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DNA methylation-based classification of
sinonasal tumors

A list of authors and their affiliations appears at the end of the paper

The diagnosis of sinonasal tumors is challenging due to a heterogeneous
spectrum of various differential diagnoses as well as poorly defined, disputed
entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study,
we apply a machine learning algorithm based on DNAmethylation patterns to
classify sinonasal tumors with clinical-grade reliability. We further show that
sinonasal tumors with SNUC morphology are not as undifferentiated as their
current terminology suggests but rather reassigned to four distinct molecular
classes definedby epigenetic,mutational andproteomicprofiles. This includes
two classes with neuroendocrine differentiation, characterized by IDH2 or
SMARCA4/ARID1Amutationswith an overall favorable clinical course, one class
composed of highly aggressive SMARCB1-deficient carcinomas and another
class with tumors that represent potentially previously misclassified adenoid
cystic carcinomas. Our findings can aid in improving the diagnostic classifi-
cation of sinonasal tumors and could help to change the current perception
of SNUCs.

Although tumors of the sinonasal region only account for a small
fraction of head and neck tumors, they encompass a diverse spectrum
of epithelial, mesenchymal and neuroectodermal neoplasms1. The
complexity of these tumors presents a major challenge for histo-
pathological diagnosis, even for trained head and neck pathologists2.
In fact, tumors of the sinonasal region have been reported to show the
highest rate of conflicting diagnoses among all head and neck tumors3.

Sinonasal undifferentiated carcinomas (SNUC) represent an
especially challenging diagnosis. SNUCs are aggressive carcinomas
that lack a definite lineage-specific differentiation4. For diagnostic
evaluation, a variety of other entities have to be excluded, such as
poorly differentiated carcinomas or high-grade olfactory neuro-
blastomas. Histologically, SNUCs by definition lack squamous or
glandular differentiation but may show subtle neuroendocrine fea-
tures and thus may focally resemble neuroendocrine carcinomas5–7. In
recent years, molecular analyses of SNUCs have revealed a high rate of
IDH2 mutations or alterations of the switch/sucrose non-fermentable
(SWI/SNF) complex leading to SMARCB1 or SMARCA4 deficiency8–11.
These distinct molecular patterns as well as the occasional morpho-
logical and immunohistochemical resemblance to neuroendocrine
carcinoma are challenging the current definition of SNUC as a single
entity.

DNA methylation is an epigenetic modification of the DNA which
regulates gene expression. It plays a significant role in the differentia-
tion of different cell types and it has been shown that DNAmethylation
patterns are highly tissue-specific12. Although epigenetic alterations
represent one of the hallmarks of cancer development, the global DNA
methylation signature of tumor cells is thought to contain substantial
information about the cell of origin, making DNA methylation an ideal
tool for tumor classification13. From a technical perspective,methylated
DNA is highly robust (in contrast to alternativemolecules such as RNA),
enabling the retrospective analysis of formalin-fixed and paraffin
embedded (FFPE) samples, almost irrespective of sample age.Using this
approach, significant cohorts of even exceedingly rare tumors can be
assembled. For these reasons, DNA methylation has shown promising
results in the classification of a growing number of malignancies14–18.
DNAmethylation profiling of olfactory neuroblastomas and a cohort of
sinonasal carcinomas showed that IDH2 mutated and SMARCB1 defi-
cient carcinomas likely represent epigenetically distinct classes10,19.
Furthermore, it has been suggested that IDH2mutated neuroendocrine
carcinomas and IDH2 mutated SNUCs may represent the same entity,
due to their epigenetic similarity10,20.

For this study, we collected a cohort of 395 sinonasal tumors and
relevant differential diagnoses encompassing 18 different
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histologically defined entities aswell as normal sinonasal control tissue
to elucidate the epigenetic landscape of these tumors. Within this
dataset we identified highly robust DNA methylation-based tumor
classes. By further integrating mutational profiling and mass
spectrometry-based proteomics, we provide sound evidence that
tumors with SNUC morphology consist of four distinct epigenetic
subclasses which are supported by different driver mutations land-
scape and protein expression profiles. Furthermore, we provide a
machine learning-based algorithm for reliable classification of diag-
nostic samples which may improve the histopathological diagnosis of
challenging cases.

Results
Identification of DNA methylation-based sinonasal tumor
classes
To test if DNA methylation-based tumor classification for SNUCs was
applicable, we obtained a cohort of 429 high quality DNAmethylation
profiles of sinonasal tumors and normal tissue. A t-distributed sto-
chastic neighbor embedding (t-SNE) dimensionality reduction and
unsupervised clustering of the 20,000 most variable CpG sites was
used to assess the optimal number of classes and for best partition.
Thedistributionof theCpGsites selected for class separation showeda
uniform chromosomal distribution and did not show any enrichment
in the functionally relevant promotor regions when compared to the
overall array design (Supplementary Fig. 1). The clustering algorithm
identified 34 cases as noise or singularity points that did not corre-
spond to a stable cluster, including a relatively high number of cases

that were histologically classified as neuroendocrine carcinomas (11/
24) or SNUCs (15/84). Noise data points were excluded, resulting in a
final reference set comprising of 395 samples, covering 18 tumor
entities as defined in theWHOClassification of Head andNeck Tumors
aswell as normal sinonasal tissue4. Theworkflow for the compilationof
the reference set is also summarized in Supplementary Fig. 2.

The t-SNE dimensionality reduction of the final reference set is
shown in Fig. 1. A total of 18 distinct and stable epigenetic classes were
identified (Supplementary Data 1). We did not observe any batch
effects related to possible confounding factors (Supplementary Fig. 3).
Iterative random down-sampling with correlation analysis of the t-SNE
coordinates indicated a high stability of the classes with a median
correlation coefficient of 0.992 (Range: 0.945 to 0.999; Supplemen-
tary Fig. 4). 14 classes were equivalent to their conventional histo-
pathological classification as defined in the WHO classification. The
remaining four DNA methylation classes included 133 tumors from a
spectrum of different histological entities. Notably, all 69 SNUC sam-
ples of the reference set were among these 133 tumors. These four
SNUCDNAmethylation classeswere furthermolecularly characterized
(see results below) and based on these findings were assigned the
provisional names NEC-like IDH2, SMARCB1, ACC and NEC-like
SMARCA4/ARID1A. Summary copy number plots derived from DNA
methylation data for all classes are shown in Supplementary Fig. 5.

Reassessment of SNUC classes
To further evaluate tumor specimens that were assigned to the four
SNUC classes defined by distinct DNA methylation profiles, we
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Fig. 1 | DNA methylation classes of sinonasal tumors. T-distributed stochastic
neighbor embedding dimensionality reduction showing the 18 different DNA
methylation classes. The conventional histopathological diagnosis is annotated by
color. ACC sinonasal adenoid cystic carcinoma, ADC sinonasal adenocarcinoma,
ALV RMS alveolar rhabdomyosarcoma, ATRT adult pituitary atypical rhabdoid/
teratoid tumor, CPH craniopharyngioma, CTRL normal sinonasal control tissue,

EWS Ewing’s sarcoma, EMB RMS embryonal rhabdomyosarcoma, GPC sinonasal
glomangiopericytoma, LECA lymphoepithelial carcinoma, MCC Merkel-cell carci-
noma, MELA sinonasal mucosal melanoma, NEC sinonasal neuroendocrine carci-
noma, NUTNUTmidline carcinoma,ONBolfactoryneuroblastoma, PDCAsinonasal
poorly differentiated carcinoma, PIT AD pituitary adenoma, SCC sinonasal squa-
mous cell carcinoma, SNUC sinonasal undifferentiated carcinoma.
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reviewed the available histopathological and molecular data on
these cases.

