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Multi-scale organization in communicating
active matter

Alexander Ziepke 1, Ivan Maryshev1, Igor S. Aranson 2 & Erwin Frey 1,3

The emergence of collective motion among interacting, self-propelled agents
is a central paradigm in non-equilibrium physics. Examples of such active
matter range from swimming bacteria and cytoskeletal motility assays to
synthetic self-propelled colloids and swarming microrobots. Remarkably, the
aggregation capabilities of many of these systems rely on a theme as funda-
mental as it is ubiquitous in nature: communication. Despite its eminent
importance, the role of communication in the collective organization of active
systems is not yet fully understood. Here we report on the multi-scale self-
organization of interacting self-propelled agents that locally process infor-
mation transmitted by chemical signals. We show that this communication
capacity dramatically expands their ability to form complex structures,
allowing them to self-organize through a series of collective dynamical states
at multiple hierarchical levels. Our findings provide insights into the role of
self-sustained signal processing for self-organization in biological systems and
open routes to applications using chemically driven colloids or microrobots.

Active matter encompasses a broad class of non-equilibrium systems
that transduce energy stored in the environment into mechanical
motion. In its most common form, locally interacting, self-propelled
agents form coherent collective states that exceed the size of a single
agent by orders of magnitude. Examples range from a variety of bio-
logical systems such as swimming bacteria1–3, cytoskeletal motility
assays4–6, swarms, and flocks and schools of larger animals7, to syn-
thetic self-propelled colloids8,9 and swarmingmicrorobots10,11. There is
broad agreement that self-propulsion, local alignment, and random
disorientation of simple agents are fundamental microscopic deter-
minants that can explain the occurrence of large-scale collective
behavior.

However, in addition to local short-range interactions, such as
alignment and collisions, many biological and synthetic systems
exhibit various types of long-range signaling strategies. The social
amoeba Dictyostelium discoideum uses cell-to-cell cyclic adenosine
monophosphate (cAMP) concentration waves and chemotaxis to
induceaggregation under harsh conditions12,13, insects rely on sound to
coordinate the formation of cohesive swarms14, protein waves control
cargo transport15, some active colloids form oscillating clusters using

long-range chemical Ag/AgCl coupling16,17, microrobots and robotic
fish use infrared, electrical and acoustic signals to communicate18,19.
Signal transduction allows organisms to develop successful survival
techniques that give them an evolutionary advantage over non-
communicating organisms20,21. Communication facilitates the emer-
gence of novel dynamic steady states, such as large streams and
localized vortices13. Without communication, such states are not gen-
eric and are observed only under specific boundary conditions, parti-
cle chirality, or density-dependent feedback mechanisms22,23. Despite
its importance, the role of communication in the context of active
matter remains largely unexplored.

A significant body of literature focuses on self-propelled particles
with diffusive (chemotactic) interactions. Studies on chemotactic
colloids report on the formation of localized clusters and colliding
polar bands, both established through motility-induced phase-
separation (MIPS)24–26. There, the chemical interactions between dif-
ferent agents are mostly linear and passive, e.g., with a constant
emission of the signal by the individual agents27,28. Distinct from these
earlier studies, we ask about the role of an active, non-trivial agent’s
response (decision-making) to detected signals. The information
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processing and decision-making should enable the complex hier-
archical organization akin to living matter that does not occur in sys-
tems with passive chemical signaling.

To reveal the fundamental role of interparticle communica-
tion for self-organization, we chose to study a system of self-
propelled units (agents) with local polar-alignment interactions.
In addition, each agent can perform a specific task, namely, to
detect and relay a signal transmitted between agents. Inspired by
social amoebae that use cyclic adenosine monophosphate (cAMP)
for communication29, and Gram-negative bacteria that employ
acyl-homoserine-lactone (AHL) molecules as quorum-sensing
signals30,31, we consider agents that broadcast a signal in the
form of a chemical substance into the environment, where it
spreads diffusively. Once the local level of the signal exceeds a
certain threshold, agents tend to produce and propagate it. Thus,
the agents act like a Schmitt trigger, a simple nonlinear electronic
circuit with hysteresis32. Such a signal transduction system con-
stitutes a spatially extended excitable medium that generically
exhibits spiral waves of signaling activity. These waves can con-
trol the spatial self-organization of the agents by entraining their
direction of self-propulsion. Thus, unlike existing models of
amoeboid or bacterial aggregation33–37, self-propelled motion,
rather than Brownian motion, is the primary mode of transport in
our system. In contrast to Vicsek-type models38, the model
incorporates the ubiquitous signaling found in biological sys-
tems. It thus provides insight into specific behaviors such as

aggregation in social amoebae39 and oscillatory colloids16 and
sheds light on the fundamental properties of active matter con-
sisting of agents with “on-board” signal processing capabilities.
The combination of chemical communication and internal infor-
mation processing leads to an aggregation process involving
collective dynamic states at multiple scales. We identify the
decision-making machinery of the individual active agents as the
driving mechanism for the collectively controlled self-
organization of the system.

