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Abstract

We put forward an extension to already existing Lagrangian constraint algorithms, which is readily
applicable to (almost all) first–order classical field theories. Our algorithm is optimized to obtain the
explicit constraints and thus count the number of propagating degrees of freedom in said theories.
This is the main result of the thesis. We employ both the renowned Dirac–Bergmann procedure
and our own formalism to obtain the constraint structure of the H(P)–formulation of non–linear
electrodynamics and two–dimensional Palatini gravity. Both approaches yield the same results.
We observe that our proposed method is an algebraically simpler and conceptually clearer way to
calculate the number of physical modes.

The relevance and usefulness of our novel Lagrangian iterative procedure are twofold. On the one
hand, it simplifies the determination of the constraint structure of these theories. This is particularly
pertinent for effective theories of multiple interacting fields of different spins, whose analysis is in
general cumbersome and which are prone to the presence of additional unphysical modes — ghosts.
On the other hand, it constitutes an essential first step towards establishing a Lagrangian building
principle for genuinely ghost–free theories. Indeed, given a first–order Lagrangian, our method
yields its associated constraint structure. It is then possible to reverse the logic and find out the
conditions a Lagrangian must satisfy in order to possess a certain constraint structure. This natural
follow–up is work in progress.

Wir schlagen eine Erweiterung zu bereits existierenden Lagrange Zwangsbedingungsalgorithmen
vor, welche ohne weiteres auf (fast alle) klassischen Feldtheorien erster Ordnung anwendbar ist.
Unser Algorithmus ist optimiert, um die explizite Form der Zwangsbedingungen zu erhalten und
ermöglicht damit das Zählen der propagierenden Freiheitsgrade in diesen Theorien. Das ist das
Hauptergebnis dieser Arbeit. Wir wenden sowohl das renommierte Dirac–Bergmann Verfahren,
als auch unseren eigenen Formalismus an, um die Zwangsbedingungsstruktur der nicht–linearen
Elektrodynamik in ihrer H(P)–Formulierung und der zweidimensionalen Palatini Gravitation zu
bestimmen. Beide Ansätze liefern das gleiche Ergebnis. Wir beobachten, dass unsere Methode der
algebraisch einfachere und konzeptuell klarere Weg ist, um die Anzahl der physikalischen Moden
zu berechnen.

Relevanz und Nutzen unseres neuen iterativen Lagrange Verfahrens ist zweifältig. Einerseits verein-
facht es die Bestimmung der Zwangsbedingungsstruktur besagter Theorien. Das ist besonders rel-
evant für effektive Feldtheorien mehrerer wechselwirkender Felder mit verschiedenen Spins. Deren
Analyse ist im Allgemeinen umständlich und sie sind anfällig für das Auftauchen zusätzlicher, un-
physikalischer Moden — Geister. Andererseits stellt es den ersten essenziellen Schritt in Richtung
eines Konstruktionsprinzips für wirklich geistfreie Theorien dar. Unter Voraussetzung einer La-
grangedichte erster Ordnung kann mit unserer Methode die zugehörige Struktur der Zwangsbedin-
gungen bestimmt werden. Es ist dann möglich die Logik umzukehren und Bedingungen zu finden,
die eine Lagrangedichte erfüllen muss, um eine bestimmte Zwangsbedingungsstruktur aufzuweisen.
Dies ist Teil einer Follow–up–Arbeit in Vorbereitung.
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Motivation

Today, dark energy and dark matter are thought to make up about 95% of the energy density
of the universe. Type Ia Supernovae, the cosmic microwave background and baryonic acoustic
oscillations are convincing evidence for an accelerated expansion of the universe driven by dark
energy. Without dark matter, we cannot explain the rotational curves of galaxies, gravitational
lensing and structure formation in the universe. Even though the existence of the dark sector is
strongly implied by observations, we are far from settling the question of its true nature. The
simplest dark energy candidate — a cosmological constant — suffers from a huge discrepancy
between the quantum field theoretical explanation of its origin and experimental data [1]. With
a difference of around 120 orders of magnitude, this is sometimes called the worst prediction of
theoretical physics.

Evidently, not all observations can be explained by a plain constant on its own. Therefore, one
must entertain additional degrees of freedom in order to account for the plethora of cosmological
data. The aspiration is not to develop a fundamental theory to this aim, but to model the still
unexplained observations in the context of effective classical field theories. In the following, we
review, in increasing order of algebraic complexity, the pertinent different gravitational models
theorists have put forward so far.

Scalar fields

The simplest possibility is to couple a scalar, i.e. spin–0, field to the metric. As it happens, not any
arbitrary real scalar–tensor coupling will introduce one and only one additional degree of freedom.
When assembling new models, one has to be careful not to do more harm than good: it can happen
that a naively proposed theory contains unphysical propagating modes — so called ghosts. Notably,
the exhaustive and consistent way to couple a scalar field to the metric was derived already over 40
years ago by G.W. Horndeski [2]. Now known as (scalar) Horndeski theory1, it represents the most
general scalar–tensor theory that keeps all physical requirements. Namely, it has a positive energy
density, propagates the appropriate number of degrees of freedom — two modes of the metric and
one mode of the scalar field — and yields at most second–order equations of motion, thus avoiding
Ostrogradsky instabilities [5].

Already this simple scenario of an additional scalar field exhibits a rich phenomenology. The corre-
sponding one degree of freedom (two in the complex case) has proven to be fruitful for cosmological
applications, including the modeling of dark matter [6], inflation [7] and the accelerated late–time
expansion of the universe [8].

Vector fields

The logical continuation of our previous line of though is to consistently couple vector fields to
gravity. We thus introduce two (in the massless case) or three (in the massive case) additional
degrees of freedom to the system. There is also a strong physical motivation to consider spin–1
fields. It is well–known that the appearance of additional symmetries enhances the protection
of the natural values of effective parameters. Indeed, endowing gravity with symmetries beyond
diffeomorphism invariance has proven to be able to raise the classically predicted value of the
cosmological constant [9]. Further, vector models allow for the simultaneous realization of two
fundamental symmetries of nature. It is thus pertinent to look at the coupling between spin–2 and
spin–1 fields.

1Recently discussed Galileon interactions [3] represent a subclass of scalar Horndeski interactions [4].
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Maxwell

Interestingly, also G.W. Horndeski came to this logical conclusion several decades ago — shortly
after he developed the most general scalar–tensor theory. His idea was to couple a massless spin–1
field to the metric, under the requirement that the vector field’s equations of motion reduce to
Maxwell’s equations. He thus derived the most general Lagrangian that can be constructed from
the metric and a vector (gauge) field in four–dimensional spacetime, which yields at most second–
order equations of motion [10]. He did so without worrying about any canonical analysis, but
rather pursuing an on–shell study of the field equations. Despite being overlooked for a long time
by the physics community, the aforementioned vector Horndeski theories are now applied regularly
in astrophysics [11] and cosmology [12].

Proca

The textbook example of a massive vector field Aµ is the standard Proca action:

SP =

∫
d4x

[
− 1

2
FµνF

µν +m2AµA
µ

]
,

where the (non–derivative) self–interaction2 of the vector field explicitly breaks the U(1) gauge
invariance. As a consequence, the longitudinal mode of the vector field propagates and contributes
an additional degree of freedom to the system. This is in stark contrast to Maxwell’s electrody-
namics, where the gauge symmetry eliminates the longitudinal polarization mode and only the two
transversal helicities propagate. Indeed, it is noted in [13] that the additional “degree of freedom
[...] might not be so undesirable after all” and can have interesting cosmological applications. In-
vestigations of the coupling between a standard Proca field and gravity include dark matter [14]
and novel black holes [15, 16]. Provided that only the mass m entered as a new parameter, options
are quite limited.

Generalized Proca

An extension of the notion of mass in classical field theory allows for more complex realizations
of the Proca field. The difference between a massive and a massless vector field is reflected in
the presence of an additional physical degree of freedom. Thus, one might try to explicitly break
the gauge symmetry of the vector field by different self–interactions and ask what happens if,
besides the hard mass term of the form AµA

µ, one includes derivative self–interactions of the vector
field. Do these necessarily introduce further, unphysical, degrees of freedom? This question was
independently posed for the first time in [4] and [13] and lead to the construction of the so–called
generalized Proca (or vector Galileon) theory. Schematically, its action takes the form

SgP =

∫
d4x

[
− 1

2
FµνF

µν + Lint

]
,

where the self–interaction part Lint now also contains first–order derivatives of the vector field and
certain products thereof. These models are widely used for their rich phenomenology in astro-
physics, including dark energy [17], self-accelerating cosmologies [18] and inflation [19].

2This is sometimes called the hard mass term.
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The need for taking one step back

As should be apparent by now, possibilities to alter the dynamical content of a gravitational theory
are vast and one can possibly lose track of all the different attempts. Furthermore, by no means
is there any proof that all the proposed and applied models are actually free of ghosts. As an
example, consider two generalized Proca fields A(1) and A(2) in flat spacetime, interacting via

Lint = α ∂ ·A(1) + β ∂ ·A(2),

where α and β are smooth functions of A(1) and A(2). This model does indeed propagate a ghost–like
degree of freedom, if the non–trivial condition

∂α

∂A
(2)
0

− ∂β

∂A
(1)
0

= 0,

is not satisfied [20]. The moral is clear: ghosts are to be expected in generalized Proca theories,
unless they are purposely avoided.

Of course, it is interesting to explore the cosmological implications of any generalized Proca theory
in the presence of gravity. However, if nobody takes care of the foundations, at some point the
whole building is bound to collapse. Realizing the need for taking one step back, in this thesis we
begin the rigorous analysis of consistent models of modified gravity. By virtue of simplicity, we
focus on the easiest possibility mentioned above: couplings of (massive) vector fields to gravity.
These theories are often claimed to be free of unphysical pathologies — ghosts — but a complete
proof of this assertion is still missing. To guarantee ghost–freedom, an explicit canonical analysis is
inevitable. For instances consider [20, 21], where it was shown that multiple interacting generalized
Proca fields in flat spacetime generically propagate ghosts unless stringent conditions are enforced.
Nonetheless, the constraint analysis of any extended gravity action is a highly non–trivial task,
which gets especially involved when fields of spin s > 0 are coupled. Such an analysis is far from
being made systematic as of yet. This thesis contributes to fill in this fundamental gap.

Organization of the thesis

This thesis is divided into four parts. Part I provides a self–contained introduction to the mathe-
matical foundations of constrained systems. Part II starts with an introduction to singular systems
in the form of Lagrangian and Hamiltonian mechanics. Here, we lay the basis for their treatment
under constraint algorithms. Subsequently, we discuss the Dirac–Bergmann theory of constraints,
which is a Hamiltonian approach, and we put forward a novel Lagrangian constraint algorithm.
In part III, we analyze in detail the concrete examples of non–linear electrodynamics and d = 2
Palatini gravity. We do so using the Dirac–Bergmann prescription and our own Lagrangian ap-
proach and verify that the latter is much more efficient in both cases. The thesis concludes with
part IV, where the main results are summarized and discussed. In the end, we give an outlook to
a manuscript under preparation, which shall be a natural follow–up to this thesis.
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Main results

The main, and novel, results in this thesis are:

1. An extension to already existing constraint algorithms, which allows for a straightforward
count of physical degrees of freedom in (almost) any first–order field theory, given its La-
grangian. This algorithm is presented in Sec. 5.2 and its relevance and usefulness are explained
in Sec. 8.

2. The complete characterization of non–linear electrodynamics in purely Lagrangian as well as
Hamiltonian terms in Secs. 6.2 and 6.3, respectively. The Lagrangian approach can be readily
seen to be much more convenient and conceptually clearer.

3. The complete characterization of d = 2 Palatini in purely Lagrangian as well as Hamilto-
nian terms in Secs. 7.3 and 7.4, respectively. These analyses unequivocally show that the
Lagrangian approach is computationally and conceptually simpler.

Quick read

For the comfort of the reader, this thesis admits the following quick read. In the beginning of every
section, a brief summary of the most important ideas, concepts and results can be found. These
overviews are easy to spot, as they are highlighted by boxes. Together with the present motivation
section and the concluding section, the boxed text constitutes a synopsis of the thesis.
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Part I

Mathematical framework

1 From sets to manifolds

In this section, we build up the notion of smooth manifolds, starting from set theory. Sets, as
collections of distinct objects, carry little structure on their own. Still, already at this elementary
stage, we can introduce important operations and make the notion of a mapping precise. It is
insightful to equip sets only stepwise with more and more structure. By doing so, we understand
which structure is necessary and sufficient to introduce each pertinent concept. We thus arrive at
topological manifolds, i.e. spaces that locally resemble Rd, and construct natural coordinate systems
in them, which we refer to as charts. These coordinates allow us to talk about differentiability of
manifolds in terms of the usual concept of differentiation in R

d. Crucially, a differentiable manifold
has an associated tangent space at each point, which will be essential for our geometrical formulation
of classical mechanics. fiber bundles and sections are introduced as purely mathematical concepts
at this stage and only later will be used to define important physical concepts.

1.1 Sets

A set is one of the most basic mathematical objects one can even think of and essentially every
concept in modern mathematics can be defined in terms of sets [22]. Especially, in the context of
differential geometry the relevance and ubiquity of ideas from set theory will be clear and hopefully
prevent us from getting more confused than necessary. Even though there is much to say about the
theory of sets, for the intents and purposes of this work it is enough to stick to the naive intuition
of a set:

A set is a collection of distinct objects, which can be considered as an object in its own right3.

We call such a distinct object an element of the set and write a ∈ A to state that a is an element
belonging to the set A. Similarly we write a /∈ A if a is not an element of A. When explicitly writing
down a set, we usually enclose its elements with curly brackets. For example, A = {2, 3, 5, 7} is the
set that contains all prime numbers smaller than 10 as its elements.

Set terminology There is some basic notation regarding the relationship between two sets A
and B.

1. A = B means that both sets have exactly the same elements.

2. A ⊆ B denotes that A is a subset of B, i.e. every element of A is also an element of B.

3. A is a proper subset of B, denoted by A ⊂ B, if A ⊆ B and A 6= B.

4. Two sets are called disjoint, if they have no elements on common.

On the size of sets The cardinality of a set is a measure of how many elements are in the set.
The set A = {2, 3, 5, 7} has 4 elements, hence its cardinality is 4 and we write |A| = 4. The set that
has no elements is called the empty set and is denoted by ∅. We can therefore write |∅| = 0 [22].

3Notice that in modern, so–called axiomatic, set theory there is no definition of a set itself, but only of axioms
concerning the sets and the relation between sets.
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Set operations For a pair of sets A and B there are three basic operations we can perform to
build new sets.

1. A ∪B = {x : x ∈ A or x ∈ B} is the union of A and B.

2. A ∩B = {x : x ∈ A and x ∈ B} is the intersection of A and B.

3. A \B = {x : x ∈ A and x /∈ B} is the set difference of A and B.

Cartesian product Let A and B be two sets. The Cartesian product A×B is defined to be the
set of pairs

A×B = {(x, y) : x ∈ A and y ∈ B}.

Intuitively the Cartesian product is very clear, namely we pair up the elements of the set A with
the elements of B and put them together as an ordered pair (a, b) [22].

1.1.1 Maps between sets

A map φ : A → B is a relation4 between two sets. For every a ∈ A there exists exactly one b ∈ B
such that φ(a, b)5. The usual notation is

φ : A→ B,

a 7→ φ(a) := b,

which is strictly speaking an abuse of notation since φ should have two arguments. Anyhow, since
for every a ∈ A there exists exactly one b ∈ B such that φ(a, b) is true, for each a we can define
φ(a) to be that unique b. Even though we have no formal understanding of what a relation is, the
naive intuition of a map should be clear: It acts on elements of A and relates them to elements of
B [23].

Terminology for sets Let φ : A→ B be a map and let V ⊆ B. We refer to

1. A as the domain of φ,

2. B as the target of φ,

3. imφ(A) := {φ(a) | a ∈ A} as the image6 of A under φ, and

4. preimφ(V ) := {a ∈ A | φ(a) ∈ V } as the preimage of V under φ.

While giving names to objects and concepts doesn’t change their nature, it is very helpful in order
to specify what we talk about and to communicate statements to others in an unambiguous way.
Similarly, we can also encompass properties of a map itself in an extra label.

4A relation is a set of ordered pairs. We can e.g. fully represent the squaring function x 7→ x2 by ordered pairs,
one for each real number.

5We say it is a single–valued relation.
6If we talk about the image of the whole domain this is often abbreviated as im(φ).
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Terminology for maps Let φ : A→ B be a map. We call the map

1. surjective, if φ(A) = B,

2. injective, if φ(a1) = φ(a2) ⇒ a1 = a2,

3. bijective, if it is injective and surjective.

If there exists a bijection φ : A→ B, the two sets A and B are called (set–theoretically) isomorphic
and we write A ∼= B. Even though A 6= B (i.e. the elements are not identical) the map is structure
preserving and can be reversed by an inverse mapping. Classifying sets (and later spaces) by
means of their properties and the structure–preserving maps between them is a recurrent theme in
mathematics.

Composition of maps Given two maps φ : A→ B and ψ : B → C we can construct a map

ψ ◦ φ : A→ C,

a 7→ ψ(φ(a)),

called composition, which first applies the map φ and afterwards the map ψ. Representing the
situation pictorially as in Fig. 1 seems unnecessary at this point but will turn out to be very helpful
once things get more involved. Using the notion of composition we can make the idea of an inverse

Figure 1: Illustration of a composition of maps.

map precise. Let φ : A→ B be a bijection. Then the inverse of φ is the map φ−1 : B → A, defined
uniquely by

φ−1 ◦ φ = idA,

φ ◦ φ−1 = idB,

where idM is the identity map which maps every element m ∈M to itself

idM :M →M,

m 7→ m.

1.2 Manifolds

Obviously, bare sets don’t carry enough structure by themselves to be of direct use for our ap-
plications. We could just start our discussion at a more advanced stage but it is interesting and
insightful to see how it is — in principle — possible to build the spaces we work with in physics
from the theory of sets.

3



1.2.1 Topological spaces

The most general notion of a mathematical space7 is a topological space and it allows for the
definition of concepts such as continuity, connectedness, and convergence. Let M be a non–empty
set. Then a choice OM ⊆ P(M)8 is called a topology on M if [24]

1. ∅,M ∈ OM ,

2. the intersection of two sets in OM remains in OM , and

3. the arbitrary union of sets in OM is again in OM .

The pair (M,OM ) is then called a topological space and we call the sets in OM open sets. Notice
that there are, in general, different topologies we can choose on one and the same set.

Neighborhood Let (M,OM ) be a topological space and let m ∈M . A neighborhood of m in M
is any open set U ∈ OM which contains m [24].

Continuity Let (M,OM ) and (N,ON ) be topological spaces and let φ :M → N be a map. Then
φ is called continuous, if

∀V ∈ ON : preimφ(V ) ∈ OM .

Homeomorphism Let φ : M → N be a bijection between topological spaces (M,OM ) and
(N,ON ). We call φ a homeomorphism if [25]

1. φ :M → N is continuous and

2. φ−1 : N →M is continuous.

This means that φ provides a one–to–one pairing of the open sets of M and N and we write
(M,OM ) ∼= (N,ON ). Homeomorphisms are the structure preserving maps in topology.

Hausdorff condition A topological space (M,OM ) is called Hausdorff (or separated) if given
any pair of distinct points q1, q2 ∈ M , there exist neighborhoods U1 of q1 and U2 of q2 with
U1 ∩U2 = ∅ [26]. Sometimes this is simplified as open sets separate points. Notably, the Hausdorff
condition implies the uniqueness of limits of sequences on the topological space.

1.2.2 Topological manifolds

The topological spaces that physicists use to represent spacetime have a special property. Namely,
it is possible to uniquely label any particular spacetime point by specifying the values of a finite
set of real numbers. The size of this finite set is identified with the dimension of the space [27].
This leads us to the strikingly simple idea behind a topological manifold: It is a topological space
that locally looks like R

d.

7Space here means some set equipped with some structure.
8P(M) is the power set of M . Its elements are precisely the subsets of M .
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Definition A Hausdorff topological space (M,OM ) is called a d–dimensional (topological) man-
ifold if for every p ∈ M there exists an open neighborhood U ∈ OM and a homeomorphism
φ : U → φ(U) ⊆ R

d.

The above definition is the lowest common denominator among different authors. Usually one
puts additional requirements on topological manifolds at some point, like paracompactness9 [28]
and/or second-countability10 [26]. Luckily, we will not deal with such pathological cases in the
course of this work and are happy to stick to our intuition of a topological space that locally looks
like Euclidean space.

1.2.3 Charts and Atlases

Let (M,OM ) be a topological manifold of dimension d. The pair (U, φ), where

U ∈ OM and φ : U → φ(U) ⊆ R
d,

is called a chart of the manifold. By defining a chart, one labels each point p ∈ U by d real numbers

φ(p) = (φ1(p), φ2(p), ..., φd(p)).

The d functions φ1, ..., φd are called the coordinates associated with the chart [29]. This means that
coordinates are to be thought of as (local) functions on the manifold, see Fig. 2.

Figure 2: A local coordinate chart.

9The weakest topological notion which implies the existence of a partition of unity which in turn is used to define
integration on the manifold.

10Ensures that there are “not too many” open sets.
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Chart transition functions Crucially, charts are not unique and often a single chart is not
enough to cover the whole domain of interest. Let (U1, φ1) and (U2, φ2) be two coordinate charts
onM that have a non–vanishing intersection U1∩U2 6= ∅. The chart transition function is the map
φ2 ◦φ−1

1 from the open subset φ1(U1 ∩U2) ⊆ R
d to the open subset φ2(U1 ∩U2) ⊆ R

d as illustrated
in Fig. 3. The two charts are said to be Ck–compatible if their chart transition functions (in both
directions) are differentiable of class Ck, i.e. if they are k–times continuously differentiable as maps
between open subsets of Rd.

Figure 3: Coordinate transition function of two charts.

Atlases An atlas A on M is a family of coordinate charts (Ui, φi)i∈I such that their union covers
all of M : ⋃

i∈I

Ui =M.

If its charts are pairwise Ck–compatible it is called a Ck–atlas. A Ck–atlas is called complete if it is
maximal, i.e. if any chart (U, φ) that is Ck–compatible with any other chart (V, ψ) ∈ A is already
contained in A. For a complete atlas, the family (Ui, φi)i∈I is called a differentiable structure on
M [27].

1.2.4 Fiber bundles

A bundle (of topological manifolds) is a triple (E, π,M), where the topological manifolds E and M
are called total space and base space, respectively, and the continuous map

π : E →M,
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is called projection. Let p ∈M , then

Fp := preimπ({p}),

is called fiber over p. The above definition of a bundle is very general and in all applications in
physics the bundles that arise have a special property: the fibers are all homeomorphic to a common
space F . Therefore, let (E, π,M) be a bundle, such that

∀p ∈M : preimπ({p}) ∼= F,

for some topological manifold F . Then (E, π,M) is called a fiber bundle with (typical) fiber F [27].

Sections

Let (E, π,M) be a fiber bundle. A map

σ :M → E,

is called a section of the bundle, if
π ◦ σ = idM .

Notice that a map from M to the total space E could go anywhere, but only if it “goes back to the
fiber” it is a section, as depicted in Fig. 4.

Figure 4: The map σ constitutes a section of the bundle, whereas the σ̃ fails to do so.

