chosen by SLIM much more
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frequently as splitting variable than the variable x6 with 128 possible splits, so that the

bias cannot be determined by the number of possible splits alone.

The difference between the categorical (x5 and x6) and the numerical variables can prob-

ably be explained in a similar way as with the other methods, but in reverse. With SLIM,

the potential split is executed first and then models in the child nodes are fitted. If a

numerical feature is used as partitioning variable, the parameters for all factor levels are

estimated in both child models, whereby random dependencies with y can be modelled

very accurately. If, on the other hand, splitting is done according to a categorical variable,

only a subset of the factor levels can be used for modelling in both child nodes.

As a possible correction approach for the selection bias in SLIM, I investigated how the

number of quantiles considered as potential split points affects the selection bias and

the performance of SLIM. The simulation setup and results are shown in the appendix

A.2. In summary, although selection bias can be reduced for numerical variables in the

case of an independent target variable, this correction can lead to unpredictable biases if

interactions are actually present. For this reason, the approach is not recommended. For

all simulations in this chapter, each unique value was seen as a potential split point for

SLIM.

4.3 Simulation interaction scenarios

While so far only the frequencies with which different feature types are selected in the case

of independence were shown, it is empirically investigated in the following which feature

types the different MBT algorithms tend to select when interactions are actually present.

Four different scenarios are examined for this. These are, in a sense, pair comparisons of

different feature types. In all scenarios, the data generating process consists of two pairs

of interactions, whereby the interactions have the same strength. Each pair consists of

a numerical variable that enters linearly into the interaction and another variable that

splits the linear effect into two subgroups. In all four scenarios the numerical variables

which define the linear effect are x2,x4 ∼ U(0, 1) .

The features x1 and x3 are responsible for the subgroups. They are uniformly distributed

on sets, which are given in Table 2, as well as the data generating processes.

scenario x1 x3 f(x)
numerical vs numerical [0, 1] {0, 0.1, ..., 0.9, 1} 1(x1≤mean(x1))x2 + 1(x3≤mean(x3))x4

binary vs categorical {0, 1} {a, b, c, d, e, f} 1(x1=0)x2 + 1(x3∈{a,b,c})x4

numerical vs binary [0, 1] {0, 1} 1(x1≤mean(x1))x2 + 1(x3=0)x4

numerical vs categorical [0, 1] {a, b, c, d, e, f} 1(x1≤mean(x1))x2 + 1(x3∈{a,b,c})x4

Table 2: Simulation scenarios selection bias interaction
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All experiments are repeated 1000 times. The error terms are set to ϵ ∼ N(0, 0.1·sd(f(x))
and the data generating processes are y = f(x) + ϵ.

First of all, there is the question of how selection bias should be defined in these scenarios.

Transferring the definition from the independence case, one possibility would be to require

that the frequency of being selected as a split variable for all features is 1/4. However,

this does not take into account that splits according to x1 and x3 , i.e. according to the

split features that define the subgroups, produce a considerable greater improvement in

performance than splits according to the smooth features x2 and x4. If x1 and x3 are

chosen preferentially, one should not regard this as selection bias but as a good splitting

strategy to get the smallest and best performing trees possible. What could be expected

from an unbiased procedure, however, is that both interaction pairs are chosen equally

often for the first split.

Figure 3: Simulated frequencies of selected splitting features for the four interaction
scenarios

Figure 3 shows the frequencies of the first selected split variable in each scenario for each

MBT. It can be seen that in none of the scenarios and for none of the MBTs the results

seem to be equally distributed among all four features. As a general rule, it is noticeable

that SLIM and GUIDE always prefer the subgroup-defining variables (x1 and x3) for

splitting, while CTree always prefers the smooth variables. For MOB, the behaviour

varies depending on the feature type.

In Scenario ”numerical vs numerical”, the distribution for MOB and CTree is at least

evenly distributed between the two interactions pairs. One could therefore speak of unbi-

asedness here. However, while CTree only uses the linear features x2 and x4 as the first
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split variable, MOB splits according to the subgroup-defining features, which is prefer-

able in practice. In GUIDE and SLIM, only the features x1 and x3 are selected, but there

seems to be a preference for the variable x1, which has a larger number of potential split

points.

In the scenario ”binary vs categorical”, the distribution between the two interaction pairs

seems to be roughly equal for SLIM, MOB and CTree. In contrast to the first scenario,

MOB does not split according to the subgroup-defining variables but with regard to

the linear features. In GUIDE, only the binary variable is selected, so there is a clear

preference for the binary variable over the categorical variable.

In the remaining scenarios, a strong selection bias is evident in all MBTs. SLIM, for ex-

ample, gives considerable preference to numerical subgroup-defining variables over binary

and categorical variables.

Obviously, these scenarios do not represent a complete overview of possible interactions.

However, since MBTs can show their strengths especially in the presence of subgroup-

specific maineffects (i.e. good interpretability through small trees but good performance at

the same time), only such scenarios are compared here. These simulation results should

sensitise to the fact that in certain cases variables could only be selected as splitting

variables because they have certain properties and not because their share in an interaction

is actually the largest, even with the so-called unbiased methods.

Finally it should be noted that even if selection bias is present in the independence

case, this does not necessarily lead to the wrong variable being selected for splitting. In

particular, this can often be prevented by pruning. However, as far as could be observed

here, selection bias is very difficult to control or predict and should therefore always be

considered when using these algorithms.
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5 Comparison of performance, interpretability and

stability

Since it was shown in the previous chapter that selection bias is a problem for all MBTs

and therefore the so-called unbiased methods should not be generally preferred to SLIM,

the algorithms are compared on the basis of other important properties. Desirable proper-

ties of an MBT are high performance, good interpretability and stability. In this chapter,

simulation scenarios and their results are described with which an empirical comparison

of these properties for the different MBT algorithms can be made. In addition, a com-

parison of the performance and interpretability of SLIM MBTs is made when objectives

of different complexity are used for modelling.

5.1 Evaluation measures

To evaluate the desired properties the following definitions and measurements are used.

5.1.1 Performance

A central aspect in the comparison of the different MBT algorithms is their performance.

To find out how well an MBT algorithm performs as a stand-alone machine learning

model, the MBT is fitted to the original response. In the following, the R2 is used as

performance measure of accuracy, which is defined as

R2 ({y, ŷ}) = 1−
∑n

i=1

(
ŷ(i) − y

)2∑n
i=1 (y

(i) − ȳ)
2 , (7)

where ŷ(i), i = 1, ..., n are the predictions of the MBT model and ȳ is the arithmetic mean

of the target y.

To determine how well the respective MBT algorithm works as a surrogate model, i.e.

how well the predictions of a black box model are replicated by the MBT, R2
({
ybb, ŷ

})
is used to measure the so-called fidelity.

Accuracy and fidelity are measured on both training and test data in order to make a

statement about the generalisation performance of the MBTs.
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5.1.2 Interpretability

When evaluating the suitability of an MBT algorithm as a surrogate model, the trade-off

between performance and interpretability is a key concern. While performance is easy to

measure, the concept of interpretability is much more abstract. According to Doshi-Velez

and Kim (2017) interpretability is defined as the ability to explain or present something to

a person in understandable terms. If, for different MBT algorithms to be compared, the

models in the leaf nodes are defined as equally complex (e.g. linear regression models),

these do not have to be taken into account when comparing interpretability, but only the

structure of the tree is relevant. Therefore the number of leaf nodes is used as the most

important criterion for interpretability here. The underlying assumption is: the fewer

leaf nodes a tree has, the easier its structure is to understand and to explain to another

person.

As an additional measure, the number of different features used for splitting is included

(if it varies between the algorithms). The idea here is that the splitting of the feature

space is easier to understand if it is done in few dimensions.

5.1.3 Stability

A well-known weakness of recursive partitioning algorithms is that the resulting decision

trees are often unstable, meaning that slight fluctuations in the training data can lead

to large differences in the models (Fokkema, 2020). Depending on whether differences

between two decision trees mean different predictions for the same observations or different

structural properties of a tree, such as the number of leaf nodes, we speak of semantic or

structural instability (Wang et al., 2018). Since we are looking for MBTs that are easy

to interpret, it is not enough to look at semantic stability. It would be desirable for an

MBT that has been fitted twice on slightly different training data to partition the feature

space in the same way. To compare two trees that have the same number of leaf nodes,

an additional data set (evaluation data) is used that is clustered according to the decision

rules found for the training data. The subregions of an MBT are defined as the clustering

of the evaluation data set according to the decision rules learned by fitting the MBT to

a training data set. The assumption is now that if the clustering of the evaluation data

is identical for both MBTs, the interpretation of the decision rules is also identical, even

if the order of split features in the two MBTs is reversed and the rules therefore appear

different at first glance. In order to measure the similarity of subregions found by MBTs

trained on slightly different data the Rand index (RI) (Rand, 1971) is used. The RI

defines the similarity of two clusterings A,B of n observations each by the proportion of

the number of observation pairs that are either assigned to the same partition in both
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clusterings (n11) or to different partitions in both clusterings (n00) measured against the

total number of observation pairs.

RI(A,B) = n11 + n00(
n
2

) (8)

(Gates and Ahn, 2017)

The higher the RI for a pair of trees with the same number of leaf nodes, the more similar

the subregions defined by these trees and the more stable the MBT algorithm is in a

concrete simulation scenario.

Besides the similarity of subregions with the same number of leaf nodes, the range of the

number of leaf nodes is used as a measure of stability. The more the number of leaf nodes

fluctuates between different simulation runs for an MBT algorithm, the more unstable it

is considered to be.

According to (Hu et al., 2020), the stability problem with SLIM is less if it is used as

a surrogate and not as stand-alone model on the original data. However, this is not

shown in the paper. Therefore, for the following basic scenarios this claim is empirically

investigated by comparing the stability of MBTs on the original data with the stability

of MBTs used as surrogate models.

5.2 Basic scenarios

Three simple scenarios that differ mainly in the type of interaction(s) they contain (smooth

interaction vs subgroup depending effects) are used for the evaluation. Based on these

scenarios the different MBT algorithms are compared with respect to performance, inter-

pretability and stability.

5.2.1 Simulation setting

Since the number of leaf nodes and the performance strongly depend on the prepruning

value of impr for SLIM and GUIDE and alpha for MOB and CTree, the simulations are

carried out for different values of these parameters for all three scenarios. In addition, two

different sample sizes n are chosen. All MBT algorithms are fitted as standalone models

on the original data and as surrogate models on a correctly specified linear model (lm) or

GAM and on an XGBoost model with correctly specified interactions. The configurations

of the XGBoost models are listed in the appendix in Table 24. Table 3 lists all varied

factors and their levels. In total, there are 3 × 2 × 3 × 3 = 54 variants for each of the 4

MBT algorithms. Settings that are fixed in all variants are a maximum tree depth of 6
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and a minimum node size (number of observation in a node) of 50. The experiments are

repeated 100 times.

Varied factors levels

Scenario linear smooth, linear categorical, linear mixed
Sample size n 1500, 7500 (23 training, 1

3 test data)
Prepruning parameters alpha ∈ {0.05, 0.01, 0.001}, impr ∈ {0.05, 0.1, 0.15}
Usage of MBT standalone, surrogate for lm, surrogate for XGBoost

Table 3: Simulation setting basic scenarios

Performance and Interaction measures are calculated in each simulation run. The RIs

are calculated following the simulation based on pairwise comparisons of clusterings of an

evaluation data set. The simulation setup is as follows:

1. simulate evaluation data (50000 observations) from the data generating process

2. for each simulation run in 1 : 100 runs:

1. simulate data and perform train/test split

2. train MBT on the training data, calculate performance measures on train and

test set and extract the number of leaf nodes

3. save the clustering of the whole evaluation data defined through the trained

MBT

3. for each of the (100(100− 1)/2 = 4950 MBT pairs

1. sample 1000 observation ids from the evaluation data sets

2. if both trees have the same number of leaf nodes, calculate the RI for the two

clusterings of the evaluation data subset

5.2.2 Main results

The most important findings from the simulations of the basic scenarios are:

• SLIM and GUIDE perform better on subgroup detection tasks (Scenario linear

categorical and linear mixed) in terms of better performance and interpretability

than MOB and CTree. CTree is the weakest in this task.

