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SARS-CoV-2 vaccine breakthrough infections frequently occurred even

before the emergence of Omicron variants. Yet, relatively little is known

about the impact of vaccination on SARS-CoV-2-specific T cell and antibody

response dynamics upon breakthrough infection. We have therefore studied

the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike

and the non-encoded Nucleocapsid antigens during breakthrough infections

(BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects

with vaccine breakthrough infection had significantly higher CD4 and CD8 T

cell responses targeting the vaccine-encoded Spike during the first and third/

fourth week after PCR diagnosis compared to non-vaccinated controls,
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respectively. In contrast, CD4 T cells targeting the non-vaccine encoded

Nucleocapsid antigen were of significantly lower magnitude in BTI as

compared to non-BTI. Hence, previous vaccination was linked to

enhanced T cell responses targeting the vaccine-encoded Spike antigen,

while responses against the non-vaccine encoded Nucleocapsid antigen

were significantly attenuated.
KEYWORDS

COVID-19, adaptive immunity, vaccine, SARS Cov 2, breakthrough infection, T
cell response
Introduction

Vaccine breakthrough infections (BTI) account for a

significant portion of new COVID-19 cases (1–4). In the

pre-Omicron era, SARS-CoV-2 vaccination conferred

significant protection from symptomatic infection (5–7) and

from severe disease upon breakthrough infection; BTI cases

showed substantially lower rates of hospitalization in all age

groups (4) and even when hospitalized, previous vaccination

reduced morbidity and mortality of COVID-19 (8). BTI cases

however are still characterized by surprisingly high upper

airway viral loads during acute infection, reaching similar

peak levels compared to unvaccinated individuals (1, 9, 10).

The vaccination status also affects the resulting SARS-CoV-2-

specific adaptive immune response; non-human primate data

suggest that vaccine-induced pre-existing Spike (S)-specific

antibodies and CD8 T cells play an instrumental role in the

reduction of virus replication and dissemination upon BTI

into tissues other than the upper respiratory tract. This is

probably due to the rapid induction of anamnestic cellular

responses to the vaccine-encoded S (11, 12). Clinical studies

show high S-specific binding antibody titers and superior

neutralization capabilities after BTI, as compared to mere

vaccination (13, 14). Although several studies have

investigated S-specific T cell responses on recovered

COVID-19 patients versus vaccinated individuals (15, 16),

few have dissected the early dynamics of SARS-CoV-2-

specific T cell and antibody response during BTI in detail

(17). We hypothesized that the interplay between pre-existing

S-specific immunity to SARS-CoV-2 and virus dynamics

during BTI impact on the adaptive immune responses with

divergent dynamics between vaccine-encoded and non-

encoded antigens. We therefore studied and compared T

cell and antibody response dynamics against the vaccine-

encoded S-protein and those targeting the non-encoded

immunodominant virion Nucleocapsid (N) protein.
02
Methods

Study population

The participants were recruited from the CoVaKo (Corona

Vaccine Consortium) breakthrough infection study, which is a

multicentre prospective cohort study including six different

university hospital centres in Bavaria, Germany, recruited

from May to December 2021. Outpatient BTI (N = 24) and

non-BTI (N = 15) from Munich, Germany, were enrolled within

13 days of a PCR confirmed SARS-CoV-2 infection. Weekly

blood samples were collected during four visits after confirmed

diagnosis. In addition, data from outpatient non-BTI cases (n =

15) matched for time after PCR diagnosis, age, and sex from a

similarly designed prospective COVID-19 Cohort Munich

(KoCo19) sub-study were included in the analyses; a detailed

description of the study design, setting, and population was

previously published (18, 19). In brief, individuals with a

documented positive SARS-CoV-2 RT-PCR result were

recruited in a prospective longitudinal cohort from May to

December 2020 under the umbrella of the KoCo19 studies.

