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Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by

imbalances of the microbiome and immune dysregulations in genetically

susceptible individuals. Several mouse and human studies have demonstrated

that multimeric inflammasomes are critical regulators of host defense and gut

homeostasis by modulating immune responses to pathogen- or damage-

associated molecular patterns. In the context of IBD, excessive production of

pro-inflammatory Interleukin-1b has been detected in patient-derived intestinal

tissues and correlated with the disease severity or failure to respond to anti-tumor

necrosis factor therapy. Correspondingly, genome-wide association studies have

suggested that single nucleotide polymorphisms in inflammasome components

might be associated with risk of IBD development. The relevance of

inflammasomes in controlling human intestinal homeostasis has been further

exemplified by the discovery of very early onset IBD (VEO-IBD) patients with

monogenic defects affecting different molecules in the complex regulatory

network of inflammasome activity. This review provides an overview of known

causative monogenic entities of VEO-IBD associated with altered inflammasome

activity. A better understanding of the molecular mechanisms controlling

inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues

for rare and common inflammatory diseases.
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Inflammasomes – Central
coordinators of innate immunity

Inflammasomes are multimeric cytosolic protein complexes

controlling immune tolerance, inflammation, host defense, cell

clearance, and tissue repair (1, 2). The modal composition of

inflammasomes based on common adaptors and effectors paired

with cell-type specific sensors allows mounting of context-

dependent responses to distinct threats (3, 4). As a first step of

inflammasome activation, sensor proteins (e.g., Absent in

melanoma 2 (AIM2), Nucleotide-binding oligomerization

domain, Leucine rich Repeat (NLR) and Pyrin domain (PYD)

containing protein (NLRP) 3, NLR family, apoptosis inhibitory

protein (NAIP)/NLR family caspase activation and recruitment

domain (CARD) domain-containing protein 4 (NLRC4),

PYRIN) detect various danger signals including pathogen-

associated molecular patterns (PAMPs) or damage-associated

molecular patterns (DAMPs) (Figure 1) (1, 3, 4). Whereas some

sensors are specific to distinct signals (e.g., AIM2, NLRC4),

others (e.g., NLRP3) are promiscuous and can respond to a

variety of stimuli (1, 4–15). Sensor proteins contain CARD or

pyrin domains (PYD) mediating the interaction with adaptors

and/or effectors (4, 16). Upon activation, some sensor proteins

can directly recruit the effector Caspase (CASP) 1 via their CARD

(Figure 1) (13, 16–19). In contrast, sensor proteins lacking a

CARD recruit the adapter protein apoptosis-associated speck-like

protein containing a CARD (ASC) via interaction of PYD (20–

22). In turn, ASC can interact with pro-CASP1 via CARD

resulting in oligomerization of inflammasome components and

activation of pro-CASP1 by autoproteolysis (Figure 1) (3, 4, 13,

21, 23, 24). Finally, mature CASP1 cleaves the inflammasome

substrates pro-Interleukin (IL)-1b, pro-IL-18 and Gasdermin D

(GSDMD) (Figure 1) (1, 3, 4, 23, 25–29). While IL-1b and IL-18

trigger activation and recruitment of other immune cells

contributing to inflammation and host defense, insertion of

mature GSDMD into cell membranes induces pore formation

and pyroptosis (Figure 1) (1, 3, 4, 25, 26).
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Complex regulatory mechanisms on transcriptional and post-

translational level are required to facilitate balanced inflammasome-

mediated immune responses. On transcriptional level, nuclear

factor k-B (NF-kB)-mediated signaling has been shown to be

critical for transcription of central inflammasome components

(e.g., NLRP3 and IL1B) upon Toll-like receptor (TLR)-mediated

detection of PAMPs or DAMPs (30, 31). This process is often

referred to as priming or signal 1 of NLRP3 inflammasomes (1, 30,

31). The subsequent triggering of sensor proteins was termed

activation step or signal 2 and can involve post-translational

processes. For example, NLRP3 inflammasome activation requires

ATP-mediated deubiquitination of NLRP3 by BRCA1/BRCA2-

Containing Complex Subunit 3 (BRRC3) but is inhibited by

interferon (IFN)-g-induced nitrosylation (1, 31–34). Furthermore,

various kinases were shown to control activity of NLRC4, Pyrin (see

also MEFV below), or ASC by phosphorylation (1, 35–38).
The role of inflammasomes in
intestinal inflammation

Inflammasomes in intestinal
epithelial cells

The intestinal epithelial barrier represents the first line of defense

against pathogens and is critical in controlling intestinal immunity.