Results
Model
We consider an agent-based description of communicating active
matter, in which each agent moves with velocity v= v0 n and is
endowed with signal detection and relaying capability whose activity
depends on an internal state variable s. The dynamics of the agents’
positions ri = (xi,yi)

T is described by

dri
dt

= v0 ni +
X

j rij<2rp½ �
f ij ð1Þ

where ni = cosφi,sinφi

� �T is the unit vector in the direction of the i-th
agent’s orientationφi, with i = 1,…,N;N is the total number of agents in
the domain. While the speed v0 of each particle is assumed to be
constant, their direction of motion n can change—owing to inelastic
binary collisions that favor polar alignment (Fig. 1a) or in response to a

Fig. 1 | Schematics of the agent-basedmodel for communicating active matter
and summary of collective dynamic states. a Polar self-propelled particles
undergo alignment in binary collisions. b A diffusible signal (green) aligns the cells’
orientation vectors. c Schematic of a Schmitt trigger with variable threshold cth.
d Temporal response c(t) of the agents’ signaling system with characteristic time-
scale τ. e–n Representative collective dynamic states in the agent-based (e–i) and
the hydrodynamic model (j–n). The snapshots illustrate aggregation and vortex
formation following initial ring formation (e, j), where remnant spiral wave arms
induce chemical wave propagation in the ring after the spiral core vanished due to

depletion in its center (‘whispering gallery’-modes); active droplets (f, k), with a
collective response to external stimuli; a collective stream (g, l), where agents
propagate toward the source of communication waves; a large vortex with a spiral
wave (h, m), and a polar band (i, n). White scale bars indicate a length of 10 units.
Colors indicate the polar orientation of particles (top panels) and the chemical
concentration c (bottompanels).White and yellow arrows illustrate the direction of
motion of the particles (top panels) and the propagation direction of signaling
activity (bottom panels), respectively. Parameters are defined in Supplemen-
tary Note 3.
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chemical signal (Fig. 1b).Within an interaction radius rc, agents align in
a polar fashion, i.e., the interaction of an agent with a neighbor causes
both agents to turn toward the average orientation angle with the
alignment rate Γ . If agents approach each other below a critical dis-
tance 2rp, they obey a hard-core repulsion interaction cast as an
isotropic short-range force f ij between the agents in Eq. (1). Akin to
chemotaxis, the agents align with a certain sensitivity ω along the
concentration gradient φc = tan

�1
�
∂yc=∂xc

�
of the local maximum of

the chemical signal concentration c. These competing alignment
processes are generally error-prone, which is accounted for by awhite-
noise term ξ i with amplitude

ffiffiffiffiffiffiffiffiffi
2DR

p
. Specifically, we assume that the

dynamics of the agent’s orientation φi over time t is given by the
Langevin equation

dφi

dt
= � Γ

X
j½rij<rc �

sinðφi � φjÞ
∣ri � rj ∣

+ω sinðφc � φiÞ+ ξ i, ð2Þ

incorporating binary inelastic collisions between neighboring
agents with spatial distance rij = ∣ri � rj ∣, chemotactic reorienta-
tion of agents along the concentration gradient of chemical sig-
naling molecules40, and noise, respectively. The orientation along
chemical gradients is implemented similarly to the agents’ polar
alignment with their neighbors. For instance, in social amoeba the
ability of chemotaxis is stable over large ranges of concentrations
and alignment can be assumed to be independent of the absolute
signal strength41.

Signal detection and self-sustained relaying are modeled by a
Schmitt trigger (Fig. 1c): if the signal amplitude (i.e., chemical con-
centration) is above some threshold value (c>cth), an agent in a
quiescent state (s0 =0) switches into an excited state (sex>0), and over
a period τ it broadcasts the signal (Fig. 1d), i.e., releases a certain
amount of the chemical into the environment, where it diffuses (with
diffusion constant Dc) and is also degraded with rate α. This yields the
chemical signal dynamics

∂tcðr, tÞ=DcΔc� αc+ β
XN
i = 1

f ∣r� ri∣
� �

ϕ si,c
� �

, ð3Þ

with a Gaussian spatial source distribution f(|r|), Laplace operator Δ,
and temporal derivative ∂t . The agents act as sources of the chemical
signal as

βϕ si,c
� �

=β 1� si
� �

Θ c� cth
� �

, ð4Þ

with Heaviside-type signal detection and production rate β. The
threshold value cth as well as the source strength depend on the
internal state, whosedynamics, for simplicity, is assumed to be linearly
adapting to the signal concentrations,

dsi
dt

= ϵ c� si
� �

: ð5Þ

The response of the agents’ state si to recent stimuli mimics
adaptation of receptor sensitivity and productiveness of the signal-
emission. Taken together, the model incorporates the fundamental
ingredients of a system of self-propelled active matter capable of
communication; see “Methods” for amore extensive description of the
agent-based model. Exemplary aggregation dynamics of a system
without active decision-making are studied in the Supplemen-
tary Note 2.

