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More than meets the eye:
The role of microglia in healthy
and diseased retina

Elisa Murenu1*, Maximilian-Joachim Gerhardt1, Martin Biel2

and Stylianos Michalakis1*

1Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich,
Germany, 2Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
Microglia are the main resident immune cells of the nervous system and as

such they are involved in multiple roles ranging from tissue homeostasis to

response to insults and circuit refinement. While most knowledge about

microglia comes from brain studies, some mechanisms have been confirmed

for microglia cells in the retina, the light-sensing compartment of the eye

responsible for initial processing of visual information. However, several key

pieces of this puzzle are still unaccounted for, as the characterization of retinal

microglia has long been hindered by the reduced population size within the

retina as well as the previous lack of technologies enabling single-cell analyses.

Accumulating evidence indicates that the same cell type may harbor a high

degree of transcriptional, morphological and functional differences depending

on its location within the central nervous system. Thus, studying the roles and

signatures adopted specifically by microglia in the retina has become

increasingly important. Here, we review the current understanding of retinal

microglia cells in physiology and in disease, with particular emphasis on newly

discovered mechanisms and future research directions.
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Introduction

Microglia cells are the main resident immune component of the central nervous

system (CNS), as opposed to those elements of the immune system that are circulating or

do not reside in the parenchymal part of a tissue. First found by Franz Nissl at the end of

the 19th century and addressed as “rod cells”, it is only after the characterization of

neurons and astrocytes that Ramon y Cajal’s student del Rio-Hortega used the term

microglia to indicate a “third component” of the brain that was distinct from

oligodendrocytes (1). The initial source of this cell population has found little

consensus for many years, during which several researchers supported the theory of
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the neuroglial origin advanced by Ford Robertson and Ramon y

Cajal (2–5), as opposed to del Rio-Hortega’s theory of the

myeloid origin. The latter has been long controversial, only to

be accredited when the expression of markers typical of

macrophages, which originate from myeloid precursors, was

confirmed also in microglia (6–11). Not surprisingly, microglia

are considered the main resident macrophage population of the

CNS (12).

The retina is the neural region of the eye where visual stimuli

are detected and receive a first elaboration prior to being sent to

the visual cortex. During late embryonic development, it consists

of retinal progenitor cells organized in a neuroblast layer (NbL),

which progressively give rise to all cell populations in a timely

regulated manner (13, 14). At later postnatal and adult stages,

this highly specialized tissue is organized in a well-characterized

circuitry, consisting of nuclear and plexiform layers. Rod and

cone photoreceptors, bipolar and ganglion cells belong to the

first category and constitute outer nuclear (ONL), inner nuclear

(INL) and ganglion cell layer (GCL), respectively (14, 15).

Other cell types residing in these layers are Müller glia (in

the INL), horizontal (INL) and amacrine cells (within INL and

GCL). A synaptic layer between ONL and INL as well as between

INL and GCL constitute the outer (OPL) and inner plexiform

layers (IPL), respectively (14, 15).

“The only thing I know is that I know nothing” - the famous

Socratic paradox holds partly true for retinal microglia, on which

relatively little is known compared to the brain counterpart.

Hence, it comes to no surprise that most literature on retinal

microglia simply relies on the assumption that this population

performs the same tasks observed in brain microglia. However,

already within the brain, at least part of the microglial

population harbors diverse degrees of heterogeneity depending

on their localization (16–19). Further complicating the scenario,

microglia display a high context-dependent plasticity, making

the classification of all acquired identities (according to

morphology, molecular signature and function) a matter of

active debate (20). As such, in this review we will step back to

have an unbiased look specifically at the microglia population in

the Mammalian retina and to address its known roles in retinal

physiology and pathology. We will try to shed some light on

recently discovered mechanisms and evidence from experiments

carried out specifically in retinal microglia, all the while bringing

the attention to the many persisting gaps of knowledge.
Origin and consolidation of retinal
microglia

Origin and retina colonization

In comparison to the brain, pinpointing the original source

and temporal appearance of microglia cells in the retina has

proven more challenging, possibly for the physical separation of
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this compartment from other CNS areas and for the relatively

reduced size of this population (21, 22).

Although the origin of retinal microglia has not been

confirmed specifically, fate-mapping studies performed on

murine models have shown that microglia population as a

whole is generated by erythro-myeloid progenitors located in

the yolk sac (23–30), in particular from a sub-population that

does not express the transcription factor Myb (31, 32). Several

studies have determined that a cohort of transcriptional

regulators, such as Spi1 (encoding for the protein PU.1), Irf8

(10, 24) and Csfr1 (33–35) is crucial for microglia generation.

The mutation or deletion of either of these genes impairs, and in

some cases completely abolishes, the production of microglia.

After differentiation, microglia invade the CNS in two

consecutive waves. Following the first wave, microglia cells

reach the brain around embryonic day (E)8.5. The colonization

of the retina, instead, has been determined as early as E11.5 in

rodents (10 weeks of gestation in humans), though earlier time-

points have not been extensively addressed (36–39) (Figure 1). At

this time, vascularization has yet to take place and the vitreo-

retinal interface and/or the ciliary margin zone (CMZ) have been

indicated as main entry routes (36, 40, 41). The second wave is

observed around birth, when the retinal vasculature is in the

process of being established (Figure 1). Initially, microglia cells

migrate tangentially at the interface with the ganglion cell layer,

where the primary plexus of the vasculature is located (7, 42).

Until postnatal day (P)10, they progressively invade the retinal

tissue migrating in a radial fashion, in order to colonize the IPL

first and the OPL later, while following the formation of the

deeper vasculature plexus (7, 36, 40, 43, 44) (Figure 1).