• MOB and CTree produce more stable trees in scenarios with smooth interactions

(Linear smooth and linear mixed). This is probably mainly due to the different

pruning techniques. There is need for improvement for SLIM and GUIDE.
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• The statement that stability increases when MBTs are used as surrogate models is

confirmed in most results. An exception is the scenario linear categorical with a

GAM as black box model, which does not model the subgroups well enough. As

a result, SLIM and GUIDE can no longer detect them so well and the stability

decreases considerably.

• A fundamental problem is that smooth interactions can often only be modelled well

by a large number of binary splits, which makes MBTs difficult to interpret on such

data. In such cases, MBTs are probably not the best choice for a surrogate model

and other models such as GA2M (Lou et al., 2013) or compboost (Schalk et al.,

2018) should be considered.

In the following, the basic simulation scenarios and a part of the detailed results are

presented and discussed. Additional results can be found in the appendix A.3.1.

5.2.3 Linear smooth

Simulation scenario The data generating processes of the basic scenarios linear smooth

includes one smooth two-way interaction and is defined as follows:

• x1, ...,x3 ∼ U(−1, 1)

• f(x) = x1 + 4x2 + 3x2x3

• ϵ ∼ N(0, 0.1 · sd(f(x))

• y = f(x) + ϵ

Results For a comparison of the different MBT algorithms as standalone model on

the scenario linear smooth the aggregated results are listed in Table 4 for sample size

n = 1500.

model impr mean n leaves n leaves min n leaves max mean R2
train sd R2

train mean R2
test sd R2

test
SLIM 0.15 2.27 2 5 0.9584 0.0072 0.9557 0.0076
SLIM 0.10 10.09 5 15 0.9860 0.0057 0.9835 0.0059
SLIM 0.05 14.75 12 18 0.9909 0.0006 0.9884 0.0009
GUIDE 0.15 2.25 2 5 0.9582 0.0071 0.9555 0.0072
GUIDE 0.10 9.81 5 14 0.9859 0.0058 0.9834 0.0060
GUIDE 0.05 14.60 11 17 0.9907 0.0006 0.9883 0.0009

alpha
MOB 0.001 9.48 8 13 0.9898 7e-04 0.9876 0.0011
MOB 0.010 11.02 8 14 0.9902 7e-04 0.9879 0.0011
MOB 0.050 12.54 9 15 0.9906 6e-04 0.9882 0.0010
CTree 0.001 11.35 9 14 0.9900 6e-04 0.9881 0.0010
CTree 0.010 12.74 10 15 0.9904 6e-04 0.9884 0.0010
CTree 0.050 13.76 11 16 0.9905 6e-04 0.9885 0.0010
lm 0.9902 0.0006 0.9901 0.0008
XGBoost 0.9858 0.0008 0.9768 0.0018

Table 4: Mean simulation results on 100 simulation runs as standalone models on scenario
linear smooth with sample size n = 1500 for different values of impr and alpha
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The results of SLIM and GUIDE are very close to each other. Noticeable is the large

variation in the number of leaf nodes and thus also in the performance of SLIM and

GUIDE for different values of impr. The variation of alpha has a much smaller impact

on the results for MOB and CTree.

Since the trade off between interpretability and performance must be taken into account

when comparing the models, the performance of the different MBTs is compared depend-

ing on the number of leaf nodes. At impr = 0.1 and alpha = 0.001, all four models have

a similar mean number of leaf nodes, which is why this setting is used for a more detailed

comparison.

Figure 4: Pairwise plot of the number of leaf nodes vs the accuracy measures R2 train
scenario linear smooth with n = 1500, alpha = 0.001, impr = 0.1

In Figure 4 it can be seen that, as expected, the performance accuracy increases with

increasing number of leaf nodes for all models. Noticeable, however, are the two different

performance levels of SLIM and GUIDE for trees with 7 to 9 leaf nodes. This is due

to the fact that trees with different symmetry properties are generated by SLIM and

GUIDE in this range. While in the MBTs with higher performance the distribution of

the observations on the different leaf nodes is approximately equal, in the group with

lower performance one leaf node each is generated with almost half of the observations

and the remaining half is distributed on the remaining leaf nodes. Examples for trees with

different symmetry properties are shown in the Figures 22 and 23 in the appendix. There

one can also see that the shown strongly asymmetric tree has only just fallen short of the

prepruning criterion impr in the big node. The choice of the parameter impr therefore

has a decisive influence on the resulting tree at this point.

Figure 5 shows the accuracy depending on the number of leaf nodes for the four different

MBTs. The numbers below each box indicate how many of the 100 trees created with

each of the four algorithms have the respective number of leaf nodes. For example, 8 of
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Figure 5: Test accuracy R2 vs number of leaf nodes scenario linear smooth with n =
1500, alpha = 0.001, impr = 0.1

the 100 SLIM trees have 10 leaf nodes and the corresponding box is created from these

10 results. Note that the numbers do not add up to a hundred, as there is also a small

number of trees with leaf nodes outside the range shown here. The results of SLIM and

GUIDE are divided into two groups for 8 and 9 leaf nodes for this plot. Trees with low

symmetry are here defined as trees in which the largest leaf node contains at least 350

observations. The results between the two groups differ greatly, as already recognised in

Figure 4. Figure shows that accuracy is very high in all four MBT. Over the range shown,

MOB and CTree (from number of leaves = 9) have slightly higher performance than SLIM

and GUIDE with the same number of leaf nodes, i.e. MOB and CTree achieve a better

trade-off between performance and interpretability in this scenario as standalone model.

As can be seen in Figure 24 in the appendix, SLIM and GUIDE have a higher average

maximum leaf size (lower symmetry) over the entire comparable range of leaf nodes than

MOB and GUIDE, which could be a reason for the slightly worse performance. However,

when the models are used as surrogate models on lm predictions, the performance of the

different MBTs with the same number of leaf nodes is very close (see appendix Figures

25, 26). Overall, it should be noted that the number of leaf nodes required to achieve a

similar performance as the correctly specified linear model is very high, considering that it

is actually a very simple data generating process. This is because the smooth interaction

can only be well approximated through many binary splits. As in this scenario the number

of possible split points is identically for all features, selection bias is not a problem.

As can be seen in Figure 4, the number of leaf nodes fluctuates considerably more for

SLIM and GUIDE than for MOB and CTree. Figure 6 shows that this is also the case

when the MBTs are used as surrogate models.

This observation is already a sign of lower stability of SLIM and GUIDE compared to
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Figure 6: Number of leaf nodes for scenario linear smooth with n = 1500, alpha =
0.001, impr = 0.1

Figure 7: Rand Indices for scenario linear smooth with n = 1500, alpha = 0.001, impr =
0.1

MOB and CTree. Moreover, in Figure 7 the rand indices of the different algorithms are

plotted for tree pairs with identical number of leaf nodes. The numbers below the boxes

in this plot indicate the number of tree pairs (from 4950 pairs total), in which both trees

have the according number of leaf nodes.

There one can see that even with identical numbers of leaf nodes, MOB and CTree seem

to generate more stable trees.

5.2.4 Linear categorical

Simulation scenario Numerical and binary features with linear effects and subgroup

specific linear effects:

• x1,x2 ∼ U(−1, 1), x3 ∼ Bern(0.5),

• f(x) = x1 − 8x2 + 16x21(x3=0) + 8x21(x1>mean(x1))
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• ϵ ∼ N(0, 0.1 · sd(f(x))

• y = f(x) + ϵ

The scenario is based on a simulation example in (Herbinger et al., 2022).

Results In this scenario, the data-generating process is not determined by a smooth

interaction, but can be fully described by main effect models in four subgroups. This

would require a split at the empirical mean of feature x1 and a split with respect to the

binary variable x3. SLIM and GUIDE differ greatly from MOB and CTree in their ability

to find these splits, which can be seen in Table 5. The column share x2 indicates what

proportion of all split observations were split on average with respect to the variable x2.

For SLIM and GUIDE this value is 0 for all values of impr , which indicates, that all splits

where performed regarding the variables x1 and x3. Consequently, the selection bias of

SLIM does not lead to the binary variable x3 not being selected as a splitting variable here.

This corresponds to the results from chapter 4.3 in which is shown that SLIM prefers the

variable that defines a subgroup in a two-way interaction as splitting variable. MOB and

CTree, on the other hand, split almost only with respect to the variable x2 and therefore

achieve a worse mean performance than SLIM and GUIDE (except for impr = 0.15)

despite a considerable higher number of leaf nodes.

model impr n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test share x2

SLIM 0.15 2.00 2 2 0.8272 0.0071 0.8250 0.0111 0.0000
SLIM 0.10 3.99 3 4 0.9884 0.0069 0.9870 0.0078 0.0000
SLIM 0.05 4.00 4 4 0.9891 0.0010 0.9878 0.0028 0.0000
GUIDE 0.15 2.00 2 2 0.8272 0.0071 0.8250 0.0111 0.0000
GUIDE 0.10 3.99 3 4 0.9884 0.0069 0.9870 0.0078 0.0000
GUIDE 0.05 4.00 4 4 0.9891 0.0010 0.9878 0.0028 0.0000

alpha
MOB 0.001 12.77 10 15 0.9661 0.0083 0.9558 0.0091 0.9095
MOB 0.010 14.40 12 16 0.9736 0.0067 0.9641 0.0076 0.8761
MOB 0.050 14.85 13 17 0.9747 0.0063 0.9654 0.0071 0.8682
CTree 0.001 11.87 10 14 0.9484 0.0030 0.9390 0.0052 0.9976
CTree 0.010 12.82 11 15 0.9498 0.0030 0.9404 0.0051 0.9939
CTree 0.050 13.61 11 16 0.9508 0.0029 0.9411 0.0048 0.9923
lm 0.9702 0.0018 0.9694 0.0029
XGBoost 0.9876 0.0015 0.9778 0.0031

Table 5: Mean simulation results on 100 simulation runs as stand alone models on scenario
linear categorical with sample size n = 1500 for different values of impr and alpha

In contrast to the scenario linear smooth, the variation in the number of leaf nodes for

fixed values of impr is also small for SLIM and GUIDE. This indicates a high stability of

SLIM and CTree on this scenario.

Figure 8 shows the performance by number of leaf nodes for impr = 0.05 and alpha =

0.001. There one can see again that SLIM and GUIDE achieve a very high R2 despite

the low number of leaf nodes.

It is also noticeable that MOB performs better than CTree with the same number of leaf

nodes. This could be because, according to (Schlosser et al., 2019), the M-fluctuation
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Figure 8: Test accuracy R2 vs number of leaf nodes scenario linear categorical with
n = 1500, alpha = 0.001, impr = 0.05

test used in MOB has a higher ability in detecting abrupt changes than the linear test

statistic used in CTree, which was also seen in chapter 4.3.

If SLIM and GUIDE are fitted as surrogate models on the predictions of a GAM (linear

main effects, tensorproduct interaction), the number of leaf nodes increases and the vari-

ability also increases, as can be seen in Table 27 in the appendix. This indicates that the

interactions with the GAM are not fitted well enough, despite a R2
test = 0.97 see Table 5).

The statement that SLIM is more stable when used as a surrogate model than when used

as a standalone model (Hu et al., 2020) is therefore not true in this case. Nevertheless,

the mean performance of SLIM and GUIDE is better than that of the other MBTs, as

can be seen in Table 27 in the appendix.