1.2.5 Differentiable manifolds

A Ck–manifold is a triple (M,OM ,AM ) where (M,OM ) is a topological manifold and AM is a
maximal Ck–atlas. That means the Ck.-manifold is equipped with a differentiable structure of
class Ck. If k ≥ 1 it is called a differentiable manifold. The case of a C∞–manifold is also referred
to as a smooth manifold. Without loss of (physically relevant) generality all manifolds that are
to appear in this work are assumed to be smooth. Notice that smoothness is a condition on the
differentiability of transition functions between different charts covering the manifold.
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Tangent space A key feature of a differentiable manifold is that there exists a tangent space at
each point of the manifold, which is essential in order to formulate physics in geometrical terms11.
In the case of a 2–sphere (S2) we can imagine the tangent space as a plane at each point of the
sphere. If we think about this tangent plane naively as in Fig. 5, we assume an ambient space (in
this case R

3) in which the 2–sphere is embedded. However, it is possible to define this concept

Figure 5: How we think about the tangent space of S2 at a certain point.

intrinsically in two dimensions without any embedding. To do so, we first have to introduce some
basic concepts from linear algebra to complement the machinery we built so far. Notice that there is
no mathematical reason for us to choose the intrinsic definition over the embedded one — rather a
physical one. Later on, when we understand a certain manifold as spacetime itself, it is conceptually
alleviating not to think about any embedding.

Diffeomorphisms Let φ :M → N be a bijective map and let both φ and φ−1 be of class Ck, then
φ is called a (Ck–)diffeomorphism. Diffeomorphisms are the structure preserving maps between
differentiable manifolds. Consequently (M,OM ,AM ) and (N,ON ,AN ) are called diffeomorphic if
there exists a diffeomorphism between them. In that case we write M ∼= N . A diffeomorphism
φ :M →M is said to be a transformation of M [30].

11In particular, tangent spaces will provide the structure for the notion of a derivative.

8



2 Vector spaces and tangent bundles

We begin this section by introducing essential ideas from linear algebra, such as (dual) vector
spaces and their corresponding (dual) basis, together with linear transformations. These concepts
are of immediate interest for physics. Rank and nullity of linear transformations will be of utmost
importance in our discussion of constrained systems.

Based on our prior discussion, we equip the tangent space with a vector space structure. This allows
not only for a generalized idea of the directional derivative in terms of tangent vectors, but also for
the construction of a basis on the tangent and cotangent spaces. This is crucial for our purposes,
since most of our physical discussion will take place in these spaces. Thereafter, push–forward and
pull–back, which will be used frequently throughout this thesis, are introduced.

By putting together all the tangent spaces of a manifold we construct its tangent bundle. Among
other things, it provides a domain and range for the derivative of a smooth function. Vector fields
and their generalization — tensor fields — can be intrinsically defined in terms of tangent bundles.
We further investigate special kinds of tensor fields, namely differential forms, and establish impor-
tant operations between them. Additionally, integral curves and second–order differential equations
and their formal definition are discussed. This provides a strong link to physical applications, in
particular to the Hamiltonian and Lagrangian formulations of classical mechanics.

2.1 Linear algebra

Fields A field is a triple (K,+, ·), where K is a set and + and · are two maps

+ : K×K → K,

· : K×K → K,

that satisfy the so–called field axioms12. A well known example of a field are the real or the complex
numbers. As a rule of thumb, one can do math in a field as one would do in R [31]. If the map ·

fails to satisfy commutativity and does not have an inverse, we usually call the triple a ring. For
example, (Z,+, ·) is a commutative ring. It only lacks the multiplicative inverse for a field.

2.1.1 Vector spaces and algebras

Let K be a field. If we have two maps (or operations)

⊕ : V × V → V,

⊙ : K× V → V,

which satisfy the vector space axioms13, we call (V,⊕,⊙) a K–vector space [31].

Subspaces A subspace of a vector space V is a subset S ⊆ V that is a vector space in its own right
under the operations obtained by restricting the operations of V to S. Notice that any subspace of
a vector space has a complement. If S ⊆ V , then there exists a subspace T for which V = S ⊕ T .
We then call T a complement of S in V [32].

12Each map has to satisfy commutativity, associativity and possess a neutral element as well as an inverse.
13⊕ follows the field axioms, ⊙ has to be distributive instead of commutative.
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Linear maps Let f : V →W be a map between the two K–vector spaces (V,⊕,⊙) and (W,⊞,⊡).
If f satisfies the properties

1. ∀v1, v2 ∈ V : f(v1 ⊕ v2) = f(v1)⊞ f(v2),

2. ∀λ ∈ K, v ∈ V : f(λ⊙ v) = λ⊡ f(v),

we call it a linear map and write V
∼−→ W . A bijective linear map is called a vector space isomor-

phism. We denote by Lin(V,W ) the set of all linear maps from V to W , which is a vector space in
its own right [32].

Dual vector space Let V be a K–vector space. The dual vector space to V is

V ∗ := {f : V
∼−→ K},

where K is considered as a vector space over itself. The dual vector space to V is the vector space
of linear maps from V to the underlying field K, which are called linear functionals, covectors, or
one-forms on V .

Algebras A vector space (V,+, ·) equipped with a product, i.e. a bilinear map • : V × V
∼−→ V ,

is called an algebra (V,+, ·, •). For example, the set of all linear operators Lin(V, V ) can be made
into an algebra [32].

2.1.2 Tensors

Bilinear maps Let V,W,Z be vector spaces over some field K. A map f : V ×W → Z is said
to be bilinear if

1. ∀w ∈W : ∀v1, v2 ∈ V : ∀λ ∈ K : f(λv1 + v2, w) = λf(v1, w) + f(v2, w),

2. ∀v ∈ V : ∀w1, w2 ∈W : ∀λ ∈ K : f(v, λw1 + w2) = λf(v, w1) + f(v, w2).

In other words, when we hold the first entry (resp. second entry) of the bilinear map fixed, while
letting the second entry (resp. first entry) vary, the result is a linear operator. The generalization
of this concept are multilinear maps.

Definition Let V be a vector space over some field K. A (p, q)–tensor T on V is a multilinear
map

T : V ∗ × · · · × V ∗

︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

→ K,

i.e. it is linear in each slot. We write

T p
q V := V ⊗ · · · ⊗ V︸ ︷︷ ︸

p

⊗V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸
q

:= {T | T is a (p, q)-tensor},

and equip it with the usual point–wise addition and S–multiplication, such that (T p
q ,⊕,⊙) is a

vector space.

Tensor product Let T ∈ T p
q V and S ∈ T r

s V . The tensor product of T and S is the tensor
T ⊗ S ∈ T p+r

q+s V defined by

(T ⊗ S)(w1, . . . , wp, wp+1, . . . , wp+r, v1, . . . , vq, vq+1, . . . , vq+s),

:= T (w1, . . . wp, v1, . . . vq) ·K S(wp+1, . . . , wp+r, vq+1, . . . , vq+s).
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2.1.3 (Dual) Basis

Let (V,+, ·) be a vector space over K. Then a subset B ⊆ V is called a (Hamel) basis for V if [31]

1. every finite subset {b1, . . . , bN} of B is linearly independent, i.e.

N∑

i=1

λibi = 0 ⇒ λ1 = · · · = λN = 0.

2. B is a spanning set of V , i.e.

∀v ∈ V : ∃v1, . . . , vM ∈ K : ∃b1, . . . , bM ∈ B : v =

M∑

i=1

vibi.

We define the dimension of V as dim(V ) := |B|. Furthermore, we can construct a basis on V ∗ once
we have a basis B on V . This induced basis is called dual basis and is defined by

ǫa(eb)
!
= δab ,

where basis vectors of V are labeled by a downstairs index (e1, . . . , ed ∈ V ) and basis vectors of V ∗

are labeled by upstairs indices (ǫ1, . . . , ǫd ∈ V ∗).

From now on we will make use of the Einstein summation convention, which means that we suppress
the summation sign when the indices to be summed over each appear once as a subscript and once
as a superscript in the same term. Indices that are summed over are called dummy indices.

2.1.4 Rank and nullity of a linear transformation

Let V and W be K-vector spaces and let f ∈ Lin(V,W ). We define the kernel of f as the subspace
of V which gets mapped to 0 by application of f , i.e.

ker(f) := {v ∈ V | f(v) = 0}.

The dimension of ker(f) is called nullity of f and we denote it by null(f). Furthermore, we define
the rank of f as the dimension of its image, i.e. rank(f) := dim(im(f)).

Rank-nullity theorem The rank-nullity theorem relates the dimensions of a linear map’s kernel
and image with the dimension of its domain. It states that

rank(f) + null(f) = dim(V ),

and only holds true for finite-dimensional vector spaces [32].

2.2 Tangent spaces

2.2.1 Tangent vectors

Let M be a smooth manifold. Then we can construct the R–vector space (C∞(M),⊕,⊙) with
point–wise defined operations:

(f ⊕ g)(p) := f(p) +R g(p),

(λ⊙ f)(p) := λ ·R f(p),

where f, g ∈ C∞(M), λ ∈ R and p ∈M .
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Directional derivative operator Let γ : R → M be a smooth curve through a point p ∈ M .
Without loss of generality we choose p = γ(0). Then the directional derivative operator (at p along
γ) is the linear map

Xγ,p : C
∞(M)

∼−→ R,

f 7→ (f ◦ γ)′(0).

Note that (f ◦ γ) is a map R → R, hence we can use our usual notion of a derivative, denoted by
an apostrophe (’). We often call Xγ,p the tangent vector14 to the curve γ at p ∈ M . Notice that
the tangent vector formally is an operator that acts on smooth functions [27] but we often think of
it as depicted in Fig. 6.

Figure 6: Intuition for the tangent vectors at p ∈ M . On has to run through all curves with all
possible velocities to get every Xγ,p.

2.2.2 Tangent vector space

The tangent vector space TpM is defined as the set of all tangent vectors to the smooth curve γ at
p ∈M .

TpM := {Xγ,p | γ smooth curve through p},
equipped with addition and S–multiplication

⊕ : TpM × TpM → TpM,

⊙ : R× TpM → TpM,

defined pair–wise as

(Xγ,p ⊕Xδ,p)(f) := Xγ,p(f) +R Xδ,p(f),

(λ⊙Xγ,p)(f) := λ ·R Xγ,p(f).

14There are many conceptually different, but equivalent, definitions of a tangent vector in the literature. For an
extensive overview see e.g. Alan Kenningtons stupendous work in progress ”Differential geometry reconstructed”.
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Tangent space basis Let M be a smooth manifold and let (U, x) be a local chart, centered at
p ∈ U . Consider (dim–M) many curves γ(a) : R → U through p. The action of a tangent vector
ea := Xγ(a),p on an arbitrary function f ∈ C∞(U) is given by

eaf = Xγ(a),pf = (f ◦ γ(a))′(0) = ∂a(f ◦ x−1) := (
∂

∂xa
f)p.

As a matter of fact, any X ∈ TpM can be written as X = Xa( ∂
∂xa )p, i.e. the (

∂
∂x1 )p, . . . , (

∂
∂xdim(M) )p

are a generating system for TpM . Additionally they are linearly independent and thus constitute
a basis of TpM . The real numbers X1, . . . , Xdim(M) are called the components of the vector X
with respect to the tangent space basis induced from the chart (U, x), p ∈ U [29]. Notice that this
implies dim(TpM) = dim(M), i.e. the vector space dimension of the tangent space at each point
of the manifold coincides with the dimension of M as a topological manifold.

2.2.3 Cotangent vector space

LetM be a smooth manifold, we define the cotangent space as the dual of the tangent vector space:
T ∗
pM := (TpM)∗ [33].

Gradient Let f ∈ C∞(M) and X ∈ TpM . At every point p ∈M we have a linear map

dp : C
∞(M)

∼−→ T ∗
pM,

f 7→ dpf,

defined by (dpf)(X) := Xf , called the gradient operator at p ∈M . We call dpf the gradient of the
function f at p. Notice that dpf is a covector, not a vector.

Cotangent space basis We can use the gradient operator to construct a basis of T ∗
pM : Let

p ∈ U ⊆ M and (U, x) be a chart. Then dpx
1, dpx

2, . . . , dpx
dim(M) is called the chart–induced

covector basis at p. In fact this is even the dual basis, as can be seen easily:

dpx
a((

∂

∂xb
)p) = (

∂

∂xb
)px

a = ∂b(x
a ◦ x−1

︸ ︷︷ ︸
proja

)(x(p)) = δab , a, b = 1, . . . , dim(M).

2.2.4 Push–forward and pull–back

Push–forward Let φ : M → N be a smooth map between smooth manifolds. Furthermore let
f : N → R, X ∈ TpM , and p ∈ M . Then the Push–forward of the map φ at the point p is the
linear map

(φ∗)p : TpM
∼−→ Tφ(p)N,

X 7→ (φ∗)p(X),

defined by (φ∗)p(X)f := X(f ◦ φ)15. Fig. 7 illustrates how the tangent vector Xγ,p of a smooth
curve γ at p is pushed forward to the tangent vector of the smooth curve (φ ◦ γ) at φ(p), i.e.
(φ∗)p(Xγ,p) = Xφ◦γ,φ(p).

15Notice that this is the derivative of φ at p and agrees with our definition of a tangent vector.
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Figure 7: The idea of a push–forward: Y = φ∗(X).

pull–back Let φ : M → N be a smooth map, let p ∈ M , X ∈ TpM , and ω ∈ T ∗
φ(p)N . Then the

pull–back of φ at φ(p) ∈ N is the linear map

(φ∗)p : T
∗
φ(p)N

∼−→ T ∗
pM,

ω 7→ (φ∗)p(w),

where (φ∗)p(ω) is defined as

(φ∗)p(ω) : TpM
∼−→ R,

X 7→ ω((φ∗)p(X)),

hence (φ∗)p(ω)(X) := ω((φ∗)p(X)). So, if ω is a covector on N , its pull–back (φ∗)p(ω) is a covector
on M . It acts on tangent vectors on M by first pushing them forward to tangent vectors on N ,
and then applying ω to get a real number.

Remarks In general, one should keep in mind that vectors are pushed forward and covectors are
pulled back. If the map φ :M → N is a diffeomorphism we can also pull a vector Y ∈ Tφ(p)N back
to a vector (φ∗)p(Y ) ∈ TpM , and push a covector η ∈ T ∗

pM forward to a covector (φ∗)p(η) ∈ T ∗
φ(p)N .

We do this by using φ−1 in the following way:

(φ∗)p(Y ) := ((φ−1)∗)φ(p)(Y ),

(φ∗)p(η) := ((φ−1)∗)φ(p)(η).

2.3 Tangent bundles

Idea Let M be a smooth manifold and p ∈M , let I ⊂ R be an open interval and γ : R →M be
a smooth curve. For every t ∈ I the tangent vector Xγ,t is an element of Tγ(t)M and therefore, as t
runs through I, Xγ,t runs through the tangent spaces along γ. To follow the tangent vector along
γ it is convenient to consider the totality of all tangent spaces of M [34]. This idea is sketched in
Fig. 8.
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Figure 8: Tangent vectors along a curve.

Tangent bundle The tangent bundle TM is defined as the disjoint union of the tangent spaces
at all points of the manifold:

TM :=
⋃

p∈M

TpM,

equipped with the canonical projection map

π : TM →M,

X 7→ p,

where p is the unique p ∈M such that X ∈ TpM . The map π naturally associates with each tangent
vector the point at which it is tangent [27]. In fact, for any smooth manifold M of dimension d,
the set TM is a smooth 2d–dimensional manifold. This can be shown by constructing a smooth
atlas on TM from a given smooth atlas on M [33]. The tangent bundle (TM, π,M) is a so–called
vector bundle, i.e. a fiber bundle whose fibers are vector spaces. In an abuse of notation TM alone
is often called the tangent bundle.

Cotangent Bundle Completely analogous we define the cotangent bundle as the vector bundle
(T ∗M,π,M), where

T ∗M :=
⋃

p∈M

T ∗
pM,

is the disjoint union of all cotangent spaces of M . The bundle projection map π is defined accord-
ingly.

2.3.1 Vector fields

Consider (TM, π,M) as above. We define a vector field as a smooth section σ of the tangent
bundle, i.e. it satisfies π ◦ σ = idM . A vector field is a smooth assignment of a tangent vector at
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each point of M . We call the set of all vector fields Γ(TM) := {σ : M → TM | π ◦ σ = idM}
(sometimes also X(M)) and equip it with two operations16.

1.

⊕ : Γ(TM)× Γ(TM) → Γ(TM),

(σ, τ) 7→ σ ⊕ τ,

where

σ ⊕ τ :M → Γ(TM),

p 7→ (σ ⊕ τ)(p) := σ(p) + τ(p),

2.

⊙ : C∞(M)× Γ(TM) → Γ(TM),

(f, σ) 7→ f ⊙ σ,

where

f ⊙ σ :M → Γ(TM),

p 7→ (f ⊙ σ)(p) := f(p) · σ(p),

Apparently, we can give the set of all vector fields a “vector space–like” structure itself. However,
notice that (C∞,+, •) is a ring, not a field, and therefore Γ(TM) is not a vector space. Instead
we call it a module, and we call (Γ,⊕,⊙) a C∞–module. In contrast to a vector space, a module
needn’t have a basis in general17.

2.3.2 Integral curves and Flows

Let M be a n-dimensional smooth manifold and let X be a vector field on M , i.e. X ∈ Γ(TM). A
smooth curve γ : I →M on M is an integral curve of X if

γ̇(t) = Xγ(t), ∀t ∈ I. (1)

In other words, an integral curve of a vector field is a smooth curve whose tangent vectors are
given by the values of this vector field along the curve [34], as illustrated in Fig. 9. We choose local
coordinates, such that

γ(t) = (γ1(t), . . . , γn(t)),

and Xi(γ(t)) are the coefficients of X at γ(t). We can infer from (1) that γ is an integral curve of
X iff it locally satisfies the system of first–order ordinary differential equations [35]

γ̇i(t) = Xi(γ(t)), i = 1, . . . , n. (2)

If Xi(γ(t)) is smooth, the system (2) is guaranteed to have a unique solution for each set of
initial data. This in turn implies the existence of a unique maximal integral curve γmax : I → M
passing through a given point γmax(0) ∈ M . Maximal means that γmax is not contained in any
longer integral curve, i.e. if γ̃ : Ĩ → M is any other integral curve with the same initial value
γ̃(0) = γmax(0), then Ĩ ⊂ I and γ̃(t) = γmax(t) for t ∈ Ĩ [36].

16+ and · are the addition and scalar multiplication on TpM .
17However, if the underlying ring is a division ring, i.e. a ring in which division is possible, the module is guaranteed

to have a basis. Therefore, every vector space has a basis, since any field is a division ring.
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Figure 9: The curve γ is an integral curve of X, whereas γ̃ is not.

Flows Denote the maximal integral curve passing through a point p in M by Ψt(p) and call Ψ
the flow generated by X. For each p ∈ M and t ∈ I ⊆ R containing 0, Ψt(p) is a point on the
integral curve passing through p. The flow of a vector field can be viewed as a smooth map

Ψ : I ×M →M,

satisfying the basic properties [36, 37]

1. Ψs(Ψt(p)) = Ψs+t(p), ∀s, t ∈ R, and p ∈M ,

2. Ψ0(p) = p,

3. d
dt
Ψt(p) = X|Ψt(p).

The reason for the terminology “flow” can be understood in the following way. Picture X as a
velocity vector field of some steady state fluid. The integral curves of X are the stream lines
followed by the fluid particles. If a particle started at position p at time t = 0, then the flow Ψt(p)
is the position of the particle after “flowing” for the amount of time t on its integral curve.

Complete vector fields A vector field X is said to be complete if all of its integral curves have
the domain I = R [37], i.e. every one of its integral curves exists for all time. In this case,

Ψt(Ψ−t(p)) = Ψ0(p) = p, ∀t ∈ R,

hence the Ψt are diffeomorphisms of M and we call the family {Ψt}t∈R one–parameter group of
diffeomorphisms [37].

2.3.3 Second–order differential equations

The geometrical description of integral curves and flows will find applications in the context of
Hamiltonian mechanics, where the equations of motion are first–order differential equations. As
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we will see later, the Lagrangian formulation of classical mechanics involves less variables, but as a
consequence one has to deal with second–order differential equations. In the following they will be
introduced from a geometrical standpoint. Let M be a smooth manifold and consider its tangent
bundle TM as a smooth manifold in its own right. The tangent bundle T (TM) has two different
vector bundle structures over the base TM . One is given by the natural projection

τTM : T (TM) → TM,

while the other is given by the bundle map

τ∗ : T (TM) → TM,

which is the the Push–forward of
τ : TM →M.

The vector fields X in TM are sections with respect to the natural projection, i.e. τTM ◦X = idTM .
Those vector fields, that are also a section with respect to τ∗ are a special type of vector field: They
are the geometric version of second–order differential equation systems. We define a second–order
differential equation field as a vector field X ∈ X(TM), such that [38]

τ∗ ◦X = idTM .

The situation is illustrated in Fig 10.

Figure 10: A second–order differential equation field X consists of simultaneous sections with
respect to τTM and τ∗.

2.3.4 Lie algebra

Let M be a smooth manifold and let X,Y ∈ Γ(TM). The Lie bracket (or commutator) of X and
Y is defined as

[X,Y ] : C∞(M)
∼−→ C∞(M)

f 7→ [X,Y ](f) := X(Y (f))− Y (X(f)).
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As a map
[·, ·] : Γ(TM)× Γ(TM) → Γ(TM),

it satisfies the properties

1. R–bilinearity,

2. Antisymmetry,

3. Jacobi identity.

Hence, the pair (Γ(TM), [·, ·])18 has the structure of an algebra, and we call it Lie algebra of vector
fields [34].

Lie subalgebras Let X1, . . . , Xs be vector fields on M , such that

[Xi, Xj ] = Ck
ijXk, i, j = 1, . . . , s.

The coefficients Ck
ij ∈ R are called structure constants of the Lie subalgebra L := (spanR{X1, . . . , Xs}, [·, ·])

[39].

2.3.5 Tensor fields

We can extend the concept of a vector field to include the idea of a (r, s)–tensor field on M .
This is, in complete analogy, a smooth assignment of a tensor of type (r, s) to each point p ∈ M
[27]. We could therefore understand a tensor field as a section of the tensor bundle of type (r, s).
Equivalently, a tensor field τ on M is as a C∞(M)–multilinear map

τ : Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r copies

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s copies

→ C∞(M).

Notice, that we could have defined a vector field (being a special kind of tensor field) as a derivation
on the algebra C∞(M), i.e. an R–linear map σ : C∞ ∼−→ C∞(M). Due to the point–wise nature of
tensors both definitions are equivalent, hence we can pick whichever suits our purpose the most.

2.3.6 Differential forms

Our discussion of differential forms is mainly based on [27] and [34]. If necessary, we give further
references throughout the text. Let M be a smooth manifold and X1, . . . , Xk ∈ Γ(TM). A
(differential) k–form is a (0, k)–tensor field ω that is antisymmetric under the exchange of any pair
of indices, i.e.

ω(X1, . . . , Xk) = sgn(π)ω(Xπ(1), . . . , Xπ(k)).

We call π ∈ Perm(k) a permutation of the integers {1, . . . , k} and sgn(π) is the signature of the
permutation, defined as +1 if π is even and −1 if π is odd. The set of all k–forms on M is denoted
by Ωk(M) and can be made into a C∞(M)-module by defining the addition and multiplication
operations point–wise. Notice that Ω0(M) ≡ C∞(M) and Ω1(M) ≡ Γ(T 0

1M) ≡ Γ(T ∗M).

18Regard Γ(TM) as an R–vector space.
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Pull–back of forms In Fig. (11) we show the action of the pull–back of a covector (or 1–form),
which we have introduced earlier. We can generalize this idea to forms of arbitrary degree19. Let
φ :M → N be a smooth map and let ω ∈ Ωk(N). We define the pull–back φ∗(ω) ∈ Ωk(M) of ω as

φ∗(ω) :M → T ∗M,

p 7→ φ∗(ω)(p),

where φ∗(ω)(p)(X1, . . . , Xk) := w(φ(p))(φ∗(X1), . . . , φ∗(Xk)), for Xi ∈ TpM .