The NEC-like IDH2 class (n = 48) contained tumors that had initi-
ally been diagnosed as either SNUCs, olfactory neuroblastomas, neu-
roendocrine carcinomas or adenocarcinomas (Fig. 2A). Molecular
reports for these cases indicated a strong association with IDH2
mutations. Additionalmutational analysis confirmed that all caseswith
available tissue for testing harbored IDH2 R172 hotspot mutations
(Fig. 2B). Copy number profiles derived from DNA methylation data
showed highly recurrent chromosomal aberrations, including gain of
chromosome 1q as well as loss of chromosome 17p in combination
with gain of chromosome 17q (Fig. 2C). Furthermore, tumors from this
class showed a CpG island hypermethylation phenotype (Supple-
mentary Fig. 6).

The SMARCB1 class (n = 27) consisted of histologically diagnosed
SNUCs, neuroendocrine carcinomas, poorly differentiated carcinomas
and atypical teratoid/rhabdoid tumors of adults in the sellar region
(Fig. 2D)21. Tumors of this group were characterized by recurrent
deletion of the SMARCB1 gene locus (21/27; 80%) and subsequent loss
of INI1 protein expression all cases with available tissue (16/16; 100%)
including cases where the chromosomal SMARCB1 loss was not iden-
tifiable (Fig. 2E). Apart from SMARCB1 loss, we observed no additional
highly recurrent chromosomal alterations (Fig. 2F). Based on these

findings, we conclude that inactivation of SMARCB1 is the defining
alteration for tumors from this DNA methylation subtype.

The ACC class (n = 25) mainly contained conventional adenoid
cystic carcinomas (13/25; 52%), but also tumors that were initially
diagnosed as adenocarcinomas, poorly differentiated carcinomas and
SNUCs by means of conventional diagnostic criteria (Fig. 2G). By ree-
valuation of histomorphological areas, we found subtle adenoid cystic
differentiation in two specimens that had initially been diagnosed as
adenocarcinomas. Furthermore, FISH revealed MYB breaks proto-
typical for adenoid cystic carcinomas in three specimens with SNUC
morphology (Fig. 2H). Based on theseobservations, we concluded that
tumors fromthis classmost likely represent histologicallymisclassified
high-grade adenoid cystic carcinomas. Copy number profiling
revealed few recurrent alterations, but loss of chromosome 6q was
present in 56% (14/25) of samples (Fig. 2I).

The NEC-like SMARCA4/ARID1A class (n = 33) mainly consisted of
tumors that had been diagnosed as SNUCs, neuroendocrine carcino-
mas and olfactory neuroblastomas, but also single adenocarcinomas,
poorly differentiated carcinomas and squamous cell carcinomas
(Fig. 2J). In our reevaluation, we observed rosette-like histological
features in 50% of cases (11/22; Fig. 2K). Furthermore, 60% of these
tumors (12/20) showed weak staining of at least one neuroendocrine
marker (NSE, Chromogranin, Synaptophysin or CD56) in the initial
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Fig. 2 | Reclassification of sinonasal undifferentiated carcinoma (SNUC) classes.
A Pie chart showing the conventional histopathological diagnosis of cases from the
NEC-like IDH2 class. B Sanger-plot showing an example of an IDH2 c.516 G > T
(R172S)mutation. The frequencies of R172S, R172T, R172G andR172Kmutations are
displayed as a pie chart. A bar chart shows the frequency of R172mutations, which
occurred in all of the investigated cases. C Summary copy number profile of cases
from the NEC-like IDH2 class showing highly recurrent copy number alterations
such as gain of chromosome 1q as well as loss of chromosome 17p in combination
with chromosome 17q gain.D Pie chart showing the conventional histopathological
diagnosis of cases from the SMARCB1 class. E Detailed copy number plot of chro-
mosome 22 with focal deletion of the SMARCB1 gene locus and subsequent loss of
INI1 expression in immunohistochemistry.FSummary copynumberprofile of cases
from the SMARCB1 class, the SMARCB1 gene locus is highlighted by the arrow.G Pie
chart showing the conventional histopathological diagnosis of cases from the ACC
class.H Example of histomorphological andmolecular evidence for adenoid cystic

(ACC) differentiation in formof sharply punched-out areas aswell as recurrentMYB
fusions. The frequency of these findings is shown as bar charts. I Summary copy
number profile of cases from the ACC class. J Pie chart showing the conventional
histopathological diagnosis of cases from NEC-like SMARCA4/ARID1A class.
K Hematoxylin and eosin stain showing an example of rosette-like features that
were recurrently observed in this class. The second tile shows an exemplary
immunohistochemical stain for neuron-specific enolase (NSE) with very hetero-
genous cytoplasmic staining as example of evidence for neuroendocrine marker
expression. The frequencyof thesefindings is shown asbar charts.LSummary copy
number profile of cases from the NEC-like SMARCA4/ARID1A class. ACC sinonasal
adenoid cystic carcinoma, ADC sinonasal adenocarcinoma, ATRT adult sellar aty-
pical teratoid/rhabdoid tumor, NEC sinonasal neuroendocrine carcinoma, ONB
olfactory neuroblastoma, PDCA sinonasal poorly differentiated carcinoma, SCC
sinonasal squamous cell carcinoma.
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diagnosticworkup. Summary copy number profiles revealed recurrent
gain of chromosome 8q in up to 67% (22/33; Fig. 2L). Apart from their
characteristic epigenetic profile, our initial review of the available
sparse molecular data did not indicate recurrent or characteristic
alterations. Further molecular analyses were thus performed.

Mass spectrometry-based proteomics
To identify characteristic protein expression profiles and potential
cells of origins for specimens from the four SNUC classes, we per-
formed mass spectrometry-based proteomics. Olfactory neuro-
blastomas, squamous cell carcinomas and normal sinonasal tissue
were used as reference classes. Samples from the SMARCB1 class could
not be included in this part of the studydue to insufficient quantities of
available tumor tissue.