As a complementary approach based on this microscopic model,
we derive a hydrodynamic theory formulated in terms of the agents’
density field ρ r,tð Þ, the polarization field p r,tð Þ, the internal state vari-
able s r,tð Þ, and the concentration of the chemical signal c r,tð Þ, all of

which depend on the spatial position r and time t,

∂tρ r,tð Þ= � v0∇ � p+DρΔρ, ð6Þ

∂tp r, tð Þ= σ ρ� 1ð Þp� δ∣p∣2p+DpΔp� χp � ∇p� Q ρð Þ∇ρ+ρω∇c,
ð7Þ

∂tc r, tð Þ=DcΔc� αc+ρβΘðc� cthÞ 1� sð Þ, ð8Þ

∂ts r, tð Þ=DρΔs + ϵ c� sð Þ � �vp � ∇s: ð9Þ

The hydrodynamic model comprises a coupled set of partial dif-
ferential equations for these fields with basically the same parameters
as the agent-based model (see “Methods” for details and Supplemen-
tary Note 1 for a derivation of the hydrodynamic theory from the
agent-basedmodel). In the absence of communication, e.g., c � 0, the
parameters σ and δ regulate the emergence of polar order above a
mean-field critical density ρc = 1 when polar alignment interactions
outweigh angular diffusion. Based on the large-scale field equations,
we can study the dynamics of communicating activematter on length-
and time-scales, not accessible with agent-based numerical simula-
tions due to their high computational costs.

Collective dynamic states
Communicating active matter exhibits unprecedentedly rich spatio-
temporal dynamics and collective states, both during aggregation and
in the final non-equilibrium steady state. The agent-based model and
the hydrodynamic theory show that the emergence of order occurs
through the hierarchical formation of distinct collective dynamic
states (Supplementary Movie 1). These states include directed particle
streams in which the agents move toward the source of chemical
waves, ring-like streams with agents migrating along closed paths,
compactmotile droplets (active droplets), and large vortices that serve
as sources of chemical spiralwaves (Fig. 1e–n). The juxtaposition of the
spatial organization of the particles (Fig. 1e–n, top panels) and the
concentration field of the chemical signal (Fig. 1e–n, bottom panels)
reveals a tight interdependence between the collective states of active
matter and the chemical patterns.

Each of the collective dynamic states has a specific dynamics and a
degree of stability. Vortices are well-localized and are stabilized by
spiral waves trapped inside these dense aggregates. Their polarization
vector p is oriented perpendicular to the outer vortex boundary and
points inward, preventing agents from escaping and, therefore, sta-
bilizing the vortex (Fig. 1h, m). While vortices are stable and robust,
ring-like particle streams (Fig. 1e, j), retained by “whispering-gallery”
waves, are long-lived but metastable and are typically engulfed by
neighboring vortices (SupplementaryMovie 9). Active droplets (Fig. 1f,
k) lack an intrinsic source of excitable waves, and their direction of
migration is generally determined by external signal gradients. They
dissolve in the absence of guiding stimuli. A particle stream (Fig. 1g, l)
can be considered a limiting case of a ring-like stream (with an infinite
radius of curvature and planar signaling waves). It establishes an effi-
cient collective long-distanceparticle transfer toward the sourceof the
signaling waves. Finally, we also observe bands resembling the polar
bands that develop in non-communicating Vicsek-like models5 (Fig. 1i,
n). However, if agents in polar bands are coupled to chemical signaling
waves propagating along the bands, as shown in Fig. 1i, n, this will
induce a change of the agents’ orientation andmay lead to a transition
toward stream-type solutions as depicted in Fig. 1g, l.

Given these phenomenological observations, we ask two funda-
mental questions: How can different collective dynamic steady states
be selected by tuning characteristic properties of the particle
dynamics and the communication process? How can one characterize
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the hierarchical self-organization process andquantify the information
processing involved?

Figure 2 shows the (qualitative) phase diagram with the repre-
sentative collective dynamic states as a function of the agents’
mobility and signal sensitivity. In contrast to the isotropic-polar
transition in Vicsek-type systems at ρ= 142, order here emerges at
much lower densities, depending on the signal sensitivity (Supple-
mentary Figure 1). This is due to the alignment of the polar particles
with the collectively established signaling field. At a given particle
density, the dominant collective dynamic state in the asymptotic
non-equilibrium steady state is determined by the relative fraction of
motility and signaling effects. Vortices and rings are the dominant
structures in a parameter regime with lowmotility and high signaling
sensitivity. Thereby, vortices exhibit a balance between the persis-
tent self-propulsion promoting agents away from the localized vor-
tices and chemotactic attraction toward the vortex’ center due to
persistent spiral wave activity in the signaling field. If self-propulsion
outweighs the attractive force established by collective signaling,
vortices split up, and ring-like states become the predominant solu-
tion. If self-propulsion is rather weak and dominated by diffusion

effects, the steady-state is governed by active droplets. Conversely,
for vanishing signal sensitivity, the model reduces to a Vicsek-type
model38, and only polar bands are found. These can either host per-
sistent signaling activity or remain in the quiescent state of the sig-
naling machinery, just like system-spanning polar bands in Vicsek-
like models.