Figure 11: Action of the pull–back of ω ∈ Γ(T ∗N)

Wedge product The tensor product ⊗ does not possess all the desired properties for a product
of forms, e.g. the tensor product of two forms is not necessarily a form. We therefore define the
wedge (or exterior) product of forms as the map

∧ : Ωk(M)× Ωl(M) → Ωk+l(M),

(ω, σ) 7→ w ∧ σ,
where

(w ∧ σ)(X1, . . . , Xk+l) :=
1

k!l!

∑

π∈Perm(k+l)

sgn(w ⊗ σ)(Xπ(1), . . . , Xπ(k+l))

and X1, . . . , Xk+l ∈ Γ(TM). As an example, suppose that ω, σ ∈ Ω1(M). Then, for any X,Y ∈
Γ(TM) we find

(ω ∧ σ)(X,Y ) = (w ⊗ σ − σ ⊗ ω)(X,Y ),

hence we write ω ∧ σ = (w ⊗ σ − σ ⊗ ω).

Let φ : M → N be smooth, ω ∈ Ωk(M), and σ ∈ Ωl(N). Two, particularly convenient, properties
of the wedge product are

1. The pull–back distributes over the wedge product, such that Φ∗(ω ∧σ) = Φ∗(ω)∧Φ∗(σ), and

2. (ω ∧ σ) = (−1)k·l(σ ∧ ω).
19In a similar way one can define the pull–back of any smooth (p, q) tensor field.
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Exterior derivative We can extend the definition of the gradient operator at a point p ∈ M
and understand it as an operator that takes in 0–forms and produces 1–forms

d : Ω0(M)
∼−→ Ω1(M).

This, in turn, can be extended to an operator which acts on any k–form. The exterior derivative
on M is the R-linear operator (formally a derivation)

d : Ωk(M)
∼−→ Ωk+1(M),

ω 7→ dω,

where

dω(X1, . . . , Xk+1) :=
k+1∑

i=1

(−1)i+1Xi(ω(X1, . . . ,✚✚Xi , . . . , Xk+1))

+
∑

i<j

(−1)i+jω([Xi, Xj ], X1, . . . ,✚✚Xi , . . .✚✚Xj , . . . , Xk+1),

and Xi ∈ Γ(TM). In the case k = 1, the form dω ∈ Ω2(M) is given by

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

The exterior derivative satisfies d◦d = 0 as well as a graded version of the Leibniz rule with respect
to the wedge product. Let ω ∈ Ωk(M) and σ ∈ Ωl(M) [40]. Then

d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ.

Furthermore, if φ :M → N is a smooth map and ω ∈ Ωk(N), one can show that

Φ∗(dω) = d(Φ∗(ω)).

Informally, one sometimes says that the exterior derivative “commutes” with the pull–back.

Interior product Let ω ∈ Ωk(M) and X ∈ Γ(TM). Another basic operation we can perform is
the contraction of ω with X and intuitively we just insert the vector field X into the first slot of
ω. We can make our intuition precise by understanding this operation as a map

ιX : Ωk(M) → Ωk−1(M),

ω 7→ ιXω,

defined as ιXω(X1, . . . , Xk−1) := ω(X,X1, . . . , Xk−1) [41]. Like the exterior derivative it is a graded
derivation on Ωn(M), i.e. it satisfies

ιX(ω ∧ σ) = (ιXω) ∧ β + (−1)kω ∧ (ιXσ),

∀ω ∈ Ωk(M) and σ a form of arbitrary degree.

Closed and exact forms We say that a differential form ω ∈ Ωk(M) is closed if dω = 0, and
exact if there exists a (k − 1)-form η on M such that ω = dη. The fact that d ◦ d = 0 implies that
every exact form is closed, but the converse may not be true [40].
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2.3.7 Lie derivative

The Lie derivative £ with respect to a smooth vector field X on a smooth manifold M extends the
directional derivative along the integral curves of X from functions to tensor fields T on M . The
idea is to compare the value of T ∈ Γ(T p

qM) at a given point m with its values along the integral
curve through m, transported back to m by the flow of X [34]. We define

(£XT )m :=
d

dt

∣∣∣∣
t=0

((Ψ−t)∗T )m, (3)

where Ψ denotes the flow generated by X. The Lie derivative satisfies the following properties.

1. £Xf = X(f),

2. £XY = [X,Y ],

3. £X(T + S) = £XT +£XS,

4. £X(T (ω, Y )) = (£XT )(ω, Y ) + T (£Xω, Y ) + T (ω,£XY ),

5. £X+Y = £XT +£Y T ,

where f ∈ C∞(M), X,Y ∈ Γ(TM), ω ∈ Ω1(M) and T a (1, 1)–tensor field. Property 4 can easily
be extended to arbitrary (p, q)–tensor fields.

3 Geometry: additional structure

We add the last puzzle pieces to our formal construction and define (pseudo–)Riemannian and
symplectic geometries. We call a smooth manifold, equipped with a specific (0, 2) tensor field, a
(pseudo–)Riemannian manifold. This additional structure allows to define intuitive notions like
distances and the length of a curve on the manifold. Even though it is beyond the scope of this
thesis to define them in their full glory, we briefly introduce connections and relate them to the
covariant derivative of tensor fields. We discuss symmetries of the metric, known as isometries, and
their infinitesimal generators – Killing fields.

If a smooth manifold is equipped with a non–degenerate, closed 2–form, we call it a symplectic
manifold. One of the most fundamental theorems in the context of symplectic geometry is Dar-
boux’s theorem. It allows to choose canonical local coordinates in every open neighborhood around
a point of the symplectic manifold. Similar to how we can always represent a metric at every point
in its diagonal form with entries ±1, it is possible to always find the so–called normal form of a
symplectic form. The development of symplectic geometry is closely related to the geometrical for-
mulation of Hamiltonian mechanics, which will already be obvious from the terminology at hand.
We introduce Hamiltonian vector fields and the Poisson bracket in purely geometrical terms and
see how the cotangent bundle admits a natural symplectic structure.

At the end of this section we have, by systematically equipping sets with more and more structure,
arrived at the very language in which most of modern theoretical physics is formulated. The pin-
nacle of our construction are Riemannian manifolds and the cotangent bundle of a configuration
space, that naturally admits a symplectic structure. The link between symplectic geometry and
Hamiltonian mechanics at this point becomes self–evident. On these spaces, we can perform all the
operations we shall naively require and we understand their origin and limitation. Thus, we finally
have all the machinery at hand to discuss singular systems in a thorough manner.
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3.1 Riemannian geometry

Despite its clear intuition, we did not introduce the notion of a metric up to this point. This is
due to the simple fact that it was not necessary yet. As we stressed before, we try to establish
the basic concepts of differential geometry in a systematic manner, in particular not assume more
structure than needed at any given point. But when it comes to physical systems, our manifolds
will, of course, always be equipped with a metric. We therefore need to introduce this concept in
the following.

3.1.1 Aside: metric spaces

In some sense a metric space is a special kind of topological space, since every metric space de-
termines a unique canonical topology. A metric function on the other hand is not, in general,
consistent with the topology on a topological space20 [25]. In Fig. 12 we try to put the concept of a
metric space into perspective. Notice how we took the left path to arrive at differentiable manifolds
without the need for a metric. Usually the defining properties of a topological manifold are strong
enough to guarantee its metrizability21.

Figure 12: The role of metric spaces

Metric A metric space is a set A together with a function

dist : A×A→ R,

called a metric. It satisfies the following three properties:

20In other words: Not every topological space is metrizable.
21See e.g. the Urysohn Metrization Theorem.
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1. dist(x, y) ≥ 0 and dist(x, y) = 0 ⇔ x = y (Positivity)

2. dist(x, y) = dist(y, x) (Symmetry)

3. dist(x, z) ≤ dist(x, y) + dist(y, z) (Triangle inequality)

3.1.2 Riemannian manifolds

The metric tensor Let M be a smooth manifold. A Riemannian metric on M is a tensor field
g ∈ Γ(T 0

2M) such that

1. ∀p ∈M, ∀V1, V2 ∈ TpM : gp(V1, V2) = g(p)(V2, V1) and

2. ∀p ∈M, ∀V ∈ TpM \ {0} : gp(V, V ) > 0.

In other words, at each point of the manifold gp is a symmetric positive definite bilinear form.
One usually omits the lowercase p unless it may cause confusion. If we relax the requirement of
positive-definiteness and the metric instead satisfies for any V1 ∈ TpM

g(V1, V2) = 0 ⇔ V2 = 0,

we call it pseudo–Riemannian metric. By making use of the spectral theorem we can always
diagonalize a symmetric matrix and Sylvester’s law allows us to choose a basis such that the entries
of the metric are ±1. We can use this to categorize a metric by its signature, i.e. a pair (i, j),
where i is the number of positive eigenvalues and j the number of negative eigenvalues. The case
of j = 1 is called Lorentz metric [42].

Definition A (smooth) Riemannian manifold is a pair (M, g), where M is a smooth manifold
and g a Riemannian metric. A Riemannian manifold is a differentiable manifold with a metric-
space distance function which is required to have a particular kind of relation to the differentiable
structure.

The notion of distance On a Riemannian manifold (M, g) the metric assigns, in a differentiable
fashion, a positive definite inner product 〈·, ·〉 in each tangent space TpM [43]. The norm (or
length) of a tangent vector vp ∈ TpM is defined by ‖vp‖ :=

√
gp(vp, vp) and the length of a curve

γ : [a, b] →M is defined by [29]

Lγ :=

∫ b

a

‖γ′(t)‖dt.

Local representation Let (U, φ) be a chart on M with coordinates {xµ}. Since g is a (0, 2)
tensor field we can express it in terms of the canonical basis as

gp = gµν(p)dx
µ ⊗ dxν ,

and it is common practice to regard (gµν) as a matrix whose (µ, ν)th entry is gµν . Furthermore,
since (gµν) has maximal rank, it has an inverse22 denoted by (gµν), which satisfies

gµνg
νλ = δλµ.

22Actually, since the metric tensor is a bilinear map gp : TpM × TpM → R, it cannot be inverted in the way a
linear map can. This issue can be resolved with musical isomorphisms [33], where one holds one of the inputs of gp
constant and ends up with a linear map.
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Notice that a Riemannian metric gives rise to an isomorphism between TpM and T ∗
pM and with

the help of the inverse metric we can write [42]

ωµ = gµνU
ν and Uµ = gµνων ,

for ω ∈ T ∗
pM and U ∈ TpM . This is often called lowering and raising indices of tensors

3.1.3 Connections

A connection is related to the concepts of parallel transport and covariant differentiation on a
differentiable manifold. In fact, the terms connection and covariant derivative are often used as
synonyms at this stage. We already know that a vector Xp ∈ TpM is a directional derivative acting
on a function f ∈ C∞(M) as Xp : f 7→ Xp(f), but there is no notion of a directional derivative
acting on a vector field (let alone a general (p, q) tensor field). By introducing a connection we will
be able to transport tensors along a curve and hence specify a directional derivative of tensors.

Affine connection An affine (or linear) connection ∇ is a map

∇ : Γ(TM)× Γ(TM) → Γ(TM),

(X,Y ) 7→ ∇XY,

which satisfies the following conditions [42]:

1. ∇X(Y + Z) = ∇XY +∇XZ,

2. ∇(X+Y )Z = ∇XZ +∇Y Z,

3. ∇(fX)Y = f∇XY ,

4. ∇X(fY ) = X(f)Y + f∇XY ,

where f ∈ C∞(M) and X,Y, Z ∈ Γ(TM).

Connection coefficients Let (U, φ) be a chart with the coordinate x = φ(p) on M . Let {eν} =
{ ∂
∂xν } be the coordinate basis in TpM . We define the connection coefficients Γλ

µν as the functions
that specify how the basis vectors change from point to point, such that

∇µeν = eλΓ
λ
µν .

Once we know how ∇ acts on the basis vectors, we can calculate its action on any vector. For
V,W ∈ TpM we find

∇VW = V µ∇µ(W
νeν) = V µ(eµ(W

ν)eν +W ν∇µeν)

= V µ

(
∂W λ

∂xµ
+W νΓλ

µν

)
eλ.

That means, ∇ maps the two vectors V and W to a new vector, whose λth component is V µ∇µW
λ

and we make the identification

(∇µW )λ ≡ ∂W λ

∂xµ
+ Γλ

µνW
ν .

It is common to omit the brackets and simply write ∇µW
λ but one should not mistake it for a

covariant derivative of a component W λ [29, 42].
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Covariant derivative of tensor fields We define, in a natural way, the covariant derivative of
a function f ∈ C∞(M) by the usual directional derivative, such that

∇Xf ≡ X(f).

By doing so, we find that the affine connection satisfies the Leibniz rule ∇X(fY ) = (∇Xf)Y +
f∇XY and we generalize this idea to the product of any two tensor fields T1 and T2 of arbitrary
type:

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2).

We can first compute the covariant derivative of a 1–form ω ∈ Ω(M) and then straightforwardly
generalize to arbitrary tensor fields. For Y ∈ Γ(TM) we know that ιY ω = 〈ω, Y 〉 ∈ C∞(M), such
that [42]

X(〈ω, Y 〉) = ∇X(〈ω, Y 〉) = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉.
Analogous to the vector case above we can go to a local chart, in terms of components we find

(∇µω)ν = ∂µων − Γλ
µνωλ,

i.e. the connection coefficients pick up a minus sign for covariant objects. The covariant derivative
of general (p, q) tensor T therefore reads

∇νT
λ1...λp
µ1...µq = ∂νT

λ1...λp
µ1...µq + Γλ1

νκT
κλ2...λp
µ1...µq + · · ·+ Γ

λp
νκT

λ1...λp−1κ
µ1...µq

− Γκ
νµ1

T
λ1...λp
κµ2...µq − · · · − Γκ

νµq
T
λ1...λp
µ1...µq−1κ.

Remarks Obviously, our quick introduction to connections was less rigorous than what we did
before. We gave a minimum working definition of a connection as one often finds in undergraduate
text books. That does not mean that one cannot define a connection in more sophisticated (and less
coordinate dependent) ways — it is simply beyond the scope of this work to do so. One would have
to introduce principle fiber bundles and Lie groups to discuss connections in their full geometrical
glory, see e.g. [27, 33]. The basic idea is to compare the points in “neighboring” fibers in a way that
is not dependent on any particular local bundle trivialization23. In this context it becomes clear
that all the concepts we usually use synonymous are not equivalent; the hierarchy goes something
like this:

Choose a connection on a principal G–bundle

�

parallel transport on the principal bundle

�

parallel transport on any associated fiber bundle

�

covariant derivative on a vector bundle

In order to define a covariant derivative we need the linear structure in the fiber of a vector bundle.
So it is possible to talk about parallel transport in any of the associated fiber bundles, but only
when an associated bundle is a vector bundle it is possible to define a covariant differentiation [44].

23A fiber bundle (E, π,M) is trivial if it is M–isomorphic to the product bundle ((M ×F ), pr1,M) for some space
F . It is locally trivial if its is locally isomorphic to the product bundle.
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3.1.4 Isometries

Isometries are the structure preserving maps on the level of (pseudo)–Riemannian manifolds. In
other words, they are the distance preserving transformations between metric spaces. Let R =
(M, g) and R′ = (M ′, g′) be two (pseudo)–Riemannian manifolds and let φ : R → R′ be a (local)
diffeomorphism. The map φ is called a (local) isometry if

φ∗g′ = g, (4)

and the manifolds are then called (locally) isometric [33]. An isometry is a map, which pulls back
the metric tensor on the second manifold to the metric tensor on the first. Such “symmetries of
the metric” are important tools to find solutions to the field equations of General Relativity [45].

Killing fields It would be convenient to have a systematic procedure in order to find and char-
acterize isometries. We thus search for the generators of isometries, which will take us back to
our discussion on vector fields. Given a vector field X on a (pseudo)–Riemannian manifold (M, g),
what are the necessary and sufficient conditions for the one–parameter group generated by X (i.e.
its flow) to consist of local isometries? Compare the defining property of isometries (4) with the
definition of the Lie derivative (3): by setting

£Xg =
d

dt

∣∣∣∣
t=0

(Ψ∗
t g) = 0, (5)

we obtain Ψ∗
t g = g for all t ∈ I, since Eq. (5) holds for every point of M [46]. A vector field X

on M satisfying £Xg = 0 is called a Killing field. Killing fields are the infinitesimal generators
of isometries and constitute a Lie algebra, i.e. the space of Killing fields is closed under the Lie
bracket [·, ·] [46].

Killing equation Let X be a vector field on the (pseudo)–Riemannian manifold (M, g). The Lie
derivative of a (0, 2)–tensor field T along X takes the form

£XTµν = Xσ∇σTµν + (∇µX
σ)Tσν + (∇νX

σ)Tµσ,

where ∇ represents any symmetric covariant derivative. If we now set T = g, we find that

£Xgµν = Xσ∇σTµν + (∇µX
σ)Tσν + (∇νX

σ)Tµσ = ∇µXν +∇νXµ,

assuming that ∇σgµν = 024. In this case, X is a Killing field if it satisfies the Killing equation

∇µXν +∇νXµ = 0.

24This is called metric–compatibility and we will discuss it in more detail in Sec. 7 on General Relativity.
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3.2 Symplectic geometry

3.2.1 Symplectic manifolds

A symplectic structure on a smooth manifold M is defined by a 2–form Ω ∈ Ω2(M), which satisfies
the following properties:

1. At every point p ∈M of the manifold Ω(p) is non–degenerate, and

2. The 2–form Ω is closed, i.e. dΩ = 0.

We call the pair (M,Ω) symplectic manifold and Ω symplectic form [41]. Notice that a symplectic
manifold is of even dimension, and its tangent bundle is a symplectic vector bundle25. If the 2–form
on M does not satisfy the non-degeneracy condition, we call it presymplectic form.

Symplectomorphisms A smooth mapping φ : M → N between symplectic manifolds (M,Ω)
and (N, ρ) is called symplectic, if φ∗ρ = Ω. If φ is additionally a (local) diffeomorphism, it is called
a (local) symplectomorphism [34].

3.2.2 Intuition on symplectic geometry

To get a first intuition on symplectic geometry it can be helpful to compare it to the familiar
Riemannian geometry in two dimensions.

Riemannian geometry For a Riemannian manifold (M, g) all the information is encoded in the
metric g. In the case of M = R

2 the metric just associates to two vectors in the plane, v = (v1, v2)
and w = (w1, w2), the number g(v, w) = v1w1 + v2w2. One then defines the length of a vector v to

be ‖v‖ =
√
g(v, v) and similarly the angle θ between two vectors v and w as cos θ = g(v,w)

‖v‖‖̇w‖
. Notice

that v is at right angles to w iff g(v, w) = 0. The symmetry of g guarantees that the angle between
v and w is the same as that between w and v, the non–degeneracy ensures that no non-zero vector
can be perpendicular to every other vector.

Symplectic geometry The standard symplectic form Ω on R
2 also associates to every two

vectors v and w a number, in this case

Ω(v, w) = v1w2 − v2w1.

As a result of the antisymmetry of Ω the symplectic form does not give rise to a notion of length or
angle. The “symplectic lenght” ‖v‖ =

√
Ω(v, v) of a vector v always vanishes and every vector is

perpendicular to itself! Instead, it exactly gives the area of the parallelogram that is formed by two
vectors v and w as its sides. Thus the symplectic form makes precise the concept of oriented area.
Non–degeneracy of Ω implies that only the collapsed parallelogram (when v and w are parallel) has
zero area.

Symplectic geometry in higher dimensions Symplectic geometry is a purely areal type
of geometry and area is essentially a two–dimensional construct. It is, in fact, not possible to
consistently define an oriented area for odd–dimensional spaces without introducing degeneracies.
But it is still possible to build a symplectic form on the four–dimensional space R4 in the following

25The total space is equipped with a symplectic structure.
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way: View R
4 as the sum of two planes R2 ⊕R

2. Then the oriented area of a parallelogram in this
space is the sum of the oriented areas of its shadows on these planes. This idea can be extended to
R
6,R8, ... etc. [47].

3.2.3 Darboux’s Theorem

The Darboux Theorem is fundamental for the theory of symplectic manifolds and its application
to classical mechanics. Let (M,Ω) be a symplectic manifold of dimension 2n. Darboux’s Theorem
states [41] that every point m ∈ M has an open neighborhood U , which is the domain of a chart
(U, φ) with local coordinates q1, . . . qn, p1, . . . , pn, such that the 2–form Ω has the local expression

Ω = dpi ∧ dqi,

on U . Such a chart, and its associated local coordinates, are said to be canonical. This means, in
particular, that two symplectic manifolds of the same dimension are always locally symplectomor-
phic and hence there are no local invariants26 and the two symplectic manifolds can at most differ
globally [34].

3.2.4 Natural isomorphism

Provided with the structure of a symplectic manifold (M,ω) we can construct the natural isomor-
phism between the tangent spaces of M . We introduce it as the map

Z : TM → T ∗M,

X 7→ X
Z
,

defined by X
Z
:= ιXw and referring to musical notation27 it is called flat. Its inverse is the map

\ : T ∗M → TM,

called sharp. These are exactly the musical isomorphisms one uses to specify the notion of an
inverse metric on a (pseudo–)Riemannian manifold where they are used to lower and raise indices
[40].

Hamiltonian vector field With the help of the natural isomorphism we can assign a vector
field to every smooth function f ∈ C∞(M). We call

Xf := −(df)
\
,

the Hamiltonian vector field generated by f and in canonical coordinates it has the form [34]

Xf =
( ∂f
∂pi

) ∂

∂qi
−

( ∂f
∂qi

) ∂

∂pi
.

Poisson bracket Let (M,Ω) and f, g ∈ C∞(M). We define the Poisson bracket of f and g as

{f, g} := Ω(Xf , Xg) = Xf (g),

and in a Darboux chart we recover the well known expression from classical mechanics

{f, g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
.

26In sharp contrast to a Riemannian manifold where curvature is a local invariant.
27In the context of music Z and \ denote a lower and higher pitch, respectively.
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3.2.5 Symplectic structure on the cotangent bundle

Canonical 1–form Let M be a n–dimensional smooth manifold and ξ ∈ T ∗M a point in its
cotangent bundle. The canonical (also tautological or Liouville) 1–form is defined by [48, 49]

θξ(v) := ξ(π∗(v)),

where v ∈ Tξ(T
∗M) and π : T ∗M → M is the bundle projection and π∗ its Push–forward, i.e.

π∗ : T (T ∗M) → TM . In other words the value of the canonical 1–form at ξ ∈ T ∗M on a tangent
vector v is obtained by projecting the vector to a tangent vector on M and evaluating the form ξ.
In Darboux coordinates the canonical 1–form is given by

θ = pidq
i.

The canonical 1–form θ is the unique 1–form on T ∗M which satisfies µ∗θ = µ for every 1–form
µ ∈ Ω1(M).

Canonical symplectic form The exterior differential of the canonical 1–form defines a 2–form
on T ∗M , called the canonical symplectic form, as

ω = −dθ.

Locally, it can be written as ω = dxi ∧ dpi [48].
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Part II

Dynamics of constrained systems

4 Classical mechanics

There are two main frameworks in which one usually addresses mechanics: the Lagrangian and
Hamiltonian formalisms. As a first step, we introduce both of them and discuss their underlying
geometric structures. Mechanics deals not only with the dynamics of particles, but also with field
theories such as electromagnetism and gravity [50]. We discuss the transition from particle systems
to classical field theories in detail at the end of this section.

In the regular case, the Lagrangian and Hamiltonian formulations are equivalent, i.e. they generate
the same equations of motions for a given physical system. Their mathematical content is, of course,
different and there are various opinions on the question as to which one is more fundamental or
natural.

Subsequently, we investigate the consequences of a singular Lagrangian. In this case, it is not
possible to express all velocities in terms of the generalized momenta. This will lead us naturally
to the notion of a constrained system. As it turns out, we will have to restrict the dynamics of a
singular system in a certain way to guarantee that the equations of motion possess solutions.