T-SNE analysis of the most variably expressed proteins showed a
pattern similar to that found by DNA methylation analysis (Fig. 3A).
While normal tissue, squamous cell carcinomas and cases from the
ACC tumor class were mostly assigned to distinct groups, the differ-
entiation between olfactory neuroblastomas, cases from the NEC-like
IDH2 and NEC-like SMARCA4/ARID1A class was less evident. As
expected, differential expression analysis in comparison to normal
sinonasal tissue revealed overexpression of classical neuronal proteins

in olfactory neuroblastomas (e.g., ENO2). NEC-like IDH2 and NEC-like
SMARCA4/ARID1A tumors also demonstrated strong overexpression
of proteins specific for neurons or cells of the diffuse neuroendocrine
systemsuchasUCHL1, CRMP1 and ENO2 (Fig. 3B), strongly indicating a
neuroendocrine differentiation for both tumor classes. This pattern
was not seen in tumors from the ACC class. In contrast, cytokeratin 18
(KRT18) was strongly overexpressed in both NEC-like IDH2 and NEC-
like SMARCA4/ARID1A cancers but not in olfactory neuroblastoma.
This predicts UCHL1 and KRT18 to be a potentially valuable marker
combination for the differentiation of olfactory neuroblastomas and
the SNUC classes. We performed an immunohistochemical validation
of this marker combination (Fig. 3C) and observed strong staining of
KRT18 in all cases of theNEC-like IDH2 andNEC-like SMARCA4/ARID1A
class, variable staining intensity in the ACC class and no staining in all
investigated olfactory neuroblastomas and most squamous cell carci-
nomas (Fig. 3D). UCHL1 expressionwas high in NEC-like IDH2 andNEC-
like SMARCA4/ARID1A tumors as well as olfactory neuroblastomas but
absent in tumors from the ACC class and squamous cell carcinomas.
We thus concluded that the combination of both markers could be of
diagnostic value for tumor classification.

To identify potential cells of origin, differentially expressed pro-
teins from all tumor classes in comparison to normal sinonasal tissue
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Fig. 3 | Results frommass spectrometry-basedproteomics.A t-SNEdepicting the
global proteomic profile correlation between normal sinonasal tissue (CTRL),
olfactory neuroblastoma (ONB), sinonasal squamous cell carcinoma (SCC), NEC-
like IDH2, NEC-like SMARCA4/ARID1A, and adenoid cystic carcinoma (ACC). ONB,
NEC-like IDH2 and NEC-like SMARCA4/ARID1A had an unexpectedly similar pro-
teomic profile. B Differential expression analysis between normal sinonasal tissue
and the investigated tumor classes was performed using a moderated t-test fol-
lowedby Benjamini-Hochbergmultiple testing correction. The results are shown as
volcano plots. Recurrent and highly differential expressed proteins are annotated,
highlighting overexpression of proteins specific for neurons or neuroendocrine
cells in the ONB, NEC-like IDH2 and SMARCA4/ARID1A class. C Combined bar and
point plots of 59 biologically independent samples showing the expression of
Cytokeratin 18 (KRT18) andUbiquitin carboxy-terminal hydrolase L1 (UCHL1) in the
different tumor classes as determined by proteomics and immunohistochem-
istry (IHC). D Exemplary hematoxylin/eosin and KRT18 and UCHL1 immunohisto-
chemical stainings are shown, validating the results from the proteomics analysis.
In conclusion, the combination of these markers could be useful for

histopathological classification if DNA methylation is not available or feasible.
E Results from overrepresentation analysis comparing the overall similarity of the
global protein expression signatures of tumor classes with various normal cell
types of the airways. Differentially expressed genes between normal sinonasal tis-
sue and the investigated tumor classes were subjected to overrepresentation
analysis using previously published cell type-specific gene sets that were identified
using single-cell RNA sequencing data of the mucosal lining of human airways. The
Fisher’s exact test followed by FDR multiple testing correction was used to test for
significance. A high similarity between pulmonary neuroendocrine cells (‘PNEC’)
and the ONB, NEC-like IDH2 and NEC-like SMARCA4/ARID1A was observed, in line
with the overexpression of neuronal/neuroendocrine markers shown in B. ACC
specimensmostly resembled serous cells of submucosal glandsandSCC specimens
mostly resemble Squamous Cells 1. ACC adenoid cystic carcinoma, ADC adeno-
carcinoma, NEC neuroendocrine carcinoma, CTRL normal sinonasal tissue, ONB
olfactory neuroblastoma, PDCA poorly differentiated carcinoma, SCC squamous
cell carcinoma, FDR False discovery rate, PNEC Pulmonary neuroendocrine cells.
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were subjected to overrepresentation analysis using cell type-specific
gene sets frompreviously published single cell RNA sequencingdataof
themucosal lining of upper and lower human airways (Fig. 3E)22,23. The
neuroectodermal differentiation of specimens from the NEC-like IDH2
(FDR <0.001) and NEC-like SMARCA4/ARID1A class (FDR <0.001) as
well as olfactory neuroblastomas (FDR <0.001) was reflected in their
similarity with pulmonary neuroendocrine cells (PNEC). Furthermore,
olfactory neuroblastomas (FDR 0.004) and tumors from the NEC-like
IDH2 group (FDR < 0.001) showed similarity to a class of Undefined
Rare Cells, which likely represent progenitor cells of epithelial and
neuroendocrine cells22. Tumors from the ACC class mostly resembled
serous cells of submucosal glands (Serous; FDR 0.029). As expected,
squamous cell carcinoma profiles were closely related to squamous
cells (Squamous Cell 1; FDR 0.011).

Additionally, we performed a differential protein expression
analysis comparing the ACC, NEC-like IDH2 and NEC-like SMARCA4/
ARID1A tumor classes against each other. Protein lists were subjected
to functional pathway analysis (Supplementary Fig. 7). Tumors from
the NEC-like IDH2 class were enriched for several functional terms
related to mitochondrial processes, including proteins related to the
citric acid cycle. ACC class tumors showed evidence for alterations in
MAPK-related signaling pathways while the few significant functional
terms for cases from the NEC-like SMARCA4/ARID1A class weremainly
associated with translational processes.

Mutational profiling of the NEC-like SMARCA4/ARID1A methy-
lation class
As a clear driver for the NEC-like SMARCA4/ARID1A molecular tumor
class was not apparent in the available retrospective data, we per-
formed whole exome (n = 9) or NGS panel sequencing (n = 10) of 19
tumors from this group. We observed relatively low median tumor
mutational burden with 3.7 mutations per megabase (Fig. 4A). High
mutational rates were seen in genes involved in the formation of the
SWI/SNF chromatin remodeling complex (14/19; 74%), including
SMARCA4 (9/19; 47%) and ARID1A (7/19; 37%). Early clinical data sug-
gests that patients with these alterationsmight benefit from treatment
with PD1 inhibitors24. Notably, we observedone case of a young patient
in which a SMARCA4 frameshift mutation (p.Q306Rfs*12) was detected
in tumor and in adjacent normal tissue, suggesting a germline or
mosaic origin for thismutation. Additional recurrent alterations in this
tumor class comprised PIK3CA mutations (6/19; 32%), including

classical hotspot mutations such as p.H1047 or p.E545, which are
known predictive markers for treatment with PIK3 pathway inhibitors
in breast cancer25,26. Other known pathogenic driver mutations inclu-
ded CTNNB1 (3/19; 16%), TP53 (3/19; 16%) and TSC2 (2/19; 11%).