The key drivers of the radial migration are not fully uncovered

yet. However,microglia have been shown to be naturally attracted to

sites with increased stiffness such as theONL, a process referred to as

durotaxis (45–47). Once the IPL and OPL have been colonized,

microglia persist in these territories until adulthood, forming a

network with a constant intercellular distance that is likely to be

acquired via repulsive mechanisms (48). Additionally, microglia are

found in the retinal nerve fiber layer (NFL) adjacent to ganglion cells

and occasionally with their soma in the INL. The ONL is the only

retinal region where no microglia are observed in physiological

conditions (36).
Repopulation routes and microglia
turnover

The events underlying retina colonization have been

additionally explored at adult stages, in order to shed light on

the migratory behavior of microglia in a context where

circuitries are already established and consolidated. To this

end, murine experiments of pharmacologic or genetic ablation

of microglia have shown that this cell population is capable of

rapidly repopulating the retina and that the employed routes
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partly differ from those followed by microglia during

development (49, 50). Indeed, following ablation at adult

stages, most microglia cells origin from infiltration through the

optic nerve and subsequent center-to-periphery migration, while

repopulation occurs only to a lesser extent via invasion from the

CMZ (49, 50). Cells that have already migrated, as well as cells

that have survived ablation, further contribute to repopulation

through local proliferation. Interestingly, migration within the

retina seems to follow the same steps seen during development,

with a radial distribution pattern starting at the interface of the

GCL followed by colonization of IPL and OPL (49, 50). Thus,

while cellular tropism per se relies on rather conserved

mechanisms, and the retina environment remains seemingly

permissive to (re)colonization even at adult stages, the cells

contributing to repopulation are different in identity and

location source, and mainly consist in microglia cells within

the optic nerve that have survived the ablation as well as, to some

extent, infiltrating macrophages (49, 51–53).

Supporting this evidence, retinal microglia show very little

turnover in physiological conditions (29, 30, 54, 55), indicating

that local proliferation might be mainly restricted to extreme cases

of retinal tissue alteration and/or microglia depletion. Indeed, past

studies making use of irradiation as a mean to deplete microglial

population suggested a higher turnover rate promoted by

infiltration of peripheral monocytes (56, 57). However, these

results were the direct consequence of the impairment of the

blood-retinal barrier caused by the experimental methods

adopted, rather than of physiological turnover.

Thus, retinal microglia appear as a highly stable cell

population, which, however, retains the ability to properly

colonize and integrate in the adult retina following an

alteration of its numbers.
Frontiers in Immunology 03
Retinal microglia morphotypes
across development

During the processes leading to retina colonization and proper

integration, as seen across development, microglia cells adopt

different morphologies. Similarly, the pathophysiological condition

of a tissue and the location within the CNS correlate with microglial

differences in size, polarization and complexity of arborization. In the

retina, the first microglia cells entering the tissue are amoeboid in

shape (Figure 1). Once at their final destination, their morphology

changes either to a shape with long radial ramifications (within the

IPL) or an elongated shape with highly polarized ramifications

(within the OPL; Figure 2) (22, 47). The ramified morphology

established during development has been indicated as a sign of

quiescence, leading to the definition of “resting microglia”. Though

the term might suggest the contrary, microglia in a resting state are

rather active in tissue surveillance, constantly scanning the

environment for any sign of physiological or pathological

alterations (58–64). These processes are thought to be mediated by

several extracellular cues, as already extensively described in other

literature reviews (65–67). Examples of such cues are Cx3CL1,

CD200 and ATP/ADP, which are detected by microglial receptors

Cx3CR1, CD200R and P2RY12, respectively (68–73). Although it

was suggested that the differential tissue stiffness of INL and ONL

may impose the degree of microglial polarization (47), it remains

unclear whether in homeostasis microglial morphotypes merely

reflect the diversity a) in the tissue environment, b) in the

functional states in response to local cues (59, 74–79), c) in the

intrinsic molecular program, or d) in a mix of all of these. The

evidence of distinct molecular signatures for some microglia sub-

populations in various areas of the CNSmight support the presence

of a diversemolecular programdefining not only retinalmicroglia as
FIGURE 1

Microglia start appearing in the retina around E11.5, before the formation of the inner vasculature. At early postnatal days, as the deeper
vasculature plexus develop, microglia infiltrate the retina in a radial manner, colonizing first the IPL and subsequently the OPL. Retinal cells are
shown simplified. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear
layer; RPE, retinal pigmented epithelium.
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awhole (16–19, 30, 79–81), but alsomicrogliawithin the same tissue,

i.e., in IPL versus OPL regions. Recent findings have revealed that

only IPL microglia cells depend on the Csfr1-IL-34 signaling (29),

further prompting the importance of non-cell autonomous cues in

the definition ofmicroglial states and, possibly, identities. Additional

studies are necessary to fully uncover the molecular program

characterizing the IPL and OPL sub-populations, the factors

influencing the correct positioning in either one of these plexiform

layers and the distinct roles they might play in health and disease.

At postnatal and adult stages, the acquisition of an amoeboid

morphology is instead associated with a reactive state, following

the onset of a degenerative pathology or the occurrence of an

injury (82–85) (Figure 2; see section Roles of microglia

in pathology).
Roles of microglia in physiology

As discussed in the previous section, the presence of

microglia in the retina has been determined as early as E11.5.

From this point, the density of microglia in the mouse retina

increases to such an extent that by P7 it accounts for double the

density observed in the adult (22, 36, 86). As local cell
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proliferation has been ruled out during this phase, the likely

explanation for the observed increase is the ingress of new

microglia cells (36). Conversely, a decrease in density follows

during the second postnatal week and it has been accredited to

the expansion of the retinal size together with the absence of new

microglia cells entering the tissue (36, 41). Of note, changes in

absolute numbers are not known and selective cell death at these

stages has not been ruled out. During physiological aging,

instead, the number of microglia cells increases in the

subretinal and perivascular space (87).