Last but not least, we investigate the relation between the Lagrangian and Hamiltonian formulations
and understand the well–know Legendre transformation as a special case of a fiber derivative. In
the context of constrained systems, this can be used to classify objects as projectable and non–
projectable.

4.1 Lagrangian formulation

4.1.1 Principle of stationary action

Lagrangian mechanics is based on the principle of stationary action, which plays a role of utmost
importance in physics. It states that the dynamics of a physical system is determined by a vari-
ational problem for a functional based on a single function, the Lagrangian L, which contains all
physical information concerning the system. Even though it was originally formulated for classical
mechanics it also applies to classical field theory and can be traced back to Feynman’s path integral
formulation of quantum mechanics [51]. Let Q be a differentiable manifold, called the configuration
space. A Lagrangian L : TQ → R is a function on the tangent bundle TQ (sometimes called the
velocity phase space) to the manifold [41, 50]. The action S of a system is defined as the functional28

S[qi] =

∫ t2

t1

dt L(qi, q̇i)

where qi, q̇i ∈ TQ are the generalized positions and the generalized velocities, respectively. Consider
some variation on the paths q + δq. According to the principle of stationary action the dynamics
of the system between two fixed points is given by the family of curves that satisfies

δS[qi]
!
= 0.

28Formally, a functional is a mapping from a vector space V over some field F onto that field F .
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Euler–Lagrange equations The variation δS is

δS =

∫ t2

t1

dt
[
L(q + δq, q̇ + δq̇)− L(q, q̇)

]
, (6)

and for infinitesimal δqi the first–order approximation

L(q + δq, q̇ + δq̇) = L(q, q̇) +
(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i
)
+ . . . ,

holds. Thus, we find that (6) takes the form

δS =

∫ t2

t1

dt

[
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i
]
,

=

∫ t2

t1

dt

[
∂L
∂qi

δqi +
d

dt

( ∂L
∂q̇i

δqi
)
−
( d
dt

∂L
∂q̇i

)
δqi

]
,

=

∫ t2

t1

dt

[
∂L
∂qi

− d

dt

∂L
∂q̇i

]
δqi + surface term,

which must be valid for arbitrary variations δqi. Furthermore, assuming that the variations at
the boundary vanish, i.e δqi(t1) = 0 = δqi(t2), the surface term vanishes. Then, the requirement

S[qi]
!
= 0 yields the well-known Euler–Lagrange equations

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0, ∀i, (7)

a system of dim(Q) second–order differential equations [50–53]. For later convenience, one can
explicitly carry out the time derivative and write equation (7) as

Wij q̈
j + αi :=

∂L
∂qi

− ∂2L
∂q̇i∂qj

q̇j − ∂2L
∂q̇i∂q̇j

q̈j = 0,

where

Wij ≡
∂2L
∂q̇i∂q̇j

,

is called the Hessian matrix. Notice at this point, that if the Hessian has an inverse, say W̃ ij , the
Euler–Lagrange equations can be solved for the accelerations as

q̈i = W̃ ijαj .

The inverse of the Hessian is guaranteed to exist if detW 6= 0. A Lagrangian is said to be regular
if this condition holds, otherwise it is called singular [51].

4.1.2 Geometrical approach

In the following qi are coordinates on the smooth manifold M , and correspondingly (qi, ui) are the
coordinates on TM (i = 1, . . . , dim(M)). For convenience, we write X(M) ≡ Γ(TM) for the set of
all vector fields on M .
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Vertical lift LetM be a smooth manifold with tangent bundle TM and canonical bundle projec-
tion π : TM →M . An element v of T(q,u)(TM) satisfies π∗v = 0 if and only if it is tangent to the
fiber π−1(q). Such a vector is said to be vertical and a vector field V on TM is said to be vertical if
V(q,u) is vertical at each point (q, u). The dim(M)–dimensional subspace of T(q,u)TM consisting of
vertical vectors is called the vertical subspace. Any element ξ ∈ TqM determines a vertical vector
at any point (q, u) in the fiber over q, called its vertical lift to (q, u), denoted by ξV(q,u) [38, 54]. In

local coordinates, the vertical lift of ξ (whose components are ξi) is ξV = ξi ∂
∂ui [55].

Vertical endomorphism We construct a tensor field J of type (1, 1), called vertical endomor-
phism, whose action is to map each tangent vector v ∈ T(q,u)TM to a vertical tangent vector, by
first projecting it into TqM and then lifting the result vertically to (q, u). We define the linear map
[56]

J : X(TM) → X
V (TM),

via J(q,u)(v) := (π∗v)
V
(q,u), where X

V (TM) denotes the subspace of vertical vector fields. Notice

that J is the vertical lift of the identity tensor field, i.e. the Kronecker δ, from M to TM [57].
Locally, the vertical endomorphism is given by

J =
∂

∂ui
⊗ dqi.

Liouville vector field The Liouville vector field (sometimes also dilation field) ∆ is a vertical
vector field generating the one–parameter group of dilations δt : (q, u) 7→ (q, etu) [57]. In particular,
any vector field Γ ∈ X(TM) is a second-order differential equation field29 if and only if J(Γ) = ∆.
In coordinates we can write it as

∆ = ui
∂

∂ui
.

Lagrangian forms With the help of the objects we introduced above, we can now make the
essential definitions for Lagrangian mechanics in purely geometrical terms. Notice how this intrinsic
construction doesn’t make use of any concepts from the Hamiltonian formulation, i.e. from the
cotangent bundle. Let L ∈ C∞(TM), we define the 1–form θL ∈ Ω1(TM), called Euler–Poincaré
1–form, as θL := dL ◦ J [56]. In natural coordinates it reads

θL =
∂L
∂ui

dqi.

Furthermore, the exterior derivative of the Euler–Poincaré 1–form gives rise to a natural 2–form,
called the Lagrange 2–form, as ΩL := −dθL [51, 58]. In fact, this natural 2–form is even a symplectic
form and (TM,ωL) is a symplectic manifold [59]. In coordinates we find

ΩL =
∂2L
∂qj∂ui

dqi ∧ dqj + ∂2L
∂uj∂ui

dqi ∧ duj .

The only condition for L to be an adequate function to describe the dynamics of the system is that
the rank of ΩL has to be constant [60]. If ΩL is of constant rank, then L is called the Lagrangian
and if ΩL is of maximal rank, then the Lagrangian is regular [58].

29Locally, the projections of its integral curves onto M are the solutions of a system of second–order ordinary
differential equations.
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Lagrangian energy and equations of motion The energy function of the system, determined
by the Lagrangian function L, is defined as EL := ∆(L)−L [38]. Its local coordinate expression is

EL = ui
∂L
∂ui

− L.

The possible dynamics of the system are determined by the solutions to the Lagrangian equations
of motion,

ιΓΩL = dEL, (8)

and in the regular case the projection of the integral curves of Γ onto M will satisfy the Euler–
Lagrange equations [61]. Notice, that these solutions arise from the determination of the integral
curves of the dynamical vector field and do not stem from any variational principle [38].

4.1.3 Singular case

At this point, we can understand the singularity of a Lagrangian in two equivalent ways. Locally,
it means that the Hessian matrix W is non–invertible, i.e. detW = 0, and therefore not all Euler–
Lagrange equations are second-order differential equations30 [62]. In fact, there can be initial
conditions for which there exists no solution at all, or only some initial positions and velocities are
compatible with the equations. And even if there exists a solution for particular initial values of
qi and q̇i it might not be unique. Obviously, this is in conflict with the foundations of mechanics
and hints at the existence of gauge degrees of freedom [38]. In geometrical terms, the consequence
of a singular Lagrangian is that the Lagrangian 2–form ΩL does not have maximal rank, i.e. it is
merely a presymplectic form. Therefore, the Lagrangian equations of motion have in general no
solution everywhere in TM . In particular, equation (8) has only solutions in the points of the set

P = {x ∈ TM | ιΓdEL(x) = 0, ∀Γ ∈ kerΩL},

and in P the solutions are only determined up to contributions from kerΩL [56].

4.2 Hamiltonian formulation

4.2.1 Hamilton equations

The formulation in terms of the Lagrangian presupposes that the state of a system is described by
specifying its generalized coordinates qi and velocities q̇i. This is not the only possibility, however.
An equally valid option is to treat the system in terms of generalized coordinates and momenta of
the system and we can pass from one set of independent variables to the other [63].

Generalized momenta Define the generalized momenta for a Lagrangian system L as

pi(q, q̇) =
∂L
∂q̇i

,

and, in principle, we can solve these relations to find functional expressions for the q̇i in terms of
qi and pi. In terms of these new variables the Euler–Lagrange equations become

ṗi =
∂L
∂qi

.

30Such that some of them are non–dynamical.
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Hamiltonian Consider the total differential of the Lagrangian as a function of coordinates and
velocities,

dL =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i = ṗidq
i + pidq̇

i, (9)

where we used the definition of the generalized momenta and the Euler–Lagrange equations. We
can rewrite the second term on the right hand side as pidq̇

i = d(piq̇
i)− q̇idpi and therefore obtain

from (9)
d(piq̇

i − L) = −ṗidqi + q̇idpi. (10)

The argument of the differential on the left hand side is the energy of the system expressed in terms
of generalized coordinates and momenta [63]. We call

H(p, q) = piq̇
i − L, (11)

the Hamiltonian of the system.

Hamilton equations From
dH = −ṗidqi + q̇idpi,

we can read off the Hamilton equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
,

the equations of motion in the Hamiltonian formulation. Alternatively, one can also obtain them
from a variational principle [51].

4.2.2 Geometrical approach

Let (M,ω) be a symplectic manifold, called the phase space and H : M → R a given smooth
function. Every point m ∈ M describes a state of the system and smooth functions on M are
observables. The result of a measurement of a observable f ∈ C∞(M) at m is given by f(m) [34].
As introduced before, the vector field XH on M determined by the condition

ιXH
ω = dH, (12)

is called Hamiltonian vector field. We call the function H energy function [35]. The dynamics
of the system are determined by the integral curves of the Hamiltonian vector field XH . If ω is
non–degenerate, the linear map Z : TM → T ∗M is an isomorphism, thus for any H we can solve
(12) uniquely by XH = (dH)

\
. In the context of classical mechanics we usually take M = T ∗Q,

i.e. our phase space is the cotangent bundle of the configuration space Q. As discussed earlier,
any cotangent bundle is locally a symplectic manifold [51] and comes equipped with a canonical
symplectic structure. In terms of canonical coordinates (12) is simply

dqi

dt
≡ XH(qi) =

∂H

∂pi
and

dpi
dt

≡ XH(pi) = −∂H
∂qi

,

and we recover the Hamilton equations [49]. Making use of the Poisson bracket, the time develop-
ment of any function in phase space f ∈ C∞(T ∗Q) can be written as

df

dt
= {f,H},

and the Hamilton equations take the form

q̇i = {qi, H} =
∂H

∂pi
and ṗi = {pi, H} = −∂H

∂qi
.
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Canonical transformations A vector field XH on the symplectic manifold (T ∗Q,ω) is said to
be (globally) Hamiltonian if the 1–form associated with the vector field, ιXH

ω, is exact [41]. A
vector field XH is called locally Hamiltonian if ιXH

ω is closed. Notice that every exact form is
closed, therefore every globally Hamiltonian vector field is also locally Hamiltonian. The inverse is
generically not the case. The flow Ψt of a locally Hamiltonian vector field satisfies

Ψ∗
tω = ω,

i.e. the flow preserves ω. Thus, if XH is complete, Ψt determines a one–parameter group of
symplectomorphisms on the manifold [41, 50]. In physics a symplectomorphism of the phase space
is called a canonical transformation, hence the dynamics of a Hamiltonian system can be seen as a
time–dependent canonical transformation [34].

4.2.3 Singular case

The transformation from Lagrangian to Hamiltonian requires to invert the generalized coordinates
for the velocities, i.e. q̇i = q̇i(q, p), which is possible if and only if the matrix

∂pi
∂q̇j

=
∂2L
∂q̇i∂q̇j

≡Wij ,

has non–vanishing determinant. From this one can clearly see the implications of a singular La-
grangian on the Hamiltonian formulation: The transformation is no longer well–defined since we are
unable to completely eliminate all the velocity variables [64]. In geometrical terms, the singularity
has the consequence that the canonical 2–form ω on T ∗M is only presymplectic, i.e. it is not of
maximal rank. Hence, the mapping Z : TM → T ∗M is no longer bijective and in general we cannot
uniquely solve Eq. (12).

4.3 Relation between the Lagrangian and Hamiltonian formulations

4.3.1 Legendre transformation

It sometimes appears as if the transition from the Lagrangian to the Hamiltonian is merely a change
of variables, since the prescription of the canonical momenta

pi =
∂L
∂q̇i

,

is usually invertible and one can always calculate the Hamiltonian from a given Lagrangian via

H(q, p) = piq̇
i(p, q)− L(q, q̇(p, q, t)).

This prescription is formally a Legendre transformation and it is only well–defined for regular
Lagrangians [51, 65]. We make this idea more precise and insightful in the following.

fiber derivative Given a Lagrangian L : TM → R, define the map

FL : TM → T ∗M,

called the fiber derivative, by

FL(v) · w :=
d

ds

∣∣∣
s=0

L(v + sw),
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where v, w ∈ TqM . Thus, FL(v) ·w is the derivative of L at v along the fiber TqM in the direction
w. The fiber derivative is fiber preserving, i.e. it maps the fiber TqM to the fiber T ∗

qM . For finite
dimensional manifolds with induced coordinates (qi,q̇i) on TM the fiber derivative takes the form

FL(q, q̇i) = (qi,
∂L
∂q̇i

),

and we can make the identification

pi =
∂L
∂q̇i

,

i.e. we find the origin of the canonical momenta. FL is also called Legendre map [50] and when
restricted to a particular point the fiber derivative is a Legendre transformation. If FL is a diffeo-
morphism the Lagrangian is called regular and we can obtain an equivalent Hamiltonian formulation
by defining the Hamiltonian as [58]

H = EL ◦ (FL)−1. (13)

Pullback under FL With the geometrical understanding of the Legendre map at hand, one
might ask if it is possible to relate the canonical symplectic structure on T ∗Q with the one we
intrinsically constructed on TQ. In fact [35], the pullback of the canonical 1–form θ ∈ Ω1(T ∗Q)
under FL independently yields the Euler–Poincaré 1–form, i.e.

(FL)∗θ = θL,

and consequently we can also pull back the canonical symplectic form as

(FL)∗ω = ΩL.

4.3.2 Singular case

As mentioned before, there are several ways to understand the singularity of a Lagrangian. Among
other things, it implies that the Legendre map is not a (local) diffeomorphism and therefore the
prescription (13) is not well–defined. It is not possible to isolate all the coordinates (ui) of a local
chart in TQ as functions of the natural symplectic coordinates (qi, pi) of T

∗Q. Hence, any object
in TQ with explicit dependence on these coordinates does not have a canonical expression in T ∗Q.

FL projectability Based on this straight forward observation, we make the following definitions.

1. A differential p–form l ∈ Ωp(TQ) is said to be FL projectable iff ∃h ∈ Ωp(T ∗Q) such that
FL∗h = l.

2. A vector field Xl ∈ X(TQ) is said to be FL–projectable iff ∃Xh ∈ X(T ∗Q) such that FL∗Xl =
Xh.

The Lagrange 2–form ΩL = FL∗ω and the energy function EL = FL∗H are important examples
of FL–projectable objects [60].
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Equivalence theorem While the equivalence of Lagrangian and Hamiltonian formulation is well
established in the regular case, one might wonder if both descriptions are still equivalent in the
singular case. Since the Legendre map is in general not invertible in the latter case, we don’t
have a naive way to relate TQ and T ∗Q. Still, the dynamical equivalence between Lagrangian and
Hamiltonian formalism for singular systems can be proven [60]. Remarkably though, we can only
have solutions in a submanifold of the respective space. In fact, this is one of the core ideas of
the theory of constrained systems — to find the final submanifold on which dynamically equivalent
solutions exist. Note at this point, that we always assume our Lagrangian to be almost regular
in the course of this work. Physically, these are very reasonable assumptions and we refer the
interested reader to [59] for more information and the exact definition. Only in the almost regular
case every system has a Hamiltonian counterpart.

4.4 Transition to field theory

As a matter of fact, the systems of interest in this work are not point particle systems but classical
field theories. Our above discussion is still valid for field theories and can mostly be applied
unchanged to these cases. Yet, it is important to bear in mind some of the subtleties that arise
when transitioning from point particles to fields. The fundamental difference is that we no longer
have coordinates qi labelling points in the manifold M , but rather field variables that in turn
depend on the points of the manifold we operate on. Symbolically, we make the extension

qi(t) → qi(t, ~x),

which comes with a number of consequences. One should now distinguish between a Lagrangian L
and the Lagrangian density L(q, ∂µq), which can also depend on spatial derivatives of the field vari-
ables. Say, we describe the q–fields on a d–dimensional Lorentzian manifold with local coordinates
(x0, ~x). The Lagrangian is the integral over space of the Lagrangian density, i.e.

L =

∫
dd−1L(φ, ∂µφ),

and the action is defined as before, leading to

S[qi] =

∫
dtL =

∫
ddxL.

Thus, the equations of motion read

∂µ
∂L

∂(∂µq)
− ∂L
∂q

= 0,

and we see that in comparison with Eq. (7) we substituted ∂0 by ∂µ.

Poisson bracket The second modification we have to be aware of in this work concerns the
definition of the Poisson bracket. In the context of particle mechanics, the fundamental Poisson
brackets read

{qi, pi} = δij , {qi, qj} = 0, {pi, pj} = 0. (14)

A naive extension to field theory leads us to the notion of the (equal–time) Poisson bracket [66]

{A(q(x), p(x)), B(q(x′), p(x′))} :=

∫
dd−1y

[
∂A

∂q(y)

∂B

∂p(y)
− ∂A

∂p(y)

∂B

∂q(y)

]
,
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such that Eqs. (14) turn into

{qi(x), pj(x′)} = δijδ(x− x′), {qi(x), qj(x′)} = 0, {pi(x), pj(x′)} = 0,

which is the appropriate version in most cases [67]. However, if derivatives of fields appear inside
the Poisson bracket additional complications arise. The easiest way to deal with this issue is by
introducing test– or smearing functions31. In the following, test functions are generically called f
and g and their Poisson brackets with phase space variables vanish [68]. The most general version
of the Poisson bracket we will use in this work thus reads

∫
dx

∫
dyf(x){A(x), B(y)}g(y) ≡ f(x){A(x), B(y)}g(y),

which we will usually abbreviate as f{A,B}g. If the explicit calculation of a Poisson bracket yields
a result like

f{A,B}g = fCg,

i.e. one can simply factor out the test functions, we simply write {A,B} = C [69]. This will always
be possible, except if A or B depend on the partial derivative of a relevant generalized coordinate.
In this case the result will, after partial integration, depend on a spatial derivative of a test function
and we cannot simply factor the test functions out. We call such Poisson brackets non–local [70].

5 On singular systems

By the end of the last section, we obtained a solid understanding of what it means for a system to
be singular. The relation between a singular Lagrangian and its Hamiltonian became clear, thanks
to our geometric insights on the fiber derivative. In the following, we want to examine how to treat
singular systems, in particular how we can restrict the dynamics of the system to a subspace in
which the solutions are well–defined. This is the main idea behind constraint algorithms on both
the Hamiltonian and Lagrangian sides.

The starting point of the Dirac–Bergmann theory of constraints are the canonical momenta, in
particular the ones that do not depend on the generalized velocities. Exactly these momenta will
be the so–called primary constraints of the theory. Step by step, the constraints have to be enforced
and stabilized, further and further restricting the admissible phase space. After a finite iteration
(for physically sensible theories), the algorithm terminates. By classifying the full set of constraints,
it is possible to count the physical degrees of freedom.

The starting point of the Lagrangian algorithm is a degenerate primary Hessian. Its null vectors
determine the primary Lagrangian constraints, which in turn have to be stabilized. This procedure
can unravel new, secondary, Lagrangian constraints. This logic has to be repeated until no further
constraints arise.

Singularity of a Lagrangian is deeply connected with internal constraints and symmetries of the
system. For local symmetries, Noether identities imply that the canonical conjugate momenta are
not independent anymore — they are constrained [51]. As a matter of fact, fundamental physics
is full of theories based on singular Lagrangians and symmetries play a role of utmost importance.
Despite being more involved, it is possible to pass to the Hamiltonian description of a system start-
ing from a singular Lagrangian. The proper treatment of such systems, called constraint analysis,

31Well–behaved functions that vanish at spatial infinity.
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can be used to count the number of physical degrees of freedom of a theory. In fact, it is the math-
ematically rigorous way to determine the propagating degrees of freedom and should therefore be
an inevitable tool when constructing new theories. A Lagrangian can exhibit beautiful symmetries
and seem like a perfect candidate for certain applications. But if it does not meet the requirements
for a consistent theory, it cannot describe the physical world. Propagating the correct number
of degrees of freedom is not a sufficient, but a necessary condition. Even in view of this, purely
classical, discussion one cannot overstate the importance of the theory of constrained systems. Not
to mention its transcendence towards quantization schemes [71].

Historical context The systematic procedure to deal with constrained systems goes back to
work in the late 1940s and early 1950s, mainly by Dirac [72], Bergmann and colleagues [73, 74], for
the most part motivated by the quest for quantization of such systems. Despite not being the main
motivation back then, their work marks the beginning of the systematic study of the canonical
fomarlism for what we today call gauge theories [75]. Recently, there have been efforts [76, 77] to
pay tribute to Léon Rosenfeld for his pioneering works on this subject, that appeared nearly 20
years earlier. In their original work, Anderson and Bergmann do indeed cite his work, stating that
their “examination [...] is in some respects similar to the results obtained by L. Rosenfeld” [78].
Efforts to put the Dirac-Bergmann theory of constraints on a solid mathematical footing were made
by many authors during the following decades. Gotay et al. developed a geometric generalization
and globalization of the Dirac-Bergmann algorithm in terms of presymplectic manifolds [49] and
consequently applied this framework to the Lagrangian side [59, 79]. It is impossible to give an
exhaustive overview of the work and research that has been done on the topic of constrained
systems since its beginnings 70 years ago, but one has to mention N. Mukundas influence [64, 80].
K. Kamimura was one of the first to address the Lagrangian side and the relation between singular
Lagrangian and Hamiltonian systems locally [62]. Subsequently, a lot of work has been devoted
to establish the equivalence between and relation of Lagrangian and Hamiltonian formalisms for
constrained systems [56, 81]. More recently, noteworthy developments include the extension of the
geometric formulation to field theories [82, 83] and the approach to count the physical degrees of
freedom in a geometrical, and purely Lagrangian, setting [84, 85].

5.1 Dirac–Bergmann theory of constraints

The Dirac–Bergmann algorithm is the original procedure to transit from the Lagrangian to the
Hamiltonian formulation in the singular case. Let L(q, q̇) be a time–independent first–order La-
grangian, defined in the tangent bundle TQ of some N–dimensional configuration manifold Q. The
defining feature of a singular theory is that its primary Hessian

Wkl :=
∂2L
∂q̇k∂q̇l

,

has a vanishing determinant, or in other words the Legendre map

FL : TQ→ T ∗Q,

is not invertible. This makes already clear that there is an issue about the projectability of structures
from the tangent bundle to phase space [75]. The momenta are defined in the canonical way as

pn(q, q̇) =
∂L
∂q̇n

, n = 1, . . . , N,

and it becomes apparent that only in the regular case the pn(q, q̇) can be solved for all the velocities
in the form q̇n(q, p) [51].
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5.1.1 Primary stage

Primary constraints The p’s involve only rank(W ) = N −M independent functions of the q̇’s,
hence there will be M relations

Ψm(q, p) = 0, m = 1, 2, . . . ,M, (15)

connecting the momentum variables [86]. The relations (15) are called primary constraints. Notice
that the Ψm must actually be independent functions of the p’s, otherwise we could eliminate
momenta from (15) to obtain constraints that only involve the q’s alone [64].