Inflammasomes have been shown to play a central role in the

defense strategy of intestinal epithelial cells (IEC), which is reflected

by the expression of a diverse repertoire of inflammasome sensor

proteins including NLRC4, NLRP3, and NLRP6 (39). In contrast to

other epithelial cell types, IEC were shown to produce higher levels

of IL-18 but less IL-1b indicating that IL-18 has a distinct role in

intestinal homeostasis (39–42). For example, IL-18 has been

involved in controlling infections by stimulating IFN-g production
from T and NK cells and supporting TH1 responses (31, 43, 44). In

addition, the induction of epithelial inflammasomes contributes not

only to activation of immune cells via IL-18 but supports also viral
FIGURE 1

Schematic overview of inflammasome activation. Various PAMPs and DAMPs induce activation of sensor proteins resulting in oligomerization
and recruitment of ASC and pro-CASP1. Upon autoproteolysis of pro-CASP1, mature CASP1 cleaves the inflammasome effector molecules pro-
IL-1b, pro-IL-18, and GSDMD, which induce inflammation and pyroptosis.
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clearance by inducing direct release of IFNs (16, 45). Furthermore,

IEC-related inflammasomes stimulate mucus secretion, pyroptosis,

or expulsion of infected epithelial cells (16, 46–48).
Inflammasomes in immune cells

Inflammasomes are primarily known for their function in

innate immune cells (e.g., macrophages, granulocytes) and

intestinal myeloid cells are the major source of IL-1b in the gut

(31). Inflammasome activity in immune cells of the gut is critical for

the detection of a wide variety of pathogens (e.g., bacteria, viruses,

parasites) and the induction of appropriate host defense

mechanisms (4, 16). Pathogen-induced activation of

inflammasomes results in production of the pro-inflammatory

cytokines IL-1b and IL-18, which induce a cascade of signaling

pathways culminating in recruitment of other immune cells (e.g.,

neutrophils) (4, 16). Upon IL-1b sensing, immune cells produce

various pro-inflammatory molecules (e.g., IL-6 and tumor necrosis

factor (TNF)-a) fueling inflammation in the gut (31). In adaptive

immune cells, IL-1b was shown to induce T cell survival and

proliferation as well as increased immunoglobulin production by B

cells (31). Furthermore, IL-1b contributes to polarization of TH17

cells that are important mediators of intestinal inflammation (49,

50). Although immune cell-derived IL-1b can induce epithelial

repair by stimulating renewal of intestinal stem cells, excess IL-1b
might amplify intestinal inflammation by increasing epithelial

barrier permeability and production of cytokines and chemokines

(51–54). In addition to production of cytokines, inflammasome-

dependent activation of pyroptosis in immune cells restrains

intracellular replication of pathogens in infected immune cells (4,

16, 55). Moreover, inflammasomes were also shown to contribute to

discrimination between pathogenic and commensal microbiota in

the gastrointestinal tract (16, 56).
Inflammasomes in infectious diseases
affecting the gastrointestinal tract

Various pattern recognition receptor families including the

inflammasome sensor proteins of the NLR protein family have

evolved in humans to recognize foreign and/or potentially

dangerous material. Several pathogens affecting gastrointestinal

health have been shown to trigger activation of inflammasomes.

For example, NLRP3 inflammasomes contribute to the clearance

of various bacterial (e.g., Helicobacter pylori, Campylobacter

jejuni, Yersinia enterocolitica) and viral (e.g., adenovirus,

enterovirus) species (16, 57–63). Furthermore, NAIP/NLRC4

can be triggered by components (e.g., Flagellin or type 3

secretion system) from various enteric bacterial species

including Escherichia coli, Salmonella enterica, and Listeria

monocytogenes (12, 14–16, 64). Moreover, Clostridium difficile

infections, a major cause for antibiotic-related diarrhea and
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pseudomembranous colitis, result in toxin-mediated activation

of Pyrin inflammasomes and increased IL-1b-dependent tissue
damage (16, 65, 66). Mechanistically, infection-induced

activation of inflammasomes contributes to pathogen clearance

by cytokine-mediated recruitment and activation of immune

cells (e.g, neutrophils) and pyroptosis of infected cells limiting

pathogen propagation (16, 41, 46, 47, 56). Furthermore, active

inflammasomes can limit further uptake of pathogens and can

increase pathogen killing of professional phagocytes (16, 67). In

IEC, inflammasome activation can lead to expulsion of infected

cells into the gastrointestinal lumen, which may hinder

pathogens to overcome the intestinal barrier (16, 41, 46, 47).
Inflammasomes in IBD pathogenesis

Previous studies have indicated that inflammasomes are

implicated in IBD pathogenesis, as mucosal IL-1 production is

significantly enhanced during active disease (68). Furthermore,

higher IL-1b levels were detected in LPS-stimulated peripheral

blood mononuclear cells (PBMCs) from patients with Crohn’s

disease (CD) and long-standing ulcerative colitis (UC) (69). In

line, expression of IL-18 was also shown to be higher in lamina

propria mononuclear cells isolated from patients with CD (70, 71).