For both studies, participants consented and were recruited as

fast as possible upon RT-PCR confirmation of SARS-CoV-2

infection and followed during four weekly visits. All included

patients had mild to moderate COVID-19 symptoms and had

not been previously infected with SARS-CoV-2. Both cohort

studies were approved by the institutional review board of

Ludwig Maximilian University of Munich, Germany.
Characterisation of SARS-CoV-2-specific
T cells by intracellular staining analyses

40 ml of heparinized fresh whole venous blood was obtained

during each visit. Peripheral blood mononuclear cell (PBMC)

isolation using Ficoll-Paque™ Plus medium was performed
frontiersin.org
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within 6 hours of blood draw. The cells were washed three times

and stimulated overnight 16 to 18 hours at 37°C and 5% CO2, in

the presence of Brefeldin A (BFA, final concentration 5 mg/ml,

Sigma) and the costimulatory antibodies anti-CD49d (L25, BD)

and anti-CD28 (L293, BD), using three different SARS-CoV-2

specific antigens; Spike protein, PepTivator SARS-CoV-2 Prot_S

(1mg/ml/peptide, Miltenyi Biotec) and the Nucleocapsid protein

(1mg/ml/peptide, Miltinyi Biotec), Staphylococcal enterotoxin B

(0.6 mg/ml/peptide, Sigma-Aldrich) as a positive control, and no

peptide for the negative control. Following incubation, cells were

stained for 20 minutes with anti-CD8 APC-A750 (clone B9.11,

Beckmann Coulter) and anti-CD4 ECD (clone SFCI12T4D11,

Beckmann Coulter). Cells were fixed and permeabilized using

Foxp3 Fixation/Permeabilization concentrate and diluent

(eBioscience), and then stained intracellularly for 30 minutes

using anti-IFNy FITC (clone B27, BD Biolegend) and anti-CD3

APC-A700 (clone UCHT1, Beckmann Coulter). Samples were

acquired on a CytoFlex Flow cytometer (Beckman Coulter).

Gating analyses were performed using FlowJo™_V10 software

(BD Life Sciences). Background subtraction was performed by

subtracting IFNy+ T cell frequencies in the negative control

from those in the antigen stimulated sample using Python 3.8.10.
Assessment of SARS-CoV-2-specific
binding antibody responses

Serological assays to test for SARS-CoV-2-specific binding

antibodies were performed as previously published (20, 21).

EDTA plasma was used to quantify binding antibodies specific

for S and N protein using Roche Elecsys anti-Nucleocapsid (Ro-

N-Ig) and anti-Spike-Receptor binding Domain (Ro-RBD-Ig)

(both Roche, Mannheim, Germany). All assays were performed

according to manufacturer’s instructions. A value above 1 unit/

ml on the Ro-RBD-Ig was considered a positive antibody

response towards the SARS-CoV-2 Spike response and a value

above 0.8 counts on the Ro-N-Ig was considered as a positive

response towards the SARS-CoV-2 Nucleocapsid.
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Statistics

The non-parametric Mann-Whitney test (python version 3.8

using package scipy, version 1.7.2) was used to compare

independent continuous variables to determine the significance. A

p-value ≤0.05 was considered statistically significant. Some of the

conditions were compared based on area under the curve (AUC)

normalised per day. The value was calculated according to the

formula Sdxjd/D;d ∈{d1,…,D}with j indicating the patient, d being

the day of the visit and D the day of the last visit. In summary, the

magnitude of all measured responses was summed and divided by

the number of days since PCR diagnosis at the last available visit.
Results

Characteristics of breakthrough and
non-breakthrough infections

Blood was obtained from outpatient breakthrough infections

(BTI, n= 24) and non-BTI (n= 30) during and shortly after the

acute phase of SARS-CoV-2 infection (Table 1). Most subjects

with BTI had received two vaccinations with the BNT162b2

vaccine (n = 19, BioNTech/Pfizer). 2 subjects had received 2

doses of mRNA-1273 (Moderna), 2 subjects had received 2 doses

of heterologous vaccines (n=2) and one subject had received 2

doses of AZD1222 (n=1, AstraZeneca). BTI occurred with a

median of 83 days (Range: 22 – 211 days) after the second

vaccination. BTI and non-BTI were recruited within a median of

8 days and 3.5 days after PCR-confirmed diagnosis, respectively.