5.2.5 Linear mixed

Simulation scenario Numerical and binary features with linear effects, subgroup de-

pendent and smooth two- and three-way interactions:

• x1,x2 ∼ U(−1, 1), x3,x4 ∼ Bern(0.5)

• f(c) = 4x2 + 2x4 + 4x2x1 + 8x21(x3=0) + 8x1x21(x4=1)

• ϵ ∼ N(0, 0.1 · sd(f(x))

• y = f(x) + ϵ

Results The scenario linear mixed contains both smooth interactions that can only

be handled by splits with respect to the numerical variables x1 and x2, and subgroups

defined by the binary variables x3 and x4. The average proportion of splits carried out

with respect to the two numerical variables is shown in Table 6. For alpha = 0.001 and
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model impr n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test share x1 x2
SLIM 0.15 3.40 2 11 0.8853 0.0309 0.8771 0.0336 0.9592
SLIM 0.10 13.07 8 16 0.9801 0.0073 0.9743 0.0083 0.8793
SLIM 0.05 14.73 13 16 0.9830 0.0019 0.9774 0.0029 0.8794
GUIDE 0.15 3.29 2 11 0.8839 0.0305 0.8758 0.0329 0.9598
GUIDE 0.10 12.52 7 15 0.9789 0.0087 0.9732 0.0091 0.8581
GUIDE 0.05 14.19 12 16 0.9822 0.0024 0.9766 0.0032 0.8516

alpha
MOB 0.001 14.52 13 17 0.9802 0.0017 0.9725 0.0027 0.9679
MOB 0.010 14.73 13 17 0.9803 0.0017 0.9726 0.0028 0.9672
MOB 0.050 14.80 13 17 0.9804 0.0017 0.9727 0.0028 0.9664
CTree 0.001 14.80 12 17 0.9802 0.0017 0.9731 0.0023 0.9989
CTree 0.010 14.98 13 17 0.9802 0.0017 0.9731 0.0023 0.9978
CTree 0.050 15.03 13 17 0.9802 0.0017 0.9731 0.0023 0.9978
XGBoost 0.9859 0.0014 0.9682 0.0042
lm 0.9902 0.0006 0.9898 0.0008

Table 6: Mean simulation results on 100 simulation runs as stand alone models on scenario
linear mixed with sample size n = 1500 for different values of impr and alpha

impr = 0.05 the mean number of leaf nodes is similar for all four MBT algorithms. The

table shows that the average performance of SLIM and GUIDE for this setting is higher

than that of the other two MBTs and at the same time the mean proportion of splits

with respect to the numerical variable is lower. This means that SLIM and GUIDE use

the binary variables more often to reveal the subgroups defined by them, while MOB and

even more pronounced CTree split almost exclusively along the numerical features and

thus perform worse despite having the same mean number of leaf nodes.

In this example, SLIM and GUIDE achieve a better trade-off between performance and

interpretability than MOB and CTree. In Figure 9 and Figure 10 this is broken down in

more detail.

Figure 9: Test accuracy R2 vs number of leaf nodes scenario linear mixed with n =
1500, alpha = 0.001, impr = 0.05

For the comparison of stability one can look at Figure 11. On the one hand, it can be

seen that MOB and CTree seem to be somewhat more stable than SLIM and GUIDE

with the same number of leaf nodes, but the difference is not great. Furthermore, it can

be seen that in most cases the stability of trees with the same number of leaf nodes is

higher when they are used as surrogates than when they are used as standalone models.
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Figure 10: Share of split observations by features x3,x4 vs number of leaf nodes scenario
linear mixed with n = 1500, alpha = 0.001, impr = 0.05

Figure 11: Rand Indices for scenario linear mixed with n = 1500, alpha = 0.001, impr =
0.05

Here, the assertion of Hu et al. (2020) that SLIM is more stable when used as a surrogate

is true and also applies to the other algorithms.
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5.3 Linear smooth with noise features

This scenario examines how noise features that have no influence on y affect the MBTs.

The scenario linear smooth is used as a basis, to which six noise variables are added.

In addition to the usual models, SLIM models are fitted with lasso regression models

(Tibshirani, 1996; Friedman et al., 2010). Lasso models allow the fitting of sparse models,

i.e. a feature selection in the nodes takes place automatically. The strength of the feature

selection depends strongly on the penalisation parameter. Three different variants are

used to choose this parameter. In all SLIM lasso MBTs, the penalisation parameter is

selected using the BIC criterion (Sabourin et al., 2015). However, in the case of df = 3

or df = 2, the additional restriction is defined that the effective degrees of freedom (df)

must not exceed this value. This enforces especially sparse models.

• x1, ...,x10 ∼ U(−1, 1)

• f(x) = x1 + 4x2 + 3x2x3

• ϵ ∼ N(0, 0.1 · sd(f(x))

• y = f(x) + ϵ

The MBTs are fitted as standalone models and surrogates on lm predictions on a data

set with sample size n = 3000 (2000 training, 1000 test observations) using the pruning

parameter settings alpha = 0.001 and impr = 0.1. The simulation is repeated 250 times.

The aim of the simulation is to investigate whether the noise variables are incorrectly

chosen as splitting variables.

black box MBT freq xnoise share x3 n leaves n l min n l max R2
train sd R2

train R2
test sd R2

test
standalone SLIM 0.072 0.4654 11.988 5 17 0.9880 0.0048 0.9854 0.0049
standalone SLIM lasso 0.092 0.4655 11.048 5 16 0.9871 0.0049 0.9852 0.0051
standalone SLIM lasso df 3 0.028 0.5182 9.732 4 14 0.9863 0.0046 0.9848 0.0050
standalone SLIM lasso df 2 0.028 0.9990 9.648 4 15 0.9864 0.0044 0.9852 0.0047
standalone GUIDE 0.104 0.4780 11.788 5 16 0.9880 0.0047 0.9854 0.0048
standalone MOB 0.000 0.5038 11.096 8 14 0.9901 0.0005 0.9878 0.0007
standalone CTree 0.000 0.5087 13.140 10 16 0.9904 0.0004 0.9882 0.0007
standalone lm 0.9901 0.0004 0.9901 0.0006
lm SLIM 0.000 0.4900 14.036 8 16 0.9987 0.0018 0.9984 0.0019
lm SLIM lasso 0.000 0.4574 13.736 8 16 0.9985 0.0023 0.9982 0.0027
lm SLIM lasso df 3 0.000 0.5076 14.008 8 16 0.9985 0.0023 0.9983 0.0026
lm SLIM lasso df 2 0.000 1.0000 11.160 5 14 0.9979 0.0018 0.9977 0.0020
lm GUIDE 0.000 0.4909 14.096 8 16 0.9988 0.0018 0.9984 0.0019
lm MOB 0.000 0.5073 15.960 15 16 0.9995 0.0000 0.9993 0.0001
lm CTree 0.000 0.5003 15.564 13 16 0.9994 0.0001 0.9992 0.0001

Table 7: Mean simulation results of stand alone model and surrogates on lm predictions
on scenario linear smooth with noise features

Table 7 shows the mean simulation results. freq xnoise is the proportion of trees in which

at least one of the noise variables is used as a splitting variable. It can be seen that the

noise variables are only used as splitting variables for the specified settings if the MBTs

are used as standalone models. However, MOB and CTree do not select false variables
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even then. For the SLIM MBTs it can be seen that freq xnoise decreases with a strong

penalty (df = 2 and df = 3). GUIDE, on the other hand, has the most problems with the

noise variables and the highest value for freq xnoise. An interesting effect of using a lasso

model with a maximum of 2 effective degrees of freedom is that for the splitting almost

exclusively variable x3 is used, although otherwise x2 and x3 are mostly chosen similarly

often. This could be because x3 does not have a main effect on the response, but x2 and

x1 do. Due to the strong penalisation, only these two features are used for modelling in

the leafs. Since x3 is not included in the modelling, it is instead more often used as a

splitting variable. The interpretability of this MBT is thus increased on the one hand by

the very sparse models in the leaf nodes and on the other hand by the fact that the splits

are almost only carried out with respect to x3, which is easier to keep track of than if the

feature space is split with respect to several different variables. The average number of leaf

nodes for SLIM with lasso df 2 is smaller than for the standard SLIM MBT, which is why

the performance cannot be directly compared. However, it can be seen that the training

performance of SLIM with lasso df 2 is further below that of the standard SLIM than the

test performance. This indicates that with the strong penalisation, overfitting can also

be reduced. In the appendix in figures 27 and 28 there is a more detailed presentation of

the individual results. It is particularly noticeable that, as with the basic scenario linear

smooth, all SLIM MBTs and GUIDE generate some strongly asymmetrical trees, which

then have a considerable poorer performance.

5.4 Linear smooth with correlated features

While in the basic scenarios the features are independent of each other, this scenario

examines how a correlations between features influence the MBTs. For this purpose, the

”linear smooth” scenario is modified so that there is a correlation between x1 and x3.

• x1, ...,x3 ∼ U(−1, 1), Corr(x1,x3) = ρ13 ∈ 0.1, 0.5, 0.9

• f(x) = x1 + 4x2 + 3x2x3

• ϵ ∼ N(0, 0.1sd(f(x)))

• y = f(x) + ϵ

It is to be examined whether the modification causes the feature x1 to be incorrectly

selected as a splitting variable.

For the simulation, the MBTs are fitted on a data set with sample size n = 1500 (1000

training, 500 test observations) using the pruning parameter settings alpha = 0.001 and

impr = 0.01. The parameters are chosen so that the average number of leaf nodes is
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similar for the different MBTs. The trees are fitted both as standalone models on the

original data and as surrogate models on correctly specified linear models. The simulation

is repeated 250 times.

black box MBT ρ13 x1 frequency n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
standalone SLIM 0.1 0.088 10.012 3 16 0.9863 0.0055 0.9836 0.0061
standalone SLIM Ridge 0.1 0.096 9.756 4 15 0.9860 0.0057 0.9834 0.0063
standalone GUIDE 0.1 0.052 9.792 3 15 0.9862 0.0057 0.9836 0.0061
standalone MOB 0.1 0.000 9.392 8 12 0.9898 0.0006 0.9876 0.0010
standalone CTree 0.1 0.000 11.312 9 14 0.9901 0.0006 0.9881 0.0010
standalone SLIM 0.5 0.152 10.052 3 15 0.9867 0.0050 0.9841 0.0055
standalone SLIM Ridge 0.5 0.112 9.612 3 15 0.9862 0.0051 0.9837 0.0056
standalone GUIDE 0.5 0.120 9.776 3 15 0.9870 0.0046 0.9846 0.0052
standalone MOB 0.5 0.000 9.048 8 11 0.9899 0.0006 0.9878 0.0010
standalone CTree 0.5 0.000 10.776 9 14 0.9901 0.0006 0.9882 0.0010
standalone SLIM 0.9 0.328 10.216 4 16 0.9873 0.0043 0.9850 0.0046
standalone SLIM Ridge 0.9 0.292 9.968 4 16 0.9872 0.0043 0.9848 0.0048
standalone GUIDE 0.9 0.448 9.996 3 17 0.9874 0.0042 0.9852 0.0047
standalone MOB 0.9 0.048 8.704 8 11 0.9899 0.0005 0.9879 0.0010
standalone CTree 0.9 0.084 10.280 8 14 0.9901 0.0005 0.9882 0.0009
lm SLIM 0.1 0.000 12.060 5 16 0.9967 0.0047 0.9959 0.0055
lm SLIM Ridge 0.1 0.000 11.388 5 16 0.9962 0.0049 0.9954 0.0057
lm GUIDE 0.1 0.000 12.132 5 16 0.9967 0.0047 0.9960 0.0055
lm MOB 0.1 0.000 15.764 14 16 0.9994 0.0001 0.9993 0.0001
lm CTree 0.1 0.000 15.256 13 17 0.9993 0.0001 0.9992 0.0001
lm SLIM 0.5 0.000 12.008 5 16 0.9970 0.0042 0.9963 0.0050
lm SLIM Ridge 0.5 0.000 11.584 4 16 0.9967 0.0043 0.9960 0.0051
lm GUIDE 0.5 0.000 11.968 5 16 0.9974 0.0036 0.9968 0.0043
lm MOB 0.5 0.000 15.768 14 16 0.9995 0.0001 0.9994 0.0001
lm CTree 0.5 0.000 15.220 13 17 0.9994 0.0001 0.9993 0.0001
lm SLIM 0.9 0.000 12.212 5 16 0.9977 0.0033 0.9972 0.0039
lm SLIM Ridge 0.9 0.000 11.772 5 16 0.9975 0.0034 0.9970 0.0039
lm GUIDE 0.9 0.000 12.364 5 16 0.9978 0.0033 0.9973 0.0038
lm MOB 0.9 0.004 15.752 14 17 0.9996 0.0001 0.9995 0.0001
lm CTree 0.9 0.000 15.144 14 17 0.9995 0.0001 0.9994 0.0001

Table 8: Mean results correlated data

Table 8 shows the average performance and the number of leaf nodes of MBTs as well

as the frequency of trees where x1 is wrongly chosen as the splitting variable. If the

MBTs are used as standalone, SLIM and GUIDE choose feature x1 as splitting variable

already at a very low correlation of 0.1 in some cases. As the correlation increases, this

frequency increases. MOB and CTree, on the other hand, only use the variables actually

involved in the interaction for the splits at ρ ∈ {0.1, 0.5}, but at a very high correlation

rho = 0.9 they also include x1 for the split in a small number of cases. Why CTree and

MOB react less sensitively to correlated features could not be clarified here. It seems

that the scores reflect well which feature is actually responsible for the instability. Since

in regression tasks the use of ridge regression is recommended for correlated features

(McDonald, 2009), SLIM is also fitted with ridge regression models in the nodes. The

choice of the penalisation parameter is made in each recursion step by minimising the

BIC. Instead of the SSE, the penalised SSE is used as objective function. However, this

does not result in any systematic improvement. If the MBTs are used as surrogates for

the linear regression predictions instead of standalone models, there are hardly any false

splits in this scenario. So it seems that the problem of correlated features is reduced when

the models are used as surrogates.
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5.5 Nonlinear effects

While the main goal so far has been to compare the different MBT algorithms on simple

scenarios with linear main effects, the following scenario will investigate how the choice of

different objective functions affects the interpretability and performance of SLIM MBTs

when nonlinear main effects are included in the data generating process. As it is very

flexible in the selection of the objective, only the SLIM algorithm is used. The data is

defined as follows:

• x1, ...,x5 ∼ U(−1, 1), x6 ∼ Bern(0.5),

• f(x) = x1 + 2x2
2 + x3log(abs(x3)) + x4x5 + x1x41(x6=0)

• ϵ ∼ N(0, 0.1 · sd(f(x))

• y = f(x) + ϵ

SLIM is fitted on the data with four different objectives.