Clinical implications of DNA methylation classes
To further evaluate the clinical importance of the DNA methylation-
based classes, we compared disease-specific survival between the four
SNUC classes (Fig. 4B). SMARCB1 class tumors were associated with
significantly worse disease-specific survival compared to cases from
the NEC-like IDH2 (p =0.012), NEC-like SMARCA4/ARID1A (p < 0.001)
or ACC class (p =0.004). Best survival rates were seen in the NEC-like
SMARCA4/ARID1A group, although there was no significant difference
in comparison with the other two classes (vs. ACC: p =0.163; vs. NEC-
like IDH2: p =0.168). In the ACC methylation class, we observed no
significant difference in survival between tumors thatwere classified as
adenoid cystic carcinoma or as SNUC by conventional histopathol-
ogy (p =0.5).

Machine learning classifier development
Asdescribed above,weused t-SNE andhierarchical clustering todefine
epigenetic classes. However, t-SNE is not a reliable tool to classify new
cases as the position of individual data points can change over dif-
ferent iterations and highly depends on selected parameters and the
composition of the cohort. For convenient and rapid classification of
raw DNA methylation data in a diagnostic setting, we used the data
from the reference set to develop a machine learning algorithm that
assigns a given sample to one of the DNAmethylation classes. We also
implemented a supervisedoutlier detectiondesigned to recognize and
prevent the classification of samples with divergent DNA methylation
profiles, such as distant metastases from other organs or entities that
have not been included in the development of the classifier. For this,
we collected a set of 8065 tumor and normal samples, covering eight
different categories (e.g., adenocarcinoma) including 197 different
exact diagnoses (e.g., colorectal adenocarcinoma). A subset of 400
cases from this cohort was used for the training of an additional
Unknown class. The performance of the classifiers was validated using
an independent test set consisting of 52 sinonasal tumors as well as the
remaining 7665 non-sinonasal tumors.

To explore themost suitable technique for this classification task,
we compared support vector machine27–29 and random forest30
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Fig. 4 | DNA sequencing results for NEC-like SMARCA4/ARID1A tumors and
outcome analysis of sinonasal undifferentiated carcinoma (SNUC) DNA
methylation classes. A The oncoprint plot shows tumor mutation burden (TMB)
and recurrent mutations from whole exome sequencing or next generation panel
sequencing (NGS). Potential treatment options and their respective evidence levels
according to the classification from the Cancer Genome Interpreter website are
shown in the panel below. B Overall survival Kaplan–Meier curve comparing
disease-specific survival rates in different SNUC DNA methylation classes. The

tables below show the number of patients at risk at different time points aswell as a
pairwise test for significance using the log-rank test. Patients with tumors from the
SMARCB1 class had significantly worse survival compared to adenoid cystic carci-
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machine learning algorithms, the latter being the current gold stan-
dard for DNA methylation-based tumor classification14,16,31. In a hypo-
thetical diagnostic setting, the potential hazard of a false classification
is higher than the hazard of an unsuccessful classification. While the
random forest achieved higher sensitivity values, the results of the
support vector machine were superior with regards to specificity and
accuracy. Therefore, the support vector machine will be further
described in detail. For comparison, the results of the random forest
classification are shown in Supplementary Table 1.

We evaluated the performance of the classifier using three dif-
ferent metrics. The algorithm demonstrated a high specificity of 0.982
(7524/7665) to correctly assign non-sinonasal tumor specimens to the
Unknown class. We observed some variation in the specificity in dif-
ferent categories of the non-sinonasal test set (Fig. 5A). The lowest
values were observed in salivary gland tumors (0.763) and the highest
values in brain tumors (1.0) as well as normal tissue (1.0). Of note, 107
of the 197 exact non-sinonasal diagnoses (55.2%) were exclusively
present in the test and not in the reference set. The classifier achieved
only slightly higher specificities for diagnoses that were included in
both sets (6,402/6,492; 0.986) compared to diagnoses that were
exclusive to the test set (11,22/1,173; 0.957), demonstrating its relia-
bility to recognize unseen data types. The overall sensitivity to identify
primary sinonasal tumors was 0.904 (47/52; Fig. 5B). In 39 of the
47 sinonasal tumor specimens (83%), the DNA methylation-based
classification confirmed the initial histopathological diagnosis. Two
SCCs were assigned to the LECA and the NUT DNA methylation class
and the molecular classification was confirmed by positive EBV-
encoded RNA (EBER) in-situ hybridization and positive RNA-based
NUTM1 fusion analysis, respectively. Furthermore, the sinonasal tumor
set also contained six SNUC specimens. Five of these were classified as
NEC-like IDH2 and subsequent mutational analysis revealed the pre-
sence of an IDH2 R172 mutation in all cases. The remaining SNUC
specimen was assigned to the NEC-like SMARCA4/ARID1A class and
DNA sequencing confirmed a truncating SMARCA4mutation (p.Q611*).
Furthermore, all six samples showed strong expression of UCHL1.
Thus, the molecular workup confirmed the DNA methylation-based
diagnosis in all reclassified cases. The classifier, therefore, achieved an
accuracyof 1.0 on the sinonasal validation cohort and lead to a revision
or refinement of the initial diagnosis in 17% of cases (Fig. 5C, D).

A web platform which provides convenient access to the classifi-
cation algorithm can be accessed at www.aimethylation.com.

Discussion
In this study, weprovide a resourceofDNAmethylation profiles froma
diverse cohort of sinonasal tumors and present a machine learning
algorithm for a robust classification of thesediagnostically challenging
tumors. Using DNA methylation profiling, DNA sequencing, copy

number analysis and mass spectrometry-based proteomics, we show
that tumorswith SNUCmorphology arenot as undifferentiated as their
current terminology suggests, but rather consist of four different
molecularly distinct entities.

A cohort of the clinically relevant spectrum of sinonasal tumors
and associated neoplasms was surveyed for DNA methylation classifi-
cation. In line with previous studies from other fields, we were able to
demonstrate that most established tumor entities show characteristic
DNA methylation signatures which can be used for reliable clinical
classification and differentiation14–18,32. While earlier studies only cov-
ered a fraction of the sinonasal cancer spectrum with rather limited
total case numbers, the current study includes the whole spectrum of
diagnostically relevant tumor classes and has clearly increased the
total numbers of samples. This allowed to identify previously unrec-
ognized DNA methylation-based tumor classes among sinonasal
tumors. During the assembly of the reference cohort, 34 specimens
were excluded, as they could not be stably assigned to an epigenetic
tumor class. There are several aspects that could explain this. First,
some of the excluded cases encompassed diagnoses with insufficient
number of cases to forma separate and stable class (e.g., biphenotypic
sinonasal sarcoma). These entities could be included in future versions
of the classifier, if additional cases can be acquired. Second, slightly
divergent DNA methylation profiles could also be caused by array
quality or by technical variations between different analyses. Third,
some of these cases could also be of non-sinonasal origin, such as
advanced tumors from neighboring anatomic regions (e.g., tumors
originally arising from the palate or brain) with continuous infiltration
of sinonasal structures or distant metastases from an unrecognized
primary site. Of note, none of these tumors were used for the devel-
opment of the classifier as they did not correspond to a stable epige-
netic class and were therefore excluded from further analyses. Finally,
other cases of these non-clustering samples could correspond to
hitherto unrecognized, even rarer tumor classes that require addi-
tional investigation. The last two points could also explain the large
proportion of neuroendocrine carcinomas and SNUCs in the noise
point category. Non-sinonasal tumors would be prone to be histolo-
gically classified as SNUCs due to their unusual morphology. Further-
more, expression of neuroendocrine markers is not uncommon in
advanced and potentially dedifferentiated carcinomas, making the
classification as neuroendocrine carcinoma more likely. To facilitate
the further characterization of potentially unrecognized classes, we
provide the unprocessed DNA methylation data for these cases along
with the data of the reference cohort.