Moreover, IL-1b signatures have been detected in macrophages/

monocytes isolated from inflamed intestinal tissues of IBD patients

by single-cell transcriptomics and deep immunoprofiling (72).

Correspondingly, Liso et al. have recently demonstrated that

failure to respond to anti-TNF therapy was associated with

increased IL-1b in sera and colonic biopsy specimens from

patients with UC (73). Genetic effects on inflammasome

dysregulation in IBD susceptibility were suggested by

polymorphisms in genes involved in inflammasome activity (e.g.,

NLRP3, IL-18) (31, 74–76). Additionally, mutations in the NLRP3

regulator CARD8 were shown to result in increased NLRP3

inflammasome activity and CD (77).

The important role of inflammasomes in controlling homeostasis

of the intestinal tract has been further demonstrated by amelioration

of experimental colitis through blockade of the inflammasome

effector molecules IL-1b and IL-18 in different murine models (50,

73, 78, 79). Based on these studies, IL-1 blockade is considered as

potential therapy for IBD and is currently being evaluated in a phase

II randomized placebo-controlled double-blinded trial for patients

with acute severe colitis (80).

Monogenic VEO-IBD – A powerful
model to define key factors
controlling inflammasome activity

IBD is a complex disease triggered by environmental factors,

immune dysfunctions, epithelial barrier defects, and imbalances of

the microbial flora in genetically susceptible individuals (81). In
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particular, children with rare very early onset IBD (VEO-IBD)

show severe and refractory inflammatory conditions different

from forms observed in adults (82). Based on the early age of

onset and the aggressive phenotype VEO-IBD patients are

considered to have a higher genetic susceptibility. In line, >75

distinct single inherited genetic defects have been identified as

molecular cause for VEO-IBD (83, 84). Notably, the majority of

reported monogenic entities are underlying primary

immunodeficiencies and genetic diagnosis has critical

implications for the prognosis and therapy of VEO-IBD

patients. For example, hematopoietic stem cell transplantation

(HSCT) has been established as curative standard of care for

VEO-IBD patients associated with inborn errors of

immunity (85).

Notably, several studies on monogenic VEO-IBD have

demonstrated that altered inflammasome activity plays a

critical role in the pathogenesis of human intestinal

inflammation and illustrated that inflammasome plasticity is

regulated by complex networks (Figure 2). Thus, monogenic

VEO-IBD represents a powerful model highlighting critical

molecular nodes forming the skeleton of inflammasome

regulation. A better understanding of human inflammasome

biology will guide the development of personalized therapies for

VEO-IBD but will also portray novel concepts for the treatment

of common IBD. To stimulate research on inflammasome

biology in IBD pathogenesis, we herein aim to provide an

overview of genes known to cause (monogenic) IBD and

influence inflammasome activity. Therefore, we screened for

genetic defects reported in recent position papers (83, 86–89)

related to monogenic IBD to summarize links to inflammasome-

related genes and -mediated processes (Table 1).
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Inflammasome dysregulation in
monogenic VEO-IBD

Sensor proteins

NLRC4
The most direct link between IBD pathogenesis and

dysregulated inflammasome activation has been provided by

the discovery of patients carrying mutations in genes encoding

for sensor proteins. In particular, de novo gain-of-function in

NLRC4 could be identified in patients presenting with a range of

clinical manifestations of autoinflammation and macrophage

activation syndrome, including severe very early onset

enterocolitis (103, 104). The reported gain-of-function

mutations cause spontaneous oligomerization and activation of

the NAIP/NLRC4 inflammasome without the requirement of

physiological triggers resulting in spontaneous cleavage of pro-

CASP1 and excessive release of IL-1b and IL-18, pyroptosis of

macrophages, and chronic inflammation (103, 104). In addition,

Steiner et al. have recently identified an autosomal recessive

NLRC4 mutation associated with increased IL-1b and IL-18

secretion in a patient with autoinflammation accompanied by

diarrhea (116). Although the underlying mechanisms of biallelic

NLRC4 deficiency remain elusive, IL-18 blockade was shown to

be effective in treatment of NLRC4-mediated macrophage

activation syndrome indicating that epithelial-derived IL-18

might be a critical pathomechanistic driver (105). Taken

together, patients with germline NLRC4 mutations

demonstrate that a tight regulation of NLRC4-associated

inflammasomes is necessary to maintain intestinal homeostasis

and physiological immune cell function.
FIGURE 2

Graphical presentation of a network of inflammasome-associated monogenic defects causing VEO-IBD. Several proteins, that are
several candidates for monogenic VEO-IBD (highlighted in red), have been shown to contribute to inflammasome dysregulation via
various mechanisms.
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MEFV
Patients with mutations in the Mediterranean fever gene