1. linear regression model (lm)

2. polynomial regression of degree 2 with lasso penalisation (penalised poly)

3. linear regression with unpenalised linear B-spline transformations of the features

(B-splines)

4. Generalized additive models with integrated smoothness estimation (Wood, 2011)

(GAM)

Since the models in the leaf nodes are of different complexity for the different objectives,

it is not sufficient in this case to use only the number of leaf nodes as a measure of

interpretability. In addition, the following criteria are considered:

• effective degrees of freedoms of the leaf node models (lm and penalised poly), as

sparse models are easier to interpret

• proportion of observation splits where the split is actually due to an interaction

rather than an incompletely modelled main effect

• interpretable weights versus merely visually interpretability
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setting impr R2

setting 1 0.05 0.9
setting 2 0.10 1

Table 9: Prepruning settings for scenario nonlinear effects

In order to enable a comparison of the interpretability, the R2 is used for prepruning in

this scenario in addition to the prepruning with impr. As soon as the R2 exceeds a certain

value in a node, it is no longer split.

Trees with two different prepruning settings are trained on the data

The simulated data contains 3000 observations (2000 train/ 1000 test). The SLIM MBTs

are fitted both as standalone models and as surrogate models on predictions of an XGBoost

model. The hyperparameter of the XGBoost model are listed in the appendix in Table

31.

n leaves n split features
blackbox model n leaves n l min n l max n split feat n sf min n sf max % main effect df sd df
standalone lm 17.48 13 28 4.76 4 6 0.4525 6.5763 0.1578
standalone penalised poly 4.36 3 7 2.16 2 3 0.3605 8.1847 0.8960
standalone B-Splines 2.04 2 3 1.00 1 1 0.0000
standalone GAM 2.04 2 3 1.00 1 1 0.0000
XGBoost lm 19.82 2 33 4.76 1 6 0.6125 6.8671 0.1438
XGBoost penalised poly 3.58 2 7 2.08 1 4 0.3880 8.5499 1.1147
XGBoost B-Splines 1.86 1 3 0.84 0 1 0.0000
XGBoost GAM 1.90 1 4 0.88 0 2 0.0000

Table 10: Mean interpretability simulation results for scenario nonlinear effects variant 1

Table 10 lists the mean results regarding the interpretability of the different SLIM trees

for setting 1, in which the prepruning in a node already applies at an R2 of 0.9. For SLIM

with linear regression models in the nodes, this results in large trees which can hardly be

used for interpretation purposes. In addition, in average 45% (61% if used as surrogate)

of all split observations are not split with respect to an interaction, but with respect to

an insufficiently modelled main effect. Moreover, in some simulation runs all features are

used as splitting variables, which further increases the lack of interpretability. The fact

that the models in the leaf nodes are very simple can hardly compensate for this.

SLIM in conjunction with penalised polynomial regression in the nodes, on the other

hand, achieves comparable performance with far fewer splits. There are also considerable

fewer different features used for splitting, but the proportion of observations where the

splits are performed with respect to a main effect variable is still high, albeit better than

with SLIM lm.

Both SLIM with linear B-Spline transformed variables and GAMs require on average only

two leaf nodes, i.e. one split, to achieve an R2 of 0.9. The models in the leaf nodes can

only be interpreted visually, but since the number of models is very small, the degree

of interpretability is comparatively high. Moreover, these models actually only split by
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interactions, as the nonlinear main effects are already modelled sufficiently well.

If it is not explicitly required that the model weights are directly interpretable and it

should also be ensured that they are actually split according to interactions, models with

splines are the best choice in this case. GAMs are preferable to unpenalised B-Splines in

terms of their generalisation error, but the computational effort is much higher.

black box model R2 train R2 train sd R2 test R2 test sd time
standalone lm 0.9243 0.0062 0.9113 0.0054 53.9438
standalone penalised poly 0.9204 0.0092 0.9161 0.0108 46.6282
standalone B-Splines 0.9282 0.0036 0.9195 0.0049 15.2456
standalone GAM 0.9253 0.0034 0.9226 0.0048 417.2874
XGBoost lm 0.9200 0.0228 0.9023 0.0190 55.7771
XGBoost penalised poly 0.9213 0.0079 0.9150 0.0087 35.4093
XGBoost B-Splines 0.9382 0.0118 0.9296 0.0120 11.4670
XGBoost GAM 0.9348 0.0118 0.9289 0.0117 384.7403
XGBoost XGBoost 0.9386 0.0295 0.9199 0.0362 3.1163

Table 11: Mean performance simulation results for scenario nonlinear effects variant 1

The results for setting 2 are listed in the appendix in the tables 32 and 33
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6 Insurance use case

In the following, SLIM is used in various configurations as a surrogate for modelling the

benefit present values of two fictitious insurance tariffs from the TRAIL.X (TRustworthy

Artificial Intelligence in Life Insurance) research project (msg insurit, n.d.). The results

are interpreted and the fidelity is compared with the MBT algorithms GUIDE, MOB and

CTree.

6.1 Data set K2204

The data set K2204 contains data for a (fictitious) endowment insurance tariff. With this

tariff, a single benefit is paid both in the event of survival and death of the policyholder.

The data set includes the features sex (1 = male, 0 = female), age and duration and the

two targets benefit present value (BPV) and premium present value (PPV). The targets

were modelled using two different black box models. In the following, only the BPV is

used. The results for the PBV are very similar (interpreted the other way round) and can

be found in the appendix. Since the data set with 5994 observations is rather small, all

observations were used for training. For this data set therefore only training performance

of the surrogate models is considered. A special characteristic of K2204 is a correlation

between the features age and duration, as can be seen in Figure 12. When interpreting

a MBT for this data set, it must therefore be taken into account that a split with regard

to one of the features can have an influence on the value range of the other feature.

Figure 12: Features age and duration in the K2204 data set

6.1.1 Shallow MBTs with linear models

In a first step, SLIM is fitted as surrogate to the black box predictions of BPV (BPV pred)

with linear regression models in the nodes. The maximum depth is set to 3 and an
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improvement in the objective (impr) of at least 0.1 of the previous improvement is set as

prepruning parameter. The resulting tree is shown in Figure 13.

Figure 13: SLIM tree for K2204 with linear models

Basic observations across all subregions are:

• Gender male has a positive effect on BPV pred

• age has a positive effect on BPV pred

• duration has a negative effect on BPV pred

The strength of the effects, however, differs in the different subregions found by SLIM.

The five leaf nodes can be roughly divided into two regions with similar effects:

• Region 1 (Nodes 2,8): High duration (30) or high age (> 48) and medium duration

(between 13 and 30)

• Region 2 (Nodes 5,6,7): Low - medium duration with low age or high age with low

duration (≤ 12)

In Region 1 sex male and age seem to have a higher positive effect on BPV pred than in

region 2. The negative effect of duration, on the other hand, is smaller in region 1. This

indicates a nonlinearity of duration.

If SLIM is fitted as a standalone model instead of a surrogate model in the same configu-

ration, the differences in the split points are very small. This indicates that the black box
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model captures the underlying relationships very well. The corresponding tree is shown

in the appendix in Figure 29.

In the following, the fidelity of the different MBT with algorithms with linear models is

compared. For this purpose, all four algorithms were fitted with a maximum depth of

3. For SLIM and GUIDE, impr is set to 0.05 and for MOB and CTree alpha is set to

0.05. Furthermore, a minimum node size of 200 observations is required. The MBTs

are compared with a baseline model, which is a linear regression model on the entire

feature space. In addition to the R2 and the MSE, the mean absolute error (MAE) and

the maximum absolute error (max AE) are included as measures of fidelity. The max

AE is particularly important here, as it is strictly regulated in order not to discriminate

against any individual. The results are listed in Table 12. It shows that all MBTs achieve

considerable improvement over the baseline model.

R2 MSE MAE max AE n leaves
linear baseline model 0.985101 0.000201 0.011393 0.064709 1
SLIM 0.999233 0.000010 0.002272 0.020526 8
GUIDE 0.999276 0.000010 0.002142 0.020526 8
MOB 0.998527 0.000020 0.003149 0.024504 8
CTree 0.995091 0.000066 0.005740 0.042931 8

Table 12: Fidelity of K2204 linear baseline model and linear MBTs

GUIDE achieves the best performance slightly ahead of SLIM. CTree obtains the worst

performance. Since all algorithms generate MBTs with the same number of leaf nodes,

the difference in performance must be explained by different split features or points. Table

13 lists the share of observations that were split with respect to the different features.

age duration sex
SLIM 0.28 0.67 0.05
GUIDE 0.28 0.72 0.00
MOB 0.10 0.77 0.13
CTree 0.00 0.96 0.04

Table 13: Share of observations split by the different features K2204 linear MBTs

It is noticeable that SLIM and GUIDE split by age more often than the other two algo-

rithms. Furthermore, it should be considered that particularly the SLIM tree could be

influenced by selection bias and therefore sex with only one possible split point could be

disadvantaged as a splitting variable. SLIM actually chooses sex less often as splitting

variable than MOB and CTree, but sex is also rarely chosen by GUIDE and no selection

bias in the independence case between numerical variables with different numbers of split-

ting variables could be found in GUIDE in chapter 4. Moreover, the effect of selection

bias would not be so dramatic here, since the two variables with which sex could interact

- and probably does to a small extent, as the varying parameter estimates indicate - are
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chosen as splitting variables. The small interaction of sex with age and duration is thus

reflected in the model, even if sex is not chosen as a splitting variable.

6.1.2 MBTs with B-spline models

In order to better capture nonlinearities and thus reduce the risk of splitting with respect

to nonlinearities instead of interactions, all MBT algorithms are fitted with B-spline trans-

formed feature age and duration as surrogate models. Two different maximal depths are

used, 3 for interpretable shallow trees and 6 for deep trees with higher fidelity. The set-

tings for alpha, impr and minimum node size remain the same as for the MBTs with

linear models. Again, a baseline model is fitted, in this case a regression model with

the feature sex and B-spline transformed features age and duration on the entire feature

space.

Figure 14 plots the prediction of the baseline B-spline model and the two B-spline SLIM

surrogates against BPV pred to visualise performance improvement. This shows a con-

siderable improvement from the baseline model to the shallow tree. For the deep tree,

the observations seem to be even somewhat closer to the identity line.

Figure 14: B-spline surrogate predictions vs. BPV pred for K2204

The fidelity results for all B-spline surrogates are listed in Table 14 .

R2 MSE MAE max AE n leaves
B-spline baseline model 0.9943311 7.63e-05 0.0067811 0.0378568 1
SLIM shallow 0.9994176 7.80e-06 0.0018244 0.0167730 8
GUIDE shallow 0.9993900 8.20e-06 0.0019011 0.0165545 8
MOB shallow 0.9992115 1.06e-05 0.0022236 0.0182034 8
CTree shallow 0.9990918 1.22e-05 0.0024194 0.0183906 8
SLIM deep 0.9997514 3.30e-06 0.0010766 0.0126778 21
GUIDE deep 0.9997301 3.60e-06 0.0011730 0.0116453 20
MOB deep 0.9996858 4.20e-06 0.0013448 0.0119785 21
CTree deep 0.9997091 3.90e-06 0.0012936 0.0123686 20

Table 14: Fidelity of K2204 B-spline baseline model and B-spline MBTs

The improvement of the shallow MBTs over the baseline model is large, but not as

substantial as in the trees with linear models without B-spline transformations. This is
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probably due to the fact that the splits in the MBTs with linear models also handled

nonlinearities that could not be adjusted in the linear baseline model. In the baseline

model with B-spline transformations, on the other hand, the nonlinearities are already

taken into account and the splits then actually capture primarily the interactions, which is

what is desired. The deeper splitting improves the performance of all MBTs considerably.