In order to elucidate the roles retinal microglia play during

development, the attention has been turned to the physiological

events taking place in the retina during microglia invasion and

during their changes in density, using the acquired knowledge

on brain microglia as reference. In the following sections, we will

mainly address the result of studies in the murine retina, unless

differently specified.
Vasculature development

As addressed in section Origin and retina colonization, early

microglia progenitors colonize the retina in two consecutive
FIGURE 2

Microglial morphology varies considerably according to the developmental and physio-pathological state of the tissue. At adult stages, a long
and thin arborization confers microglia the ability to scan large areas of the surrounding environment. When a degenerative process starts,
microglia retract the branches and display high motility and phagocyting activity. Of note, while in health microglia occupy the synaptic layers
and line ganglion cells fibers, during degeneration these boundaries are lost. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL: inner plexiform
layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium.
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waves. Particularly the second wave takes place around the time

retinal vasculature appears and shares with it the same pattern of

invasion, i.e., from vitreo-retinal interface to deep retina layers

(7, 36, 40, 43, 44, 88). This temporal and spatial correlation

raised the question of a potential link between microglia cells

and formation of new blood vessels in the retina. Indeed, during

development microglia are found in close proximity to nascent

blood vessels and extend branches to contact endothelial cells

and pericytes (37, 88, 89). Several receptors, including Mas1 and

Notch1, are likely to mediate the active localization of microglia

in these regions, as mice lacking their expression show reduced

numbers of microglia near sprouting blood vessels and general

defects in vasculature formation (90, 91).

Further substantiating a role for microglia cells in retinal

vascularization, inducing microglia ablation around birth causes

a reduction of the area covered by blood vessels and a general

impairment of the vasculature, whose growth is, however,

rescued when new microglia cells are transplanted (88, 92).

Transforming growth factor (TGF) b1, in particular, has been

indicated as the main microglial mediator of vascular growth

and its tight regulation is key in promoting physiological

vascularization (47, 93).

During postnatal development, microglia are additionally

involved in vasculature regression to help refine the blood vessel

landscape, as seen both in mouse (94) and human retina (92).

This process seems to be mediated by several signalling factors,

such as Wnt, macrophage colony stimulating factor (M-CSF)

and angiopoietin (94–97). In addition to vascular regression,

microglia/macrophages mediate suppression of blood vessel

branching via vascular endothelial growth factor (VEGF)-Flt1

axis, acting in conjunction with non-canonical Wnt

signalling (98).

All in all, experimental proof supports the contribution of

microglia in the development of retinal vasculature, especially by

exercising an important inhibitory role on vascular sprouting. Of

note, astrocyte progenitors are, instead, known to actively

promote vascularization (40, 99, 100). Therefore, microglia are

seemingly involved in vasculature development also indirectly,

via regulation of the numbers of retinal astrocytes (101).
Synaptic refinement

Aside from the already mentioned role during

vascularization (47, 88, 92, 94–96, 98, 102–104)(see previous

section), shaping the nascent synapses is considered one of the

main functions of microglia. Synapses in the retina are

established on the one hand among photoreceptors, horizontal

and bipolar cells, on the other hand among bipolar, amacrine

and ganglion cells. At late embryonic stages in the murine retina,

the synaptic marker synaptophysin is detected in the

photoreceptor outer segments (13). As early as P5, the same

marker can be found in both IPL and cones, becoming restricted
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to pre-synaptic terminals of photoreceptors from P10 and,

finally, being detected only in IPL and OPL from the second

postnatal week (13, 105). Arborizations and synapses keep on

being consolidated and refined from eye opening (P13-14),

following an activity-dependent scheme and resulting in more

spontaneous synaptic inputs (106).

Temporally and spatially, microglia invasion of the retina

follows the same pattern seen in the development of cell-cell

connections. Together with this observation, the known role of

brain microglia in pruning of synapses during development (106–

108) prompted the idea that similar mechanisms might concur to

shape the retina circuitry. In this regard, it was shown that

microglia regulate the extent to which the dendrites of horizontal

cells are extended via the complement protein C1q (107). As such,

C1q-depleted mice show a progressive invasion of horizontal cells

dendrites into the ONL from P13 on, at the time when the

synapses in the OPL are being consolidated. While any other

direct evidence of retinal microglia involvement in pruning during

development has yet to be uncovered, brain microglia have been

described to refine presynaptic terminals of ganglion cells in the

lateral geniculate nucleus (LGN) through complement protein

activity (108, 109). Interestingly, the impairment of Cx3CL1-

Cx3CR1 signaling in mice, particularly important for microglia

activity (110), was associated with the extension of microglia

branches inside the ONL and morphological and functional

alterations in photoreceptors during early postnatal development,

particularly in cones (111). Similarly, specific depletion of

microglia at adult stages was shown to affect photoreceptor

synapses and visual performance (112, 113). Of note, an

additional role for microglia in axon guidance of ganglion cells

through nerve growth factor (NGF) signaling was suggested (114),

thus corroborating a multi-faceted spectrum of activities for

microglia also in the context of the retina.
Developmental cell death

Strictly interconnected with synaptic refinement, and,

therefore, proper neuronal integration, is the regulation of cell

numbers. The early developmental phases of the CNS have been

associated with extensive cell death. Both cell autonomous and

non-cell autonomous processes concur to eliminate exuberating

cells and/or newborn neurons that fail to establish a proper

connection with their targets (115, 116). Such mechanism also

takes place within the retina, where three waves of programmed

cell death (PCD) have been described: morphogenic, early neural

and neurotrophic cell death (117–120).

Morphogenic cell death is found in the neuroepithelium of

the eye primordia during embryonic development, peaking at

E10.5 and extending until E14.5 (117, 121). Its name reflects the

contribution of this PCD to the processes that shape the optic

cup during this time. Early neural cell death, instead, occurs

during E15-E17 and involves retinal ganglion and amacrine
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cells, namely the first cell types derived from retinal progenitors

(122–124). NGF signaling acting through p75 receptor has been

indicated as the trigger of this apoptotic wave (125). Finally, late

or neurotrophic cell death coincides with the establishment of

connections with extra-retinal structures at postnatal stages and

affects several cell populations (118, 126, 127). Between P4 and

P10, TGF signaling triggers the correct expression levels of NGF,

which, contrary to the detrimental effects mediated by p75

during embryonic development, promotes survival of retinal

neurons, possibly through activation of TrkA receptor (128).