The median age was 42.5 and 39.5 years in BTI and non-BTI

cases, respectively. Overall, 61% of those infected were female.

37% (20/54) of the infected cases whose variants were

determined were infected with the delta-variant, while 3

subjects were infected with the alpha variant. Of note, 15 non-

BTI cases were recruited before the emergence of variant of

concerns and hence were likely caused by the original

Wuhan strain.
TABLE 1 Basic characteristics of the study population.

Vaccine Breakthrough infection (n = 24) Non-Breakthrough infection (n = 30)

Gender, %

Male
Female

42% (10/24) 37% (11/30)

58% (14/24) 63% (19/30)

Median Age, y (Range) 42.5 (20 – 66) 39.5 (18 – 72)

Days after PCR+ (Range) 8 (2 - 13) 3.5 (0 - 13)

SARS-CoV-2 variant (w/d/a/u) a 0/14/3/7 0/6/0/24

Vaccine type (BB/MM/BM/AA/AB) b 19/2/1/1/1 -c

Median days from last vaccination to PCR diagnosis (Range) 83 (22 - 211) -c
aw, wild type; d, delta stain; a, alpha strain; u, unknown strain.
bB = BNT162b2, M = mRNA-1273, A = AZD1222.
cnon-BTI were not vaccinated.
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Early dynamics of T cell responses
targeting the vaccine-encoded Spike and
the non-encoded Nucleocapsid

CD4 and CD8 T cell responses against the vaccine-encoded

Spike (S) and the non-encoded Nucleocapsid (N) protein were

studied throughout the first 5 weeks after diagnosis. The number

of subject visits included within each timepoint is shown in

Table 2. Representative dot plots and gating analyses for one BTI

and non-BTI for longitudinal assessment of S- and N-specific

IFNy+ CD4 and CD8 T cell frequencies after the SARS-CoV-2

diagnosis are shown in Figure 1. For both S- and N-specific

IFNy+ CD4 T cell responses, a higher median frequency was

observed (Range: 0.01 – 0.06%) as compared to the CD8 T cells

(Range: 0.002 – 0.02%) (p < 0.0001, results not shown) regardless

of timepoint or group affiliation. Within the S-specific T cell

response, CD8/CD4 ratios were similar between BTI and non-

BTI within the first two weeks of infection (0.2 - 0.4), while

median CD8/CD4 ratios were 2- to 5-fold higher in BTI versus

non-BTI versus during weeks 3 (p=0.06), 4 (p=0.06), and 5

(p=0.18). Within the first week of PCR diagnosis, IFNy+ S-

specific CD4 T cell frequencies were significantly higher in BTI,

as compared to non-BTI (p = 0.017, Figure 2A). Median IFNy+

S-specific CD4 T cell frequencies peaked in the second week for

BTI and third week for non-BTI, consistent with an accelerated

T cell response against the vaccine-encoded S upon BTI by

boosting a pre-existing amnestic memory S-specific CD4 T cells.

Median S-specific CD8 IFNy+ T cell frequencies in BTI

gradually increased throughout the observation period of 5

weeks after PCR diagnosis but oscillated at low levels for non-

BTI (Figure 2B) with significant differences between these

groups in weeks three (p = 0.007) and four (p = 0.03) after

diagnosis of SARS-CoV-2 infection. Considering the whole

observation period of 5 weeks, the overall S-specific CD8 T

cell response – defined as the area under the curve - was

significantly higher in previously vaccinated BTI cases (AUC

per day: p=0.006, results not shown). Together, these data show

a positive effect of previous vaccination on IFNy+ S-specific T

cell dynamics after breakthrough infection, with higher

frequencies of circulating S-specific CD4 T cells early after

PCR diagnosis and higher circulating S-specific CD8 T cell

frequencies, when most subjects had cleared the virus from the

upper airways.