The MAE of the deep trees, for example, is only 52%-61% of the MAE of the shallow

trees. CTree achieves the greatest improvement and obtains better fidelity in the deep

trees than MOB (except for max AE). The better performance of all MBTs, however,

comes at the cost of interpretability. Additionally, there is an increased risk of overfitting.

age duration sex
SLIM shallow 0.38 0.62 0.00
GUIDE shallow 0.30 0.70 0.00
MOB shallow 0.08 0.84 0.08
CTree shallow 0.23 0.71 0.07
SLIM deep 0.35 0.60 0.04
GUIDE deep 0.20 0.78 0.02
MOB deep 0.08 0.76 0.16
CTree deep 0.20 0.67 0.13

Table 15: Share of observations split by the different features K2204 B-spline MBTs

Table 15 shows the proportions of observations that were split according to the different

features. For SLIM, GUIDE and MOB the share results of the shallow trees are similar

to the MBTs with linear models. Shallow CTree, on the other hand, selects age in 23%

of split observations as splitting variable, whereas it was not used at all for splitting in

CTree with linear models. It performs the worst in terms of fidelity in this case as well,

but not as considerable as in the previous setting. With the deep trees, the values for

share and also the fidelity values of the different MBTs move closer together.

For the interpretation, the shallow SLIM B-spline tree shown in Figure 15 is analysed in

more detail.

In order to investigate the effects of the splits on the feature effects more closely, the

splits with regard to duration and age are analysed separately. The nodes 1,5,13 and

14 together comprise the entire feature space, whereby the sub-regions are determined

by splits with regard to the feature duration. Figure 16 shows the input-output relation

(feature effects) of the features estimated in the B-spline models in the different nodes.

Note that the curves are centred.

As with SLIM with linear models, it can be seen that the positive effect of sex male seems

to increase with increasing duration. The same applies to age. The seemingly negative

effect of age at low duration and high age is probably due to extrapolation, as there are

only few observations in this area, which is shown in Figure 30 in the appendix.

With the feature duration, it can be seen that the negative effect seems to decrease with
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Figure 15: SLIM tree for K2204 with B-spline models

Figure 16: Input-output relation of features in nodes split by duration for SLIM tree with
B-splines and depth 3

increasing duration, which is again just a nonlinearity.

To investigate the effect of splits with respect to feature age, on the one hand nodes 4,7

and 8 are compared, which cover the feature space for duration ≤ 25, and on the other
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hand nodes 11 and 12, which cover the feature space for 25 < duration <= 40. In the

Figures 17 and 18 the corresponding input-output relations of the features are shown.

Figure 17: Input-output relation of features in nodes with duration ≤ 25 split by age for
SLIM tree with B-splines and depth 3

Figure 18: Input-output relation of features in nodes with 25 < duration <= 40 split by
age for SLIM tree with B-splines and depth 3

Again, the interpretation is consistent with the results from SLIM with linear models.

The positive effect of sex and age is increased by increasing age, while the negative effect

of duration is reduced. The slightly negative effect of age at high age and low duration

should again be viewed with caution and is probably due to the poor data situation in

this area.
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Finally, a deep SLIM tree with B-spline models is used as a standalone model for BPV

and its accuracy is compared to the accuracy of the black box model. The result is shown

in Table 16. The accuracy of SLIM is worse than that of the black box model for all

evaluation measures. However, the difference is most apparent for the max AE. While

the max AE is explicitly minimised in the black box model, the MSE is minimised with

SLIM. In general, a different loss function would also be possible with SLIM. In this case,

either the max AE could be minimised only in the split selection, or also in the modelling

in the nodes. When optimising the max AE in the split selection, it must be noted that

the algorithm is principally designed for additive loss functions. In order to compare the

joint performance of the child models with that of the parent model, the maximum should

probably be used instead. However, it is questionable whether the data would be split

according to interactions in this case, especially if the models were nevertheless fitted

using least squared regression.

R2 MSE MAE max AE
SLIM 0.9997757 3.1e-06 0.0010172 0.0118951
Blackbox model 0.9998316 2.3e-06 0.0009441 0.0047668

Table 16: Accuracy of standalone B-spline SLIM MBTs and of the black box model K2204

6.2 Data set R1 08

The data set R1 08 contains the data of an annuity insurance tariff. Instead of a single

benefit in the endowment case, a lifelong annuity is paid out. R1 08 includes, in addition to

sex, age and duration, the features birth year, payment period, in year payments exkasso

(categorical with 4 levels), guarantee period and increment factor. The value range of

the features age and duration is limited to a range in which no correlation exists (25 ≤
age ≤ 35 and 30 ≤ duration ≤ 40). Here, as well, the BPV and BPV pred predicted

by a black box model are analysed as target variables. For the application of the MBTs,

subsets of the training and test data sets including BPV and BPV pred are drawn, each

with 100000 observations.

In order to model nonlinearities in the nodes, MBTs with B-spline models are used. As

with K2204, trees with two different depths are evaluated, shallow trees with a maximum

depth of 3 and deep trees with a maximum depth of 7. impr and alpha are set to 0.05

and a minimum node size of 500 observations is required.

For the interpretation of the splits and models, the shallow SLIM tree is examined in more

detail. Its structure is shown in Figure 19. If the tree is fitted on the test data instead of

the training data, exactly the same splits result. The same applies if the tree is used as
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a standalone model for BPV instead of a surrogate model. This indicates that the black

box model replicates the true data and relationships well.

Figure 19: Shallow SLIM tree for K1 08 with B-spline models

It is noticeable that the feature space in the first splits is only divided with regard to

increment factor. The effects of these splits on the other features are shown in Figure 20.

The effects of the features payment period and guarantee period are not shown because

they are very small and therefore not visible on the scale at all. The interaction with

increment factor is clearly visible in all the features shown. For all features, an increasing

increment factor increases the feature effects.

The consequences of the splits with respect to duration are shown in Figure 21. It indicates

that across all features a higher duration weakens the feature main effects.

Since increment factor interacts with so many features, the splits are very effective here

and bring a great improvement in performance. Table 18 lists the share of the splits

by the different features. From this it can be seen that MOB and CTree split shallow

MBTs considerably less by increment factor than SLIM and GUIDE. At the same time,

their performance is behind that of SLIM and GUIDE, as can be seen in Table 17. SLIM

achieves the best performance.

By using deep trees, the fidelity increases and the results of the different algorithms move

closer together. The values for share also get closer. Overall, the differences between the

different algorithms are therefore less pronounced with the deep trees than with the shal-
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Figure 20: Input-output relation of features in nodes split by increment factor for SLIM
tree with B-splines and depth 3

Figure 21: Input-output relation of features in nodes split by duration for SLIM tree with
B-splines and depth 3 (nodes 11-14)

low trees. Although the deep trees achieve a high training performance, an interpretation

is hardly possible with this high number of leaf nodes. In addition, the test performance

45



Interpretation of black box models using tree-based surrogate models

differs more strongly from the training performance than with the shallow trees, which

is a sign of overfitting. The almost identical values for max AE have been checked and

are correct. They result from the same observation for all four algorithms and the obser-

vation falls in nodes with almost identical subregions. This shows again that the MTBs

or, more precisely, the subregions found by the different algorithms and thus also their

performance move closer together when deep MBTs are formed.

train test

R2 MSE MAE max AE R2 MSE MAE max AE n leaves
B-spline 0.927748 3.534102 1.291762 16.412655 0.927267 3.558816 1.295778 16.413200 1
SLIM shallow 0.997432 0.125606 0.235344 4.296943 0.997397 0.127386 0.236761 4.299219 8
GUIDE shallow 0.996540 0.169233 0.262321 5.006522 0.996496 0.171433 0.263770 5.003334 8
MOB shallow 0.994944 0.247289 0.324474 5.236252 0.994942 0.247489 0.324895 5.336406 8
CTree shallow 0.993049 0.340023 0.401982 5.236252 0.993055 0.339838 0.401632 5.336406 8
SLIM deep 0.999882 0.005794 0.043939 1.079069 0.999870 0.006350 0.045885 1.126732 105
GUIDE deep 0.999844 0.007652 0.052102 1.079069 0.999832 0.008219 0.054046 1.126732 95
MOB deep 0.999861 0.006823 0.047428 1.079069 0.999848 0.007460 0.049459 1.126732 108
CTree deep 0.999839 0.007851 0.058806 1.079069 0.999825 0.008539 0.061363 1.126732 106

Table 17: fidelity of K1 08 B-spline baseline model and B-spline MBTs K2204

sex age duration birth year increment
SLIM shallow 0.00 0.00 0.12 0.00 0.88
GUIDE shallow 0.00 0.12 0.00 0.00 0.88
MOB shallow 0.00 0.12 0.33 0.00 0.54
CTree shallow 0.00 0.33 0.33 0.00 0.33
SLIM deep 0.10 0.08 0.24 0.05 0.54
GUIDE deep 0.06 0.10 0.22 0.05 0.56
MOB deep 0.11 0.15 0.20 0.03 0.52
CTree deep 0.00 0.17 0.29 0.05 0.49

Table 18: Share of observations split by the different features K1 08 B-spline MBTs

The feature payment period, in year payments exkasso and guarantee period are never

chosen as splitting variables and are therefore not listed in the table.

Finally two SLIM trees with B-spline models are fitted as standalone models for BPV and

their accuracy is compared with the black box model. The result is shown in Table 19.

For this data set, too, the deviations are most considerable for the max AE

train test
R2 MSE MAE max AE R2 MSE MAE max AE

SLIM shallow 0.9974321 0.1256075 0.2353447 4.3046812 0.9973966 0.1273854 0.2367417 4.3074899
SLIM deep 0.9998814 0.0057987 0.0439357 1.0862638 0.9998702 0.0063532 0.0458758 1.1344576
Blackbox 1.0000000 0.0000023 0.0011006 0.0096827 1.0000000 0.0000023 0.0010968 0.0099144

Table 19: Accuracy of standalone B-spline SLIM MBTs and of the black box model K1 08

The results of the application of the MBT algorithms were discussed with an expert and

the plausibility of the resulting interpretations was verified.
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7 Conclusion

In order to obtain a surrogate model that is able to partition the feature space in such a

way that in the subregions main effect only models can approximate the black box model

well, four different MBT algorithms were compared in this thesis.

The comparison of the selection bias showed that according to the classical definition

(i.e. independence scenario) and with numerical variables only indeed only SLIM shows

a selection bias, while the other methods seem to be unbiased. A correction approach

to eliminate the selection bias under numerical variables in SLIM was not successful.

When adding categorical variables, however, GUIDE, MOB and CTree also showed a

selection bias. If, instead of the independence scenario, scenarios were examined in which

interactions were actually present, a bias was also found there for all algorithms. This

problem should always be considered when applying the algorithms without defining the

roles of the features (regressor vs partitiong) in advance, as in this thesis. In extreme

cases, it could lead to the phenomenon that features are chosen as splitting variables

only because of their scale, although other features actually have a stronger share of

interactions.

When examining the splitting behaviour of the algorithms for scenarios with two inter-

actions of the same size with different feature types, it was notable that SLIM, GUIDE

and partly also MOB choose variables for splitting that reveal subgroups much more fre-

quently than CTree. This enables them to generate considerable smaller and yet better

performing trees than CTree (and MOB), if subgroup depending main effects exist. This

was also shown in the subsequent simulations, with the aim of comparing interpretability,

performance and interpretability of the different algorithms.

As a fundamental problem of all algorithms, however, it turned out that smooth interac-

tions can often only be modelled well by a large number of binary splits, which makes a

global interpretation of MBTs difficult or even impossible for such data. In such cases,

MBTs are probably not the best choice for surrogate models and models like GA2M (Lou

et al., 2013) should be preferred.

One advantage that SLIM and GUIDE have over the other two algorithms is that they

are more flexible in the selection of different (for example penalized) models in the nodes.

However, there is potential for improvement for SLIM and GUIDE in the area of pruning.