The same is observed in the adult retina, where TGF-b1 is

involved in the maintenance of ganglion cells (129). Of note, a

bystander cell death effect has also been described at early

postnatal stages (130).

The role of microglia throughout these steps is still mostly

circumstantial. Microglia in early phases of retina colonization has

been observed in proximity of dying cells (7, 39, 114). From E12.5

until birth, retinal microglia cells predominantly localize in the

compartment containing already differentiated cells, while in the

NbL almost 50% ofmicroglia cells establishes contacts with newborn

migrating ganglion cells. Interestingly, mainly non-apoptotic

ganglion cells undergo phagocytosis after being marked with

complement proteins (41), a process defined phagoptosis (131).

However, a previous study indicated that microglia do uptake

remnants of apoptotic ganglion cells that had been retrogradely

labelled with Fluorogold or (4-[4-didecylaminostyryl]-N-

methylpyridinium iodide (4Di-10ASP) (44). Thus, it is unclear

whether microglia merely adopt a scavenging role or rather an

active role in the phagocytosis of dying retinal cells.

Moreover, aside from regulating the number of ganglion

cells, microglia seem to influence the number of other retinal

populations, such as astrocytes (101).
Cell survival and proliferation

In addition to cell death, proliferation and cell survival act as

direct regulators of cell numbers. Similar to the previously

addressed roles, recent evidence links brain microglia population

and progenitor cell behavior. While a bidirectional cross-talk with

neural stem cells and progenitors has been extensively described

both during development and at adult stages (132, 133), the

contribution of microglia to similar mechanisms in the retina is

limited to selected examples. During early postnatal development,

the number of proliferating progenitors can be increased by

lipopolysaccharide (LPS) administration, whose primary effect is

microglia activation and proliferation (86). Accordingly, microglia

depletion results in decreased progenitor proliferation. Knockout

of microglial-expressed gene progranulin (grn) in mice has been

shown to result in a decrease in numbers of both microglia and

retinal progenitors (86). In agreement with this, activated microglia

have also been shown to promote cell survival in retinal explants

from P10 postnatal mice, as interfering with their activation or
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promoting their ablation leads to decreased viability of retinal

cells (134).

As already addressed, it is worth noting that microglia have

also been associated with proper cone maturation via Cx3CL1-

Cx3CR1 signaling and maintenance of cone homeostasis at adult

stages (111, 112). Though intriguing, the nature of this selective

relationship between microglia and cone cells has yet to be

fully characterized.
Roles of microglia in pathology

As befitting cells participating in the immune response of an

organism, microglia adopt a more active (and overall, better

characterized) role in pathology. Consequently, understanding

the behavior of microglia in disease can help uncover additional

functions adopted in physiological conditions.

Several factors expressed in the healthy mouse, rat and

human retina serve as signals for microglia to remain in a

non-reactive state, e.g., CD200 and Cx3CL1 (60, 70, 71, 135).

The loss of retinal homeostasis resulting from a physical insult or

a degenerative process causes an alteration in the levels of these

and additional factors, thus leading to microglia activation and

recruitment. These events correlate with the acquisition of an

amoeboid morphology and a highly migratory behavior that

brings microglia cells to invade nuclear layers (particularly the

ONL) commonly devoid of immune cells (82–85). It was

proposed that activated microglia adopt distinct transcriptional

features depending on whether a mostly pro-inflammatory (M1)

or anti-inflammatory (M2) program is initiated. However, these

definitions are largely stereotyped and possibly more suitable for

monocytes (20, 74, 136–140). The rapid expansion of high-

throughput methods, particularly single-cell RNA sequencing,

has recently enabled a more granular characterization of several

phenotypes (and morphotypes) acquired by microglia in

different brain areas and conditions (18–20, 138, 141, 142).

Most of these definitions, including disease-associated

microglia (DAM), proliferative-region-associated microglia

(PAM), axon tract-associated microglia (ATM) and cd11c+

microglia, have recently found correlation also in mouse

retina, specifically at postnatal stages during developmental

apoptosis and in several paradigms of degeneration (143–149).

Although categorizations often suggest stereotyped responses in

well-defined contexts, the role of retinal microglia during degeneration

is multifaceted. Here, we will review the current literature onmicroglia

in the context of severe sight-threatening eye diseases that are

predominantly associated with retinal degeneration.
Retinitis pigmentosa

Among inherited retinal diseases (IRDs), retinitis pigmentosa

(RP) is the most prevalent form and includes a spectrum of
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1006897
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Murenu et al. 10.3389/fimmu.2022.1006897
diseases that can be generally categorized in syndromic

(= affecting various organs) and non-syndromic (affecting only

the retina) (150, 151). Initially characterized by rod photoreceptor

loss in a peripheral-to-central gradient, the degeneration soon

extends also to cones. RP patients notice nyctalopia and impaired

dark adaptation already at early stages of the disease, and suffer

from a progressive, usually concentric, visual field impairment.

Currently, no remedy exists for the various forms of RP, although

several different approaches have been tried and many others are

currently under investigation (152, 153). The sole important

exception is represented by voretigene neparvovec, an AAV-

based gene therapy specifically designed for the treatment of

retinal dystrophies caused by RPE65 bi-allelic mutations,

although the latter ones account only for a very small

proportion of all RP cases (152–154).