(MEFV, encoding for pyrin) have been shown to develop an

autoinflammatory syndrome called Familial Mediterranean Fever

(FMF) characterized by periodic fever attacks and associated with

early-onset IBD-like phenotypes (38, 97, 117, 118). Even though

mutations in MEFV are discussed rather as risk factors for VEO-

IBD, underlying mechanisms in FMF provide important insights

into dysregulated inflammasome activity. In steady state, pyrin

molecules are phosphorylated by serine/threonine-protein kinase

N (PKN)1/2 allowing binding of the chaperone protein 14-3-3

and maintenance of inactive pyrin (38, 97). In turn, activity of

PKN1/2 is controlled by Rho GTPases that are critical regulators

of actin cytoskeletons indicating that pyrin-mediated

inflammasome activity is coupled to cytoskeleton dynamics (37,

38, 65). Various bacterial toxins (e.g., TcdB from Clostridium

difficile) cause inhibition of Rho GTPases by post-translational

modification, which results in reduced PKN1/2 activity, pyrin

phosphorylation, and 14-3-3 recruitment, subsequently leading to

increased pyrin activity (38, 65, 97). Similar to other

inflammasomes, oligomerized pyrin recruits ASC and CASP1

resulting in inflammation and pyroptosis by inducing cleavage

of pro-IL-1b, pro-IL-18 and GSDMD (119). Gain-of-function

mutations in MEFV can cause increased IL-1b production and

levels of IL-1b are indicative of disease activity in FMF patients

(97, 98). As first line therapy, FMF can be successfully treated with

colchicine by blocking polymerization of microtubuli and
Frontiers in Immunology 05
maintaining pyrin in an inactive state through subsequent

activation of Rho GTPases and PKN1/2 (99, 120–122). Notably,

FMF might be also treated using IL-1b antagonists demonstrating

the central role of an inflammasome-mediated pathogenesis in

FMF (99, 100, 120).
Inflammasome regulators

MVK
Mevalonate kinase (MVK) catalyzes the phosphorylation of

mevalonate, which is a critical step in the biosynthesis of

cholesterol as well as isopentenyl diphosphate and other

polyisoprenoid metabolites (97, 123). Furthermore, the

meva lonate pathway a l so produces precursors o f

geranylgeranyl pyrophosphate required for prenylation of

proteins (101). Notably, prenylation is a critical post-

translational modification of small Rho GTPases, which are

important for the regulation of the pyrin inflammasome (see

also MEFV) (38, 65, 97, 101). In patients with MVK deficiency,

loss-of-function mutations impair production of mevalonate

metabolites resulting in accumulation of metabolic precursors

and lack of products like geranylgeranyl pyrophosphate (38, 65,

97, 101). The underlying mechanisms of enhanced

inflammasome activity in MVK deficiency are not fully

understood, but defective protein prenylation of small

GTPases causes reduced pyrin phosphorylation and thereby
TABLE 1 Overview of monogenic forms of IBD associated with inflammasome dysregulation.

Gene Disease Effect on IL-1b
production

Effect of IL-1
blockade

References

ADAM17 Neonatal inflammatory skin and bowel disease not clear n.a.

BTK X-linked agammaglobulinemia 1 context-dependent + (mouse) (90, 91)

CASP8 Caspase-8 deficiency ↑ n.a. (92)

CYBA Chronic granulomatous disease ↑ + (78, 93)

CYBB Chronic granulomatous disease ↑ + (78, 93)

IKBKG Anhidrotic X-linked ectodermal dysplasia and immunodeficiency not clear n.a.

IL10/IL10RA/IL10RB IL-10 (receptor) deficiency ↑ + (94–96)

MEFV Familial Mediterranean Fever ↑ + (97–100)

MVK Mevalonate kinase deficiency ↑ + (38, 97, 101, 102)

NCF1 Chronic granulomatous disease ↑ + (78, 93)

NCF2 Chronic granulomatous disease ↑ + (78, 93)

NLRC4 Autoinflammation with infantile enterocolitis ↑ IL-18 (103–105)

PTEN PTEN hamartoma tumor syndrome ↓ n.a. (106)

RIPK1 RIPK1 deficiency ↑ n.a. (107, 108)

STAT1 IPEX-like disease not clear n.a.

TRIM22 TRIM22 defect ↓ n.a. (109)

WAS Wiskott-Aldrich syndrome ↑ + (110–112)

XIAP X-linked lymphoproliferative syndrome 2 ↑ n.a. (113–115)
Alphabetical list of IBD candidate genes showing effects on IL-1b production as well as the therapeutic efficacy of IL-1 blockade in the corresponding disorder. If a robust phenotype on IL-
1b production has been documented the effect is indicated by arrows (up: higher IL-1b production; down: lower IL-1b production). Beneficial effects of IL-1 blockade are indicated by a plus
sign. For BTK deficiency, only mouse data are available. For NLRC4 mutations, IL-18 blockade was shown to be effective. N.a., not assessed.
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induces spontaneous activation of pyrin inflammasomes (38, 65,