Using an independent test set, we were able to show that the DNA
methylation-based classification algorithm can reliably subtype sam-
pleswith SNUCmorphologywithout the need for additionalmolecular
testing. Furthermore, the classifier correctly reclassified two samples
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initially diagnosed as sinonasal squamous cell carcinomas as lym-
phoepithelial carcinoma and NUT midline carcinoma, respectively.
This reclassification is of profound clinical importance, as lymphoe-
pithelial carcinomas show improved response to radiotherapy while
NUT midline carcinomas are associated with very poor prognosis. We
also describe the implementation of a supervised outlier detection for
enhancing DNA methylation-based tumor classification. Machine
learning algorithms typically assign anomalous profiles to the next,
most similar class, potentially leading to spurious classification results.
In the context of DNA methylation-based classification, entities that
have not been used for the training of the algorithm such as distant
metastases from other organs would thus either go unnoticed or be
assigned to a wrong class. Crucially, both errors can be avoided by
incorporating outlier detection in the machine learning pipeline.
Although this approach may slightly compromise sensitivity, it redu-
ces the risk ofmisclassifying non-sinonasal tumors, which is crucial for
application in a potential diagnostic setting. Copy number profiles
derived from DNAmethylation data revealed different recurrent copy
number alterations between the tumor classes. This information may
provide additional confidence to the DNA methylation-based classifi-
cation, although the sensitivity and specify of these alterations for
classificatory purposes seem limited.

A further focus of our study was to investigate different DNA
methylation signatures and molecular alterations in the diagnostically
highly challenging group of SNUCs. Our results indicate that what is
currently summarized as SNUCs likely represent a heterogeneous
group of tumors comprising at least four different molecular classes
with different molecular drivers and different clinical course. A sum-
mary of the most important characteristics of the four classes is pro-
vided in Fig. 6.

Specimens from the NEC-like IDH2 class were characterized by
IDH2mutations and highly recurrent copy number alterations. Similar
to acute myeloid leukemia and gliomas, IDH2mutations induce a CpG
island hypermethylation phenotype in sinonasal carcinomas, resulting

in a highly distinct DNA methylation signature and significant hyper-
methylation of various tumor-related genes33. The value of IDH2-spe-
cific inhibitors in the treatment of patients with sinonasal tumors is
currently unknown34. In line with previous reports, patients with
sinonasal tumors with IDH2 mutations have a comparably favorable
prognosis35.

Most cases from the NEC-like SMARCA4/ARID1A class showed
SMARCA4 or ARID1A mutations, which are part of the SWI/SNF chro-
matin remodeling complex. This also included one case with a
SMARCA4 loss of function mutation in tumor-free normal tissue,
potentially representing a germline or mosaic mutation. Germline
mutations of SMARCA4 have previously been described to be asso-
ciated with Rhabdoid tumor predisposition syndrome 2, leading to
highly aggressive and early-onset tumors such as small cell carcinoma
of the ovary, hypercalcemic type36. Although our data is clearly limited
in this aspect, our findings suggest that NEC-like SMARCA4/ARID1A
tumors may also occur in the context of tumor predisposition syn-
dromes. Furthermore, we also observed a remarkably high rate of
activating and potentially actionable PIK3CAmutations in almost one-
third of NEC-like SMARCA4/ARID1A tumors. Comparably high muta-
tion rates of PIK3CA are observed in breast carcinomas but have so far
not been detected in other types of cancer26. There have been previous
studies which observed activating PIK3CA mutations in SNUCs at low
frequency, which indicates that these alterations are likely enriched in
NEC-like SMARCA4/ARID1A tumors8,11. Functional studies or clinical
trials will be required to evaluate whether these tumors may be
responsive to treatment with PIK3 pathway inhibitors. Overall, the
prognosis of patients from this tumor class is relatively favorable and
comparable to IDH2 mutated tumors.

In mass spectrometry-based proteomics, we observed relatively
similar global protein expression profiles for NEC-like IDH2 and NEC-
like SMARCA4/ARID1A tumors. In both classes, we identified over-
expression of several proteins that are specific to neurons or cells of
the diffuse neuroendocrine system, and gene set enrichment analysis
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also indicated a high similarity with neuroendocrine cells. The identi-
fied markers are not routinely established in histopathological
laboratories, ENO2 being a possible exception, and have therefore not
been investigated in previous studies or used in routine diagnostics.
Importantly, routinely used diagnostic markers such as chromogranin
Aor synaptophysinwere not among thehighly enrichedmarkers in our
proteomics analysis and may thus fail to identify the neuroendocrine
differentiation of these cancers. This might explain why a substantial
proportion of tumors from this class were diagnosed as SNUCs or even
as adenocarcinomas or squamous cell carcinomas. It should further be
mentioned that in our extensive reference cohort of sinonasal tumors
no other class of neuroendocrine carcinomas could be identified.
Based on our findings, we therefore, propose that these tumors should
be regarded as “neuroendocrine carcinoma related”, either char-
acterized by IDH2 mutations (neuroendocrine carcinoma-like, IDH2
mutant) or recurrent SMARCA4/ARID1A alterations (neuroendocrine
carcinoma-like, SMARCA4/ARID1A enriched). However, it must be
noted that this concept may change the treatment of patients with
tumors of SNUC morphology. Therefore, a careful clinical evaluation
and confirmation in further studies is crucial before drawing any
clinical conclusions from our study.

With regards to routine histopathological workup, we identified
KRT18 in combination with UCHL1 as potential immunohistochemical
markers to differentiate NEC-like IDH2 andNEC-like SMARCA4/ARID1A
tumors from adenoid cystic carcinomas, olfactory neuroblastomas
and squamous cell carcinomas. The combinational use of these mar-
kers could be of high diagnostic value when DNAmethylation analysis
is not available or not feasible.

For tumors from the NEC-like IDH2 class, functional analysis of
proteomic data revealed alterations in mitochondrial processes,
including the citric acid cycle. This is in line with the well-known
oncogenic mechanism of mutated IDH1/2, disrupting the citric acid
cycle which is located in the inner mitochondrial membrane and pro-
ducing the oncometabolite 2-hydroxyglutarate37. For NEC-like
SMARCA4/ARID1A tumors, we observed a general association with
translational processes, however, no specifically disrupted pathways
were observed.