Next, we asked how the hierarchical aggregation process from a
disordered arrangement of particles to the final non-equilibrium
steady state can be understood based on our characterization of the
various collective dynamic states (Fig. 1). To this end, we focus on a
parameter regime with intermediate polarity relaxation times and a
balance between motility and signaling effects, which ultimately gives
rise to vortex states.

Hierarchical self-organization
Our agent-based simulations and numerical integration of the
hydrodynamic theory consistently show that the hierarchical self-
organization process is facilitated by an intricate interplay of self-
propulsion, signaling, and information processing (Fig. 3, Supple-
mentary Movie 8). Initially, small-scale density fluctuations form, out
of which droplets, streams, and small clusters later emerge. These
initial aggregation processes are facilitated by short distance sig-
naling waves and a local mutual entrainment. At later stages, the
aggregation is orchestrated by spiral waves of signaling activity.
Interestingly, there is competition between the spiral waves: Those
that occupy larger and denser areas (mounds) accordingly have a
higher frequency and displace smaller spiral waves (Supplementary
Figure 2). As a result, higher particle density provides a positive
feedback mechanism that favors the formation of larger aggregation
centers43. The aggregation stage is characterized by competition
between particle clusters, which is quite different from that of non-
signaling active matter [e.g., motility-induced phase separation
(MIPS)], where the number of clusters scales asNc ∼ t�η with η≈2=344.
In our hydrodynamic model, we observe multi-scaling behavior,
indicating qualitatively distinct types of processes (Fig. 3a, b) for the
time evolution of the cluster number and the density and polariza-
tion fields. Initially, we observe Nc ∼ 1=t (Fig. 3a), consistent with
interface-controlled Ostwald ripening of clusters45. Once the streams
have formed, there is a qualitative change in the aggregation process.
The aggregation rate is now limitedby thepersistent directedmotion
of clusters and streams which migrate toward the aggregation cen-
ters. This leads to a much faster decay of the cluster number, even
compared to the ballistic coalescence of clusters which would cor-
respond to η=2. This ‘streaming phase’ is followed by the formation
of a few localized vortices that contain most agents. Due to the low
particle density in between the vortices and the resulting lack of
signal transmission, the interaction between these structures is
strongly attenuated, and the coarsening process is slow. Since the
signaling field decays exponentially (with diffusion length
Lc ∼

ffiffiffiffiffiffiffiffiffiffiffi
Dc=α

p
), one expects a logarithmic coarsening law Nc ∼ 1=lnt46,

consistent with the slow decay seen in our numerical data (Fig. 3c).
Thus, the ability to process information and make decisions

results in the radically different organization of polar active matter.
Ordering begins below the threshold of the polar-isotropic transition.
The process leading to the formation of large vortices as robust
attractors in the final stage of aggregation is much faster than that
observed in non-signaling active matter or active matter with passive
chemical signaling24. This is because it can exploit multi-scale collec-
tive intermediate states, whose respective frequencies are quantified
in Fig. 3c. This classification confirms the observed phenomenology.
The initial phase is dominated by coarsening of droplets. Once orga-
nizing vortices emerge, they establish persistent signaling waves. This
causes a rapid decrease in the number of droplets and induces pro-
gressive aggregation through the formation of streams toward the
vortices. In the final phase, a slow coarsening process occurs among

Fig. 2 | Principal collective dynamic states in the hydrodynamic model. The
phase diagram of dominant (meta-stable) dynamic states in the ω� v0 (signal
susceptibility and motility) parameter space is shown in the lower panel g, and
snapshots of corresponding numerical simulations of the hydrodynamic model,
starting from a homogeneous initial density ρ0 = 0.6 and random initial excitations
of the signaling system are depicted in the upper panels. Colors indicate the polar
orientation within the aggregates. a Active droplets (three are highlighted by white
circles), b vortex states, c ring solutions, d “silent” polar bands, e streams, f polar
bands with signaling activity. See Supplementary Movies 2–7. The polar relaxation
rate is set to σ = 0.02, remaining parameters are given in Supplementary Note 3.
White bars indicate a length of 50 units.
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the vortices with a corresponding logarithmic decrease in their
number.