Some simulations showed that the size of the trees varies greatly for both algorithms

and that sometimes (incorrectly) highly asymmetric trees are created. To improve this,

hyperparameter tuning of the prepruning parameters would be an option. For SLIM,

however, this could lead to a considerable computational effort because of the exhaustive

search, whereas GUIDE could be better suited for this.
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The simulation example with nonlinear effects as well as the application of MBTs on

insurance data sets have shown that it is recommended to use non-linear models in the

leafnodes. This improves the performance considerably and also ensures that the split is

actually based on interactions. The split effects can then be interpreted visually, which was

carried out in the insurance data use case. If it is necessary that the parameter estimators

of the models are directly interpretable, linear models or polynomial (penalised) models

are an alternative.

MBT algorithms, especially SLIM and GUIDE, are a promising addition - although not

a universal solution - to the possible model classes for surrogate models. Through the

combination of decision rules and (nonlinear) main effect models, a relatively high perfor-

mance and interpretability can be achieved at the same time. However, interpretability

decreases very quickly with a high number of subregions. A compromise must therefore

always be found here. In general, it is advisable to use different IML methods simultane-

ously to check the plausibility of the individual results or to compare them with expert

knowledge, which was done in the case of the insurance data sets.
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A Appendix

A.1 GUIDE replication

To validate the R implementation of GUIDE, the selection bias simulation example from

(Loh, 2002) was replicated for independent features. For this, GUIDE was simulated both

without bootstrap bias correction and with correction in 1000 repetitions. All settings

were chosen to the best of my knowledge as described in the paper. In Table 20 the results

from the paper are listed in the first two columns and in the following two columns the

results from the replication. In the replication the features x1, x2, x2 are also selected in

the uncorrected version to a certain extent as splitting variables. However, the bias is

notable. The effect of the bias correction can also be seen, although not as considerable

as in the results from the paper.

original biased original corrected R biased R corrected
x1 0 178 106 143
x2 0 232 129 180
x3 0 200 118 179
x4 469 181 293 224
x5 531 209 354 274

Table 20: Comparison of the results on selection bias and bias correction from the paper
(Loh, 2002) with my R implementation

A.2 Selection bias correction approach SLIM

By means of a simulation, I investigated how the number of quantiles (n.quantiles) used

as potential splitpoints in SLIM affects the selection bias for numerical features. The data

is defined as follows:

• x1,x2 ∼ U(0, 1)

• x3 uniformly distributed on equidistant grids of length 10, 25, 50 and 100 on the

interval [0,1] (i.e. four different settings)

• y ∼ N(0, 1)

For each of the four simulation scenarios, SLIM trees are fitted with

n.quantiles ∈ {100, 75, 50, 25, 10, 2} and one exact tree (each unique value as potential

splitpoint) in each simulation run. The experiment is repeated 3000 times.

In Table 21 the frequency of the selected features and the resulting train and test mean

MSE for the four different grid sizes and seven different values of n.quantiles is listed.
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x3

gridsize

n.quantiles

exact 100 75 50 25 10 2

10 x1 1439 1388 1353 1309 1249 1120 1039
10 x2 1316 1222 1224 1217 1153 1033 969
10 x3 245 390 423 474 598 847 992
10 MSEtrain 0.9841 0.9850 0.9851 0.9855 0.9863 0.9877 0.9906
10 MSEtest 1.0193 1.0180 1.01789 1.0174 1.0165 1.0154 1.0110
25 x1 1294 1206 1169 1133 1042 995 992
25 x2 1244 1154 1138 1088 1033 1006 1012
25 x3 462 640 693 779 925 999 996
25 MSEtrain 0.9827 0.9833 0.9835 0.9838 0.9844 0.9857 0.9897
25 MSEtest 1.0208 1.0198 1.0197 1.0194 1.0187 1.0172 1.0129
50 x1 1246 1125 1085 1057 1043 1018 1043
50 x2 1120 1035 1018 984 955 948 950
50 x3 634 840 897 959 1002 1034 1007
50 MSEtrain 0.9833 0.9840 0.9841 0.9844 0.9849 0.9863 0.9902
50 MSEtest 1.0189 1.0179 1.01770 1.0173 1.0164 1.0150 1.0108
100 x1 1105 989 998 981 967 942 977
100 x2 1138 1048 1010 1031 1048 1030 1026
100 x3 757 963 992 988 985 1028 997
100 MSEtrain 0.9826 0.9832 0.9834 0.9837 0.9844 0.9859 0.9898
100 MSEtest 1.0166 1.0157 1.0155 1.0151 1.0146 1.0129 1.0087

Table 21: Frequency of feature selection and mean MSE for four different grid sizes and
seven different values of n.quantiles

There one can see that the selection bias in all the variations shown decreases with de-

creasing values of n.quantiles. However, if n.quantiles is chosen equal to the number of

unique values of x3 the selection bias does not seem to be completely eliminated. Only

when n.quantiles is chosen smaller is selection bias no longer visible.

For the MSE, it can be observed that as the number of n.quantiles decreases, theMSEtrain

increases and theMSEtest decreases. ThatMSEtrain increases with decreasing n.quantiles

was to be expected and is due to the fact that if fewer quantiles are used as potential

splitpoint set, the optimal splitpoint may not fall into this set. The values of MSEtest

are not very meaningful here, as there is no dependency between the features and the

target. This means that the forced split is merely an adjustment to the random error

terms, which naturally look different on the test data. A better generalisation is therefore

obtained in this case if the fit to the training errors is not exact.

The scenarios independence numeric and independence mixed from chapter 4 were also

simulated with varying values of n.quantiles. The results are listed in Table 22. In the case

of scenario independence numeric, the approach seems to be successful. However, here

again, only with n.quantiles = 2 selection bias is no longer visible. In the independence

mixed scenario, the frequencies also change, but with no value of n.quantiles an approxi-
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mately unbiased result is found. If n.quantiles is chosen too small, the bias turns in the

other direction (i.e. categorical variables are preferably used for the first split). Within

the numerical variables (x1, ...x3) the balance seems to succeed. The binary variety x4 is

not chosen sufficiently often in any variant. For the MSE, the results correspond to those

of the previous simulation.

x3

scenario

n.quantiles

exact 100 75 50 25 10 2

numeric x1 1062 957 946 913 875 808 757
numeric x2 1033 919 899 879 828 759 757
numeric x3 205 284 293 349 446 646 750
numeric x4 700 840 862 859 851 787 736
numeric MSEtrain 0.9800 0.9807 0.9808 0.9812 0.9820 0.9836 0.9868
numeric MSEtest 1.0194 1.0187 1.0182 1.0179 1.0170 1.0160 1.0112
mixed x1 1259 1186 1185 1153 1095 954 458
mixed x2 1248 1184 1150 1126 1034 891 485
mixed x3 362 465 488 534 638 769 463
mixed x4 19 25 28 29 35 55 203
mixed x5 61 78 83 89 113 188 778
mixed x6 50 61 65 68 84 142 612
mixed MSEtrain 0.9528 0.9535 0.9538 0.9541 0.9550 0.9567 0.9606
mixed MSEtest 1.0515 1.0498 1.0493 1.0486 1.0475 1.0450 1.0399

Table 22: Frequency of feature selection and mean MSE for scenarios selection bias inde-
pendence numeric and independence mixed and seven different values of n.quantiles

In order to investigate whether the correction approach, which seems to work at least

for numerical variables, also leads to unbiased variable selection in the presence of inter-

actions, the numerical vs numerical scenario from chapter 4.3 is simulated for different

values of n.quantiles. The results are listed in Table 23.

x3 only takes on 11 different values in this scenario. In the independence case, it would

therefore be expected that the selection bias decreases with a decreasing number of quan-

tiles and is no longer recognisable at least for n.quantiles = 2. Here, however, a different

picture emerges. If all possible splitpoints are included, the variable x1 with more possible

splitpoints is preferred, as expected. With decreasing values of n.quantiles the relation-

ship changes, but no direct linear relationship can be seen. Rather, the selection bias

reverses at n.quantiles = 100 and then increases sharply and decreases again somewhat

at lower values. However, the bias seems to be smallest when all possible split points are

used for the exhaustive search.

From this we can conclude that unbiasedness in the independence case does not automat-

ically lead to unbiasedness in the presence of interactions. However, it is precisely the

selection bias in the case of present interactions that is important. Since the effect of the
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correction approach on the selection bias in the presence of interactions is hardly generally

predictable, this approach is therefore not recommended. Instead, n.quantiles should be

chosen with regard to the criteria train and test MSE and, if necessary, computational

time.

n.quantiles exact 100 75 50 25 10 2
x1 1643.0000 1272.0000 1135.0000 924.0000 447.0000 592.0000 1809.0000
x3 1357.0000 1728.0000 1865.0000 2076.0000 2553.0000 2408.0000 1191.0000
MSEtrain 0.0373 0.0375 0.0376 0.0377 0.0380 0.0379 0.0393
MSEtest 0.0391 0.0393 0.0393 0.0393 0.0392 0.0392 0.0404

Table 23: Frequency of feature selection and mean MSE for scenario selection bias nu-
merical vs numerical and seven different values of n.quantiles
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A.3 Simulation results

A.3.1 Basic scenarios

XGBoost configurations In Table 24 the XGBoost hyperparameter settings, which

were used for the simulation of the basic scenarios are listed.

linear smooth linear categorical linear mixed
max depth 5 3 5
eta 0.5 0.5 0.5
alpha 1 0.5 2
gamma 2 1 3.5
nrounds 400 350 500

Table 24: XGBoost hyperparameters for basic scenarios after hyperparametertuning

Simulation Results The Figures 23 and 22 each show an example of a SLIM tree with

high and low symmetry on the scenario linear smooth with each 8 leafnodes. The value

impr in the plot is the potential relative improvement of the objective through the best

split for this node in relation to the improvement in the parent node. In the tree 22, the

required improvement of 10% in node 2 is just missed, which is why this node is not split

further.

Figure 22: SLIM tree with high symmetry on scenario linear smooth
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Figure 23: SLIM tree with low symmetry on scenario linear smooth
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In the following tables and figures the mean simulation results of the basic scenarios,

which are not included in chapter 5 are shown.

black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
lm SLIM 0.15 2.06 2 3 0.9650 0.0043 0.9631 0.0046
lm SLIM 0.10 12.11 5 16 0.9965 0.0052 0.9958 0.0060
lm SLIM 0.05 15.70 14 16 0.9995 0.0001 0.9993 0.0001
lm GUIDE 0.15 2.07 2 3 0.9651 0.0044 0.9632 0.0049
lm GUIDE 0.10 12.03 5 16 0.9965 0.0051 0.9957 0.0060
lm GUIDE 0.05 15.75 14 16 0.9995 0.0001 0.9993 0.0001
lm MOB 0.001 15.78 14 16 0.9994 0.0001 0.9993 0.0001
lm MOB 0.010 15.78 14 16 0.9994 0.0001 0.9993 0.0001
lm MOB 0.050 15.78 14 16 0.9994 0.0001 0.9993 0.0001
lm CTree 0.001 15.22 13 17 0.9993 0.0001 0.9992 0.0001
lm CTree 0.010 15.22 13 17 0.9993 0.0001 0.9992 0.0001
lm CTree 0.050 15.22 13 17 0.9993 0.0001 0.9992 0.0001
lm 0.9902 0.0006 0.9901 0.0008
XGBoost SLIM 0.15 2.31 2 6 0.9665 0.0069 0.9629 0.0079
XGBoost SLIM 0.10 7.33 2 14 0.9850 0.0060 0.9814 0.0062
XGBoost SLIM 0.05 14.30 8 17 0.9948 0.0010 0.9909 0.0017
XGBoost GUIDE 0.15 2.26 2 5 0.9664 0.0067 0.9628 0.0077
XGBoost GUIDE 0.10 6.92 2 14 0.9847 0.0061 0.9811 0.0062
XGBoost GUIDE 0.05 14.15 8 17 0.9945 0.0010 0.9906 0.0017
XGBoost MOB 0.001 10.89 8 13 0.9944 0.0005 0.9904 0.0011
XGBoost MOB 0.010 11.96 9 15 0.9946 0.0005 0.9906 0.0011
XGBoost MOB 0.050 12.86 11 15 0.9948 0.0005 0.9908 0.0011
XGBoost CTree 0.001 12.09 9 15 0.9940 0.0006 0.9900 0.0012
XGBoost CTree 0.010 13.21 10 15 0.9943 0.0006 0.9902 0.0013
XGBoost CTree 0.050 14.09 11 17 0.9944 0.0006 0.9904 0.0012
XGBoost 0.9858 0.0008 0.9768 0.0018