Early RP is characterized by progressive loss of rod

photoreceptors. As discussed in the opening of this chapter, the

loss of photoreceptors per se deprives microglia of signals

important for their homeostasis, though sudden hyperoxidative

environment, oxidative stress and alteration of retinal metabolism

may also concur to foster and sustain microglial response (155–

160). Similar to what happens throughout the CNS, retinal

microglia usually respond by adopting an amoeboid

morphology and migrating to the area of insult, ultimately

proliferating to amplify their numbers and acting to resolve the

ongoing degeneration. In the context of RP, as seen in mouse

models, activation of microglia cells leads to their migration into

the ONL, production of pro-inflammatory cytokines and

phagocytosis of viable photoreceptors, which further contributes

to disease progression (65, 161–164).

Thus, it is reasonable to speculate that activating pathways

involved in microglia homeostasis might concur to ameliorate

the effects of the degeneration. In this scenario, Cx3CL1

administration to well-established mouse models of RP

(Pde6brd1 and Pde6brd10 mutants, also known as rd1 and rd10,

respectively (165, 166), has been shown to improve survival of

photoreceptors, though the positive effects may not be

necessarily mediated by microglia (167, 168). In agreement

with the homeostatic role of Cx3CL1-Cx3CR1 signaling, loss

of photoreceptors is exacerbated in mice lacking Cx3CR1,

possibly due to the inability to activate downstream pathways

that would normally maintain microglia in a resting state both in

mice and humans (72, 162). A similar result was described for

insulin growth factor (IGF-1), whose anti-apoptotic effect seems

to be mediated by newly recruited microglia cells (169). In

addition to Cx3CL1 and IGF-1, TGF-b1 administration has

also been shown to ameliorate cone survival in mice by

reducing the pro-inflammatory effect of microglia (170).

Although involved in removal of hindered photoreceptors

and in scavenging of cellular debris, microglia have been shown

to additionally phagocytize seemingly healthy photoreceptors

(171–173), as already observed for ganglion cells during

development (41). These observations prompted to think that
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microglia depletion, rather than mere modulation, would

considerably hinder disease progression. Indeed, interfering

with phagocytosis or selectively inducing microglia cell death

has been shown to ameliorate retinal cytoarchitecture and

overall visual function in Pde6brd10 mice (171). However, a

recent work has challenged this view by indicating a protective

effect of microglia on cones in the same mouse model (174), as

suggested by the discussed role of microglia in cone homeostasis

(111). In rats, treatments affecting microglia numbers have

resulted in reduced visual function, as a consequence of an

increased apoptotic rate in retinal neurons (172, 175). Partially

explaining this protective role, microglia are not only involved in

phagocytosis of stressed photoreceptors, but also in refinement

and clearance of improper synaptic connections attempted by

bipolar cells with remaining photoreceptors. Such role seems to

be mediated by C1q expression in the dendrites of bipolar cells

(172), while both complement protein C3 and its receptor (C3R)

have been implicated in pruning of photoreceptor synapses

(173). Genetic depletion of either C3 or C3R aggravated

photoreceptor death in the already affected retina. Similar

results hinting at a neuroprotective role of microglia were

obtained in a mouse model of retinal detachment (176) and of

excitotoxicity (177). Interestingly, signs of excitotoxicity were

also found in Pde6brd1 mutants, possibly justifying similar

microglia responses in different degenerative contexts (158, 178).

Thus, it is conceivable that microglia attempt to contain the

degeneration by targeting both dying and viable (albeit already

compromised) photoreceptors. Impairing microglia numbers or

their phagocytic ability soon after infiltrating the ONL leads to

an accumulation of stressed and/or dying photoreceptors, which

seems to transiently ameliorate the progression of the disease. In

later stages of the disease, however, the ONL is affected in the

same way as in untreated retinae, possibly due to the inability of

the remaining photoreceptors to maintain proper connections

with bipolar cells. Microglia cells surviving the depletion might

also concur to aggravate the degeneration when their phagocytic

ability is impaired.
Glaucoma

Aside from IRDs, the most common cause of irreversible

blindness as of 2020 is glaucoma (179), which encompasses a

spectrum of heterogenous diseases whose underlying etiology is

still largely unknown (180, 181). The common leitmotif in

affected patients is a gradual degeneration of the retinal

ganglion cells, the associated optic nerve and the supporting

connective tissue, which become ophthalmologically apparent as

an excavation of the optic disc (180, 181). An elevated

intraocular pressure (IOP) is the most common risk factor

and, currently, the main target of treatment (182).

Although the principal factors driving glaucoma are still under

investigation, the involvement of the immune system in the
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pathology is rather established (183–191). Indeed, complement

and endothelin systems have been found to be overrepresented in

both patients and animal models of glaucoma even before the

appearance of other phenotypic effects (183, 190, 192–210).

Interestingly, antagonizing C1qa protein produced by ganglion

cells, microglia and macrophages exerts positive effects on

glaucoma progression (183, 195, 197, 211), whereas mice

genetically depleted of C3, produced by astrocytes, show an

aggravation of the phenotype (196). In contrast, attenuation of

C3 production specifically in the retina resulted in increased

survival of ganglion cells, suggesting that the levels of certain

complement factors in this locally restricted context play a

complex role in the onset and progression of the pathology (194).

In the context of glaucomatous optic atrophy, microglia

localize to the optic nerve head, where they locally proliferate

and release inflammatory molecules such as tumor necrosis

factor (TNF)-a and TGF-b (212–214). Their recruitment

precedes or coincides with the actual onset of degeneration,

possibly as a consequence of the local complement accumulation

(191, 208, 215). Following ganglion cell damage and subsequent

degeneration, retrograde labeling of the optic nerve leads to

simultaneous labeling of retinal microglia, indicating a central

role of the latter population in the clearance of debris and

removal of dying ganglion cells (216, 217). Interestingly, in

models of unilateral glaucoma induction, e.g., via laser-

induced ocular hypertension (OHT), microglia cells have been

shown to react in the unaffected contralateral control eye,

though to a lesser extent (218–221). In addition to the

canonical signs of activation, such as increase in overall cell

size, migratory behavior and reduction in arborization, the

extension of microglial processes from the OPL to the

photoreceptor outer segments is particularly pronounced in

the control eye (219, 220). Such feature has also been observed

in some mouse models of age-related macular degeneration

(AMD) (222). These activated microglia cells seem to adopt a

more pro-inflammatory state, as the expression of M2-

polarization marker Ym1 was not detected (221, 223).