Information processing drives self-organization
Since eachagent is endowedwith a decision-making capability, we also
sought to characterize the course of information processing during
the multi-scale hierarchical aggregation process. To this end, we
quantified the time evolution of the information content I tð Þ in the
system, using the computable information content of a lossless com-
pressed configuration of the physical fields c, ρ, p, and s47,48. In parti-
cular, we consider the file sizes obtained by the Lempel-Ziv-Welch
compression algorithm49 as implemented in the PNG file format (see
“Methods”). The system’s information content changes over time as
individual agents process information in response to external stimuli
employing their self-propulsion and intrinsic signal processing cap-
ability (Schmitt triggers). In the absence of signaling, self-propulsion
and local interactions are unable to create order at subcritical densities
due to dominant angular diffusion; accordingly, the information con-
tent will decline exponentially with some decay rate λ as the system
approaches the disordered homogeneous state. Here, however, there
is information processing which leads to self-organization and induces
order. We quantify the information processing by the rate R of agents
transitioning to the refractory state, i.e., agents that emit a signal in
response to a stimulus and therefore process information (Fig. 3d).

Altogether, we expect the system’s information content to follow the
dynamics

dI
dt

∼R� λI, ð10Þ

with a fitting parameter λ. That, in turn, implies that the temporal
change in the stored information depends exclusively on the initial
information content and the measured processing rate R:

The basic hypothesis, Eq. (10), is validated by our numerical
simulations (Fig. 3e). On a qualitative level, it agrees very well with the
predicted evolution of information content. In particular, the predic-
tion captures not only the overall trend but also coincides with
important landmark points of the evolution. This affirms our assertion
that the signaling machinery is key for information processing and the
driving mechanism behind self-organization in the system.

The rate of change of the encoded information approaches a final
state in which the order generated by persistent signaling offsets the
loss of correlation created by the agents’ self-propulsion.

An analysis of the amount of information stored in the various
fields also reveals the different stages of the aggregation process
(Fig. 3f). We observe that the amount of information stored in the
density field decreases and eventually approaches a comparably low
value once themass has accumulated in only a few stable vortices. This
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Fig. 3 | Hierarchical self-organization and information processing. a Time
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ffiffiffi
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p
0. The unlabeled black line indicates the

estimate Nc ∼ ðN0 � κt2Þ=t. b Simulation snapshots at time t, displaying droplet
ripening, vortex-controlled aggregation, and merging of vortices. The scale bar
indicates a length of 100 units. Colors indicate polar orientation (top panels) and
signaling concentration (bottom panels), respectively. c Time-resolved classifica-
tion of collective dynamic states averaged over six simulation runs; the lighter
shades define intervals of standard deviations. Initially, droplets grow and

aggregate to form streams and vortices. d Time evolution of the information
processing rate R of the signaling system and standard deviations (gray) averaged
over six simulation runs. e Comparison of the rate of change dI=dt of the stored
information as predicted from Eq. (10) (blue) and the temporal derivative of
compressed file sizes (orange). f Time dependence of the information content of
the various fields, Eqs. (6)–(9). Parameters are ω = 0.05 and the values given in
Supplementary Note 3. Panels b–f show simulation results and analysis for v0 =0:5.
See “Methods” for details.
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reflects the results of the cluster number analysis (Fig. 3a), including
the qualitative change in aggregation dynamics between the dom-
inance of ripening and the dominance of the guided movement of
active droplets. In contrast to the homogeneous density field, the
information content of the polarity field saturates at higher values,
which correlates with the presence of persistent vortex states. Inter-
estingly, the information content of the chemical concentration field c
exhibits a super-exponential decay. This confirms that information
processing is mainly performed by the signaling machinery, which
makes it an essential factor in the organization of the aggregation
process. Moreover, it approaches its baseline information level earlier
than the density field, indicating the transition toward the phase of
nearly isolated vortex states.

Discussion
In conclusion, we have introduced a new class of active matter
equipped with self-sustaining signaling capabilities: it allows self-
propelled agents to communicate and process information. Commu-
nication and decision-making enable hierarchical self-organized
aggregation to emerge via a sequence of distinct collective dynamic
states.

While ourmodel is generic and does not rely on specific biological
or chemical details, the observed phenomenology closely resembles
the aggregation dynamics of social amoebae, including the formation
of stable vortices13 and metastable rings50. Communication induces a
non-trivial self-organized attraction that gives rise to the formationof a
rich variety of collective dynamic states. The exhibited behavior in
terms of collective dynamic states and the collectively controlled
aggregation process is a clear advance compared to current models of
chemotactic colloids. Besides the variety of observed states, commu-
nication and active information processing introduce a new frame-
work of collective organization. It allows for much faster aggregation
times and a controlled competition between aggregation centers as
high-density clusters can enlarge their basin of attraction.