Table 25: Mean simulation results on 100 simulation runs as surrogate models on scenario
linear smooth with sample size n = 1500 for different values of impr and alpha

Figure 24: Maximum leaf size of standalone MBTs vs number of leaf nodes scenario linear
smooth with n = 1500, alpha = 0.001, impr = 0.1
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Figure 25: Test fidelity R2 as surrogate on lm predictions vs number of leaf nodes scenario
linear smooth with n = 1500, alpha = 0.001, impr = 0.1

Figure 26: Test fidelity R2 as surrogate on XGBoost predictions vs number of leaf nodes
scenario linear smooth with n = 1500, alpha = 0.001, impr = 0.1
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black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
standalone SLIM 0.15 2.04 2 3 0.9542 0.0034 0.9536 0.0036
standalone SLIM 0.10 36.94 15 58 0.9895 0.0024 0.9880 0.0024
standalone SLIM 0.05 55.84 50 61 0.9910 0.0002 0.9890 0.0004
standalone GUIDE 0.15 2.03 2 3 0.9540 0.0030 0.9534 0.0031
standalone GUIDE 0.10 36.23 14 52 0.9894 0.0023 0.9881 0.0024
standalone GUIDE 0.05 56.35 47 62 0.9909 0.0002 0.9891 0.0003
standalone MOB 0.001 17.15 16 21 0.9901 0.0002 0.9893 0.0004
standalone MOB 0.010 19.14 16 22 0.9902 0.0002 0.9894 0.0004
standalone MOB 0.050 21.71 18 26 0.9903 0.0002 0.9895 0.0004
standalone CTree 0.001 19.19 17 22 0.9901 0.0002 0.9894 0.0004
standalone CTree 0 0.010 21.58 17 25 0.9902 0.0002 0.9895 0.0004
standalone CTree 0.050 24.56 21 30 0.9903 0.0002 0.9895 0.0003
lm SLIM 0.15 2.00 2 2 0.9628 0.0009 0.9625 0.0012
lm SLIM 0.10 52.19 43 60 0.9999 0.0001 0.9998 0.0001
lm SLIM 0.05 63.99 63 64 1.0000 0.0000 1.0000 0.0000
lm GUIDE 0.15 2.00 2 2 0.9628 0.0009 0.9625 0.0012
lm GUIDE 0.10 52.37 43 60 0.9999 0.0001 0.9998 0.0001
lm GUIDE 0.05 63.99 63 64 1.0000 0.0000 1.0000 0.0000
lm MOB 0.001 64.00 64 64 1.0000 0.0000 1.0000 0.0000
lm MOB 0.010 64.00 64 64 1.0000 0.0000 1.0000 0.0000
lm MOB 0.050 64.00 64 64 1.0000 0.0000 1.0000 0.0000
lm CTree 0.001 63.60 62 64 1.0000 0.0000 1.0000 0.0000
lm CTree 0.010 63.60 62 64 1.0000 0.0000 1.0000 0.0000
lm CTree 5 0.050 63.60 62 64 1.0000 0.0000 1.0000 0.0000
lm 0.9901 0.0002 0.9901 0.0003
XGBoost SLIM 0.15 2.22 2 7 0.9647 0.0063 0.9643 0.0063
XGBoost SLIM 0.10 19.23 3 40 0.9908 0.0062 0.9902 0.0062
XGBoost SLIM 0.05 49.05 34 56 0.9978 0.0003 0.9972 0.0003
XGBoost CTree 0.15 32.81 26 41 0.9972 0.0002 0.9965 0.0003
XGBoost CTree 0.10 36.36 29 43 0.9973 0.0002 0.9966 0.0003
XGBoost CTree 0.05 39.37 32 47 0.9974 0.0002 0.9967 0.0003
XGBoost MOB 0.001 38.44 29 47 0.9979 0.0002 0.9972 0.0003
XGBoost MOB 0.010 42.62 31 53 0.9980 0.0002 0.9973 0.0003
XGBoost MOB 0.050 46.02 39 55 0.9981 0.0002 0.9974 0.0003
XGBoost GUIDE 0.001 2.21 2 8 0.9645 0.0061 0.9641 0.0062
XGBoost GUIDE 0.010 19.27 3 38 0.9907 0.0062 0.9900 0.0062
XGBoost GUIDE 0.050 49.90 34 58 0.9977 0.0003 0.9970 0.0004
XGBoost 0.9877 0.0003 0.9852 0.0006

Table 26: Mean simulation results on 100 simulation runs as stand alone and surrogate
models on scenario linear smooth with sample size n = 7500 for different values of impr
and alpha

black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
gam SLIM 0.15 2.00 2 2 0.8528 0.0064 0.8513 0.0108
gam SLIM 0.10 2.64 2 4 0.8972 0.0432 0.8937 0.0440
gam SLIM 0.05 8.56 4 16 0.9910 0.0029 0.9893 0.0039
gam GUIDE 0.15 2.00 2 2 0.8528 0.0064 0.8513 0.0108
gam GUIDE 0.10 2.64 2 4 0.8972 0.0432 0.8937 0.0440
gam GUIDE 0.05 6.06 4 13 0.9875 0.0031 0.9859 0.0038
gam MOB 0.001 13.53 11 15 0.9773 0.0020 0.9718 0.0028
gam MOB 0.010 14.28 13 16 0.9784 0.0020 0.9728 0.0029
gam MOB 0.050 14.92 13 16 0.9797 0.0021 0.9740 0.0028
gam CTree 0.001 13.89 11 16 0.9773 0.0018 0.9720 0.0028
gam CTree 0.010 14.47 12 16 0.9779 0.0017 0.9725 0.0027
gam CTree 0.050 14.86 13 16 0.9783 0.0016 0.9729 0.0028
gam 0.9702 0.0018 0.9694 0.0029
XGBoost SLIM 0.15 2.00 2 2 0.8321 0.0075 0.8323 0.0118
XGBoost SLIM 0.10 4.00 4 4 0.9923 0.0012 0.9870 0.0029
XGBoost SLIM 0.05 4.00 4 4 0.9923 0.0012 0.9870 0.0029
XGBoost GUIDE 0.15 2.00 2 2 0.8321 0.0075 0.8323 0.0118
XGBoost GUIDE 0.10 4.00 4 4 0.9923 0.0012 0.9870 0.0029
XGBoost GUIDE 0.05 4.00 4 4 0.9923 0.0012 0.9870 0.0029
XGBoost MOB 0.001 13.45 11 16 0.9793 0.0063 0.9729 0.0069
XGBoost MOB 0.010 14.38 13 16 0.9831 0.0055 0.9765 0.0066
XGBoost MOB 0.050 14.63 13 16 0.9837 0.0052 0.9771 0.0062
XGBoost CTree 0.001 11.96 10 14 0.9602 0.0030 0.9545 0.0049
XGBoost CTree 0.010 12.76 10 15 0.9612 0.0033 0.9550 0.0050
XGBoost CTree 0.050 13.46 10 16 0.9623 0.0036 0.9558 0.0052
XGBoost 0.9876 0.0015 0.9778 0.0031

Table 27: Mean simulation results on 100 simulation runs as surrogate models on scenario
linear categorical with sample size n = 1500 for different values of impr and alpha
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black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
standalone SLIM 0.15 2.00 2 2 0.8277 0.0032 0.8267 0.0048
standalone SLIM 0.10 4.00 4 4 0.9887 0.0008 0.9886 0.0011
standalone SLIM 0.05 4.00 4 4 0.9887 0.0008 0.9886 0.0011
standalone GUIDE 0.15 2.00 2 2 0.8277 0.0032 0.8267 0.0048
standalone GUIDE 0.10 4.00 4 4 0.9887 0.0008 0.9886 0.0011
standalone GUIDE 0.05 4.00 4 4 0.9887 0.0008 0.9886 0.0011
standalone MOB 0.001 41.23 26 48 0.9896 0.0004 0.9868 0.0011
standalone MOB 0.010 45.50 27 53 0.9899 0.0003 0.9871 0.0011
standalone MOB 0.050 49.24 31 58 0.9902 0.0003 0.9874 0.0011
standalone CTree 0.001 22.51 20 25 0.9499 0.0014 0.9462 0.0022
standalone CTree 0.010 24.39 21 27 0.9502 0.0014 0.9464 0.0023
standalone CTree 0.050 26.62 22 30 0.9507 0.0016 0.9468 0.0023
gam SLIM 0.15 2.00 2 2 0.8532 0.0029 0.8527 0.0043
gam SLIM 0.10 2.22 2 4 0.8681 0.0299 0.8668 0.0302
gam SLIM 0.05 27.66 13 42 0.9940 0.0036 0.9935 0.0039
gam GUIDE 0.15 2.00 2 2 0.8532 0.0029 0.8527 0.0043
gam GUIDE 0.10 2.22 2 4 0.8681 0.0299 0.8668 0.0302
gam GUIDE 0.05 14.56 4 31 0.9886 0.0038 0.9882 0.0040
gam MOB 0.001 61.11 55 64 0.9973 0.0002 0.9966 0.0003
gam MOB 0.010 62.42 59 64 0.9973 0.0002 0.9966 0.0002
gam MOB 0.050 63.15 61 64 0.9974 0.0002 0.9967 0.0002
gam CTree 0.001 33.93 31 38 0.9789 0.0007 0.9769 0.0011
gam CTree 0.010 36.76 34 43 0.9793 0.0008 0.9772 0.0012
gam CTree 0.050 39.43 36 45 0.9798 0.0010 0.9776 0.0013
gam 0.9701 0.0010 0.9698 0.0014
XGBoost SLIM 0.15 2.00 2 2 0.8335 0.0033 0.8334 0.0048
XGBoost SLIM 0.10 4.00 4 4 0.9949 0.0009 0.9942 0.0011
XGBoost SLIM 0.05 4.00 4 4 0.9949 0.0009 0.9942 0.0011
XGBoost GUIDE 0.15 2.00 2 2 0.8335 0.0033 0.8334 0.0048
XGBoost GUIDE 0.10 4.00 4 4 0.9949 0.0009 0.9942 0.0011
XGBoost GUIDE 0.05 4.00 4 4 0.9949 0.0009 0.9942 0.0011
XGBoost MOB 0.001 53.91 49 60 0.9987 0.0002 0.9974 0.0007
XGBoost MOB 0.010 55.38 49 60 0.9988 0.0002 0.9974 0.0007
XGBoost MOB 0.050 56.40 50 61 0.9988 0.0002 0.9974 0.0007
XGBoost CTree 0.001 24.16 19 29 0.9600 0.0016 0.9577 0.0021
XGBoost CTree 0.010 26.39 21 32 0.9605 0.0015 0.9581 0.0021
XGBoost CTree 0.050 28.97 22 36 0.9612 0.0017 0.9587 0.0023
XGBoost 0.9880 0.0009 0.9852 0.0009

Table 28: Mean simulation results on 100 simulation runs as stand alone and surrogate
models on scenario linear categorical with sample size n = 7500 for different values of
impr and alpha

black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
lm SLIM 0.15 3.20 2 13 0.8879 0.0309 0.8806 0.0331
lm SLIM 0.10 13.07 5 16 0.9875 0.0098 0.9843 0.0108
lm SLIM 0.05 14.78 12 16 0.9913 0.0020 0.9885 0.0028
lm GUIDE 0.15 3.17 2 13 0.8872 0.0308 0.8799 0.0329
lm GUIDE 0.10 12.66 7 16 0.9866 0.0095 0.9834 0.0106
lm GUIDE 0.05 14.38 12 16 0.9905 0.0022 0.9876 0.0029
lm MOB 0.001 14.99 13 17 0.9882 0.0016 0.9838 0.0021
lm MOB 0.010 14.99 13 17 0.9882 0.0016 0.9838 0.0021
lm MOB 0.050 14.99 13 17 0.9882 0.0016 0.9838 0.0021
lm CTree 0.001 15.05 13 17 0.9880 0.0016 0.9841 0.0019
lm CTree 0.010 15.05 13 17 0.9880 0.0016 0.9841 0.0019
lm CTree 0.050 15.05 13 17 0.9880 0.0016 0.9841 0.0019
lm 0.9902 0.0006 0.9898 0.0008
XGBoost SLIM 0.15 4.47 2 13 0.9067 0.0336 0.9013 0.0339
XGBoost SLIM 0.10 12.80 7 16 0.9832 0.0089 0.9724 0.0103
XGBoost SLIM 0.05 14.80 12 17 0.9870 0.0018 0.9764 0.0044
XGBoost GUIDE 0.15 4.37 2 13 0.9059 0.0335 0.9005 0.0339
XGBoost GUIDE 0.10 12.48 6 16 0.9822 0.0098 0.9715 0.0112
XGBoost GUIDE 0.05 14.47 12 17 0.9863 0.0022 0.9758 0.0047
XGBoost MOB 0.001 14.82 13 17 0.9853 0.0018 0.9745 0.0047
XGBoost MOB 0.010 14.94 13 17 0.9854 0.0017 0.9746 0.0046
XGBoost MOB 0.050 14.94 13 17 0.9854 0.0017 0.9746 0.0046
XGBoost CTree 0.001 15.03 13 17 0.9850 0.0017 0.9743 0.0042
XGBoost CTree 0.010 15.07 13 17 0.9850 0.0017 0.9743 0.0042
XGBoost CTree 0.050 15.07 13 17 0.9850 0.0017 0.9743 0.0042
XGBoost 0.9859 0.0014 0.9682 0.0042