Primary constraint submanifold The relations Ψm restrict the dynamics to a subspace Mp ⊂
T ∗Q of the full phase space [51], called the primary constraint submanifold. This submanifold
coincides with the image of TQ under the Legendre map, i.e. [81]

FL(TQ) =Mp,

as depicted in Fig. 13. We use the weak equality “
1≈” to denote that a relation only holds in the

Figure 13: The primary constraint submanifold Mp

primary constraint submanifold and consequently we write

Ψm :
1≈ 0,

to make clear that the primary constraints define the primary constraint submanifold.

Canonical Hamiltonian The initial definition of the Hamiltonian does not change, compared
to the regular case (11). Due to reasons that will become apparent soon, we want to stress this
fact and call

Hcan = pnq̇
n − L(q, q̇),

the canonical Hamiltonian. There is no explicit dependence on any velocity variable in the canonical
Hamiltonian, as can already be seen from (10). This is still true in the singular case, despite the
fact that the Legendre map is non–invertible32 [51].

32This is due to the FL projectability of the energy function EL.
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Primary Hamiltonian However, the canonical Hamiltonian is not uniquely determined as a
function of the p’s and the q’s. This is because the p’s are not all independent, but rather restricted

to satisfy the primary constraints Ψm
1≈ 0. The aim is to obtain equations of motion in the

Hamiltonian form, while paying attention to the constraints [87]. In order to do so, we add the
primary constraints to the canonical Hamiltonian via Lagrange multipliers. We define the primary
Hamiltonian as

Hp := Hcan + λmΨm,

with arbitrary multiplier functions λm. This ambiguity in the definition of the Hamiltonian has
profound consequences: it sets the stage for gauge freedom [75]. Varying the primary Hamiltonian
with respect to (λ, q, p), we find

∂Hcan

∂pn
+ λm

∂Ψm

∂pn
= q̇n, (16)

∂Hcan

∂qn
+ λm

∂Ψm

∂qn
= −pn, (17)

which are sometimes referred to as Hamilton–Dirac equations. They contain extra terms depending
on the primary constraints compared to the Hamilton equations. Consider the time evolution of
any function f(p, q) ∈ C∞(T ∗Q) in terms of the Poisson bracket

{f,Hp} = {f,Hcan + λmΨm} = {f,Hcan}+ λm{f,Ψm}+ {f, λm}Ψm. (18)

Since the Lagrange multipliers λm are not phase–space functions, the Poisson brackets {f, λm} are
not defined [51]. Notice however, that on the primary constraint submanifold the last term in (18)
vanishes and we can write the dynamical evolution for any phase space function as [51, 71]

ḟ(p, q) = {f,Hp}
1≈ {f,Hcan}+ λm{f,Ψm}. (19)

5.1.2 Secondary stage

In order to consistently respect the primary constraints, we have to require their preservation in

time. Ψm
1≈ 0 should not only hold at an instant, but throughout all time. We therefore require

Ψ̇m to be zero.

The geometrical point of view can contribute some intuition here. In the primary stage we search
for solutions to

(ιXω − dHp)|Mp ,

where ω is the canonical symplectic form on T ∗Q. The non–degeneracy of ω guarantees that
solutions X exist. Preservation of the primary constraints is expressed as X(Ψm)|Mp = 0. This
can be understood as a tangency condition: consistent solutions X must be tangent to Mp, i.e. the
dynamics are restricted to stay inside the primary constraint submanifold [78].

Stability of constraints If we take f in (19) to be one of the Ψr, we can express the time
evolution of the primary constraints as

Ψ̇r
1≈ {Ψr, Hcan}+ λm{Ψr,Ψm}, r,m = 1, . . .M. (20)

The vanishing of (20) can be divided into three distinct cases [86]:
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1. A constraint is already stable inside Mp, i.e. Ψ̇r
1≈ 0.

2. {Ψr,Ψm} ✁
✁1≈ 0, such that it imposes a restriction on the λ’s on Mp.

3. Ψ̇m may not be identically zero on Mp, but {Ψr,Ψm} 1≈ 0 (and hence no λ’s remain).

Case 1 is trivially satisfied in Mp and for case 2 the λ’s get fixed in such a way that the constraint
is stable.

Secondary constraints Case 3 on the other hand is different, since we can not satisfy the
stability of the primary constraints on the whole primary constraint submanifold. In order to
guarantee their stability, we further restrict the dynamics of the system to the secondary constraint
submanifold Ms ⊂Mp. It is defined by the secondary constraints

χm ≡ Ψ̇m :
2≈ 0.

Secondary Hamiltonian As before, we add the new constraints to our Hamiltonian via La-
grange multipliers. Say we found M primary constraints and R secondary constraints. We write
the secondary Hamiltonian as

Hs := Hcan + λmΨm + λrχr,

where m = 1, . . .M and r = 1, . . . , R. Some of the λm’s might already be determined from the
stability conditions on the primary constraints. In addition to the stability conditions for the
secondary constraints we also have to check the consistency conditions on the primary constraints
with respect to the secondary Hamiltonian:

{Ψm, Hs}
2≈ 0.

This consistency check cannot yield new constraints but it might fix some of the remaining Lagrange
multipliers.

5.1.3 Tertiary stage and beyond

By ensuring the stability of the secondary constraints we might enter the tertiary stage of the
constraint algorithm. This happens if, for some r,

{χr, Hs} ✁
✁2≈ 0.

Then, we have to restrict ourselves to the tertiary constraint submanifold Mt ⊂Ms ⊂Mp ⊂ T ∗Q,
defined by the demand for stability of the secondary constraints

τr ≡ χ̇r :
3≈ 0.

Tertiary Hamiltonian The tertiary Hamiltonian is accordingly defined as

Ht := Hcan + λmΨm + λrχr + λkτk,

where k labels the number of tertiary constraints. The procedure should be clear at this point.
After we find the primary constraints we have to ensure their stability, which might lead to new

43



constraints, and which in turn have to be stabilized and so on. The algorithm terminates if we find
a final constraint submanifold Mf ⊂ · · · ⊂ Mp ⊂ T ∗Q on which no further constraints arise. In
other words, the submanifold to which all solutions of the dynamical equations are already tangent.
The Hamiltonian pertaining to Mf is usually referred to as the extended or total Hamiltonian. For
most physically relevant cases, the algorithm terminates already with the secondary constraints,
i.e. no tertiary constraints arise [51].

5.1.4 First– and second–class constraints

Denote by Φl the set of all constraints defining the final constraint submanifold Mf , independent
of the stage in which they appeared. A function f(p, q) (and in particular any constraint) is said
to be first–class, if its Poisson bracket with every constraint vanishes weakly,

{f,Φl}
f≈ 0.

Any function of the canonical variables that is not first class is called second–class. Notice, that
the first–class property is preserved under the Poisson bracket operation, i.e. the Poisson bracket
of two first–class functions is first–class [71]. The motivation for this definition becomes clear when
we look back at (20): On the primary constraint submanifold the stability of a first–class constraint
will generate a secondary constraint, whereas stability of a second–class constraint fixes a Lagrange
multiplier. In principle, we can categorize the constraints at any stage of the constraint algorithm,
but it is possible for a first–class constraint on the nth stage to become second–class on the (n+1)th

stage. Only on the final constraint submanifold one can reliably classify all constraints.

Gauge freedom The existence of arbitrary functions in the final Hamiltonian Hf is connected to
gauge freedom of the system. There will exist gauge transformations connecting different solutions
of the dynamical equations that share the same initial conditions. Although the physical state
is uniquely defined once a set of q’s and p’s is given, there is more than one set of values of the
canonical variables representing a physical state [71]. Noteworthy, not every constrained system
has to exhibit gauge freedom. It might happen that all constraints eventually become second class
on the final constraint submanifold and hence there is no arbitrariness left [75]. Even though
we will not go into the details of constructing the gauge transformation on the Hamiltonian side,
a word of caution regarding the concrete relation between first–class constraints and gauge is
necessary. The view that any primary first–class constraint generates a gauge transformation
is usually referred to as Dirac’s conjecture. This conjecture has been criticized before [75] but
surprisingly enough, it was not until 2014 that it was actually refuted by a straight forward check
of Maxwell’s electromagnetism. Rather than a one–to–one correspondence between primary first–
class constraints and gauge transformations, one can construct a tuned sum of first–class constraints
that will serve as gauge generator [88].

5.1.5 Physical degrees of freedom

Gauge fixation It is possible to eliminate the ambiguity of first–class constraints and the asso-
ciated gauge freedom by imposing further restrictions on the canonical variables. The well–known
procedure of gauge fixation leads to a one–to–one correspondence between physical states and val-
ues of those canonical variables that are left independent after imposing the additional conditions.
Say we have N1 first–class constraints on the final constraint submanifold. By fixing the gauge
we introduce N1 gauge conditions, demoting the former first–class constraints to second–class con-
straints. These new conditions are not an intrinsic feature of the theory, but rather brought in from
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the outside to cope with redundant degrees of freedom. They remove the unobservable arbitrary
elements of the theory33 and we therefore avoid a multiple counting of states [71].

Counting The formula to count the physical degrees of freedom can be deduced from the above
considerations. Since it was already implied in their original works [72, 78, 89], the counting
procedure is usually attributed to Dirac and Bergmann, but it was not explicitly stated there.
Consider a theory, which only contains second–class constraints. In that case no arbitrary functions
appear in the Hamiltonian and a set of canonical variables that satisfies the constraint equations
determines the only physical state. In that case we count for the number of physical degrees of
freedom ndof

2 · ndof = P0 −N2,

where P0 is the total number of canonical variables and N2 the number of second–class constraints.
The 2 in front of ndof stems from the fact that we usually count the degrees of freedom in config-
uration space, which is half the number of degrees of freedom in phase space. Now consider the
case where we also have N1 first–class constraints. In order to eliminate the redundant degrees of
freedom we introduce as many gauge conditions G as there are first–class constraints and we find
2 · ndof = P0 −N2 −N1 −G = P0 −N2 − 2 ·N1 [71]. Denoting by N the number of field variables,
this is commonly written as [21]

ndof = N −N1 −
N2

2
, (21)

and constitutes the well–defined and unambiguous way to count the physical degrees of freedom on
the Hamiltonian side.

5.2 A purely Lagrangian approach

On–shell, our analysis follows closely the iterative algorithm presented in [60, 62] and employed in
Appendix A of [21]. This is the suitable generalization to field theory of the coordinate–dependent
method used in [84] for particle systems, which is in turn based on [90, 91]. The non–trivial
geometric extension to field theory of [84] was done in [85]. Thus, one can view our discussion as
complementary to both these references. The main outcome of this algorithm shall be the total
number of on–shell (functionally independent) constraints l.

Off–shell, we limit ourselves to obtaining, in the most streamlined manner for the theories of our
interest, g and e, the number of gauge identities and effective gauge parameters, respectively.
By effective gauge parameters we mean the number of independent gauge parameters plus their
successive time derivatives that explicitly appear in the gauge transformations. Once we find
(l, g, e), the physical degrees of freedom ndof in a first–order classical field theory can be counted,
employing the formula derived in [84]:

ndof = N − 1

2
(l + g + e), (22)

with M0 the dimension of the theory’s configuration space, as in the Hamiltonian method. The
remarkable feature about this counting is that it is purely Lagrangian.

33Whereas the observable properties are gauge invariant.
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5.2.1 On–shell constraints

Let Q be the configuration space of a classical field theory. As usual, we take Q to be a smooth
manifold whose points are labeled by N field variables QA:

Q = span{QA}, A = 1, 2, . . . , N.

We stress that A comprises all possible indices that the field variables have. For instance, if one
considers Yang–Mills theory, A consists of both spacetime indices and color indices. Notice that QA

are functions of spacetime: QA = QA(xµ). Then, TQ is the tangent space of Q, which is spanned
by {QA, Q̇A}. We refer to (QA, Q̇A, Q̈A) as the generalized coordinates, velocities and accelerations
of the theory, respectively.

As already stated and common to most field theories, we assume that the dynamics are derivable
from a principle of least action. In other words, the equations of motion EA for the field theory
follow from the requirement that the action functional

S = S[QA] =

∫

M
ddxL =

∫ t2

t1

dx0
∫

Σ
dd−1xL =:

∫ t2

t1

dx0L (23)

remains stationary under arbitrary functional variations δQA = δQA(x0, xi) that vanish at t1 and
t2:

δS =
δS

δQA
δQA ≡

∫

M
ddxEAδQ

A !
= 0, (24)

with δQA(t1, x
i) = 0 = δQA(t2, x

i). The above variational derivative is defined as

EA := ∂µ

(
∂L

∂(∂µQA)

)
− ∂L
∂QA

!
= 0, (25)

where the latter equality is the on–shell demand. Here, L = L[QA] is the Lagrangian density
and, accordingly, L is the Lagrangian. Observe that we have already restricted attention to first
order field theories, i.e. we consider L depends only on QA and its first derivatives ∂µQ

A, up to
integration by parts. The study of higher order field theories lies beyond the scope of our present
investigations. We omit the possible dependence of L on non–dynamical field variables, such as the
spacetime metric in any special relativistic theory. The said dependence can be easily incorporated
to the following analysis, but it does not arise in the theories we discuss in this work.

It is convenient to recast the Euler–Lagrange equations of motion (25) in the form

EB = Q̈AWAB + αB
!
= 0, (26)

where we have defined the primary Hessian WAB := ∂Ȧ∂ḂL, as well as

αB := (∂Ḃ∂
i
AL+ ∂iB∂ȦL)∂iQ̇A + (∂iB∂

j
AL)∂i∂jQA + (∂iB∂AL)∂iQA + (∂Ḃ∂AL)Q̇A − ∂BL. (27)

To alleviate notation, we have introduced the following short–hand notation:

∂Ȧ :=
∂

∂Q̇A
, ∂iA :=

∂

∂(∂iQA)
, ∂A :=

∂

∂QA
,

which we shall extensively employ henceforth.
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It is well–known that any field theory of the kind here considered is described by a singular La-
grangian density; that is, a Lagrangian density whose primary Hessian has a vanishing determinant
det(WAB) = 0. This means that rank(WAB) < dim(WAB) = N . Further, for a first–order field
theory, the rank of the primary Hessian can only be reduced by setting to zero entire rows (or,
equivalently, columns). This is because requiring linear combinations of rows to vanish amounts to
a redefinition of the field variables QA.

It follows that not all equations in (26) are equations of motion, in the sense that not all of them
depend on the generalized accelerations Q̈A. Instead, M1 := dim(WAB)− rank(WAB) of them are
(primary) constraints; that is, relations between the generalized coordinates QA and velocities Q̇A.
In the following, we obtain and ensure the stability of these constraints.

Let γI be the set of M1 null vectors of the primary Hessian:

(γI)
AWAB = 0, I = 1, 2, . . . ,M1. (28)

We require that these form a basis of the kernel of WAB. This amounts to imposing the normal-
ization condition

(γI)
A(γJ)A = δJI , where γI := (γI)

T , (29)

with T standing for the transpose operation. Then, the M1 primary constraints are given by the
contraction of the equations of motion (26) with the above null vectors:

ϕI ≡ (γI)
AEA = (γI)

AαA
!
= 0. (30)

These primary constraints need not be functionally independent from each other. When they
are, the field theory is said to be irreducible at the primary stage. Otherwise, the theory is
reducible at the primary stage. Before we carry on, we must restrict attention to the functionally

independent primary constraints ϕI′
!
= 0, where I ′ = 1, 2, . . .M ′

1 ≤ M1. Their number is given by
M ′

1 = rank(JIΛ), where the Jacobian matrix JIΛ is defined as

JIΛ :=
∂ϕI

∂XΛ
, XΛ = {QA, Q̇A}. (31)

The above is the pullback of the phase space regularity conditions in [92, 93]. For the theories we
are concerned with in this work, we verify M ′

1 =M1. Hence, all of the primary constraints in (30)
must be considered in the following34.

The vanishing of all (the functionally independent) on–shell primary constraints defines the so–
called primary constraint surface TQ1 ⊂ TQ. We write

ϕI :
1≈ 0. (32)

Equalities that hold true in TQ1 (and not in the entire of TQ) shall be denoted
1≈.

Consistency requires us to not only enforce the primary constraints (32), but also to ensure that

34If M ′
1 < M1, more work is required. Indeed, there exists an iterative algorithm to extract the functionally

independent subset of constraints from (30). This is explained in section IID of [85] and subsequently exemplified.
When the said algorithm requires a(n) finite (infinite) number of iterations, we face a(n) finitely (infinitely) reducible
theory. As already pointed out, the procedure here described requires, at the very least, the closure of the reducibility
algorithm to proceed. Thus, infinitely reducible theories cannot be studied with the present formalism.

47



these are preserved under time evolution. Explicitly, ẼJ := ϕ̇J
!≈
1

0. ẼJ
35 are known as the

secondary Euler–Lagrange equations of motion and it is convenient to write them as

ẼJ = Q̈A(γI)AW̃IJ + α̃J
!≈
1
0, (33)

where W̃IJ := (γI)
A∂ȦϕJ is the so–called secondary Hessian and we have defined

α̃J := −αAM
AB∂ḂϕJ + Q̇A∂AϕJ + (∂iQ̇

A)∂iAϕJ . (34)

Here, the auxiliary matrix MAB is the Moore–Penrose pseudoinverse (as defined in [94]) of the
primary Hessian. This is ensured to always exist and be unique. Its defining relations are

WABM
BC − δCA + (γI)A(γI)

C = 0, MAB(γI)B = 0. (35)

In [62], the first relation is referred to as completeness relation. There, both equations in (35) are
further used to obtain the subset of functionally independent secondary Euler–Lagrange equations.

If rank(W̃IJ) = dim(W̃IJ) = M1, then the stability of the primary constraints is ensured by a set
of secondary Euler–Lagrange equations ẼJ . In such a case, all of the ẼJ ’s are dynamical, i.e. they
involve generalized accelerations Q̈A, and thus no secondary constraints arise. As a result, the total
number of on–shell constraints present in such field theory is l = M ′

1. However, this is not what
generically happens in the theories of our interest.

In most theories, the rank of the secondary Hessian is smaller than its dimension. As a result,
M2 := dim(W̃IJ)− rank(W̃IJ) of the equations in (33) are (secondary) constraints, whose stability
must be ensured. This is done exactly as in the primary stage before. In other words, the analysis
from equation (28) onwards is to be repeated.

In details, first the null vectors γ̃R of the secondary Hessian must be obtained:

(γ̃R)
IW̃IJ = 0, R = 1, 2, . . . ,M2,

and chosen so that the normalization condition

(γ̃R)
I(γ̃S)I = δSR, with γ̃S := (γ̃S)

T

is satisfied. Then, these must be contracted with the secondary Euler–Lagrange equations to yield
the secondary constraints of the theory,

ϕ̃R ≡ (γ̃R)
IẼI

!≈
1
0. (36)

If the secondary constraints identically vanish in the first constraint surface ϕ̃R

1∼∼∼ 0, then the
number of on–shell constraints is l = M ′

1. Again, this is not what happens in the theories of our
interest.

As a consequence, we must proceed with the algorithm. First, we need to obtain the M ′
2 ≤ M2 of

ϕ̃R’s which are functionally independent among themselves when evaluated in the first constraint
surface. This number is given by

M ′
2 = rank(J̃RΛ), where J̃RΛ :=

∂

∂XΛ

(
ϕ̃R

∣∣∣
TQ1

)
(37)

35For clarity, we will use a notation where tilde quantities belong to the secondary stage and hat quantities pertain
to the tertiary stage.
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and XΛ was introduced in (31). We verify M ′
2 = M2 for the theories we shall consider. Thus, all

secondary constraints in (36) must be considered subsequently36.

The vanishing of the (functionally independent) secondary constraints will define the second con-

straint surface TQ2 ⊂ TQ1; which we write as ϕ̃R :
2≈ 0. Equalities holding true in TQ2 shall be

denoted
2≈.

Let ŴRS := (γ̃R)
I(γI)

A∂Ȧϕ̃S be the tertiary Hessian. When the tertiary Hessian’s rank does not

match its dimension, the stability of M3 := dim(ŴRS) − rank(ŴRS) of the secondary constraints
in TQ2 is not guaranteed. Instead, it must be enforced through a third iteration of the above
described procedure.

In full generality, this algorithm stops when all constraints have been stabilized. This can happen
in either of the following three different manners:

1. Firstly, it may happen when Mn := dim(W (n))− rank(W (n)) = 0 for some nth stage Hessian
W (n). This implies no constraints arise at the nth stage.

2. Secondly, it may happen when the nth stage constraints vanish identically in the (n − 1)th

constraint surface: ϕ(n)
n−1∼∼∼ 0. Such ϕ(n)’s are known as Lagrangian identities.

3. Thirdly, it may happen when all the nth stage constraints are functionally dependent on the
(n−1)th stage constraints: ϕ(n) = (f1+f2∂i)ϕ

(n−1), where (f1, f2) are arbitrary smooth func-
tions of the generalized coordinates and velocities (QA, Q̇A), such that (f1, f2) are naturally
defined in TQn−1.

Here, ϕ(n) and ϕ(n−1) refer to functionally independent constraints at the nth and (n− 1)th stage,
respectively. Observe that in the cases 2 and 3, one finds M ′

n = 0. This implies that such ϕ(n)’s do
not define a new constraint surface, so that TQn ≡ TQn−1.

In all three cases, the total number of on–shell constraints is given by

l =
n−1∑

a=1

M ′
a,

where M ′
a counts the number of functionally independent ath stage constraints. We are not aware

of any physically relevant example of a field theory where n is infinite.

5.2.2 General expressions for the on–shell constraints

For completeness, we now provide the explicit expressions for all relevant quantities at some arbi-
trary iteration of the algorithm. These have not appeared in the literature, as far as we know.

Let ϕAa

!
= 0 be a set of Ma many functionally independent constraints at the ath stage, with

Aa = 1, 2, . . . ,Ma. These constraints are relations between the generalized coordinates QA and ve-
locities Q̇A of the field theory under consideration. They define the so–called ath constraint surface

TQa ⊂ TQ = span{QA, Q̇A}, which we express as ϕAa :
a≈ 0. In order to ensure the preservation of

the said constraints under time evolution, we require

EAa := ϕ̇Aa

!≈
a
0. (38)

36When M ′
2 < M2, the iterative algorithm referenced in footnote 34 must be employed to extract the functionally

independent secondary constraints from (36).
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We refer to EAa as the (a + 1)th stage Euler–Lagrange equations. Next, we will explicitly write
EAa . But to do so, we must first define the following objects. Let WAaAb

denote the (a + 1)th

stage Hessian. This is a square matrix of dimension Ma that allows us to define Ma+1 :=
dim(WAaAb

) − rank(WAaAb
). We refer to the Ma+1 null vectors associated to WAaAb

as γAa+1 .
Explicitly, (γAa+1)

AaWAaAb
= 0, with Aa+1 = 1, 2, . . . ,Ma+1. We require them to fulfill the nor-

malization condition

(γAa+1)
Aa(γAb+1)Aa = δ

Ab+1

Aa+1
, with γAa+1 := (γAa+1)

T ,

where T stands for the transpose operation. With the help of the above null vectors, the (a+ 1)th

stage Hessian can be expressed in terms of the the ath stage (functionally independent) constraints
as follows:

WAaAb
= (γAa)

Aa−1(γAa−1)
Aa−2 . . . (γA1)

A∂ȦϕAb
, with A = 1, 2, . . . , N = dim(Q). (39)

Finally, we introduce the auxiliary matrix MAaAb which always exists and is uniquely determined
from the relations

WAaAb
MAbAc − δAc

Aa
+ (γAa+1)Aa(γAa+1)

Ac = 0, MAaAb(γAa+1)Ab
= 0. (40)

Using the above, the (a+ 1)th stage Euler–Lagrange equations in (38) can be written as

EAb
= Q̈A(γA1)A(γ

A2)A1 . . . (γ
Aa)Aa−1WAaAb

+ αAb

!≈
a
0, (41)

where the expression (39) is to be employed for WAaAb
and where we have (recursively) defined

αAb
:=

[
−αAa−1M

Aa−1Ab−1(γAb−1
)Aa−2(γAa−2)

Aa−3 . . . (γA1)
A∂Ȧ

−αAa−2M
Aa−2Ab−2(γAb−2

)Aa−3(γAa−3)
Aa−4 . . . (γA1)

A∂Ȧ

− . . .− αAM
AB∂Ḃ + Q̇A∂A + (∂iQ̇

A)∂iA

]
ϕAb

,

with αA as given in (27).