97, 101). Similar to MEFV, patients with MVK deficiency suffer

from an autoinflammatory syndrome characterized by recurrent

episodes of fever, arthralgia, lymphadenopathy, and

splenomegaly (38, 124, 125). Of note, MVK-deficient patients

can also present with very-early onset diarrhea and abdominal

pain reminiscent of IBD (38, 124, 125). Interestingly, the disease

severity of MVK deficiency is dependent on the residual activity

of mutated MVK (38, 124). Severe forms of MVD present as

mevalonic aciduria associated with developmental delay and

severe systemic inflammation (126). Analogous to FMF patients,

MVK-deficient patients with VEO-IBD have been successfully

treated by biologics blocking IL-1b signaling leading to

improved endoscopic, histologic and laboratory parameters of

inflammation (102).

IKBKG
NF-kB signaling is a critical cellular signaling pathway in

human cells controlling pleiotropic functions such as

inflammatory responses, cell stress, cell survival, and cell growth

(127–129). Several studies have demonstrated that NF-kB
signaling is critical for the expression of NLRP3 inflammasome

components (e.g., NLRP3, IL1B) in response to various danger

signals (priming step) (30, 31). In unstimulated conditions, NF-kB
is inhibited by binding to the inhibitor of kB (IkB) (130–132).
Upon cellular activation, IkB proteins are phosphorylated by the

IkB kinase (IKK) complex (IKKa, IKKb, IKKg/NF-kB essential

modulator (NEMO)) releasing IkB and enabling NF-kB-mediated

signaling (132–136). In males, hypomorphic mutations in NEMO,

a gene with X-linked inheritance encoding a regulatory subunit of

the IKK complex, cause immunodeficiency and hypohidrotic

ectodermal dysplasia associated with severe bacterial, viral, and

fungal infections (137–139). Many NEMO-deficient patients

further present with VEO-IBD characterized by intractable

diarrhea and failure-to-thrive (137, 138). On a molecular level,

NEMO deficiency causes aberrant TLR-, TNFR-, and IL-1R-

mediated signaling impairing critical immune cell functions in

response to infection (137). Of note, HSCT was shown to cure

immunodeficiency and susceptibility to infections in patients with

NEMO deficiency, but failed to cure intestinal inflammation

indicating an important role of NEMO and NF-kB signaling in

controlling intestinal epithelial cell homeostasis (138). In fact,

NEMO was shown to be a critical regulator of TNF-mediated

and RIPK1-dependent cell death in intestinal epithelium and

NEMO-deficient epithelial cells displayed increased cell death as

well as reduced production of antimicrobial molecules leading to

increased permeability of the intestinal barrier for luminal

microbiota and to intestinal inflammation (140, 141).

Genetic variants disturbing NF-kB signaling are obvious

candidates causing inflammasome activation defects. In line,

Greten et al. could show that inhibition or deletion of IKKb
results in reduced expression of IL-1b mRNA and immature

protein upon LPS stimulation in mouse macrophages (142).
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However, they could also detect higher levels of mature IL-1b
secreted by IKKb-deficient macrophages, which might be a

result of increased CASP1 activation due to enhanced

apoptosis (142). Similar to these studies on IKKb, Zhao. et al.
reported that pharmacological suppression of NEMO

ubiquitination resulted in reduced Il1b and Nlrp3 expression

in LPS-stimulated mouse macrophages (143). Despite scarce

evidence, it is tempting to speculate that NEMO deficiency

might also result in aberrant NLRP3 inflammasome activation

similar to IKKb. However, since NF-kB signaling controls

various central (non-)immune functions, it is hard to

differentiate the effects on single effector mechanisms such as

inflammasome activation.