Table 29: Mean simulation results on 100 simulation runs as surrogate models on scenario
linear mixed with sample size n = 1500 for different values of impr and alpha
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black box MBT impr alpha n leaves n leaves min n leaves max R2
train sd R2

train R2
test sd R2

test
standalone SLIM 0.15 2.30 2 8 0.8637 0.0165 0.8626 0.0176
standalone SLIM 0.10 38.96 21 54 0.9865 0.0029 0.9849 0.0030
standalone SLIM 0.05 59.03 51 64 0.9904 0.0005 0.9884 0.0006
standalone GUIDE 0.15 2.30 2 8 0.8637 0.0165 0.8626 0.0176
standalone GUIDE 0.10 38.06 21 54 0.9866 0.0028 0.9851 0.0029
standalone GUIDE 0.05 58.20 45 63 0.9903 0.0005 0.9885 0.0006
standalone MOB 0.001 48.54 43 55 0.9888 0.0004 0.9861 0.0007
standalone MOB 0.010 53.17 48 58 0.9891 0.0003 0.9864 0.0007
standalone MOB 0.050 56.07 51 60 0.9893 0.0003 0.9866 0.0006
standalone CTree 0.001 51.70 47 57 0.9887 0.0004 0.9858 0.0006
standalone CTree 0.010 54.85 50 58 0.9889 0.0004 0.9860 0.0006
standalone CTree 0.050 56.76 52 61 0.9890 0.0003 0.9860 0.0006
lm SLIM 0.15 2.17 2 16 0.8683 0.0094 0.8677 0.0103
lm SLIM 0.10 39.69 19 55 0.9956 0.0028 0.9953 0.0030
lm SLIM 0.05 57.51 46 64 0.9991 0.0005 0.9990 0.0006
lm GUIDE 0.15 2.17 2 16 0.8683 0.0094 0.8677 0.0103
lm GUIDE 0.10 40.32 19 55 0.9960 0.0026 0.9956 0.0028
lm GUIDE 0.05 57.32 46 64 0.9991 0.0005 0.9990 0.0006
lm MOB 0.001 63.11 60 64 0.9973 0.0002 0.9964 0.0003
lm MOB 0.010 63.11 60 64 0.9973 0.0002 0.9964 0.0003
lm MOB 0.050 63.11 60 64 0.9973 0.0002 0.9964 0.0003
lm CTree 0.001 62.72 59 64 0.9973 0.0002 0.9964 0.0003
lm CTree 0.010 62.72 59 64 0.9973 0.0002 0.9964 0.0003
lm CTree 0.050 62.72 59 64 0.9973 0.0002 0.9964 0.0003
lm 0.9901 0.0003 0.9902 0.0004

XGBoost SLIM 0.15 2.22 2 12 0.8693 0.0121 0.8706 0.0129
XGBoost SLIM 0.10 39.52 23 53 0.9931 0.0027 0.9914 0.0027
XGBoost SLIM 0.05 56.86 46 63 0.9964 0.0005 0.9948 0.0007
XGBoost GUIDE 0.15 2.15 2 9 0.8693 0.0119 0.8705 0.0127
XGBoost GUIDE 0.10 38.13 22 52 0.9928 0.0027 0.9912 0.0028
XGBoost GUIDE 0.05 56.72 46 63 0.9963 0.0006 0.9946 0.0007
XGBoost MOB 0.001 58.76 54 63 0.9961 0.0003 0.9942 0.0005
XGBoost MOB 0.010 59.47 55 64 0.9961 0.0003 0.9943 0.0005
XGBoost MOB 0.050 59.69 55 64 0.9961 0.0003 0.9943 0.0005
XGBoost CTree 0.001 58.51 53 62 0.9956 0.0003 0.9936 0.0005
XGBoost CTree 0.010 58.95 54 63 0.9956 0.0003 0.9936 0.0005
XGBoost CTree 0.050 59.09 54 63 0.9956 0.0003 0.9936 0.0005
XGBoost 0.9877 0.0007 0.9836 0.0011

Table 30: Mean simulation results on 100 simulation runs as stand alone and surrogate
models on scenario linear mixed with sample size n = 7500 for different values of impr
and alpha
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A.3.2 Linear smooth with noise features

Figures 27 and 28 show the the R2 test accuracy in scenario linear smooth with noise fea-

tures. Figure 28 shows that in this scenario asymmetric trees (i.e. trees with a maximum

leafsize > 700) lead to poorer performance in SLIM and GUIDE.

Figure 27: Test accuracy R2 of MBTs on scenario Linear smooth with noise features with
n = 3000, alpha = 0.001, impr = 0.1 with nleaves ≥ 11

Figure 28: Test accuracy R2 of SLIM and GUIDE MBTs on scenario Linear smooth with
noise features with n = 3000, alpha = 0.001, impr = 0.1 with nleaves ≤ 11

A.3.3 Nonlinear effects

XGBoost configurations In Table 31 the XGBoost hyperparameter setting for simu-

lation nonlinear is shown.
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nonlinear
max depth 4
eta 0.825
alpha 0.75
gamma 1
nrounds 700

Table 31: XGBoost hyperparameters for scenario nonlinear after hyperparametertuning

black box model n leaves n l min n l max n split feat n sf min n sf max % main effect df sd df
standalone basic lm 43.06 36 48 5.68 4 6 0.5089 6.5804 0.1249
standalone penalized poly 19.32 16 22 4.26 3 5 0.2374 8.8768 0.3681
standalone B-Splines 18.38 13 22 4.26 3 6 0.0126
standalone gam 17.60 12 22 3.44 2 4 0.0007
XGBoost basic lm 30.38 2 47 4.56 1 6 0.6732 6.8519 0.1558
XGBoost penalized poly 20.66 16 24 4.70 3 6 0.2327 9.2909 0.4347
XGBoost B-Splines 17.38 2 25 4.70 1 6 0.0597
XGBoost gam 15.28 2 24 4.00 1 6 0.0191

Table 32: Mean interpretability simulation results nonlinear variant 2

black box model R2
train sd R2

train R2
test sd R2

test time in sec
standalone basic lm 0.9633 0.0035 0.9469 0.0048 102.2842
standalone penalized poly 0.9824 0.0015 0.9781 0.0020 195.4385
standalone B-Splines 0.9929 0.0013 0.9714 0.0029 113.2447
standalone gam 0.9880 0.0016 0.9835 0.0017 1544.3393
XGBoost basic lm 0.9198 0.0516 0.9030 0.0417 72.3790
XGBoost penalized poly 0.9750 0.0033 0.9634 0.0051 206.5870
XGBoost B-Splines 0.9865 0.0141 0.9591 0.0092 97.9321
XGBoost gam 0.9786 0.0127 0.9672 0.0115 1728.6021
XGBoost XGBoost 0.9392 0.0342 0.9216 0.0405 3.0131

Table 33: Mean performance simulation results nonlinear effects variant 2

XXI



Interpretation of black box models using tree-based surrogate models

A.4 Insurance use case

A.4.1 K2204 BPV

Figure 29: SLIM tree with linear models as standalone model for BPV in data set K2204

Figure 30: Frequency of observations with respect to feature age

A.4.2 K2204 PPV

All plots and tables shown in the chapter 6.1 for the data set k2204 with target BPV are

shown here for the target PPV (or PPV pred). The interpretation can be done analogously

to chapter 6.1. The effects found here are merely all larger (since PPV is also larger than

BPV) and their direction is exactly reversed.

Figure 31 plots the prediction of the baseline B-spline model and the two B-spline SLIM

surrogates against PPV pred to visualise performance improvement.
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R2 MSE MAE max AE n leaves
linear baseline model 0.985092 2.523500 1.277544 7.271319 1
SLIM 0.999232 0.130069 0.255018 2.300768 8
GUIDE 0.999275 0.122765 0.240393 2.300768 8
MOB 0.998524 0.249776 0.353372 2.758192 8
CTree 0.995088 0.831537 0.643819 4.808448 8

Table 34: Fidelity of K2204 PPV linear baseline model and linear MBTs

age duration sex
SLIM 0.28 0.67 0.05
GUIDE 0.28 0.72 0.00
MOB 0.10 0.77 0.13
CTree 0.00 0.96 0.04

Table 35: Share of observations split by the different features K2204 PPV linear MBTs

Figure 31: B-spline surrogate predictions vs. PPV pred for K2204

The fidelity results for all B-spline surrogates are listed in Table A.4.2 .

Table A.4.2 shows the proportions of observations that were split according to the different

features.
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R2 MSE MAE max AE n leaves
B-spline baseline model 0.9943260 0.9604583 0.7605289 4.249894 1
SLIM shallow 0.9994172 0.0986492 0.2046541 1.880490 8
GUIDE shallow 0.9993896 0.1033306 0.2132615 1.849715 8
MOB shallow 0.9992104 0.1336634 0.2494695 2.063691 8
CTree shallow 0.9990906 0.1539409 0.2713325 2.069590 8
SLIM deep 0.9997505 0.0422310 0.1208647 1.421309 21
GUIDE deep 0.9997299 0.0457276 0.1315567 1.307047 20
MOB deep 0.9996846 0.0533855 0.1510094 1.342777 21
CTree deep 0.9997083 0.0493729 0.1451053 1.385141 20

Table 36: Fidelity of K2204 PPV B-spline baseline model and B-spline MBTs

age duration sex
SLIM shallow 0.38 0.62 0.00
GUIDE shallow 0.30 0.70 0.00
MOB shallow 0.08 0.84 0.08
CTree shallow 0.23 0.71 0.07
SLIM deep 0.35 0.60 0.04
GUIDE deep 0.20 0.78 0.02
MOB deep 0.08 0.76 0.16
CTree deep 0.20 0.67 0.13

Table 37: Share of observations split by the different features K2204 PPV B-spline MBTs

Figure 32: SLIM tree for K2204 PPV with B-spline models

R2 MSE MAE max AE
SLIM 0.9997757 0.0383432 0.1140380 1.3335727
Blackbox model 0.9998305 0.0289638 0.1060365 0.5345493

Table 38: Accuracy of standalone B-spline SLIM MBTs and of the black box model K2204
PPV
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Figure 33: Input-output relation of features in nodes split by duration for SLIM tree with
B-splines and depth 3

Figure 34: Input-output relation of features in nodes with duration ≤ 25 split by age for
SLIM tree with B-splines and depth 3

XXV



Interpretation of black box models using tree-based surrogate models

Figure 35: Input-output relation of features in nodes with 25 >duration <= 40 split by
age for SLIM tree with B-splines and depth 3
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B Electronic appendix

Data, code and figures are provided in electronic form at https://github.com/slds-lmu/

msc_2022_loibl_thesis. All simulations and evaluations were carried out using the sta-

tistical software R (R Core Team, 2022). The simulations were carried out on the Linux

cluster of the Leibniz Supercomputing Centre using the package batchtools (Lang et al.,

2017). The author gratefully acknowledge the Leibniz Supercomputing Centre for funding

this project by providing computing time on its Linux-Cluster. For data manipulation,

the packages data.table (Dowle and Srinivasan, 2021), dplyr (Wickham et al., 2022) and

stringr (Wickham, 2022) were used. Visualization was done with ggplot2 (Wickham,

2016), GGally (Schloerke et al., 2021), ggpubr (Kassambara, 2020) and igraph (Csardi

and Nepusz Tamas, 2006). For fitting the black box xgboost models, the package mlr3

(Lang et al., 2019) was used.
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