Cases from the SMARCB1 class were characterized by SMARCB1
deficiency, which has recently been identified among SNUCs10,19. Our
data further substantiates that sinonasal tumors with this alteration
represent a distinct entity, including a broad range of histological
morphologies and should therefore be identified bymolecular testing.
Although we were not able to include tumors from this class in our
proteomics study due to insufficient quantities of tumor tissue, we did
not detect immunohistochemical expression of the neuroendocrine
and neuronal markers that were upregulated in NEC-like IDH2 and
NEC-like SMARCA4/ARID1A tumors. This suggests a different cell of
origin for these cancers and further studies are required to clarify their
origin. Interestingly, SMARCB1-deficient sinonasal carcinomas show a
remarkable epigenetic similarity to adult sellar atypical teratoid/
rhabdoid tumors, although they tended to aggregate slightly separate
in t-SNE analysis. It remains unclear if this is due to batch effects or if
these tumors actually represent two distinct tumor types sharing the
same driving alteration.

Samples from the ACC class shared the molecular profile (DNA
methylation,MYB rearrangement, recurrent loss of chromosome 6q38)
of adenoid cystic carcinomas and most likely represent high-grade
adenoid cystic carcinomas. In several such tumors, we also detected
focal adenoid cystic differentiation on histological reexamination. In
addition,mass spectrometry-based proteomics revealed similarities of
these tumors with serous cells of submucosal glands, further sup-
porting the reclassification. Functional analysis of proteomic data
revealed evidence of MAPK-pathway activation as a key mechanism
which is in line with other reports39,40. Previous studies recognized that
solid variants of adenoid cystic carcinomas can bemistaken for SNUCs

and that close histomorphological investigation and adequate sam-
pling is crucial41. A major benefit of DNA methylation-based classifi-
cation is that it does not require the analysis of a tumor area with a
certain differentiation or growth pattern. Therefore, a classification is
also possible if only high-grade tumor areas are available (e.g. in
smaller biopsy specimens or partial resections).

The findings of our study come with some limitations. While
numerous studies showed that DNA methylation is a very reliable tool
for tumor classification, the underlying biological mechanisms remain
relatively unclear. In our study, the CpGs relevant for classification
showed a very similar distribution over chromosomes and functional
gene regions compared to the overall array design. Furthermore,most
relevant CpGs were located in the gene body. The regulatory effect of
DNA methylation in these regions is only poorly understood and
interpretation is not straightforward.

Second, the main goal of our proteomic analysis was to identify
potential diagnosticmarkers and cells of origin.While the selected LFQ
approachwas suitable to accomplish these tasks, mechanistic analyses
focusing on less abundant signaling pathway molecules would profit
frommore sensitive approaches such as data-independent acquisition
(DIA) or tandem mass tag (TMT) labeling as well phosphoproteomic
profiling. Therefore, the results fromour functional analyses should be
interpreted with caution and should be further investigated in future
studies.

Third, we did not perform central histopathological review of the
cases included in this study. Therefore, the quality of the given con-
ventional diagnoses might differ between the providing institutions
due to different expertise in the diagnosis of sinonasal tumors.

Furthermore, our outcome analysis should be interpreted with
caution, as therewas only very limiteddata available onother outcome
associated clinical factors such as local tumor stage or
metastatic stage.

In summary, we provide a DNA methylation-based algorithm,
which could serve as a valuable tool in the diagnosis of sinonasal
tumors, preventing misclassifications and supporting the workup of
challenging cases. In addition, we clarify the molecular heterogeneity
of tumors with SNUC morphology. We demonstrate that tumors with
SNUC morphology can be segregated to four distinct tumor types,
including (1) sinonasal neuroendocrine carcinoma-like, IDH2 mutant,
(2) sinonasal neuroendocrine carcinoma-like, SMARCA4/ARID1A enri-
ched, (3) sinonasal carcinoma, SMARCB1 altered and (4) poorly dif-
ferentiated adenoid cystic carcinoma.

Methods
Ethics statement
This research project has been approved by the ethics committee of
the Charité – Universitätsmedizin Berlin. Retrospective investigation
of left-over diagnostic samples for research purposes was covered by
the general treatment agreement of the respective hospitals. No
compensations were provided.

Statistics & Reproducibility
Statistical analysis was performed in RStudio Version 1.3.1093. For the
reference cohort, minimum sample size per histopathological entity
was set at 6, similarly to previously published work14. Detailed para-
meters for exclusion of low-quality samples and cases that did not
correspond to a stable DNA methylation class are listed in the DNA
methylation analysis section. The investigators were not blinded to
allocation during experiments and outcome assessment, but the
algorithms that assigned cases to DNA methylation classes were
agnostic to the conventional histopathological diagnosis.

Sinonasal reference cohort
For the identification of DNAmethylation-based tumor classes and the
development of corresponding machine learning classifiers, we
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compiled a reference cohort of 495 samples from sinonasal tumors
(Supplementary Data 2). 271 formalin-fixed and paraffin embedded
(FFPE) tissue specimens were retrieved from the archives of the Insti-
tutes of Pathology or Neuropathology at the University Hospitals
Basel, Berlin, Frankfurt am Main, Gießen, Göttingen, Hamburg, Hei-
delberg, Marburg, München, Münster, Naples, Oviedo, Lübeck, Stan-
ford and Tübingen. The conventional histopathological diagnosis was
taken from the original histology report of the providing center or the
associated metadata if the samples was derived from a previously
published study. Specimens were not reviewed centrally prior to
inclusion. Normal sinonasal tissue samples were retrieved from inde-
pendent patients undergoing sinonasal surgery due to non-neoplastic
conditions. All samples were histologically evaluated and confirmed to
be free of tumor before DNA extraction. Raw IDAT files from an
additional 190 samples from previously published studies were
retrieved from public repositories or provided by the authors10,14,16,19,21.
32 samples were excluded after quality control, including 20 samples
with poor DNA methylation analysis quality metrics as well as 12 spe-
cimens with low tumor cell content. 429 cases were used for sub-
sequent analyses. Access to FFPE blocks to reproduce or validate the
findings described in this manuscript can be obtained if sufficient
material is left for further analyses.

Test set
An additional, independent cohort of 52 sinonasal tumors was com-
piled as a test set for the validation of the machine learning classifiers
(Supplementary Data 3). The samples in this cohort were neither used
in the identification of methylation classes nor in the development of
the classifiers, nor for dimensionality reduction.

Cohort of non-sinonasal tumors
For the implementation of an outlier detection, we compiled a cohort
of 8104 tumor and normal tissue samples covering 197 different
diagnoses which we further grouped into eight categories. Raw DNA
methylation data in form of IDAT files were retrieved from publicly
available repositories as well as our own analyses from other research
projects14,16. In a quality control, 39 samples were excluded from fur-
ther analysis. The final cohort was randomly split in two cohorts and its
samples either used for the development or the evaluation of the
classifiers. All samples included in the non-sinonasal tumor cohort are
listed in Supplementary Data 4.