NOD2 and TRIM22
Nucleotide-binding oligomerization domain 2 (NOD2) is an

intracellular pattern recognition receptor (PRR) of the NLR

protein family detecting muramyl dipeptide (MDP), which is a

component of the bacterial cell wall (81, 144–146). Upon

activation, NOD2 signaling induces expression of pro-

inflammatory cytokines via RIPK2- and NF-kB-mediated

signaling and contributes to clearance of different pathogens

(144, 146, 147). Of note, genome-wide association studies

demonstrated that single nucleotide polymorphisms (SNPs) in

NOD2 represent the strongest genetic risk factor for the

development of CD (81, 148, 149). However, mono- or

biallelic NOD2 mutations are not considered as a monogenic

cause for IBD, as they can be also frequently found in the

genome of healthy humans (81, 150). In contrast, mutations in

the NOD2 regulator tripartite motif containing 22 gene

(TRIM22) were shown to cause severe refractory VEO-IBD

associated with diarrhea, failure-to-thrive, and multiple

infections (151). TRIM22 is a RING finger E3 ubiquitin ligase

that catalyzes K63 polyubiquitination of NOD2 and thereby

controls NOD2 signaling function (151). Since NOD2 can

regulate NF-kB signaling, it is likely that NOD2 signaling may

also influence expression of important inflammasome

components (i.e., NLRP3, IL1B, IL18). Indeed, studies in a

mouse model of MDP-induced eye inflammation could

demonstrate NOD2-mediated production of IL-1b and IL-18

in vivo (152). In the human setting, macrophages from CD

patients expressing homozygousNOD2 frameshift mutations fail

to induce IL1B expression upon MDP stimulation

demonstrating a critical role for NOD2 in regulating IL1B

expression (153). Furthermore, PBMCs from NOD2-deficient

CD patients demonstrated a reduced IL-1b secretion in response

to MDP/TNF-a co-stimulation indicating that NOD2 signaling

also regulates post-translational mechanisms influencing

inflammasome activity (153). In line, Hsu et al. demonstrated

that MDP and Anthrax toxin stimulation induces formation of

the NOD2/NLRP1/CASP1 complex catalyzing IL-1bmaturation

in mouse macrophages (154). Contrary to MDP stimulation,

NOD2 was shown to negatively regulate TLR1/2-mediated
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induction of Il1b expression indicating the complex signaling

mechanisms controlled by NOD2 and NF-kB (155).

Interestingly, TRIM22 was also shown to support NLRP3

inflammasome responses upon oxygen-glucose deprivation in

a neuronal cell line substantiating a potential role of NOD2-

mediated signaling on inflammasome activation (109). Similar

to the expressivity of NOD2-deficient patients, the role of NOD2

in inflammasome activation and intestinal inflammation models

is not completely understood (156, 157). For example, Umiker

et al. showed that colitis in Nod2 knock-out (KO) mice was

driven by NLRP3 inflammasome activity, but the underlying

mechanisms of increased NLRP3 activity are still unclear (157).
Cell death regulators

CASP8, RIPK1, and XIAP
Patients with X-linked inhibitor of apoptosis (XIAP)

deficiency present with a primary immunodeficiency

characterized by hemophagocytic lymphohistiocytosis, severe

infections, splenomegaly, and cytopenia (113, 158, 159).

However, XIAP deficiency was also shown to often manifest

with VEO-IBD (113, 158–161). Up to 4% of pediatric IBD has

been associated with mutations in XIAP (113, 160, 161). As

proposed by its name, XIAP can block apoptosis by inhibiting

CASP-3, -7, and -9 via baculovirus IAP repeat (BIR) domains

(113, 162–164). Furthermore, XIAP was shown to be essential

for propagation of NOD2-mediated NF-kB signaling

downstream of NOD2 and expression of important NLRP3

inflammasome components (113, 165, 166). In line, cells

deficient for XIAP-related signaling components [receptor-

interacting protein kinase (RIPK)2, BIRC2, and BIRC3] fail to

induce expression of IL1B upon exposure to the NOD2 agonist

MDP (113, 165, 166). However, loss of XIAP resulted in

increased IL-1b secretion and cell death in response to various

TLR agonists providing a rationale for autoinflammatory

symptoms observed in XIAP deficiency (113–115). Aberrant

inflammasome and cell death responses upon loss of XIAP in

myeloid cells were shown to be dependent on TNF-, RIPK3-,

and CASP8-mediated signaling processes (113–115). In the

absence of XIAP, TLR- and TNFR-mediated signaling induces

ubiquitination of RIPK1 causing activation of RIPK1 and RIPK3,

which results in formation of a complex called ripoptosome that

recruits and activates CASP8 (113, 115, 167, 168). Mature

CASP8 can induce apoptosis, NLRP3 inflammasome

activation, and cleavage of IL-1b demonstrating a direct XIAP-

RIPK-CASP8-inflammasome axis (113, 114). Of note, TLR- or

TNFR-mediated RIPK3 activation in the absence of CASP8 has

been shown to induce NLRP3 inflammasomes and necroptotic

cell death (113, 114).

In line with the importance of the XIAP-ripoptosome-

CASP8 axis, germline loss-of-function mutations in RIPK1

and CASP8 were recently shown to cause VEO-IBD (92, 107,
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108). Interestingly, RIPK1 and CASP8 deficiencies resulted in

increased premature NLRP3 inflammasome activity

characterized by higher IL-1b secretion without requirement

of a second signal. Of note, enhanced inflammasome activity

was associated with abnormal cell death responses (92, 107,

108). Overall, identification of causative mutations in all these

three genes controlling activation of NLRP3 inflammasomes

downstream of different immune signaling pathways

exemplified the role of inflammasome activation and cell

death regulation in IBD pathophysiology and intestinal

homeostasis. The only available curative treatment option

for VEO-IBD caused by XIAP deficiency is allogeneic HSCT

demonstrating the urgency to find treatment alternatives (113,

159, 169). Similarly, there are no curative therapeutics

available for RIPK1 or CASP8 deficiencies affecting both the

immune system and intestinal epithelium. Since all three

genet ic defects are character ized by an increased

inflammasome activity with higher IL-1b secretion, usage of

therapies targeting inflammasomes and/or anti-IL-1R

antibodies might represent an attract ive approach

for treatment.
Interleukin-10 receptor
IL-10R deficiency was the first identified monogenic cause for