In order to reproduce the results in section 5.2.1 from the above discussion, the reader need only
do the index replacements (A0 ≡ A,B, . . .), (A1 → I, J, . . .), (A2 → R,S, . . .), etc., as well as take
footnote 35 into account.

5.2.3 Off–shell identities

In the principle of least action (24), we have so far only considered that δS
!
= 0 follows from the

on–shell demand EA
!
= 0. In the following, we briefly review how the vanishing of δS may also

be a consequence of off–shell identities stemming from the arbitrary functional variations δQA.
There are different methods to obtain such off–shell identities, but it is not our goal to provide
an overview of them here. Our subsequent discussion summarizes and employs the approach put
forward in [95] and later on adapted to exhibit manifest covariance in [69]. This adaptation makes
it straightforward to apply [95] to any first–order classical field theory, which is our interest.

Let δQA be of the form

δQA =
n∑

s=0

(−1)s
(

∂sθβ
∂xµ1∂xµ2 . . . ∂xµs

)
(ΩAβ)µ1µ2...µs , (42)
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where n, β ∈ N ∪ {0} and the θβ ’s and ΩAβ ’s are smooth functions of the spacetime coordinates
xµ, known as the gauge parameters and gauge generators of the transformation, respectively. The
former are unspecified, while the latter are to be determined. Introducing the above in (24) and
operating, we find that

δS =

∫

M
ddx θβ̺

β , ̺β :=

n∑

s=0

∂s
[
EA(Ω

Aβ)µ1µ2...µs
]

∂xµ1∂xµ2 . . . ∂xµs
. (43)

If, under the field variations (42) for some ΩAβ , the action remains invariant δS = 0, then we have
that

̺β = 0. (44)

holds true off–shell (i.e. without making use of EA
!
= 0). In such a case, (42) and (44) are known

as the gauge transformations and gauge identities in the theory, respectively.

The recursive construction of the gauge generators ΩAβ has been a subject of vivid interest for
decades. The approach in [96] is perhaps the most befitting to our own exposition, requiring only
a suitable adaptation from particle systems to field theories that is devoid of subtleties. We shall
not present the corresponding discussion here because, for the theories at hand, the explicit form
of the gauge transformations is already known. This a priori knowledge allows to straightforwardly
infer the generators ΩAβ .

Further, given (42), g is equal to the number of distinct θ parameters there present. Namely,
β = 1, 2, . . . , g. On the other hand, e is equal to the number of distinct (θ, θ̇, θ̈, . . .) that appear in
(42). Obviously, e ≥ g.

We have now achieved our goal: we have determined g and e in theories for which the gauge trans-
formations are known beforehand. Together with the number of on–shell constraints l determined
in the previous section 5.2.1, we can now count degrees of freedom in (almost) all first–order field
theories by means of (22).

We stress that the determination of g and e is possible and has been made systematic in theories
for which the gauge transformations are unknown from the onset. The calculations in such theories
are more involved, but there is no conceptual obstacle that has to be overcome. The reader can
consult [95] for the explicit derivation of the gauge generators in Yang–Mills theory and both the
metric and Palatini formulations of General Relativity, by means of the formalism put forward
in [96].

We conclude this section with an important remark. The off–shell identities (44) here obtained
need not always coincide with the Lagrangian identities defined in 2. Maxwell’s theory is an exam-
ple where this coincidence does happen. Indeed, the Bianchi identities are the projection onto the
kernel of the primary Hessian of the theory’s U(1) gauge identity. On the other hand, the diffeo-
morphism invariance of relativistic theories does not lead to Lagrangian identities. For theories of
this second type, our above off–shell analysis is indispensable.
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Part III

Applications

6 Non–linear electrodynamics

Having explained in detail constrained systems, we proceed by applying them to physical theories.
We will explicitly employ the algorithms previously introduced, thereby demonstrating their use-
fulness and exposing the mathematical structure of the theories.

In this section, we introduce non–linear electrodynamics in arbitrary dimensions and analyze it in
the Hamiltonian, as well as in the Lagrangian, framework. We make use of Mathematica and, in
particular, the xAct package [97] to complement and double–check lengthy calculations.

The Hamiltonian analysis terminates after the secondary stage and we find 2 first–class and d(d−1)
second–class constraints, resulting in (d− 2) physical degrees of freedom.

The Lagrangian analysis terminates at the secondary level and we find a total of d2 − d + 1 con-
straints. We determine the number of gauge identities g and effective gauge parameters e in two
complementary ways. In both cases, we find g = 1 and e = 2, which results in d−2 physical degrees
of freedom.

Historically, non–linear electrodynamics (NLED) was an attempt to overcome conceptual difficulties
when trying to quantize electromagnetism [98]. In fact, the development of quantum electrody-
namics (QED) showed that non–linear effects arise in the interaction of electromagnetic fields with
the vacuum [99]. It is possible to obtain NLED from QED, such that it can be considered as a
classical model of the vacuum polarization [100]. It was, among other things, used to construct the
first regular exact black hole solution in General Relativity [101]. Diverse applications of NLED to
cosmology and high–energy astrophysics are recently investigated (see [99] and references therein).

6.1 H(P)–formulation of NLED

The naive way to introduce non–linear effects in electrodynamics is to include general functions of
the field strength invariant F = 1

4FµνF
µν . Alternatively, one can describe the system rewriting the

Lagrangian L(F) in terms of its Legendre transform H [101]. The advantage of this formulation
is that many results can be achieved more easily [102], e.g. the variation of the Lagrangian with
respect to the electromagnetic field Aµ now gives the non–linear version of the Maxwell equations
∇µP

µν = 0 [103]. We will study NLED in flat space with Minkowski metric ηµν , but the analysis
does not change if carried out over a fixed curved background. The Lagrangian of non–linear
electrodynamics can be written as

L = −1

2
FµνP

µν +H(P), (45)

where Fµν = ∂µAν − ∂νAµ corresponds to the intensity of the electric field and magnetic induction
vectors and Pµν = −P νµ corresponds to the electric induction and the intensity of the magnetic
field vectors. The structural function H can in general depend on the two invariants of the tensor
Pµν , i.e.

P :=
1

4
PµνPµν and P∗ :=

1

4
P ∗µνPµν ,
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but we will only consider H = H(P) here [100]. By means of a Legendre transformation we find

H = 2F ∂L
∂F − L.

The variation of the action with respect to the conjugate antisymmetric tensor Pµν gives the
so–called constitutive relations

Fµν =
∂H
∂P Pµν ,

and one can express the Lagrangian (45) in terms of H and P as

L = −2P ∂H
∂P +H.

The theory has to transition into Maxwell’s electrodynamics in the weak field limit, demanding
that H ≈ P holds for P ≪ 1. Furthermore, H is required to satisfy the weak energy condition,
such that H < 0 and ∂H

∂P > 0 [101]. In the following, we write

H′ ≡ dH
dP ,

for derivatives of H(P) with respect to P and note that

∂H
∂P i

=
dH
dP

∂P

∂P i
= PiH′,

∂H
∂P ij

=
dH
dP

∂P
∂P ij

=
1

2
PijH′.

6.2 Hamiltonian analysis

As a starting point, we take the Lagrangian from Eq. (45) and explicitly carry out the summation
over repeated indizes. In other words, we decompose it into time and space components and arrive
at

L = −ȦiP
i + P i∂iA+ P ij∂jAi +H. (46)

Our set of generalized coordinates is

Q = {A,Ai, P
i, P ij},

where A is the zero component of Aµ and P i := P 0i. The corresponding set of generalized momenta
reads

P = {Π,Πi,Pi,Pij}.
Notice that there are N = d(d + 1)/2 configuration space variables. It is easy to see that the
conjugate momenta of A,P i and P ij vanish identically, since

∂L
∂Ȧ

=
∂L
∂Ṗ i

=
∂L
∂Ṗ ij

= 0. (47)

Only the contribution from Ai,

Πi =
∂L
∂Ȧi

= −P i, (48)

is non-trivial. The canonical Hamiltonian Hcan =
∑

n
∂L
∂q̇n

q̇n − L reads

Hcan = −P i∂iA− P ij∂jAi −H.
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6.2.1 Primary stage

Primary constraint submanifold The primary constraints can be read off from Eqs. (47) and
(48), such that

Ψm = {Π,Πi + P i,Pi,Pij} :
1≈ 0, m = 1, . . . , 4 ,

defines the primary constraint submanifold.

Primary Hamiltonian We have to include the primary constraints (the vanishing momenta
as well as the constraint from relation (48)) via Lagrange multipliers. We obtain the primary
Hamiltonian

Hp = Hcan + λi(

(Ψ2)i︷ ︸︸ ︷
Πi + P i) + λΠ+ Λi

Pi + Λij
Pij ,

where λ and Λ are arbitrary and only denoted differently for convenience.

Stability conditions We want to check if the constraints and relations on the momenta are
stable, i.e. constant in time. To do so we use Eq. (19), such that

Ψ̇m = {Hp,Ψm},

for our primary constraints. We find the following stability conditions

1. {Hp,Π} = ∂iP
i,

2. {Hp,Π
i + P i} = ∂jP

ij − Λi → Λi 1≈ ∂jP
ij ,

3. {Hp,Pi} = −PiH′ + λi − ∂iA → λi
1≈ PiH′ + ∂iA,

4. {Hp,Pij} = −1
2PijH′ + ∂[iAj].

Condition 2 and 3 determine two of the Lagrange multipliers. They can be fixed on the primary
constraint submanifold. Condition 1 and 4 on the other hand do not include arbitrary functions
and thus are true constraints that need to be enforced.

6.2.2 Secondary stage

Secondary constraint submanifold Ensuring the stability of the primary constraints generates
two secondary constraints

χr = {∂iP i,−1

2
PijH′ + ∂[iAj]} :

2≈ 0, r = 1, 2 ,

which define the secondary constraint submanifold.

Secondary Hamiltonian Now, we add the new constraints to the primary Hamiltonian and
fix the Lagrange multipliers that were determined in the first stage. We obtain the secondary
Hamiltonian

Hs = Hcan + (PiH′ + ∂iA)(Π
i + P i) + ∂jP

ij
Pi

+ λΠ+ Λij
Pij + λ̃(∂iP

i) + λ̃ij(−1

2
PijH′ + ∂[iAj]),

where λ̃ are the Lagrange multipliers for the new constraints.
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Consistency relations The consistency conditions {Ψm, Hs} for the primary constraints read

1. {Hs,Π} = −∂iΠi 2≈ 0,

2. {Hs,Π
i + P i} = ∂j λ̃

ij ,

3. {Hs,Pi} = −∂iλ̃+ 1
2 λ̃

abPabPiH′′,

4. {Hs,Pij} = 1
2 λ̃

kl

[
ηi[kηl]jH′ + 1

2PklPijH′′

]
≡ λ̃klτklij .

As expected, relation 1 is not functionally independent from our prior constraints, since

∂iΠ
i = ∂i(Ψ2)

i − χ1
2≈ 0,

and therefore weakly vanishes in the secondary constraint submanifold. Conditions 2 to 4 fix one or
more Lagrange multipliers, the exact solution is not important for our purposes. For convenience,
we introduced the object

τklij =
1

2

[
ηi[kηl]jH′ +

1

2
PklPijH′′

]
,

since it will appear several times in the following analysis.

Stability conditions As for the primaries, the secondary constraints need to be conserved in
time. We calculate

1. {Hs, ∂iP
i} = 0,

2. {Hs, (∂[iAj] − 1
2PijH′)} = 1

2Pij∂lP
klPkH′′ + Λklτklij .

Condition 1 tells us that the constraint is automatically stable and does not evolve in time. Con-
dition 2 determines a Lagrange multiplier. Since no new constraints arise at the secondary stage
the algorithm terminates here. As long as we are only interested in counting the physical degrees
of freedom there is no need to explicitly solve for the Lagrange multipliers.

Final Hamiltonian The form of the final Hamiltonian is not explicitly worked out here. To do
so one has to solve for the Lagrange multipliers that got determined at the secondary stage and
plug them into Hs. This is a technical problem to be solved and not necessary for the counting of
degrees of freedom and the canonical structure, as already pointed out before. Strictly speaking,
one should determine the final Hamiltonian and check the two secondary constraints for consistency
— this might yield another relation on Lagrange multipliers but cannot generate a new constraint.
The form of the final Hamiltonian can be of interest though, since the number of arbitrary Lagrange
multipliers should be related to the gauge symmetry of the theory. For (non–linear) electrodynamics
we would expect two λ’s to remain arbitrary.

6.2.3 Degrees of freedom

To count the physical degrees of freedom using Eq. (21) we still need to classify the full set of
constraints into first– and second–class.
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First and second class constraints Our full set of constraints is

{Ψ, χ} = {Π,Πi + P i,Pi,Pij , ∂iP
i, ∂[iAj] −

1

2
PijH′}.

Per definition a first class constraint has a vanishing Poisson bracket with every other constraint.
If a constraint does not meet that criterion it is called second–class. Our set of constraints is fairly
easy and we find the following situation:

{·, ·} Π Πi + P i
Pi Pij ∂iP

i ∂[iAj] − 1
2PijH′

Π 0 0 0 0 0 0

Πk + P k 0 0 δki 0 0 0

Pk 0 δik 0 0 0 0

Pkl 0 0 0 0 0 τklij

∂iP
i 0 0 0 0 0 0

∂[kAl] − 1
2PklH′ 0 0 0 τijkl 0 0

One might wonder about the fact that τijkl appears in the constraint algebra. Indeed, it seems as
if there are two branches of the theory, depending on the specific choice of H. However, for generic
field configurations, where all Q’s are functionally independent, there is no solution that satisfies
τijkl = 0. Therefore, we do not have any branching of the theory and the constraint structure is
unambiguous. Interestingly, one could also reason from the above situation that τijkl = 0 cannot be
possible for a general theory of the form (45). Otherwise, it could not be considered dynamically
equivalent to standard electromagnetism.

Counting We have the first–class constraints

FC = {Π, ∂iP i},

and the second–class constraints

SC = {Πi + P i,Pi,Pij , ∂[iAj] −
1

2
PijH′}.

That amounts to a total number of N1 = 2 first–class constraints and N2 = d(d− 1) second–class
constraints. Together with N = 1

2d(d + 1) we find for the total number of physical degrees of
freedom in d dimensions

ndof =
1

2
d(d+ 1)− 2− d(d− 1)

2
= d− 2.

As expected, non–linear electrodynamics propagates the same number of physical degrees of freedom
as Maxwell’s theory. In particular, for d = 4 we recover the 2 degrees of freedom corresponding
to the independent polarization directions of electromagnetic waves. Of course NLED respects the
constraint structure of the Maxwell–Proca theory [20], since it constitutes a sub–theory thereof.
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6.3 Lagrangian analysis

In the following we apply our algorithm from Sec. 5.2 to the Lagrangian of non–linear electrody-
namics (46).

6.3.1 Primary level

The Lagrangian (46) does not contain higher than linear terms in time derivatives, resulting in a
vanishing primary Hessian

WAB = 0.

From this we can immediately conclude that there are dim(W ) = d(d+1)
2 null vectors of W . Fur-

thermore, we can easily convince ourselves that the first two contributions from (27) vanish and we
are left with

αB = (∂iB∂AL)∂iQA + (∂Ḃ∂AL)Q̇A − ∂BL.

Straightforward computation yields

α1 = −∂iP i,

α2 = ∂jP
ji + Ṗ i,

α3 = −Ȧi + ∂iA+ PiH′

α4 = −∂[iAj] +
1

2
PijH′.

We choose the trivial null vectors of W as

(γI)
A = (0, . . . , 0, 1, 0, . . . , 0),

where I = 1, . . . , 4 and the 1 appears at the Ath position. Explicitly,

(γ1)
A = (1, 0, 0, 0),

(γ2)
A = (0, δji , 0, 0),

(γ3)
A = (0, 0, δij , 0),

(γ4)
A = (0, 0, 0, δ

[i
k δ

j]
l ).

Thus, we find for the primary constraints ϕI = (γI)
AαA

ϕ1 = (γ1)
AαA = α1 = −∂iP i,

(ϕ2)
i = (γ2)

AαA = ∂jP
ji + Ṗ i,

(ϕ3)i = (γ3)
AαA = α3 = −Ȧi + ∂iA+ PiH′,

(ϕ4)ij = (γ4)
AαA = α4 = −∂[iAj] +

1

2
PijH′.

Functional independence By explicit evaluation of the Jacobian

JIΛ :=
∂ϕI

∂XΛ
, XΛ = {QA, Q̇A},

we verify that NLED is irreducible at the primary level, i.e. M ′
1 = M1 and thus all primary

constraints are functionally independent.
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Primary constraint surface Setting ϕI :
1≈ 0 defines the primary constraint submanifold. In

the following we have to ensure their stability.

6.3.2 Secondary level

Stability Consistency requires us to not only enforce the primary constraints, but also to ensure
that these are preserved under time evolution. Explicitly, we use the secondary Euler–Lagrange
equations of motion

ẼJ = Q̈A(γI)AW̃IJ + α̃J

!
1≈ 0,

in order to calculate ẼJ := ϕ̇J

!
1≈ 0.

Secondary α’s Since the primary HessianWAB = 0, we find that its pseudoinverseMAB vanishes
as well and Eq. (34) reduces to

α̃J = Q̇A∂AϕJ + ∂iQ̇
A∂iAϕJ .

Straightforward computation yield

α̃1 = −∂iṖ i,

α̃2 = ∂iṖ
ij ,

α̃3 = ṖiH′ + Ṗ kPiPkH′′ +
1

2
Ṗ klPiPklH′′ + ∂iȦ,

α̃4 =
1

2
Ṗ kPijPkH′′ +

1

2
ṖijH′ +

1

4
Ṗ klPijPklH′′ − ∂[iȦj].

Secondary Hessian From its defining properties, we can deduce that

W̃1J =
∂ϕJ

∂Ȧ
= 0, W̃2J =

∂ϕJ

∂Ȧi

, W̃3J =
∂ϕJ

∂Ṗ i
, W̃4J =

∂ϕJ

∂Ṗ ij
,

and the only non–vanishing components are

W̃23 = −δji , W̃32 = δij ,

or in matrix form

W̃IJ =




0 0 0 0

0 0 −δji 0

0 δij 0 0

0 0 0 0



.

We choose as the null vectors of the secondary Hessian, (γ̃R)
IW̃IJ = 0, the following objects

(γ̃1)
I = (1, 0, 0, 0), (γ̃2)

I = (0, 0, 0, δ[imδ
j]
n )
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Secondary constraints Stability demands that

(γ̃R)
IẼI = (γ̃R)

I α̃I ≡ ϕ̃R
1≈ 0,

and if this is not identically fulfilled we enter the secondary stage of the constraint algorithm. We
find

ϕ̃1 = (γ̃1)
I α̃I = α̃1 = −∂iṖ i = −∂i(ϕ2)

i 1≈ 0,

ϕ̃2 = (γ̃2)
I α̃I = α̃4 =

1

2
Ṗ kPijPkH′′ +

1

2
ṖijH′ +

1

4
Ṗ klPijPklH′′ − ∂[iȦj] =

=
1

2
Pij

dH′

dt
+

1

2
ṖijH′ − ∂[iȦj] ✁

✁1≈ 0.

It turns out that ϕ̃1 is equal to the divergence of a primary constraint and when evaluated on the
primary constraint submanifold it vanishes weakly. ϕ̃2 on the other hand does not vanish weakly.
It is possible to rewrite it using the primary constraints, but it will never identically vanish. Thus,
we only found one true secondary constraint.

Closing of the algorithm The tertiary Hessian is defined as

ŴRS := (γ̃R)
I(γI)

A∂Ȧϕ̃S ,

where we only take into account the null vectors on the secondary stage that generate a true
constraint, i.e. we exclusively consider (γ̃2

I). The combination

(γ̃2)
I(γI)

4,

gives a non–zero contribution. Hence, the tertiary Hessian is the 1× 1–matrix

Ŵ = (γ̃2)
I(γI)

4 ∂

∂Ṗmn
ϕ̃2 =

1

2

∂

∂Ṗmn

[
PijH′′

(
Ṗ kPk +

1

2
Ṗ klPkl

)]
=

1

4
PijPmnH′′,

which obviously is of full rank. The algorithm closes and we do not enter a tertiary constraint
surface.

6.3.3 Degrees of freedom

We found a total of
l = d2 − d+ 1

Lagrangian constraints. From the Hamiltonian side we can infer [84, 85] that g = 1 and e = 2,
such that we count

ndof = N − 1

2
(l + g + e) =

1

2
d(d+ 1)− 1

2
(4− d+ d2) = d− 2.

Hence, we corroborate the number of physical degrees of freedom obtained with the Hamiltonian
approach.
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Off–shell identities The last thing to be done is to derive e+ g independently and not borrow
it from the Hamiltonian side. We know that the gauge identities will be related to functionally
dependent Lagrangian constraints. We therefore inspect

ϕ̃1 =
∂

∂t
ϕ1 = −∂iṖ i ≡ ∂

∂t
(E0

1)

and use the functional dependence discovered in the secondary stage

−∂iṖ i = −∂i(ϕ2)
i,≡ −∂i(E0

2)

to write

G =
∂

∂t
(E0

1) + ∂i(E
0
2) = 0. (49)

Notice that this is an off–shell relation. Following [84] we multiply Eq. (49) with an arbitrary
spacetime function ǫ(x, t), such that

✟✟✟✟✟∂

∂t
(ǫE0

1) +✘✘✘✘
∂i(ǫE

0
2) − (∂iǫ)E

0
2 − (

∂

∂t
ǫ)E0

1 = 0,

where the surface terms vanish because technically we operate under an integral sign [95]. From
this we read off the gauge transformation as

δǫA = ǫ̇, and δǫAi = ∂iǫ,

which we combine to find
δǫAµ = ∂µǫ.

Hence, we recover the well–known gauge transformation from Maxwell electrodynamics. Addition-
ally, we find that

δǫPµν = 0,

i.e. there exists no gauge symmetry regarding these fields and we confirm g = 1 and e = 2.

7 General Relativity

We introduce in detail the general theory of relativity. We comment on curvature, its deriva-
tion from an action principle and associated symmetries. Subsequently, we discuss its manifestly
first–order formulation — Palatini. In contrast to the d > 2 case, two–dimensional Palatini is
not dynamically equivalent to Einstein–Hilbert. Despite this fact, an investigation of Palatini’s
constraint structure in two spacetime dimensions is of immediate interest: it closely resembles the
structure of constraints in d > 2 Einstein–Hilbert gravity.

We analyze d = 2 Palatini in the Hamiltonian, as well as in the Lagrangian, framework. As before,
we use Mathematica to complement and double-–check lengthy calculations. The Hamiltonian anal-
ysis terminates after the tertiary stage and we find 3 first–class and 12 second—class constraints,
resulting in 0 physical degrees of freedom. The Lagrangian analysis terminates after the primary
level and we find a total of l = 9 constraints. We determine the number of gauge identities g and
effective gauge parameters e from the off–shell identities. We find g = 3 and e = 6, which results
in 0 propagating degrees of freedom.