Immunohistochemistry
Immunohistochemical staining was performed on the BenchMark
XT (Ventana) automated slide stainer according to the manu-
facturer’s instructions. Sections were incubated with primary
antibody against UCHL1 (clone 13C4, dilution 1:1000, abcam,
United Kingdom, catalog number ab8189) and KRT18 (clone DC-
10, dilution 1:1000, BioGenex, USA, catalog number AM143-5M).
Antibodies were validated using adequate positive controls,
including human neural tissue for UCHL1 and human cancer tis-
sue for KRT18. Expression was scored using an H-score which was
calculated by multiplying the staining intensity (0: no staining; 1:
weak staining; 2: moderate staining; 3: strong staining) by the
respective percentage of tumor cells42.

In-situ hybridization
Fluorescence in-situ hybridization (FISH) was performed as described
previously43 using theMYB Dual Color Break Apart Probe (Zytovision).
In brief, 4 µm sections were deparaffinized dehydrated and incubated
in pretreatment solution (Dako, Denmark) at 95–99 °C for 10min.
Following immersion in pepsin solution for 3–6min at 37 °C, slides
were washed, dehydrated and air dried. DNA probes were applied and
the sections were sealed and denaturalized in humidified atmosphere
at 82 °C for 5min. Sections hybridized at 45 °C overnight. After

washing, slides were counterstained with 4′,6-diamidino-2-pheny-
lindole (DAPI).

Silver-enhanced in-situ hybridization for EBV analysis was done
using the BOND Epstein-Barr virus-encoded small RNA (EBER) Probe
(Leica) on the BOND-MAX automated slide stainer (Leica).

DNA extraction
Representative tumor areas were identified using light microscopy of
hematoxylin and eosin-stained sections. Semi-automated DNA
extraction was performed on the Maxwell RSC Instrument using the
Maxwell RSC FFPE Plus DNA Purification Kit (Custom, AX4920; Pro-
mega). Extracted total DNA quantities were measured using the
Qubit™ HS DNA Assay (Thermo Fisher Scientific).

DNA methylation analysis
We used the Illumina Infinium HD FFPE DNA Restore Kit for DNA
restoration of FFPE samples. Subsequent bisulfite conversion was
performed using the EpiTect Bisulfite Kit (Qiagen). The bisulfite-
converted DNA was analyzed using the Illumina Infinium Human-
Methylation450 or MethylationEPIC BeadChip.

Raw DNA methylation data were processed in RStudio Version
1.3.1093 using the minfi package44. The pfilter (with perc = 5) and
rmSNPandCH functions from the wateRmelon and DMRcate packages
were used to exclude low-quality samples and to filter CpGs with low
quality, reported cross-reactivity or association with SNPs or sex
chromosomes45,46. The 20,000 most variant CpG sites were selected
for further analysis. The combineArrays function of the minfi package
was used to merge EPIC and 450k data. T-SNE was done using the
RTSNE package, using a perplexity of 20 and 4000 iterations47.
Density-based spatial clustering of applications with noise (DBSCAN)
with the minPts parameter set at 6 was used to determine the optimal
number of classes based on t-SNE coordinates and to assign individual
cases to their respective class. Cases that were labeled as noise points
were excluded from further analysis. Comparison of the number of
classes and the assignment of the non-outlier cases to these classes
revealed no differences before and after exclusion of the outlier
samples. Robustness of tumor classes derived from t-SNE analysis was
tested using iterative random down-sampling to 80% of the total
cohort, as described previously14. The Pearson’s correlation coefficient
of the x and y coordinates for all samples were calculated after 300
iterations. Tumor purity was estimated using the predict_purity_betas
function48.

Classifier development
We developed two separate machine learning classifiers based on a
support vector machine and a random forest model that predict the
tumor class of sinonasal tumor samples from their DNA methylation
profile. In addition to these classes, a single non-sinonasal class for
other tumor entities was introduced to detect outliers. Outlier detec-
tion has several modes of operation, namely unsupervised (where no
outlier labels are required), semi-supervised (where only a few outlier
labels are available) and supervised outlier classification. The latterwas
used in this study to distinguish sinonasal tumors from all other non-
sinonasal tumors49.

The models were developed on a training set composed of all
samples from the sinonasal reference cohort (n = 395) and 5% of the
samples of each category from the non-sinonasal cohort (n = 400),
which were randomly selected. This resulted in a combined dataset of
795 samples.

On this combined training set, the optimal hyperparameters for
bothmodel typeswere then determined in a grid search byminimizing
the class-balanced multinomial cross-entropy loss in a five-fold cross-
validation with stratified sampling. A dimension reduction to the
20,000 most variant CpG sites was performed on each training set of
the cross-validation and applied to the respective validation fold. The
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final models were then retrained on the full training set with the
selected hyperparameters.

For the development of support vector machine models, we used
the R package e1071. Linear and radial basis function kernels, gamma
values of γ = 2−3,…,3 / 20,000, and cost parameters of C = 20,…,5 were
considered as possible hyperparameters. Random forest models were
trained with the R package randomForest, using the number of trees
ntree=500, 1000 and mtry=2−5,…,5 x sqrt(20,000) as hyperparameters.
Further, both models were configured to return scores for each
methylation class.

In order to make these scores more readily interpretable as
probabilities, we developed calibration models based on ridge-
penalized multinomial logistic regression, resembling previously
described procedures but accounting for the challenge of a lower
number of samples here31. In detail, we used the cv.glmnet function of
the R package glmnet on the scores on the training set resulting from
the previous cross-validation which correspond to the selected
hyperparameters. For prediction of the calibrated scores, the λ para-
meter withminimummean cross-validated errorwas chosen. The class
with the highest calibrated score was then determined as the final
prediction for each sample.

The resulting classification procedure was then evaluated on the
sinonasal test cohort (n = 52) and the samples from the non-sinonasal
cohort that hadnot been included in the training set before (n = 7,665).
In order to assess the outlier detection, all predictions of sinonasal
tumor classes were retrospectively combined in one class and sensi-
tivity and specificity were computed for the binary differentiation of
sinonasal and non-sinonasal samples (outlier detection specificity and
outlier detection sensitivity). For the evaluation of the sinonasal
methylation class prediction, only samples from the sinonasal test
cohort without classification as Unknown were considered (sinonasal
accuracy). Five repetitions of the classifier development and evalua-
tion led to similar results as with our final classifier, confirming the
stability of the procedure.

Copy number analysis
Genome-wide copy number profiles were generated from raw DNA
methylation data using amodified version of the conumee package50,51.

Mass spectrometry-based proteomics
Sufficient tissue for mass spectrometry-based proteomics was avail-
able for 66 cases, including 59 tumor samples and seven normal
sinonasal tissue specimens.