Contrary to the S-specific CD4 T cell frequencies, N-specific

CD4 T cell frequencies were lower in BTI compared to non-BTI
Frontiers in Immunology 04
(Figure 2C); considering the whole observation period, lower N-

specific CD4 T cell frequencies were observed in BTI versus non-

BTI group (AUC per day: p=0.042). These differences were most

pronounced and significant during week 2 (p = 0.001) and week

3 (p = 0.03) after PCR diagnosis. IFNy+ N-specific CD8 T cell

responses followed a similar pattern to N-specific CD4 T cell

response with a trend for reduced frequencies in BTI cases over

time (Figure 2D). However, these differences did not reach

significance at any one timepoint.
Early dynamics of antibody responses
targeting the vaccine-encoded Spike
and the non-encoded Nucleocapsid

We also studied whether the SARS-CoV-2 antibody response

followed a similar pattern (Figures 2E, F). During BTI, S-RBD-

specific antibody responses were detectable in all subjects within the

first week after diagnosis and reached median levels of 7160 units/

ml, 12400 units/ml, 19700 units/ml, 21350 units/ml and 23289

units/ml during weeks 1-5, respectively (Figure 2E). In contrast,

only 6/23 of the non-BTI control subjects had detectable S-RBD-

specific responses during the first week after PCR diagnosis (median

level was 0.02 units/ml), while during the 2nd, 3rd, 4th and 5th week,

median S-RBD-specific antibody levels were much lower with 5.5

units/ml, 19 units/ml, 37.9 units/ml and 50 units/ml respectively

(p<0.0001 for all time points).

Similar to the “attenuated” N-specific T cell response during

BTI, N-specific antibody levels were also significantly lower in

BTI throughout most of the observation period (Figure 2F). In

the first week, N-specific antibody responses were mostly

undetectable in vaccinated (10/11 subject visits, median 0.13

counts) and non-vaccinated subjects (19/23 subject visits,

median 0.09 counts). Thereafter the dynamics significantly

differed between these groups. While the non-BTIs showed a

dynamic increase of N-specific antibody responses until week 4

(median: 34 counts), antibody levels remained at significantly

lower levels after BTI during following weeks with a peak at 9.2

counts in week 4 (p<0.05 for time points after week 1).
Discussion

In our study, vaccine breakthrough infection was linked to a

more rapid, earlier peaking and more extensive expansion of
TABLE 2 Subject visits included at each timepoint.

Subject Visits (n)

Timepoint 0 – 7 8 – 14 15 – 21 22 – 28 29 – 35

Spike and Nucleocapsid (BTI/non-BTI)a 11/23 25/27 22/21 18/22 12/13
frontier
aBTI, breakthrough infection; non-BTI, non-breakthrough infection.
sin.org
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Spike-specific T cells and, similarly, to dramatically higher

antibody levels against the vaccine-encoded S-protein

compared to non-BTI. Other studies have shown similar

results in the antibody response against S anti-RBD, where

BTI had a higher antibody titer against the S-protein (8, 13,

14). It is noteworthy that particularly S-specific CD8+ T cell
Frontiers in Immunology 05
responses were superior in BTI, suggesting that “priming” with

the current COVID-19 vaccines had enhanced cytotoxic CD8 T

cell responses and memory cell formation. This is an interesting

observation, as little is known on how to improve induction of

virus-specific CD8 T cell responses by vaccination. Enhanced

dynamics and acceleration of S-specific adaptive T cell responses
FIGURE 1

Representative dot plots for detection of IFNy+ T cell targeting vaccine-encoded Spike and non-encoded Nucleocapsid protein. Representative
dot plots from intracellular cytokine staining experiments gated on CD4+ (left plots) or CD8+ T cells (right plots) are shown for one
breakthrough (BTI) and one non-breakthrough (non-BTI) infection case for peripheral blood mononuclear cells restimulated Spike and
Nucleocapsid peptide pool as indicated. The red square indicates the gate for defining antigen-specific IFNy+ T cells within the CD4 or CD8 T
cell parent population. The frequencies of IFNy+ T cells is indicated as percent of CD4 or CD8 T cells for each shopn gate. Dot plots were
produced using FlowJo version 10.
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FIGURE 2