However, microglia have been shown to assume a rather anti-

inflammatory identity in other glaucoma models (224). These

observations highlight the importance of both context and

choice of disease models and further substantiate the

complexity and plasticity of the microglia population in

response to different stimuli.

Not less importantly, microglia have been shown to facilitate

monocytes recruitment and infiltration, two processes that are

usually mediated by the presence of the chemokine Ccl2 in the

tissue and the expression of its receptor Ccr2 on these cells (225),

though also activated microglia is able to express Ccr2 in

particular degenerative conditions (226). Monocytes have been

shown to infiltrate the retina of rodent glaucoma models and to

promote degeneration. Accordingly, their depletion via radiation

treatment, or inhibition of their entry via chemical treatment or

Itgam knockout (also known as Cd11b, the alpha subunit of C3R),
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results in extended neuroprotection (187, 188, 209, 227). Similar

results were obtained by hinderingmonocyte recruitment through

the inhibition of TNF-a or IL-1b activity (228). Of note, while low
doses of Ccl2 promote survival of retinal ganglion cells, seemingly

mediated by microglia, studies performed in rats suggest that high

doses accelerate their loss (229). Thus, a key aspect of microglia

behavior is the context-dependent modulation of its state/

activation. However, the mechanisms linking Ccr2 to such dual

role are not fully uncovered.
Age-related macular degeneration

AMD represents the most common cause of irreversible

central vision loss and its prevalence is expected to increase

dramatically within the next decades (179, 230, 231). Early and

intermediate AMD is characterized by the formation and

expansion of extracellular deposits (so-called drusen) beneath

the retinal pigment epithelium (RPE) or in the subretinal space

(231, 232). In advanced stages, AMD either progresses to a

neovascular (wet) form or leads to progressive cell death without

any neovascular component (dry AMD with geographic

atrophy). Wet AMD is associated with the development of

new blood vessels (choroidal neovascularization, CNV),

leading to rapid vision loss through exudative macular edema,

subretinal/intraretinal bleedings and progressive scarring of the

central retina. Dry AMD progresses to geographic atrophy,

characterized by a complete loss of both photoreceptors and

RPE in the macula (233). Importantly, these two late forms of

AMD are not completely exclusive, as either one can eventually

evolve into the other (231, 232).

Similar to glaucoma, the presence of complement proteins in

drusen is per se a strong indication of the involvement of the

innate immune system in AMD and, indeed, macrophages and

microglia have been found in its association (234–239). This

observation is especially true for the neovascular form of AMD,

where complement has been shown to be associated with an

increase in the levels of the pro-angiogenic VEGF (234, 240),

partly contributed by microglia and macrophages (241–246).

Anti-VEGF drugs are indeed to date the only approved therapy

for AMD, though only the exudative form is treatable (247, 248).

Microglia exceptionally found in subretinal space is one of

the hallmarks of AMD and is thought to have both protective

and detrimental effects on RPE and photoreceptors (55, 249–

253). The colonization of this area is achieved by the

mobilization and subsequent proliferation of the retinal

microglia population as well as infiltration of circulating

monocytes (30, 55, 64, 243, 253–258). Aged mice lacking Ccr2,

its ligand Ccl2 or Cx3CR1 have been shown to develop retinal

lesions that are reminiscent of human AMD (240, 259–263) and,

indeed, mutations in CX3CR1 gene have been found also in

patients affected by AMD (259, 264–267), but not mutations in

CCR2 (268). The infiltration of microglia in the subretinal space
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of these mouse models is likely to induce para-inflammation and

determine cellular death (260). Moreover, microglia could also

be involved in (and/or be activated by) the production of reactive

oxygen species (269), which, together with changes in cellular

metabolism, are considered among the possible causes of AMD

(270–272). Notably, another cohort of studies showed that mice

deficient for Cx3CR1 and/or Ccl2 do not develop AMD and that

only the latter mouse line displays microglia/macrophages

accumulation in the subretinal space (273). Such an

accumulation of lipid-bloated immune cells can be easily

mistaken for AMD-related lesions during ophthalmologic

inspections, but would rather be a natural consequence of

aging, as observed in aged control mice (87, 261, 262, 274).

Possibly unifying these seemingly contradictory results is the

discovery of the confounding mutation rd8 in C57Bl6/N mice,

which were used to generate most of these mutant mouse lines

(275). However, a common view on the matter has not been

achieved and the subject remains under debate (222, 276, 277).

The presence of both microglia and infiltrating monocytes/

macrophages, which share many molecular characteristics and

functional properties, renders distinguishing their individual

contribution to diseases particularly challenging (278).

Nevertheless, potential treatments alleviating or hindering the

progression of AMD through the modulation of the immune

system are likely to act on both cellular populations. Among

those, interferon-beta (IFN-b) administration in the laser-

induced model of CNV was shown to attenuate the phagocytic

activity of both microglia and macrophages, whereas the

knockou t o f IFN-b r e c ep to r ( I f na r1 ) p romot ed

neovascularization (279). Similarly, the reduction or loss in

TGF-b signaling has been associated with microglia reactivity

and aggravation (but not causation) of AMD (254). However,

the literature on this topic is still largely controversial, partly due

to the high degree of pleiotropism displayed by TGF-b signaling

both in animal models and in patients (280–286).

Furthermore, the blockade of adenosine receptor A2AR

activity has been shown to decrease reactivity and complement

deposition in human microglia cells, all the while enhancing

clearance of photoreceptor debris and improving cell

survival (287).