There are several potential extensions to the model, such as
locally coupled self-propelled relaxation oscillators, signaling nematic
active matter, or self-propelled agents coupled via sound or electro-
magnetic waves, which may have direct relevance to technological
applications such as self-organizing swarms of minimal drones or
functional microrobots. Information processing could be introduced
by modifying the chemistry of colloids and droplets, thus allowing
experimentally accessible realizations to be directly established for
silver-chloride Janus colloids exhibiting chemical oscillations and
synchronization16,17, and for self-propelled emulsions hosting the
Belousov-Zhabotinsky reaction51, to name but two. Decision-making
can also be implemented using simple electronic circuits in mass-
manufactured microrobots. These may open new avenues for appli-
cations of active matter in nanoscience and robotics.

Methods
A detailed description of the agent-based model
In the agent-based model, we consider self-propelled particles with
radius rp in a two-dimensional squareperiodic domainwith side length
L. The particles move with constant speed v0 in the plane. The
dynamics of the agents’ positions ri is described by Eq. (1). The direc-
tion of movement can be changed by polar alignment during collision
events, chemotactic responses to signaling molecules, or stochastic
fluctuations. If two agents comewithin a distance of less than 2rp, they
are repositioned according to the following hard-core repulsion rule:
overlapping particles are shifted in the direction of their distance
vector by equal amounts until a distance of 2rp is restored. Within an
interaction radius rc>2rp, agents align in a polar fashion, i.e., the
interaction of an agent i with a neighbor j causes both agents to turn
toward the average orientation angle with the alignment rate Γ . The
agents also align with the direction φc = tan

�1 ∂yc=∂xc
� �

of the local

maximum of the chemical signal concentration c with the suscept-
ibility coefficient ω. Both alignment interactions are imperfect, which
we account for by adding zero-mean white noise ξ i with amplitudeffiffiffiffiffiffiffiffiffi
2DR

p
: ξ i tð Þξ j t0ð Þ
D E

=2DRδijδ t � t0ð Þ. In total, the dynamics of the
agent’s orientation φi is given by the Langevin equation, Eq. (2).

The system of agents establishes self-sustaining chemical signal-
ing as ameans of information processing and transmission. Each agent
is equipped with an internal state variable si 2 0,1½ � that determines
whether or not it perceives the environment and transmits signals by
emitting a chemical substance. We take the magnitude of si to be the
refractoriness of an agent to external signals, i.e., a measure of how
responsive it is to relay a signal: si =0 then corresponds to the state
with the lowest refractoriness (highest susceptibility). The agents are
assumed to sense the environment by linearly adapting to the local
concentration level cof the chemical fieldwith rate ϵ, Eq. (3), and act as
nonlinear sources of the chemical signal c. This release of chemicals
depends on both the internal state of the agents and the environment.
We assume the source strength to be of the threshold form, Eq. (4),
where β denotes the release rate and cth a threshold above which
agents can detect and relay signals and below which they remain
quiescent; Θ xð Þ denotes the Heaviside step function with

ΘðxÞ � 1 , for x >0,

0 , else:

�
ð11Þ

The agent’s signaling receptors are assumed to undergo state-
dependent changes in susceptibility that implement potential satura-
tion effects and adaptation to varying levels of signaling molecules in
the environment. Specifically, we take the threshold value cth to be a
linear function of the state variable si,

cth si
� �

=
si +b
a

, ð12Þ

implementing a higher threshold for signal detection at larger state
values of the refractoriness si. The parameter b sets the baseline
threshold and the factor 1/a specifies the linear increase of the
threshold cth si

� �
with growing state values. In addition, to implement

the agents’ ability to processdetected signals and respond to them, the
release of chemicals shall depend on the internal state si of an agent: In
terms of their signal production, agents in the most susceptible state
(si =0) react most vigorously to super-threshold stimuli. The rate of
signal release is assumed to decrease linearly (1� s) with increasing si.
Note that for the set of parameters used in this study, Supplementary
Note 3, the states si do not exceed values of one. Therefore, agents are
always either quiescent and do not contribute to the chemical
signaling field or act as sources for it.

Taken together, the interplay between the internal dynamics s and
the chemical field c in a well-mixed environment is given by

ds
dt

= ϵ c� sð Þ, ð13Þ

dc
dt

= � αc+βϕ s,cð Þ, ð14Þ

which also accounts for degradation of the emitted signal at a rate
α. Equations (13) and (14) constitute a nonlinear two-component sys-
tem, which shows excitable behavior; see Supplementary Fig. 3a for an
illustration of the phase-space flow. The quiescent state, corresponding
to c= s =0, is linearly stable and has a finite domain of attraction.
However, if for s =0 the input signal cin exceeds the threshold
cin>cth s =0ð Þ= b=a, the system performs a long excursion in phase
space before returning to c= s =0; see the red phase space trajectory in
Supplementary Fig. 3a. Note that the amplitude of the response (extent
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of the red trajectory in phase space) ismainly determined by the phase-
space flow and only weakly depends on the initial input strength cin.
This ensures a sufficiently strong transmission of any super-threshold
signals. The phase-space trajectory in Supplementary Fig. 3a yields the
excitation pulse displayed in Supplementary Fig. 3b, which shows fast
excitation andemission of signals and a slower refractory dynamics that
restores the susceptible state (c= s =0). The duration of the refractory
period τ is determined by the inverse of the relaxation rate ϵ�1.