Representative 1.0 or 1.5mm punch biopsy needle tissue cores
were subjected to sonication using a Covaris LE220Rsc Focused-
ultrasonicator (250W, 50% duty cycle, 3 rounds with incubation at
80 °C for 1 h/ 95 °C for 30min between the rounds) in a denaturing
buffer containing 1.5% SDS and 2.5mM DTT in 25mM Tris, pH 8.0.
Lysates were separated from cell debris and remaining paraffin by
centrifugation at 20.000 x g andmanual removal of the top layer. This
was followed by determination of the protein concentrations using
BCA assay and subsequent sample preparation using an automated
SDS-SP3 digestion and clean-up protocol52,53. Using a Bravo Automated
LiquidHandling Platform (Agilent Technologies, Santa Clara, USA), the
proteins were alkylated using iodoacetamide (IAA) for 30minutes and
blocked with an excess of 1,4-dithiothreitol (DTT). They were then
bound to a 1:1mixtureof hydrophilic andhydrophobicmagnetic beads
at a high ACN (acetonitrile) concentration (>70%) and a beads to
protein ratio of 10:1 byweight (10 µg beads:1 µg protein). After washing
of the beads with 70% ethanol, the proteins were digested in solution
in 50mM HEPES (pH 8) with trypsin and LysC (enzyme-to-substrate
ratio 1:50) overnight at 37 °C. The eluted peptides were then acidified
using 100% formic acid (final concentration 1%) and desalted using
AssayMAP tips on theBravo robot. Thefinalpeptide concentrationwas
determined by BCA assay.

Mass spectrometric data acquisition was performed on a Q
Exactive HF-X instrument coupled to an easy nanoLC 1200 system
(Thermo Scientific, Bremen, Germany). One microgram of peptides
was injected per run and the separation was performed using an in-
house packed reverse-phase column (20 cm, 1.9 µm beads, ReproSil
Pur, Dr. Maisch GmbH) with a 110min gradient from 3% to 60% (v/v)
ACN, 0.1% (v/v) formic acid inwater. TheQ Exactive HF-Xwasoperated
in data-dependent mode with 60K MS1 resolution, 3 x 106 ion count
target andmaximum injection timeof 10ms, followedby 20MS2 scans
with 45 K resolution, 1 x 105 ion count target, and maximum injection
time of 86ms.

Raw data were processed using the MaxQuant software Version
1.6.17.0 and the human reference proteome (UP000005640, down-
loaded 01/2019)54. For the database searches, Oxidation (M) and
acetylation (N-term) were included as variable modifications; carba-
midomethyl cysteine was included as a fixed modification. Peptides
of a minimum length of seven amino acids were included in the
search. The FDR was set to 0.01 for peptide and protein identifica-
tions. The Match-Between-Runs (MBR) feature was used for the
analysis. We excluded proteins that were flagged by MaxQuant in the
Reverse and Only identified by site column as well as proteins with
less than three peptides. Contaminants of non-human proteins were
identified manually and removed from the data set. After excluding
samples with less than 1000 detected proteins, 51 specimens
remained for further analysis. Further downstream analysis was
performed using R Studio using base functions and the lmfit and
eBayes function from the limma package to perform differential
expression analysis for groupwise comparisons comparing the dif-
ferent tumor classes to normal sinonasal tissue55. Proteins with a log2
fold change >1.5 and an FDR< 0.05 were considered as differentially
expressed. The list of significantly overexpressed genes in each
tumor class compared to normal sinonasal tissue was subjected to
overrepresentation analysis using the WebGestaltR package. All
identified proteins that remained after filtering as described above
were used as a reference gene list. Two gene sets of normal
respiratory cell types were used to identify potential cells of origin
for the respective tumor classes22,23. The WebGestaltR pipeline uses
the Fisher’s exact test to test for significance and the FDR method
was used to adjust for multiple testing.

Functional analysis of proteomic data was performed using
Cytoscape Version 3.9.1 and ClueGO Version 2.5.9. Differentially
expressed proteins between the three proposed SNUC subtypes ACC,
NEC-like IDH2 and NEC-like SMARCA4/ARID1A were used as input
markers. Functional analysis of Reactome pathway terms was per-
formed using a hypergeometric test, followed by Bonferroni step
down correction. The results were visualized as functionally grouped
networks using prefuse force directed layout.

T-SNE plots were generated as described above using a perplexity
of 10 and 2000 iterations.

DNA panel sequencing
The IonAmpliSeqLibraryKit 2.0 (ThermoFisher Scientific)was used to
perform library preparation of 10 ng of genomic DNA using the Ion
AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher Scientific, catalog
number 4475346). The final library was quantified with the Ion Library
Quantitation Kit (Thermo Fisher Scientific). Samples weremultiplexed
and amplified on Ion Spheres Particles with Ion 540 Kit-Chef and were
sequenced using Ion 540 Chip (Thermo Fisher Scientific) with an
adapted standard protocol56.

Selected samples were processed using the TruSight Oncology
500 Panel (Illumina, catalog number 20028214). 100 base pairs were
sequenced in paired-end mode on an Illumina NextSeq 550 machine.
The raw data was demultiplexed and analyzed using the TruSight
Oncology 500 v2.2 Local App Docker. Briefly, demultiplexed reads
were alignment to the GRCh37 (hg19) genome using the Burrows-
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Wheeler Aligner, mapped reads were collapsed, re-aligned and stit-
ched. Pisces software was used for somatic variant calling.

DNA exome sequencing
DNA exome sequencing was performed at the CeGaT laboratory
(Tübingen) using the Twist Human Core Exome Plus Kit (Twist
Bioscience, catalog number 102027) on a NovaSeq 6000 sequencer
(Illumina) to generate 2 × 100 bp reads. Sequence data were aligned to
GRCh37 (hg19) genome using the Burrows-Wheeler-Aligner (Version
0.7.17)57. Somatic variants were called in comparison to matched nor-
mal tissue, requiring a coverage of at least 30 in both sequencings as
well as an allele frequency of at least 0.05 in the tumor specimen.
Tumor mutational burden was calculated using the parameters
established for the Illumina TSO500 panel58.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw DNAmethylation data of all samples that have been collected for
this study havebeendeposited inGEOunder the accessionGSE196228.
Processed proteomics data are available at FigShare (https://doi.org/
10.6084/m9.figshare.17144639). Due to privacy concerns, raw DNA
sequencing and raw proteomics data cannot be made publicly avail-
able. Instead, this data has been deposited under controlled access in
the European Genome Phenome Archive (EGA) under the accession
numbers EGAS00001006712 (proteomics data; https://ega-archive.
org/studies/EGAS00001006712) and EGAS00001006713 (DNA
sequencing data; https://ega-archive.org/studies/EGAS00001006713).
Requests for access should be addressed to the Data Access Com-
mittee of the Institute of Pathology LMU Munich (DAC@aimethyla-
tion.com). The time for response from the authors to applications will
bewithinonemonth. All requestswill be reviewedby the legal anddata
protection department of the LMUMunich. The following restrictions
apply: (1) a data sharing agreement must be signed between the cor-
responding author and the data processor; (2) data will only be shared
for scientific, non-commercial purposes; (3) the data processor must
comply with the General Data Protection Regulation (GDPR) of the
European Union, alternatively, they have to establish a data privacy
policy that is adequate in the sense of the GDPRwhichwill be assessed
by the data protection department of the LMU Munich; (4) the data
processor must delete all shared data after the investigation; (5) data
must not be shared with any third party or individuals who are not
authorized to access the data. For part of the study, publicly available
data was retrieved from the TCGA database (https://www.cancer.gov/
tcga). All other data is providedwithin the Supplementary Information
and Supplementary Data files.

Code availability
The code to reproduce themain analyses presented in this manuscript
is available on FigShare (https://doi.org/10.6084/m9.figshare.
17144639)59.
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