severe VEO-IBD accompanied by perianal disease and folliculitis,

which can be only cured by allogeneic HSCT due to the underlying

primary immunodeficiency (85, 170). The IL-10 receptor is a

heterotetrameric protein complex consisting of two IL-10R1 and

IL-10R2 subunits, which are encoded by IL10RA and IL10RB

(171). The corresponding ligand IL-10 is a highly potent anti-

inflammatory cytokine controlling pleiotropic functions in the

immune systems (171–175). Of note, IL-10-mediated signaling

was also shown to inhibit NLRP3 inflammasome activation on a

transcriptional and post-translational level (94, 176). In line, IL-10-

deficient mice showed increased NLRP3 inflammasome activation

and IL-1b levels (94, 95, 177). Enhanced inflammasome activity

manifested in mice prior to onset of colitis and the disease could be

successfully treated by blockade of NLRP3 inflammasomes or IL-

1b signaling demonstrating that symptoms of IL-10 deficiency are

mediated by inflammasome perturbation (96, 177, 178).

Analogously, cells from IL-10R-deficient patients showed

increased and premature NLRP3 inflammasome activation as

well as enhanced IL-1b secretion (94–96). Mechanistically,

deficient IL-10 signaling was demonstrated to result in altered

inflammasome activation by causing defective mitophagy (95).

Interestingly, increased IL-1b production in human IL-10R-

deficient macrophages can be also caused by alternative

inflammasome activation, which is a CASP1-independent

process mediated by CASP8 (94). Of note, IL-1b receptor

blockade has been shown to ameliorate symptoms in IL-10R-

deficient patients providing therapeutic windows for curative

allogeneic HSCT (94).
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WAS
The X-linked Wiskott-Aldrich syndrome (WAS) presents

with a life-threatening immunodeficiency characterized by

thrombocytopenia and recurrent infections and is caused by

mutations in the homonymous gene (179–181). Upon cellular

activation, autoinhibition of Wiskott-Aldrich syndrome protein

(WASp) is resolved and WASp transfers G-actin to the Arp2/3

complex inducing actin filament formation and branching (181–

184). Overall, WASp deficiency has been shown to disturb actin

polymerization resulting in impaired chemotactic, migratory,

phagocytic, and activation responses of immune cells and

platelets (181, 185). Of note, WAS patients can manifest with

VEO-IBD and WASp deficiency was shown to cause

experimental colitis in mice (110, 186, 187). In fact, intestinal

inflammation inWas KO mice is driven by macrophages, which

develop an inflammatory phenotype characterized by higher

levels of pro-inflammatory IL-1b and IL-23 as well as reduced

levels of anti-inflammatory IL-10 (110). Analogously,

macrophages from WAS patients showed a pro-inflammatory

phenotype with higher expression of IL-1b (110). Furthermore,

WASp-deficient cells exhibited an increased NLRP3

inflammasome activity, which might be caused by defective

clearance of pathogens due to failure of actin assembly around

phagocytosed pathogens and defective autophagy (111).

Correspondingly, enteropathogen infection of myeloid cells

expressing mutant WASp has been shown to enhance ASC

speck formation and pyroptosis, indicative of robust

inflammasome activation in WASp deficiency (111). Increased

inflammasome activation might contribute to autoinflammatory

symptoms observed in WAS and might be a target to bridge

WAS patients for HSCT, similar to IL-10R-deficiency (110–112).

In fact, anti-IL-1R therapy was shown to ameliorate symptoms

in one WASp-deficient patient (112). Interestingly, increased

inflammasome activation in WASp-deficient cells could be also

inhibited by treatment with type I IFNs representing another

potential therapeutic option prior to HSCT (111).

NADPH complex
Chronic granulomatous disease (CGD) leads to increased

susceptibility of recurrent bacterial and fungal infections and is

caused by a defective function of the NADPH oxidase complex

in innate immune cells (188–190). Interestingly, up to 40% of

CGD patients develop intestinal inflammation reminiscent of

IBD (191, 192). The NADPH oxidase complex contains gp91-

phox, p67-phox, p47-phox, and p22-phox subunits, which are

encoded by the genes CYBB, NCF2, NCF1, and CYBA,

respectively (190). Of note, mutations in all four genes have

been shown to cause defective production of ROS in innate

immune cells resulting in impaired defense against pathogens

(190). Production of ROS has been identified as a common

intermediate step induced by different inflammasome activators

(e.g., ATP, asbestos, silica) and inhibition of ROS generation has

been shown to block NLRP3 inflammasome activation (5, 193,
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194). Based on these findings defective ROS production might

disturb inflammasome activity, however CGD patients show an

inflammatory phenotype associated with increased IL-1b release

upon TLR stimulation (78, 93). As a potential mechanistic link,

De Luca et al. demonstrated that peripheral blood-derived

macrophages from NADPH oxidase-deficient mice and CGD

patients exhibited defective autophagy resulting in increased IL-

1b release (78). Correspondingly, treatment with Anakinra has

been shown to enhance a rapid and sustained amelioration of

colitis in CGD patients (78).