Taken together, the excitable dynamics resemble the behavior of
a Schmitt trigger (Fig. 1c), a circuit with closed negative feedback,
which exhibits hysteresis-like dynamics representative of e.g., relaxa-
tion oscillators. In particular, the appropriate delay between the fast
production of signaling molecules and the slower adaptation of the
agent’s internal state can be achieved by choosing β=ϵ≫1, resulting in a
relaxation dynamics with a rapid response to a stimulus followed by a
slower refractory period. Model parameters are summarized in Sup-
plementary Note 3.

To formulate the spatial dynamics of the signaling molecules in
terms of a concentration field c, one must specify how the molecules
emitted by the agents are distributed in their vicinity. We use a source
distribution given by a normalized Gaussian profile
f ∼ exp � x2 + y2

� �
= 2w2
� �� 	

with characteristic width w � 2rp. In addi-
tion, we account for the center-of-mass diffusion (with diffusion
coefficient Dc) and degradation with rate α, so that together with the
source terms for each agent one obtains Eq. (3). We choose the decay
rate α to be of the same order of magnitude as the positive source
contributions, terms ∼β, to the signaling field c for average agent
densities. On the scale of individual agents, signal diffusion is assumed
to be fast compared to the agents’ self-propulsion velocity,
1≪Dc= rpv0

� �
. The parameters used in the numerical simulations are

specified in Supplementary Table 1.

A detailed description of the hydrodynamic model
In this section, we give a detailed description of the hydrodynamic
model, Eqs. (6)–(9), that we introduced in the main text for commu-
nicating active-matter systems. This dynamicfield theory is formulated
in terms of a set of evolution equations for the following fields: the
number density of particles ρ, the vector order parameter character-
izing the particles’ local average polar alignment p= ni


 �
, the con-

centration of the signaling species c, and the state of refractoriness s. A
representative vortex solution with internal spiral-wave activity of the
signaling fields is shown in Supplementary Fig. 3a. We observe an
approximately circular high-density cluster within which the particle
orientation revolves around its center and aligns with the density
gradients at the interface to the outer low-density regime. This vortex
state is accompanied by the emergence of a spiral wave established
inside the high-density domain by the chemical field and the adapting
signaling states of the agents.

The time evolution of the agent’s density field ρ r,tð Þ, Eq. (6), is
given by an advection-diffusion equation, which accounts for advec-
tive transport due to the particles’ self-propulsion with speed v0 and
diffusion of the center of mass with diffusion constant Dρ. The center-
of-mass diffusion has no direct counterpart in the agent-based model
as it has been neglected there. However, for completeness and to
regularize density gradients, it is included in the hydrodynamic theory.

The direction of self-propulsion, described by the polar fieldp r,tð Þ,
can be changed by interparticle interactions, stochastic fluctuations,
and signaling-induced reorientations: The first three terms in Eq. (7) for
the time evolution of the polarity field correspond to a time-dependent
Ginzburg-Landau model describing the dynamics close to an isotropic-
polar phase transition; units for the density ρ are chosen such that the
critical density is set to unity. The persistence parameter σ defines the
relaxation time, the parameter δ sets themagnitude of polar order, and
Dp implements the elasticity in a one-Frank-constant approximation.
Moreover, to make the model more general, we include a term χp � ∇p

that accounts for self-advection. In the numerical simulations, the cor-
responding parameter χ is set to a small value and does not contribute
critically to the qualitative behavior of the system. The coupling
between the orientational order and density combines both self-
advective and steric effects incorporated in the function

Q ρð Þ= v0
2

exp �32ρð Þ+ exp 16 ρ� 2ð Þð Þ½ �: ð15Þ

The steric effects can be modeled as an effective pressure. As
derived in Supplementary Note 1, see Supplementary Eq. (11), we
include the low-density contribution as an amplitudeQ ρ ! 0ð Þ= v0=2.
For increasing densities, we assume that collective effects arising from
particle interactions counteract the steric repulsion, and therefore
reduce the amplitude of the function Q ρð Þ. Complementing this, for
high densities, the effective pressure contributions outweigh the col-
lective effects again due to the finite volume of agents. Therefore, the
amplitude Q ρð Þ increases at a critical maximum density of ρ=2. The
coupling of the polar order to signaling encoded by the chemical
concentration field enters in Eq. (7) via the term ω∇c. It describes the
alignment of the polarization field in the direction of the local max-
imum of the signal concentration c with susceptibility parameter ω.