Interestingly, the endolysosomal system can also be

manipulated in order to alleviate wet AMD conditions. Indeed,

our group has recently shown that interfering with two-pore

channel 2 (TPC2) function on endolysosomes in a model of

laser-induced AMD leads to reduced recruitment of retinal

microglia/macrophages (288). Moreover, Tpc2 knockout

determines a reduction in neovascularization via a decrease in

both VEGF and IL-1b levels, the latter being a pro-inflammatory

interleukin that has been already associated with photoreceptor

degeneration and pathological neovascularization (288–290).

Further studies are currently undergoing to better characterize

the mechanisms linking TPC2 to the beneficial effects observed.
Frontiers in Immunology 09
Retinal vascular disorders

Microglia are involved in multiple additional retinopathies,

although their role is not always fully characterized. Among those

whose incidence is expected to increase in the coming years there

is diabetic retinopathy (DR) – a condition triggered by systemic

diabetes and initially determining vascular abnormalities in the

retina (291). Both in mice and human, ganglion cells, amacrine

cells and, to a lesser extent, photoreceptors undergo apoptosis

already at early stages (292–294), but signs of neurodegeneration

may occasionally appear even before changes in retinal

vasculature become appreciable (295–297). At advanced stages,

ischemia and reactive oxygen species aggravate the scenario by

triggering de novo vascularization in vitreous and vitreo-retinal

interface (298, 299). As a consequence of all these vascular

alterations, vision loss ensues from diffuse edema, in particular

in the macular region (298).

Per se, ischemia and hyperglycemia are potent activators of

microglia, as indicated in several in vitro studies (300) and

further observed in mice (88, 301–303) and rats in which type

1 diabetes was induced with streptozotocin (STZ) (89, 304–308)

as well as in human patients (294, 309, 310). As described for

other pathologies, activation includes events like proliferation,

retraction of processes and acquisition of an amoeboid shape. In

DR, microglia undergo these morphological changes before cell

death is observed, supporting their involvement at very early

stages, but not clarifying their role in disease onset and

progression (311). Interestingly, in a mouse model of DR,

systemic and local level of cytokines (such as IL-4, IL-13,

TNF-a and IL-1b) indicated that microglia cells initially

engage in an anti-inflammatory response, which is then almost

completely lost in favor of a pro-inflammatory response at later

stages (312). Thus, while microglia might not contribute

substantially to DR onset, they rather sustain its progression,

but only when attempts aiming at quenching the increasing

inflammation are exhausted.

Retinal microglia have been shown to contact pericytes and

blood vessels and regulate blood flow through Cx3CL1-Cx3CR1

axis, particularly by promoting vasoconstriction when the

pathway is activated (37, 88, 89). At early stages in rat models

of DR, in the absence of any sign of activation, microglia increase

contact with capillaries and pericytes, thus causing an overall

reduction in retinal blood flow (89). However, in a similar time

window, a different work has determined that fractalkine levels

in the retina are lower, with consequent increase in retinal

inflammation (308). Further studies are required in order to

assess the contribution of Cx3CL1-Cx3CR1 axis in DR and the

associated role of microglia.

Similar to all other retinopathies, alterations in the

complement system have been described for patients affected

by DR and provide an additional link between microglia activity

and disease progression (313, 314). Interestingly, though the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1006897
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Murenu et al. 10.3389/fimmu.2022.1006897
mechanisms are not entirely elucidated, IgG-laden exosomes in

the plasma have been found increased in DR and associated to

complement activation (315). Additional efforts are needed to

pinpoint the correlation between exosomes and DR onset.

Aside from DR, retinal vascular occlusion (RVO) is a

common cause of vision loss, with vein occlusions being more

common than arterial occlusions. The prevalence of both vein

and arterial occlusions rises with age and is strongly associated

with cardiovascular risk factors such as hypertension, diabetes

and cardiovascular disease (316). Typically, an ischemic injury

results from impaired blood circulation and leads to

inflammatory responses, including microglia activation and

proliferation. Moreover, cell death eventually affects retinal

ganglion cells, which are particularly vulnerable to ischemic

conditions (317–324).

In a well-established rat model of high intraocular pressure,

a strong increase in retinal microglia was observed following an

ischemic insult and suggested the involvement of this cell

population in RVO (318, 322). As such, it was speculated that

microglia depletion and/or modulation could result in reduction

of the local inflammation and general neuroprotection. Indeed,

microglia depletion in mice with experimental branch RVO

exerts a protective effect on retinal ganglion cells (325–327).

Additionally, modulating microglial activity via selective

inhibition of A2A receptor prevents microglia-mediated

neuroinflammation and protects retinal ganglion cells from

transient ischemic injury (322, 328). Similar neuroprotective

effects are exerted by treatment with the antibiotic minocycline,

specifically via induction of IL-4 expression and polarization of

microglia/macrophages towards an M2 phenotype, as observed

in mice with induced retinal ischemia (324).

Thus, these examples illustrate the relevance of microglia in

disease development and its therapeutic potential in retinal

vascular occlusion. Inhibition of retinal microglia may

represent a promising approach for modulating inflammatory

responses and/or promoting neuroprotection.
Discussion

Microglia have been in the spotlight since their discovery,

but, despite receiving considerable and increasing attention

over the years, many aspects of their biology and behavior

remain unknown. From a developmental standpoint, it is

interesting to notice how the main resident immune cell

population arises from a different embryonic source from all

other neural cells. This aspect imposes microglial progenitors

to migrate extensively in order to colonize their neural areas of

destination, while neurons, astrocytes and oligodendrocytes

are generated in situ and are subject to more local migratory

events. Provided that retinal microglia belong to the same

population colonizing the rest of the CNS, an assumption that

has not been corroborated by evidence yet, this feature
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translates into a delayed invasion of the retinal anlage

compared, e.g., to the brain. However, the process still

happens in a timely manner and precisely when synaptic

connections are being developed within the retina. The latter

correlation has been often pointed out, and although to date it

has not been sufficiently explored, it could help to answer

some questions regarding the temporal and spatial cues

underlying this migration.