T cell and binding antibody responses targeting vaccine-encoded Spike and non-encoded Nucleocapsid protein. The frequency of Spike-
specific IFNy+ CD4+ (A) and CD8+ (B) and Nucleocapsid-specific IFNy+ CD4+ (C) and CD8+ (D) T cells and concentration of binding
antibodies against the Spike-Receptor Binding Domain (RBD) (E) and Nucleocapsid (N) (F) in breakthrough infections (orange boxes) and non-
breakthrough infections (blue boxes) are shown as median and quartiles enclosing 50% of the datapoints, whiskers extend up to the last point
inside 1.5*(IQ3 - IQ1) range (Tukey definition). Specific T cell responses were detected after in vitro antigen-stimulation of freshly isolated
PBMCs, while the specific antibody concentrations (Spike-RBD) or counts (Nucleocapsid) (Y-axis) consider all Ig isotypes and were determined
using the Roche Elecsys test. The days since first diagnosis by PCR are indicated on the x-axis. Statistical comparisons between the groups were
performed using the Mann-Whitney t test. p-values below 0.05 are indicated for figure 2 (A–F) Spike-RBD binding Ig concentrations
significantly differed between the groups during all 5 weeks post infection.
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may contribute to attenuated COVID-19 disease course, which

is supported by a recent non-human primate study showing

more then 10-fold higher peak airway viral loads in vaccinated

animals in which CD8+ cells were experimentally depleted

before exposure to SARS-CoV-2 delta variant (12). However,

significantly attenuated CD4 T cell and antibody responses

targeting the non-vaccine encoded N-protein were also found

in BTI; attenuation of T cell and antibody responses targeting the

non-vaccine encoded N antigen probably reflects reduced

systemic virus dissemination and reduced in vivo viral loads

during BTI and hence decreased stimulation of N-specific BCR/

TCR, which is consistent with the attenuated disease severity

upon BTI and limited inflammation and tissue dissemination in

the lower respiratory tract observed in vaccinated NHP (11, 22).

Reduced induction of N-specific T cells during BTI may also

have a negative effect on upper airway virus control; a recent

study by our group links frequencies of circulating N-specific T

cells, which express IFNy upon in vitro peptide restimulation to

early upper airway virus control and reduced systemic

inflammation before seroconversion (Eser et al., 2022,

manuscript submitted). Consistent with a protective role of N-

specific T cells, these responses were also linked to reduced

plasma concentrations of CXCL10 - a marker for COVID-19

disease severity (23). Our study has several limitations. The use

of 15mer peptide pools and not taking into consideration T cell

activation induced markers such as CD154 or CD137 likely

underestimates the frequency of total N- and S-specific CD8 and

CD4 T cells. Here, we focused on IFNy as a marker of antigen-

specificity because IFNy expressing virus-specific T cells

correlated with virus control for several viruses including

HIV, Influenza and SARS-CoV-2 (24–27) and mechanisms of

SARS-CoV-1/2 control in the upper airways by IFNy

expressing N-specific T cells are being elucidated both in

clinical and preclinical studies (27–29). In summary, our data

show that before the emergence of Omicron variants, SARS-

CoV-2 breakthrough infections are linked to enhance T cell

and antibody responses targeting the vaccine encoded S-

protein already early after diagnosis and to attenuate

adaptive immune responses targeting the non-vaccine-

encoded N-protein.
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Weps, Antonia Ebner, Maria José de Schultz, Cedric Rajes, Aya

Al Wafai, David Brenner, David Brenner, Laura Sicheneder,

Melanie Berr, Anja Schütz, Dr. Stilla Bauernfeind, Prof. Dr. Dr.
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