As expected, both approaches yield the same number of physical degrees of freedom. In the end,
we comment on a potential tension between our Hamiltonian and Lagrangian methods. This might
stem from a conceptual difference between reductional and non–reductional techniques.
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General Relativity is the geometric theory of gravitation published by Albert Einstein in 1915
and constitutes one of the pillars of modern physics. It describes gravity as a geometric property
of spacetime. The curvature of spacetime and the energy–momentum tensor are directly related
through the famous Einstein field equations. The implications of General Relativity are pervading
modern astrophysics. To name only a few, gravitational lensing, gravitational waves, black holes
and current models of cosmology rely on Einstein’s theory. On all other scales than the microscopic
world, General Relativity’s predictions are strikingly accurate [104].

7.1 Einstein gravity

Wemodel spacetime as the triple (M, g,Γ). M is a d–dimensional, orientable37, pseudo–Riemannian
manifold endowed with a Lorentz metric g, i.e. a metric with signature (1, d−1) [105]. This metric
allows tangent vectors to be classified into timelike, null or spacelike. Γ is the Levi–Civita connection
of (M, g), which is the unique affine connection, with associated covariant derivative ∇, such that
it

1. preserves the metric, i.e. ∇g = 0, and

2. is torsion–free, i.e. ∇XY −∇YX = [X,Y ], ∀X,Y ∈ Γ(TM).

Physically speaking, both of these properties follow from Einstein’s principle of equivalence [106].
In the case of the Levi–Civita connection the connection coefficients are called Christoffel symbols.
The torsion freeness condition implies the symmetry in the lower indices

Γλ
µν = Γλ

νµ,

where the Christoffel symbols are uniquely determined by

Γλ
µν =

1

2
gλσ(∂νgσµ + ∂µgσν − ∂σgµν).

7.1.1 Curvature

Parallel transport The notion of parallel transport is a very intuitive one: what does it mean to
keep a vector “pointing in the same direction” as it moves along a curve? In flat space, the value of
a vector that is parallel transported along a closed curve will always coincide with its initial value,
as shown in Fig. 14.

The situation is drastically different once we consider curved spaces. The most obvious example
of a curved space might be S2 — the surface of a sphere. If we picture a closed curve on the
sphere and a vector that is parallel transported along, we notice that its initial and final value
won’t coincide in general. As one can see in Fig. 15, the vector now points in a different direction.
This is obviously related to the fact that the surface of the sphere is curved. In other words, in a
curved space the result of parallel transporting a vector from one point the another depends on the
path taken between the points. This is the crucial difference between flat and curved spaces [45].

In section 3.1.3 we introduced the connection coefficients as functions that specify how the basis
vectors of the tangent spaces change from point to point. Thus, it is not surprising that the
connection, or rather the covariant derivative, contains all the information we need in order to
specify parallel transport [107]. Given a curve γµ(λ), a (p, q)–tensor is said to be parallel transported
if its covariant derivative along that curve vanishes, i.e. [45]

dγσ

dλ
∇σT

µ1,...µp
ν1,...,νq = 0.

37Which is a technical requirement for well–defined integration on the manifold.
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Figure 14: After being parallel transported along the closed curve, the vector will always point in
the same direction as it did before.

Figure 15: After being parallel transported along the closed curve, the vector will generically point
in a different direction.

Riemann curvature tensor Now that we know how to transport vectors (and tensors in general)
along a curve, we can use this knowledge to characterize the curvature of our manifold intrinsically.
The commutator of two covariant derivatives measures the difference between parallel transporting
a tensor first one way and then the other, versus the opposite ordering [45]. Consider a covector
field ωσ and let f be a smooth function. Calculate the action of two derivative operators applied
to (fωσ) as

∇µ∇ν(fωσ) = ∇µ(ωσf + f∇νωσ)

= (∇µ∇νf)ωσ +∇νf∇µωσ +∇µf∇νωσ + f∇µ∇νωσ,

and subtract from this the tensor ∇ν∇µ(fωσ). We are left with

(∇µ∇ν −∇ν∇µ)(fωσ) = f(∇µ∇ν −∇ν∇µ)ωσ, (50)

i.e. we specified the failure of successive differentiation to commute when applied to a covector field
[107]. Upon further inspection of Eq. (50), one realizes that (∇µ∇ν −∇ν∇µ) defines a linear map
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from covectors at the point p to (0, 3)–tensors at p. That means, its action is that of a (1, 3)–tensor
and there exists a tensor field Rρ

µνσ, such that for all covector fields ωσ

∇µ∇νωσ −∇ν∇µωσ = Rρ
µνσωρ.

One can repeat the above construction for a vector field Xσ to find

∇µ∇νX
σ −∇ν∇µX

σ = −Rσ
µνρX

ρ,

which can be generalized to arbitrary (p, q)–tensor fields [107]. Rρ
µνσ is called the Riemann curva-

ture tensor and in terms of the Christoffel symbols it reads

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

σαΓ
σ
νβ − Γµ

σβΓ
σ
να.

One way to think about the Riemann tensor is as a measure of how much the components of a
tensor change when it is parallel transported along an infinitesimal closed curve on the manifold
[45]. There are several useful objects, which appear often in the context of General Relativity, that
one can construct from the Riemann tensor. Its trace over the first and third indices defines the
Ricci curvature tensor

Rµν := Rα
µαν .

If we furthermore trace the remaining indices of the Ricci tensor, we obtain the (Ricci) scalar
curvature

R := Rµ
µ.

A particular combination of these curvatures plays an important role in General Relativity, since
it will appear directly in the equations of motion. We call this combination,

Gµν := Rµν −
1

2
gµνR,

the Einstein tensor.

7.1.2 Einstein–Hilbert action

Historically, Einstein proposed his theory of General Relativity as a consequence of the principle of
equivalence, which is basically a statement on local Lorentz and position invariance [108]. A more
modern approach is the derivation via a variational principle. The corresponding action functional,
the Einstein–Hilbert action, was first proposed by Hilbert in 1915 [109]. It can be extended in order
to include a cosmological constant Λ and coupling to matter fields, which are collectively denoted
by ψ. We define the action of General Relativity as

SGR[gµν , ψ] =
1

16πG

∫
(Rµνgµν − 2Λ)

√−gd4x
︸ ︷︷ ︸

SEH

+

∫
Lm(gµν , ψ)

√−gd4x
︸ ︷︷ ︸

SM

, (51)

where G is the gravitational constant, Lm is the minimally coupled matter Lagrangian. The scalar
density g = det(gµν) has to be included to make the volume element invariant under general
coordinate transformations [104].
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Variation of the action The metric is the only independent structure on the manifold. Variation
of Eq. (51) with respect to gµν can be split into the variation of the first part δSEH and of the
second part δSM . One finds

(16π)δSEH =

∫
(Gµν + Λgµν)δg

µν√−gd4x− surface term38, (52)

for the variation of the Einstein–Hilbert term including a cosmological constant [104, 106]. The
variation of the second term yields

δSM = −1

2

∫
Tµνδg

µν√−gd4x, (53)

where we have introduced the energy–momentum tensor as

Tµν := −2
∂Lm

∂gµν
+ Lmgµν .

Diffeomorphism invariance For a diffeomorphism invariant matter action SM , one can show
that Tµν is always conserved by virtue of the matter field equations, i.e.

∇µTµν = 0.

This reinforces the interpretation of Tµν as the energy–momentum tensor. By the same argument,
we can deduce that the diffeomorphism invariance of SEH implies

∇µGµν = 0,

which are known as contracted Bianchi identities [107].

7.1.3 Field equations

By the principle of stationary action we demand

δSGR = δ(SEH + SM )
!
= 0,

in order to obtain the equations of motion. Combining Eq. (52) and Eq. (53) we thus find the
Einstein field equations

Rµν +
1

2
gµν(2Λ−R) = 8πGTµν . (54)

These equations tell us how the curvature of spacetime reacts to the presence of energy–momentum
and can be thought of as a set of second–order differential equations for the metric tensor field gµν
[45]. Since energy–momentum is a conserved quantity, special relativity can be recovered in the
neighborhood of every point in spacetime [104]. Even though the metric tensor has 10 independent
components in d = 4, the contracted Bianchi identities impose four constraints on the Ricci tensor
Rµν(x), such that there are only six truly independent field equations. If a metric is a solution to
Eq. (54) in a particular coordinate system xµ, it should also be a solution in any other coordinate
system x̃µ, i.e. there is some arbitrariness in the choice of coordinates which corresponds to four
unphysical degrees of freedom in gµν [45].

38It should be noted that this term only vanishes if M has no boundary. In the case of a boundary ∂M , one has
to include an extra boundary term SB in the action, whose variation δSB will exactly cancel the surface term [106].
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Solutions The Einstein field equations are extremely complicated as differential equations, not
to mention their non–linear character. It is very difficult to find a general solution to Eq. (54)
without simplifying assumptions. One possibility is to assume symmetries of the metric tensor,
which is directly related to our discussion on isometries [45]. But even with the help of symmetries,
only a few physically relevant solutions are known at this point.

Most famously, the assumption of a homogeneous and isotropic universe leads to the Friedmann–
Robertson–Walker metric as an exact solution. In our language, a spacetime is said to be (spatially)
homogeneous if there exists a one–parameter family of spacelike hypersurfaces Σt foliating the
spacetime, such that for each t and for any points p, q ∈ Σt there exists an isometry of the metric
tensor gµν , which takes p into q [107].

Another famous exact solution can be found under the assumption of spherical symmetry, i.e.
a spacetime metric which is invariant under rotations. This yields the Schwarzschild solution, an
excellent approximation to the exterior gravitational field of stellar objects, such as our Sun. It even
predicts the complete gravitational collapse of sufficiently massive bodies and the arising spacetime
singularity, hidden by a black hole [107].

7.2 Palatini formulation

In the previous section we outlined Einstein’s original formulation of General Relativity, which was
solely in terms of the metric tensor gµν . It is only in the case of the Levi–Civita connection that
the metric is the only independent structure on the manifold. A connection should be viewed as
additional structure on the manifold and can, in principle, be chosen to be independent from the
metric. In the context of General Relativity, this idea to treat the connection as a priori independent
from gµν is usually called Palatini formulation. In other words, the connection Γ̃µ

νλ is no longer
assumed to be metric–compatible, but as it turns out there will be constraints on its torsion [104].

7.2.1 Torsion and non–metricity

It is of course possible to relax either of the defining condition for a Levi–Civita connection. Con-
sider a general connection

Γ̃µ
νλ = Γµ

νλ + Cµ
νλ, (55)

where Γµ
νλ is the Levi–Civita connection and Cµ

νλ a not further specified (1, 2)–tensor [110]. Denote

by ∇̃µ the associated covariant derivative. We define the torsion tensor Tµ
νλ by

[∇̃µ, ∇̃ν ]φ := Tµ
νλ∂λφ,

and the non–metricity tensor Qνλµ by

∇̃µgνλ := −Qνλµ.

In some sense, T and Q quantify by how much a connection fails to be torsion–free and metric–
compatible, respectively. In terms of Cµ

νλ these tensors can be written as

Tλµν = Cλµν − Cλνµ = 2Cλ[µν],

Qνλµ = Cνλµ + Cλνµ = 2C(νλ)µ.

If the torsion is zero and the connection is metric–compatible we have Cλµν = 0, an it follows that
Γ̃µ

νλ = Γµ
νλ [104, 110].
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7.2.2 Palatini action

As a starting point, we can use the previous action (51) and add an explicit dependence on Γ̃µ
νλ.

For simplicity we omit the cosmological constant Λ and the matter fields, which are only allowed
to couple to the metric tensor39. We write

SP [gµν , Γ̃
µ
νλ] =

1

16πG

∫
Rµν(Γ̃)gµν

√−gd4x, (56)

for the Palatini action [107]. Most importantly, this formulation is manifestly first order in deriva-
tives, whereas (51) also contains second–order contributions [111]. This makes its use for our
purposes clear: since we use a procedure that is only applicable to first–order field theories, we will
work in the Palatini formulation of General Relativity.

Variation of the action Variation of the action (56) with respect to the metric is identical to
our prior result in Einstein gravity. We find

δgSP =

∫ (
Rµν(Γ̃)−

1

2
gµνR(Γ̃)

)
δgµν

√−gd4x,

hence the equations of motion

Gµν(Γ̃) ≡ Rµν(Γ̃)−
1

2
gµνR(Γ̃) = 0, (57)

take the same form as Eq. (54). But, these are not yet the vacuum Einstein field equations because
the independent connection Γ̃ is not the Levi–Civita connection. In contrast to before, we now
have another independent variable Γ̃ with respect to which we can vary the action SP . One finds

δΓ̃SP =

∫ (
gαβCλγ

λ + gγβCαλ
λ − Cβγα − Cαβγ

)
δCγαβ

√−gd4x,

where we used the fact that

gµνδRµν(Γ̃) = gµν
(
Cλ

ρλδC
ρ
µν − Cρ

µλδC
λ
ρν − Cρ

λνδC
λ
µρ + Cρ

µνδC
λ
ρλ

)

+ surface terms.

Consequently, the conditions for the action to be stationary with respect to variations of an arbitrary
Γ̃ read

gαβCλγ
λ + gγβCαλ

λ − Cβγα − Cαβγ = 0, (58)

which do not determine Cα
βγ uniquely. Hence, the Palatini action (56) alone does not give rise to

well–defined equations of motion. The algebraic equations (58) can be shown to be equivalent to
the condition

Cα
βγ = δαγUβ ,

for an arbitrary vector Uβ . Apparently, the requirement for the connection to dynamically become
the Levi–Civita connection is Uβ = 0. We can rewrite the torsion tensor as

T σ
µν = Cσ

µν − Cσ
νµ = δσνUµ − δσµUν ,

39This is by definition of the Palatini formulation. Its generalization, where matter is allowed to couple to the
connection, is known as metric–affine gravity.
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and by taking its trace we find

Uµ =
1

d− 1
T ν

µν ,

which should vanish in order for the field equations of the Palatini formulation (57) to be dynam-
ically equivalent to the Einstein field equations (54). Thus, we found the necessary and sufficient
assumption to make, such that we recover the correct equations of motion: the trace of the torsion
tensor is required to vanish [110]. Consider the family of general affine connections allowed by the
Palatini formalism

Γ̃ρ
µν = Γρ

µν + Uµδ
ρ
ν . (59)

It is argued in [112] that there is no reason to assign a preferred status to the Levi–Civita con-
nection, since all Palatini connections lead to the same physics, in the sense that choosing any
other connection of the family (59) does not lead to observable effects at the level of the Einstein
equations or the trajectories of test particles. Accordingly, the Levi–Civita connection is then the
simplest representative of a class of physically indistinguishable connections.

7.2.3 Subtleties

There are some subtleties we have to clarify before we start the canonical analysis of Palatini.

Canonical structure Despite our general discussion of the Palatini formalism above, one should
not forget that we want to investigate General Relativity’s canonical structure. We only make use
of the Palatini fomulation as a means to an end: our approach demands a first–order field theory
and Palatini constitutes a manifestly first–order formulation of General Relativity. As such, we of
course assume the trace of the torsion tensor to vanish. As discussed in [113], in order to preserve
the canonical structure of General Relativity one should add the metric–compatibility condition to
the action using Lagrange multipliers. The “naive” Palatini approach, i.e. using on–shell conditions
to arrive at the standard metric formulation, really might replace the theory for another, changing
the canonical momenta and therefore the dynamics. To avoid this when we consider gravity coupled
to matter, we will add the piece

SLM =

∫
λµνρ∇µg

νρ√−gd4x,

to the Palatini action in order to safeguard the canonical structure of General Relativity. The
Lagrange multiplier tensor fields are denoted by λµνρ.

The case of d = 2 In d ≥ 3 the covariant constancy of the metric uniquely determines the
connection to be the Levi–Civita connection. This is not the case in d = 2, since spacetime is
not entirely fixed to be a purely metric manifold. In particular, the Γµ ≡ Γα

µα component of the
connection remains undetermined. For d = 2, the usual equivalence between the Palatini and the
second–order formulation of gravity fails [114]. In particular, this is reflected in their respective
gauge transformations: for d > 2 one recovers the well–known diffeomorphism invariance [115]

δgµν = −∇µξν −∇νξµ, δΓα
µν = −ξβ∂βΓα

µν + ∂βξ
αΓβ

µν − ∂νξ
βΓα

µβ − ∂µξ
βΓα

νβ − ∂µ∂νξ
α,

which is characterized by two gauge parameters. In the two–dimensional case on the other hand, one
does not find a diffeomorphism transformation, since the gauge parameter has three independent
components [116]. This does not mean, however, that we cannot investigate its canonical structure
in the following.
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7.3 Hamiltonian analysis for d = 2

General Relativity in its second–order formulation is trivial, since the action only contains a total
divergence when the connection is metric compatible [117]. As such, there is no dynamical content
and the associated two–dimensional spacetimes are conformally flat. If the Lagrangian can be
disregarded as a surface term, there are no derivatives left40 and the canonical momenta cannot be
defined [118]. The situation is less trivial when considering the first–order formulation, since it is
not possible to conclude that the connection is compatible with the two–dimensional metric. It is
argued in Ref. [119] that, if the general covariance is to be preserved, the triviality of the equations
of motion in two dimensions is not a sufficient condition for the Einstein–Hilbert action to be a total
divergence. The authors conclude, however, that a first–order formulation different from the affine–
metric one has to be used in a canonical approach to the two–dimensional action. This further
supports our approach. There are several reasons to investigate gravity in (1 + 1) dimensions.
Because of the complexity of General Relativity, it is of pedagogical interest to investigate its
properties in lower dimensions. Although the models are unphysical, the mathematical technique
and reasoning are similar to the higher dimensional case [120]. In fact, its constraint structure is
much closer to the one of higher dimensional first–order gravity than the constraint structure of
the second–order d = 2 gravity is [121]. It thus allows for deep insights into first–order General
Relativity in d > 2. But the importance of two–dimensional gravity is not restricted to this fact.
As it turns out, it is of academic importance for different fields, including string theory/quantum
gravity [122] and black hole physics [123].

7.3.1 Setup

We can rewrite the Palatini action introduced in Eq. (56), following [124, 125], as

SP̃ =

∫
ddx hµν

(
∂λG

λ
µν +

1

d− 1
Gλ

λµG
ρ
ρν −Gλ

ρµG
ρ
λν

)

︸ ︷︷ ︸
L
P̃

, (60)

by introducing [126]

hµν =
√−ggµν ,

Gλ
µν = Γλ

µν −
1

2
(δλνΓ

ρ
µρ + δλµΓ

ρ
νρ).

In the two–dimensional case LP̃ reduces to a kinematic part and a (non–local) potential,

L2 = −Gḣ− 2G1ḣ
1 −G11ḣ

11 + V (QA), (61)

where we used the shorthand notation

h := h00, h1 := h01, G := G0
00, G1 := G0

01,

G11 := G0
11, G1 := G1

00, G1
1 := G1

01, G1
11 := G1

11.
(62)

The potential,

V (QA) =− ∂1hG1 + 2h(GG1
1 −G1G1)

− 2∂1h
1G1

1 + 2h1(GG1
11 − G1G11)

− ∂1h
11G1

11 + 2h11(G1G1
11 −G11G1

1),

40This is still true if we include a cosmological constant
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depends only on the generalized coordinates and partial derivatives thereof. The set of generalized
coordinates reads

QA = {h, h1, h11, G,G1, G11,G1,G1
1 ,G1

11},
and the corresponding canonical momenta are

PA = {P, P1, P11,Π,Π
1,Π11,P1,P

1
1,P

1
11}.

Canonical Hamiltonian It is straightforward to see that only the coordinates {h, h1, h11} give
non–vanishing contributions of the form ∂L2

∂Q̇A
, such that the canonical Hamiltonian reduces to

Hcan =
∂L2

∂Q̇A
− L2 = −V (QA).

7.3.2 Primary stage

From our considerations above, we can already deduce the set of primary constraints,

Ψm = {P +G,P1 + 2G1, P11 +G11,Π,Π
1,Π11,P1,P

1
1,P

11
1 }.

The demand Ψm :
1≈ 0 defines the primary constraint submanifold and hence, the primary Hamil-

tonian reads
Hp = Hcan + λmΨm.

Stability conditions In order to ensure stability of the primary constraints we demand

Ψ̇m = {Ψm, Hp}
1≈ {Ψm, Hcan}+ λr{Ψm,Ψr} !

= 0.

We begin by calculating the Poisson brackets of the primaries with themselves and with the canon-
ical Hamiltonian. The only contributions to {Ψi,Ψj} come from

{Ψ1(x),Ψ4(y)} = δ(x− y), {Ψ2(x),Ψ5(y)} = 2δ(x− y), {Ψ3(x),Ψ6(y)} = δ(x− y),

whereas all other combinations vanish. For {Φm, Hcan} we find41

{Ψ1, Hcan} = 2GG1
1 − 2G1G1 −

∫
dx[G1f(∂1g)],

{Ψ2, Hcan} = 2GG1
11 − 2G11G1 −

∫
dx2[G1

1f(∂1g)],

{Ψ3, Hcan} = 2G1G1
11 − 2G11G1

1 −
∫
dx[G1

11f(∂1g)],

{Ψ4, Hcan} = 2hG1
1 + 2h1G1

11,

{Ψ5, Hcan} = −2hG1 + 2h11G1
11,

{Ψ6, Hcan} = −2h1G1 − 2h11G1
1 ,

{Ψ7, Hcan} = −∂1h− 2hG1 − 2h1G11,

{Ψ8, Hcan} = −2∂1h
1 + 2hG− 2h11G11,

{Ψ9, Hcan} = −∂1h11 + 2h1G+ 2h11G1.

41We encounter non–local Poisson brackets, as introduced in section 4.4.
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Now we can put together our stability conditions. We start with the ones that contain a contribution
from {Ψi,Ψj}, which means that they will determine Lagrange multipliers and can be satisfied inside
the primary constraint submanifold.

Ψ̇1
!
= 0 → λ4 = −2GG1

1 + 2G1G1 +
∫
dx[G1f(∂1g)],

Ψ̇2
!
= 0 → λ5 = −GG1

11 +G11G1 +
∫
dx[G1

1f(∂1g)],

Ψ̇3
!
= 0 → λ6 = −2G1G1

11 + 2G11G1
1 +

∫
dx[G1

11f(∂1g)],

Ψ̇4
!
= 0 → λ1 = 2hG1

1 + 2h1G1
11,

Ψ̇5
!
= 0 → λ2 = −hG1 + h11G1

11,

Ψ̇6
!
= 0 → λ3 = −2h1G1 − 2h11G1

1 .

The remaining three conditions read

Ψ̇7 = −∂1h− 2hG1 − 2h1G11 ≡ χ1,

Ψ̇8 = −2∂1h
1 + 2hG− 2h11G11 ≡ χ2,

Ψ̇9 = −∂1h11 + 2h1G+ 2h11G1 ≡ χ3,

which are new — secondary — constraints and need to be enforced in the following.

7.3.3 Secondary stage

Setting χr :
2≈ 0 defines the secondary constraint submanifold. We rewrite the secondary constraints

as

χ1 = −∂1h− h(Ψ2 − P1)− 2h1(Ψ3 − P11),

χ2 = −2∂1h
1 + 2h(Ψ1 − P )− 2h11(Ψ3 − P11),

χ3 = −∂1h11 + 2h1(Ψ1 − P ) + h11(Ψ2 − P1),

to keep track of the primary constraints during our calculations. This can be very helpful to make
sure that we do not forget any contributions, we just need to be careful not to account for the same
contributions twice. The secondary Hamiltonian reads

Hs = Hcan + λmΨm + Λrχr,

where six of the nine λm are already fixed by the stability conditions of the primary stage.