A second aspect worth highlighting is the complementary

role adopted by macroglial cells in immune reaction. Particularly

in the brain, part of the tasks seen for microglia are, in fact,

mediated by astrocytes, with which microglia establish a tight

and continuous cross-talk (329, 330). Per se, the fact that

astrocytes already actively participate in the immune response

program prompts the question of the evolutionary decision to

rely on the non-neuroectoderm derived-microglia to cover and/

or initiate most immune-related functions in the brain.

Specifically for the retina, this point concerns mostly

Müller cells, since astrocytes are only found at the interface of

ganglion cells and are, therefore, physically separated from most

retinal cells (65, 331). However, Müller cells and (cerebral)

astrocytes are two biologically distinct cell types that only

partially share functions, in turn suggesting that microglia in

the retina might act differently or require different partners to

accomplish the same tasks as microglia in the brain. Given the

dissimilar cellular composition of the retina compared to the

brain, one example being the exclusive presence of Müller glia in

the former and of oligodendrocytes in the latter, and the

segregation of retinal microglia in specific compartments (IPL

and OPL) in contrast to the rather homogeneous distribution in

the brain, it is conceivable that a regional distinction persists and

concurs to define the identity of microglia subpopulations.

Additionally, retina and brain environments differ in other

physical properties, such as extracellular matrix composition

and vasculature coverage (332–335). Together with the cellular

composition, which is reflected by different cellular players (e.g.,

Müller cells vs. oligodendrocytes) and overall proportion of

cellular subtypes (e.g., neurons vs. glia), differences in these

aspects confer unique stiffness landscapes as well as specific

metabolic environments in brain and retina, which could

influence both microglia regional identity and their behavior

in disease (336–338). With this in mind, the implicit assumption

that has driven and continues to drive the field, namely that the

same cell type performs the same tasks regardless of the CNS

region, albeit being sensible, must necessarily find more

experimental support. As pointed out in this review, a first

publication ended up underlying differences in IPL versus OPL

microglia (29). Nevertheless, it is not clear which additional cue

defines these two spatially segregated populations and guides

their positioning during early development. Similarly, the

contribution of microglia to physiological events in the retina,

such as circuitry refinement and tissue homeostasis, has found

little evidence to date.
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The role of microglia in pathology has instead received more

attention. Though the core of the microglial response is in

principle quite stereotyped, i.e., by secreting and/or reacting to

specific cytokines (or the lack thereof), exploiting the complement

system, displaying hypertrophy and process retraction, adopting a

highly migratory and phagocytic phenotype to remove affected

cells, several differences persist depending on the pathology and

the strategy used to model it. Of note, abolishing microglia or

interfering with its function does not necessarily result in an

improvement of the degeneration. An explanation for this

seemingly counterintuitive effect could reside in the versatility of

microglia, which can adopt a detrimental or a pro-survival role in

a context-dependent manner. An additional explanation could be

the beneficial functions that microglia have in homeostasis and

that are lost following its depletion. Cone photoreceptors, in

particular, seem to benefit from the presence of microglia, as

demonstrated by studies underlying the involvement of the latter

ones in their maturation andmaintenance and the development of

structural abnormalities when microglia are depleted. These

findings suggest a very specific connection between these two

cell types, although the nature and underlying mechanisms of this

relationship have not been extensively addressed.

Given the high degree of complexity and variety in

microglial behavior, leading to both beneficial and detrimental

effects in the degenerative context, therapeutic strategies could

benefit from an approach in which microglia are modulated/

repurposed rather than depleted. Indeed, not only would

depletion harbor the risk to aggravate and accelerate the

ongoing degeneration, as observed in several models of retinal

dystrophy, but it would also not be easily achieved. Recent

studies focusing on the ablation of the retinal microglia

population have acknowledged a rapid repopulation, triggered

by infiltration and proliferation of microglia having survived the

treatment. Since monocytes/macrophages have been shown to

be able to infiltrate the retina and become resident microglia cells

(55), strategies focusing on microglia depletion might bear

limited effects in those contexts where a pro-inflammatory

function of microglia is observed. Conversely, treatments that

would end up redirecting to a more neuroprotective phenotype,

though of difficult application, could result in increased neuronal

protection and would not deprive surrounding cells of important

homeostatic mechanisms attributed to microglia.

Further studies are required to shed more light on the

functions of microglia in physiology, specifically in the retina,

and on the singularities of retinal tissue compared to the rest of

the CNS. While microglia populations across the CNS share

many common features, different contexts may directly or
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indirectly impose distinct characteristics and novel functions.

In parallel, precious information can be inferred from studying

the immune reaction in retinal disease and from phenotyping

microglial behavior in response to different pathologies.

All in all, many gaps await to be filled, making the field

undoubtedly exciting, but all the while urging the community to

turn a well-earned attention to retinal microglia.
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Teva JL, et al. Embryonic and postnatal development of microglial cells in the
mouse retina. J Comp Neurol (2008) 506(2):224–39. doi: 10.1002/cne.21538

37. Ashwell KWS, Holländer H, Streit W, Stone J. The appearance and
distribution of microglia in the developing retina of the rat. Vis Neurosci (1989)
2(5):437–48. doi: 10.1017/S0952523800012335

38. Diaz-Araya CM, Provis JM, Penfold PL, Billson FA. Development of
microglial topography in human retina. J Comp Neurol (1995) 363(1):53–68. doi:
10.1002/cne.903630106
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293. Garcia-Ramıŕez M, Hernández C, Villarroel M, Canals F, Alonso MA,
Fortuny R, et al. Interphotoreceptor retinoid-binding protein (IRBP) is
downregulated at early stages of diabetic retinopathy. Diabetologia (2009) 52
(12):2633–41. doi: 10.1007/s00125-009-1548-8

294. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower
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