Other immune defects associated with VEO-
IBD and altered inflammasome activity

Many inborn errors of immunity are known to present with

VEO-IBD, which might be a consequence of the complex

interplay between the microbial flora and the immune system

at the intestinal barrier. For example, phosphatase and tensin

homolog (PTEN) regulates phosphoinositide 3-kinase (PI3K)

signaling by dephosphorylating PI(3,4,5)P3 and loss-of-function

mutations in PTEN have been shown to cause autoimmunity or

immunodeficiency associated with IBD (195–197). PTEN has

been also shown to interact with NLRP3 and KO of PTEN

resulted in reduced NLRP3 inflammasome activation after TLR

stimulation (106). In detail, PTEN was shown to remove

inhibitory phosphorylation from NLRP3 at position Y32,

T193, and T195, which enables interaction of NLRP3 with

ASC and subsequent oligomerization allowing enhanced

inflammasome activation (106). Although data from mouse

studies show inflammasome dysregulation in PTEN deficiency,

a role of inflammasome activation in human patients with PTEN

mutations remains to be demonstrated.

The Bruton tyrosine kinase (BTK) is important for B cell

receptor (BCR) signaling as well as B cell development and

mutations in BTK are the most common cause for

hypogammaglobulinemia (198–202). Besides its role for B cell

development and function, BTK was also shown to interact with

NLRP3 and modulate phosphorylation of NLRP3 in myeloid

cells (90, 91, 203). Of note, Btk KO mice develop severe TNBS-

induced colitis, which can be improved by IL-1b blockade

indicating a central role of inflammasome activation in BTK-

dependent colitis development (91). However, the consequence

of BTK activity on human NLRP3 inflammasome activity

remains controversial, as reports have shown either increased

or decreased NLRP3 inflammasome activation in murine Btk

KO cells and cells from patients with BTK deficiency (90, 91).

Signal transducer and activator of transcription 1 (STAT1) is

a critical signaling molecule in interferon (IFN) responses and

STAT1 deficiency causes Mendelian susceptibility to

mycobacterial disease associated with severe infections (204,

205). In addition, dominant gain-of-function mutations in

STAT1 have been shown to cause a severe immune deficiency

associated with polyendocrinopathy and enteropathy (206).

Interestingly, STAT1 is also an essential mediator of type I
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IFN signaling, which can inhibit NLRP1 and NLRP3

inflammasomes (207, 208). Correspondingly, alterations in

STAT1 activity and subsequently changed type I IFN

responses might predispose patients to dysregulated

inflammasome activity upon challenge with pathogens, which

still needs to be shown in IBD patients.

Mutations in A disintegrin and metalloprotease 17

(ADAM17) can cause VEO-IBD associated with skin

inflammation and susceptibility to gastrointestinal and skin

infections (209). ADAM17 has been shown to cleave the pro-

inflammatory cytokine TNF-a, which is produced as membrane-

bound precursor after activation (210–212). In line, PBMCs from

patients with ADAM17 deficiency produce reduced amounts of

TNF-a upon LPS stimulation (209). TNF-a-mediated activation

of NF-kB signaling has been shown to induce expression of

NLRP3 inflammasome components (e.g., NLRP3, IL-1b, and
IL-18) and modulate pyrin inflammasome activity (210, 213,

214). In line, targeting TNF-a in a mouse model of

autoinflammation caused by NLRP3 mutations was shown to

ameliorate symptoms (213). Thus, it is tempting to speculate that

failure to produce mature TNF-a in ADAM17 deficiency might

also result in disturbed inflammasome activation.
Conclusion

Several monogenic VEO-IBD defects have been linked to

dysregulated inflammasome activity demonstrating the central

role of inflammasomes in intestinal homeostasis. As

perturbation of inflammasomes can be caused by various

genetic entities, studies on monogenic VEO-IBD have

highlighted that inflammasomes are controlled by complex

regulatory networks and represent a critical common path of

human intestinal inflammation. Therefore, targeting

inflammasomes and regulatory molecules might be attractive

strategies for the treatment of IBD patients. Further studies on

the underlying mechanisms in monogenic IBD as disease model
Frontiers in Immunology 09
will shed light on inflammasome biology and help to identify

potential therapeutic targets for rare and common IBD.
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