Consistency conditions For consistency we require {Ψm, Hs}
2≈ 0 to hold. We start by calcu-

lating the Poisson brackets {Ψm, χr}, which will be needed several times in the following analysis.
We find

{Ψ1, χ1} = (Ψ2 − P1)− Ξ, {Ψ1, χ2} = −2(Ψ1 − P ), {Ψ1, χ3} = 0,

{Ψ2, χ1} = 2(Ψ3 − P11), {Ψ2, χ2} = −2Ξ, {Ψ2, χ3} = −2(Ψ1 − P ),

{Ψ3, χ1} = 0, {Ψ3, χ2} = 2(Ψ3 − P11), {Ψ3, χ3} = −(Ψ2 − P1)− Ξ,

{Ψ4, χ1} = 0, {Ψ4, χ2} = −2h, {Ψ4, χ3} = −2h1,

{Ψ5, χ1} = 2h, {Ψ5, χ2} = 0, {Ψ5, χ3} = −2h11,

{Ψ6, χ1} = 2h1, {Ψ6, χ2} = 2h11, {Ψ6, χ3} = 0,

{Ψ7, χr} = 0, {Ψ8, χr} = 0, {Ψ9, χr} = 0,
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where the non–local contributions are abbreviated as Ξ ≡
∫
dx[(∂1f)g]. The consistency relations

read

{Ψ1, Hs} !
= 0 → Λ1[(Ψ2 − P1)− Ξ = 2Λ2(Ψ1 − P ),

{Ψ2, Hs} !
= 0 → Λ1(Ψ3 − P11) + Λ2Ξ = −Λ3(Ψ1 − P ),

{Ψ3, Hs} !
= 0 → 2Λ2(Ψ3 − P11) = Λ3[(Ψ2 − P1) + Ξ,

{Ψ4, Hs} !
= 0 → Λ2h = −Λ3h1,

{Ψ5, Hs} !
= 0 → Λ1h = −Λ3h11,

{Ψ6, Hs} !
= 0 → Λ1h1 = −Λ2h11.

As expected, we found conditions on Lagrange multipliers.

Stability conditions In order to calculate χ̇r = {χr, Hs} we need several Poisson brackets
involving the secondary constraints. We find

{χ1, Hcan} = −2hλ5 − 2h1λ6, {χ1, χ2} = −2χ1,

{χ2, Hcan} = 2hλ4 − 2h11λ6, {χ1, χ3} = −χ2,

{χ3, Hcan} = 2h1λ4 + 2h11λ5, {χ2, χ3} = −2χ3.

Interestingly, observe that after a simple redefinition of the form

σa =
1

2
(χ3 − χ1), σb =

1

2
(χ1 + χ3), σc =

1

2
χ2,

the algebra of secondaries satisfies
{σi, σj} = ǫijkσk.

By replacing the classical Poisson bracket with the quantum commutator, i.e. {·, ·} → −i × [·, ·],
this becomes the Lie algebra of SO(2, 1) as already noted by the authors of [124]. Combining the
above results we can put together the stability conditions as

{χr, Hs} = {χr, Hcan}+ λm{χr,Ψm}+ Λs {χr, χs}︸ ︷︷ ︸
2
≈0

,

where the last contribution Λs{χr, χs} vanishes weakly on the second constraint submanifold. Thus,
we find three new constraints

χ̇1 = −2hλ5 − 2h1λ6 − λ1[(Ψ2 − P1)− Ξ]− 2λ2(Ψ3 − P11) ≡ τ1,

χ̇2 = 2hλ4 − 2h11λ6 + 2λ1(Ψ1 − P ) + 2λ2Ξ− 2λ3(Ψ3 − P11) ≡ τ2,

χ̇3 = 2h1λ4 + 4h11λ5 + 2λ2(Ψ1 − P ) + λ3[(Ψ2 − P1)− Ξ] ≡ τ3.

(63)

Keep in mind that all Lagrange multipliers present in Eqs. (63) are already fixed. One has to
be careful when calculating the stability conditions above: since we included the primaries in
our expressions one might be over-counting the contributions to χ̇r. In fact, we either have to
use χr(P, P1, P11) or χr(G,G1, G11) and stay consistent, but not use both for the stability of the
secondaries.
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7.3.4 Tertiary stage

We define the tertiary constraint submanifold by demanding τs :
3≈ 0. The tertiary Hamiltonian is

defined as
Ht = Hcan + λmΨm + Λrχr + ηsτs,

where ηs are the new Lagrange multipliers appearing in the tertiary stage. Notice, that the tertiary
constraints (63) involve the fixed Lagrange multipliers λ1 to λ6, which have explicit dependencies
on several generalized coordinates and spatial derivatives thereof. This needs to be considered when
calculating derivatives of the τ ’s.

Consistency conditions Before we calculate the stability of the tertiary constraints we check
the consistency conditions

{χr, Ht}
2≈ ηs{χr, τs},

which either vanish identically or further fix some Lagrange multipliers. One finds that, generically,
{χr, τs}✚✚=0, such that the consistency conditions (partially) fix the new Lagrange multipliers ηs.

Stability Tedious but straightforward algebra unveils that the tertiary constraints are stable
inside the tertiary constraint submanifold, i.e. no quaternary constraints arise. This does not
happen trivially but requires a lot of rewriting and factoring and there is no value for the reader
to show the calculation explicitly. This means, in particular, that the algorithm terminates at the
tertiary stage, such that Ht (with fixed η’s) is the proper evolution Hamiltonian. As for the other
examples in this thesis, the form of the final Hamiltonian is not worked out explicitly, since it is
not needed for the degree of freedom count.

7.3.5 Degrees of freedom

The last thing to be done is characterizing all the constraints as first– or second–class in order
to count the physical degrees of freedom. From our prior calculations we already know that Ψ1

to Ψ6 are second–class constraints. The same is true for the secondary and tertiary constraints.
All of them have non–vanishing Poisson brackets with some of the other constraints. Only the set
{Ψ7,Ψ8,Ψ9} was still first–class in the secondary stage. Indeed, we find that

{Ψ7, τ1}
1≈ 0, {Ψ7, τ2}

1≈ 2χ1
2≈ 0, {Ψ7, τ3}

1≈ χ2
2≈ 0,

{Ψ8, τ1}
1≈ −2χ1

2≈ 0, {Ψ8, τ2}
1≈ 0, {Ψ8, τ3}

1≈ 2χ3
2≈ 0,

{Ψ9, τ1}
1≈ −χ2

2≈ 0, {Ψ9, τ2}
1≈ −2χ3

2≈ 0, {Ψ9, τ3}
1≈ 0,

i.e. they are still first–class on the final constraint submanifold.

Counting In total we found 15 constraints, 12 of which are second–class on the final constraint
submanifold and 3 are first–class. Since we are in d = 2, we have N = 9 field variables and by
means of Eq. (21) we find for the number of physical degrees of freedom

ndof = 9− (3 +
12

2
) = 0.

As was to be expected from d = 2 General Relativity (not only Palatini) the theory is non–
dynamical, i.e. it is totally constrained and thus does not exhibit any physical degrees of freedom
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[127]. It should be noted that our constraint structure is different from the one found in similar
treatments (see e.g. [69, 128]). This does not yet imply that the results are contradictory, though.
The constraint structure can be altered by starting from different Lagrangians or eliminating fields
by virtue of the equations of motion42 [69]. In the two–dimensional case the number of constraints
is even affected by using the metric density hµν as dynamical variable, rather than the metric tensor
gµν [129]. We will further comment on this situation after the Lagrangian analysis. Despite some
differences regarding the constraints, the counting of the physical degrees of freedom yields the
same result in all of these cases.

7.4 Lagrangian analysis for d = 2

Our setup does not change compared to the Hamiltonian analysis. The main difference is that
there are no generalized momenta on the Lagrangian side. Our full set of generalized coordinates
reads

QA = {h, h1, h11, G,G1, G11,G1,G1
1 ,G1

11}.
The Lagrangian density

L2 = −Gḣ− 2G1ḣ
1 −G11ḣ

11 + V (QA),

is identical to Eq. (61) and the potential is still given by

V (QA) =− ∂1hG1 + 2h
[
GG1

1 −G1G1
]

− 2∂1h
1G1

1 + 2h1
[
GG1

11 − G1G11

]

− ∂1h
11G1

11 + 2h11
[
G1G1

11 −G11G1
1

]
.

7.4.1 Primary level

Since no products of velocities appear in L2, the primary HessianWAB := ∂Ȧ∂ḂL vanishes. Accord-
ingly, its Moore–Penrose pseudoinverse MAB is also identically zero. We choose the null vectors of
the Hessian (γI)

AWAB = 0 in a way that

(γI)
A = (0, . . . , 0, 1, 0, . . . , 0), I = 1, . . . , 9 ,

where the 1 is at the Ath position. The expression for α reduces to

αB = (∂1B∂AL)∂1QA + (∂Ḃ∂AL)Q̇A − ∂BL,
since no mixed derivative terms appear in L. We find

α1 = −∂1G1 − Ġ− 2
[
GG1

1 −G1G1
]
,

α2 = −2∂1G1
1 − 2Ġ1 − 2

[
GG1

11 − G1G11

]
,

α3 = −∂1G1
11 − Ġ11 − 2

[
G1G1

11 −G11G1
1

]
,

α4 = ḣ− 2
[
hG1

1 + h1G1
11

]
,

α5 = 2ḣ1 + 2
[
hG1 − h11G1

11

]
,

α6 = ḣ11 + 2
[
h1G1 + h11G1

1

]
,

α7 = ∂1h+ 2
[
hG1 + h1G11

]
,

α8 = 2∂1h
1 + 2

[
h11G11 − hG

]
,

α9 = ∂1h
11 − 2

[
h1G+ h11G1

]
,

42This is usually called “weak Hamiltonian” method.
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and identify the primary constraints as

ϕI ≡ (γI)
AαA = αI .

In other words, the primary constraints coincide with the α’s, because the primary Hessian is zero.
Notice the analogy to non–linear electrodynamics.

Functional independence It is important to make sure that our set of primary constraints
contains redundant information. We thus check, if the ϕI ’s are functionally independent among
each other. In order to do so we calculate the the Jacobian

JIΛ :=
∂ϕI

∂XΛ
, XΛ = {QA, Q̇A},

and the rank of JIΛ equals the number of functionally independent primary constraints. In our
case we also allow two rows (or columns) to be dependent via spatial derivatives. By explicit
computation we find

rank(JIΛ) = 9,

which means that our set of primary constraints is functionally independent and does not contain
redundant information. We can’t and mustn’t neglect any of the primaries.

Primary constraint surface By setting

ϕI :
1≈ 0,

we define the primary constraint surface. The dynamics of the system are restricted to this subspace.

7.4.2 Stability

For good health it is not enough to enforce the primaries, we also need to ensure that they do not
evolve in time. If their stability is not trivially satisfied on the primary constraint surface we have
to set ϕ̇I to zero explicitly. In order to calculate said time evolution we need

α̃J = Q̇A∂AϕJ + (∂1Q̇
A)∂1AϕJ ,

and the secondary Hessian

W̃IJ = (γI)
A∂ȦϕJ .

Straightforward computation yields43

W̃ =




0 0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




,

43Interestingly, this coincides with the {Ψi,Ψj} matrix from the Hamiltonian side.
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where it is easy to see that rank(W̃ ) = 6 and we choose the null vectors (γ̃R)
IW̃IJ = 0 as

(γ̃1)
I = (0, . . . , 0, 1, 0, 0),

(γ̃2)
I = (0, . . . , 0, 0, 1, 0),

(γ̃3)
I = (0, . . . , 0, 0, 0, 1).

Obviously dim(W̃ ) − rank(W̃ ) = 3, thus the stability of six of the primary constraints is ensured
by a set of secondary Euler–Lagrange equations. Only for the three α’s that lie inside the kernel
of the secondary Hessian we need to demand stability. One finds

α̃7 = ∂1ḣ+ 2
[
ḣG1 + hĠ1 + ḣ1G11 + h1Ġ11

]
,

α̃8 = 2∂1ḣ
1 + 2

[
ḣ11G11 + h11Ġ11 − ḣG− hĠ

]
,

α̃9 = ∂1ḣ
11 − 2

[
ḣ1G+ h1Ġ+ ḣ11G1 + h11Ġ1

]
,

and the secondary constraints would be defined as (γ̃R)
I α̃I ≡ ϕ̃R, such that

ϕ̃1 = α̃7, ϕ̃2 = α̃8, ϕ̃3 = α̃9.

However, before we set ϕ̃R :
2≈ 0 and further restrict ourselves to the secondary constraint surface,

we should check if the ϕ̃I ’s do not reduce to identities in the primary constraint surface. We start
with ϕ̃1 and notice that we have a bunch of primary constraints we can insert. In particular, we
will use

α4 → ḣ
1≈ 2hG1

1 + 2h1G1
11,

α5 → ḣ1
1≈ −hG1 + h11G1

11,

α2 → Ġ1
1≈ −∂1G1

1 −GG1
11 + G1G11,

α3 → Ġ11
1≈ −∂1G1

11 − 2G1G1
11 + 2G11G1

1 ,

∂1α4 → ∂1ḣ
1≈ 2G1

1∂1h+ 2h∂1G1
1 + 2G1

11∂1h
1 + 2h1∂1G1

11.

(64)

When inserting the above expressions into ϕ̃1, many contributions cancel out and we are left with

ϕ̃1
1≈ 2G1

1

[
∂1h+ 2hG1 + 2h1G11

]
︸ ︷︷ ︸

α7

+G1
11 2

[
∂1h

1 − hG+ h11G11

]
︸ ︷︷ ︸

α8

1≈ 0.

Hence, ϕ̃1 is already identically zero inside the first constraint submanifold and it is not a new
constraint. The exact same thing happens with ϕ̃2 and ϕ̃3, such that we do not find any secondary
constraints, but only three Lagrangian identities. Hence, the algorithm terminates here and we
found a total of l = 9 Lagrangian constraints.

7.4.3 Off–shell identities

As discussed in Sec. 5.2.3, the degree of freedom count on the Lagrangian side is drastically simplified
if one already knows the gauge transformations explicitly. In the case of d = 2 Palatini they take
the form44 [125]

δhµν = (ǫµλhσν + ǫνλhσµ)ξλσ, δGρ
µν = −ǫρλ∂λξµν − ǫλσ(Gρ

µλξσν +Gρ
νλξσµ),

44See e.g. [129] for a component–wise presentation.

75



where ǫµν and ξµν are antisymmetric and symmetric, respectively. Additionally, ǫ satisfies ǫ01 =
−ǫ10 = 1.

By direct comparison with Eq. (42) we can determine the number of gauge identities g and the
number of independent gauge parameters e. We find g = 3 and e = 6, which is in agreement
with [127]. With this information we can readily count the physical degrees of freedom in purely
Lagrangian terms.

7.4.4 Degrees of freedom

Since we investigate Palatini in two–dimensional spacetime, the number of field variables is equal to
the cardinality of the set QA, such that we count |QA| = N = 9. From our analysis of the off–shell
identities above we know that g = 3 and e = 6. Putting everything together, we can determine the

number of propagating modes present in the theory by means of Eq. (22):

ndof = N − 1

2
(l + g + e) = 9− 1

2
(9 + 6 + 3) = 0. (65)

Our result is in perfect agreement with the counting performed in [124] and [129], where a purely
Hamiltonian analysis was done. We thus confirm from a Lagrangian standpoint that this theory is
non–dynamical.

Equivalence between Hamiltonian and Lagrangian approaches In our analysis of non–
linear electrodynamics we determined g and e from the gauge transformations and complementary
from the Hamiltonian method. This direct correspondence between Hamiltonian constraints and
gauge parameters and identities was worked out explicitly in [84].

By means of our Hamiltonian analysis we found a total of N1+N2 = 15 constraints. More precisely,
we obtained N1 = 3 first–class constraints and N2 = 12 second–class constraints. Together with
the nine Lagrangian constraints this implies [84] that the number of gauge identities is given by
g = N1+N2− l = 6. The total number of gauge parameters e is accordingly given by N1 = e = 3.

This puts our Hamiltonian analysis under some pressure. It seems to contradict our result from
the off–shell identities. We elaborate on this in the following.

Possible explanations There is a conceptual difference between our Lagrangian and Hamilto-
nian constraint algorithms: On the Hamiltonian side we do, in general, not use strong zeros in
order to evaluate the constraints on a particular submanifold but carry them through the whole
algorithm. Our Lagrangian approach, on the other hand, does make use of strong zeros at given
submanifolds, as can be seen clearly from Eqs. (64). This is the most likely source for the tension we
observe: While technically speaking we do not use a reductional approach [130] on the Lagrangian
side, we do indeed use strong zeros during the algorithm45.

It is well–known that eliminating certain fields in the Hamiltonian approach, by setting second–class
constraints strongly to zero [86, 130], promotes some of the remaining second–class constraints to
being first–class. While this does not change the degree of freedom count, it seems to affect the
identification between Lagrangian and Hamiltonian side. Since nearly every canonical analysis of
d = 2 Palatini was carried out using a reductional method (see e.g. [119, 124, 129]), we can compare
these results with our Lagrangian analysis. Using the weak Hamiltonian approach one finds a total
of N1 = 6 first–class constraints, N2 = 6 second–class constraints and accordingly e = 6 gauge

45For a true Lagrangian reduction one uses strong zeros in order to rewrite the Lagrangian.
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parameters and g = 3 gauge identities [127].

With this result the tension is resolved. Notably, this problem did not arise in the case of non–linear
electrodynamics. It remains to be investigated if this is a peculiar “feature” of d = 2 Palatini or a
general characteristic of comparing reductional and non–reductional constraint algorithms.
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Part IV

Final considerations

8 Conclusions

We conclude this thesis with a summary of the main results we obtained. We then explain their
relevance and usefulness. At last, we discuss the natural follow–up to the thesis. This is work in
progress with Verónica Errasti Dı́ez, Julio A. Méndez–Zavaleta and Mojtaba Taslimi Tehrani.

Summary

With the aim of making the thesis self–contained and accessible to every reader, not only the
mathematically trained one, we have first established the pertinent mathematical framework.

We have then introduced the Dirac–Bergmann theory of constraints. Additionally, we have put
forward a new Lagrangian algorithm. Our Lagrangian approach consistently combines concepts
developed throughout several decades and is particularly suited to count physical degrees of freedom
in (almost) any first–order field theory. It is algebraically and conceptually much simpler than the
usually employed Hamiltonian methods, especially when gravity is involved. This constitutes the
main result of the thesis.

At last, we have applied our method to the H(P)–formulation of non–linear electrodynamics and
two–dimensional Palatini. Complementary, we have analyzed both theories in terms of the Dirac–
Bergmann approach. The comparison between said methods unequivocally shows the strengths of
our approach, which we discuss in the following.

Discussion of the results

There are two equivalent formulations of classical mechanics: the Hamiltonian and Lagrangian
approaches. Accordingly, one can investigate the constraint structure of a theory in either of those
formulations. Which one to use largely depends on the specific purpose of the analysis.

The Hamiltonian approach is better suited to any goal that requires the explicit Poisson algebra of a
theory. A remarkable example would be quantization. Indeed, a popular and rigorous quantization
technique consists in deforming the Poisson algebra into a Moyal one. The interested reader is
referred to [131] for an overview of deformation quantization.

The advantages of our novel Lagrangian method are twofold. First, it is more useful if one wants
to determine the physical degrees of freedom in a theory. This can be readily seen in both of our
examples. The Lagrangian analysis is conceptually cleaner and lighter. Already in these simple
theories, one is confronted with several non–trivialities on the Hamiltonian side. For instance, one
encounters non–localities in the constraint algebra and apparent branchings of solutions.

Second, our method yields the explicit form of all constraints. This is in contrast to the ADM
analysis46 [132], where it is shown that requiring linearity in the so–called lapse and shift variables
is enough to ensure the stability of the constraints. Notice that this is only the case for General
Relativity and thus does not guarantee ghost–freedom in a more general setting, unless the ADM
prescription is extended appropriately. In our approach, one can exactly see which term is ghost–
full and at which stage the pathology manifests itself. Our method applies in the presented form
to (almost) all first–order theories, without modifications.

46Which is a Hamiltonian method.
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These advantages make our procedure a crucial first step towards establishing a Lagrangian building
principle for genuinely ghost–free theories. We discuss how in the following.

Outlook

The most appealing feature of our method is that it admits a reversal of its very logic. Namely,
it can be used to determine the necessary and sufficient conditions a Lagrangian must satisfy in
order to possess a certain constraint structure. In particular, our ultimate goal is to construct the
genuinely ghost–free massive vector Horndeski theory. To this aim, we require:

1. An efficient method to count propagating degrees of freedom.

2. A complete characterization of the constraint structure of generalized Proca fields in flat
spacetime.

3. A complete characterization of the constraint structure of Einstein gravity.

Point 1 is met by the main result of this work. Remarkably and as already stated, our approach
is so general that it can be applied to most physically sensible theories. Point 2 was established
in previous works [20, 21]. Point 3 is subject to work in progress, due to the exponentially bigger
algebraic effort compared to the two–dimensional case.

Once all three ingredients are obtained, one can employ the defining features of (constraint) alge-
bras: linearity and additivity. We shall demand that the constraint structure of the massive vector
Horndeski theory must be exactly that of generalized Proca in flat spacetime, plus that of Palatini.
In other words, the interactions among the fields cannot alter the individual constraint structures
of the fields themselves. This requirement is expected to yield non–trivial relations among the
various interaction terms.

Importantly, a rigorous construction like this has not been done in previous proposals of couplings
between spin–1 fields and gravity. Such existing models are therefore prone to suffer from ghost–
like instabilities. This thesis is the first essential step in the construction of a genuinely ghost–free
massive vector Horndeski theory. Said scenario certainly provides models of substantial interest,
not only for the cosmology and black hole communities [133], but to a variety of interdisciplinary
fields as well [20].
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9 Afterword

The original motivation of this thesis is to investigate the consistent coupling of massive vector
fields to gravity. However, the constraint structure analysis methods that we have presented are
by no means limited to this scenario. Indeed, they apply to (almost) any first–order field theory.
As such, our proposed Lagrangian algorithm can be readily used to count the physical degrees of
freedom in a multitude of theories.

Consider bimetric gravity47 — the consistent theory of two interacting spin–2 fields, one massless
and the other massive [135]. The interested reader is referred to [136] for an enlightening overview.
The proof of ghost–freedom in bimetric gravity is a celebrated result that follows from a contrived
calculation based on the aforementioned ADM analysis. It would be interesting to replicate this
proof employing our novel Lagrangian procedure. We expect the calculations to be considerably
simplified in our approach.

Another appealing possibility is to look at higher–dimensional descriptions of gravity. For example,
consider the celebrated DGP model [137], which exhibits the phenomenologically relevant screening
mechanism described in [138]. In this theory, gravity behaves four–dimensional at distances below
the so–called cross–over scale rc. At larger distances r > rc, the effects of the extra dimension
become relevant, leading to an effectively massive theory of gravity. The model admits two distinct
sectors: the normal and self–accelerating branches. The latter immediately attracted a lot of
attention, since it allows for a description of the late–time acceleration of the universe without the
need for dark energy, for instance [139, 140]. However, fluctuations around the self–accelerating
vacuum were later on found to be plagued by unphysical modes [104]. Our Lagrangian algorithm
is by construction an ideal tool to spot possible ghosts in DGP–like models.

As can be seen, the main result of this thesis opens many possibilities worthy of further investigation.
Together with the self–contained mathematical exposition in the beginning and the two explicit
examples given (those of non–linear electrodynamics and d = 2 Palatini), we hope to have made
this valuable method accessible to a large community of physicists. May it serve as a catalyst for
unambiguously healthy model building.

47Not to mention multi–metric theories [134].
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