The dynamics of the chemical concentration field c, Eq. (8), is a
direct transfer from the agent-based model, Eq. (3). Coarse-graining
the equation, we replace the discrete sumofGaussian source terms∑i f
(|r−ri|) by a density-dependent continuous contribution ∼ρ r,tð Þ.

The dynamics of the state variable s, Eq. (9), includes diffusive,
reactive, and advective contributions. Here, the first term simply cor-
responds to the center-of-mass diffusion of the agents as in Eq. (6). The
second term corresponds to the relaxation of the local state variable s
to the corresponding local value of the signaling field c, where ϵ
denotes the relaxation rate.

Therefore, themagnitude of the rate ϵ controls the timescale over
which the internal signaling state s adapts to the chemical concentra-
tions c. Finally, the term ∼p � ∇s incorporates the local change of the
agents’ signaling states s by means of their self-propulsion. The reg-
ularizing prefactor �v= v0 tanh ∣p∣=ρ

� �
=∣p∣ ensures the boundedness of

effective self-propulsion velocities for low densities ρ ! 0.

Numerical implementation
We integrate the agent-based model, Eqs. (1)–(5), on a square periodic
domain with side length L over discretized time intervals Δt. For each
time step, the continuous particle positions and orientations are
updated following Eqs. (1), (2) and the hard-core repulsion rule, using
an Euler-Maruyama scheme. For efficient identification of potential
interaction partners at each time step, particles are assigned to virtual
grid cells. We check for collisions within a particle’s grid cell and its
surrounding cells. Agents that pass through a virtual grid cell’s
boundaries are reassigned to their new grid cell. Based on the updated
agent positions, we compute the agents’ source contributions, ∼β to
the continuous signaling field c. Subsequently, we solve the temporal
dynamics of the signaling field, Eq. (3), in Fourier space by a forward
Euler integration scheme and then obtain the representation in real
space by inverse Fourier transform. We apply a fast Fourier transform
algorithm for these transformations. Concluding the calculations for a
given time, we update the internal states of the agents using the same
forward Euler time integration scheme for Eq. (5). For the simulations
with 4000 agents, shown in Fig. 1, we use a total system size of
200 × 200, resolved by 200 Fourier modes per spatial direction and a
time step of Δt =0:01: The depicted solutions are neither dependent
on the selected spatial or temporal resolution which we verified by
corresponding simulations with higher accuracy.

The set of continuous hydrodynamic Eqs. (6)–(9) is solved in a
square periodicdomain by a quasi-spectralmethod and a semi-implicit
time integration with discretized time steps Δt.
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For each time step, we make use of fast Fourier transform of the
field quantities to calculate their spatial derivatives. Also, we compute
the Fourier transform of the nonlinear contributions to the dynamics,
and apply an exponential time differencing scheme of second order
(ETD2) to integrate the complete set of equations in Fourier spaceover
a time interval Δt52. In doing so, all linear contributions to the
dynamics, Eqs. (6)–(9), are implicitly solved for, while nonlinearities
are included explicitly via their first-order forward finite difference
approximation. The eigenvalues and pseudoinverse of the matrix
representation of the linear dynamics of Eqs. (6)–(9), necessary for
ETD2, are calculated once at the beginning of the runtime using the
linear algebra library Eigen53. We initialize the system with homo-
geneous densities and polarity fields with small zero-mean white noise
perturbations. The chemical system is initialized by exciting randomly
positioned and oriented two-dimensional Gaussian kernels of char-
acteristic lengths ranging from20 to 30units andwidths of 5 units. The
model parameters are given in Supplementary Note 3. For all simula-
tions, time steps and spatial resolutions havebeen adapted tooptimize
runtime while ensuring that results do not depend on the chosen
discretization.

Quantification of the aggregation process
The self-sustaining signaling mechanism we consider has a threefold
effect on the formation and organization of large-scale structures in
the active polar system. Firstly, signaling enables pattern formation
from a homogeneous density, even below the critical density (ρc � 1)
for the polar ordering transition. Secondly, stronger chemotactic
susceptibility of the polar orientation to the established signaling
significantly increases the rate of the self-organization process, as can
be seen in Supplementary Figure 1. Starting from an initially spatially
uniform density ρ0, the aggregation times Taggr for crossing the
isotropic-to-polar ordering transition at ρc � 1 decrease significantly
for larger signal susceptibilities ω. And thirdly, spiral waves as sources
of persistent signaling activity can stabilize the emerging vortex
structures, as can be seen from the results of the numerical simula-
tions, e.g., Fig. 3. To gain a better understanding of the principles
underlying the signal-driven self-organization process and to quantify
the degree and type of ordering, we use cluster classification analysis
and quantify the time evolution of the information content in the
system. Both methods are presented in more detail below.

In our numerical simulations, we observe that distinct collective
states dominate the different phases of aggregation; see Fig. 3, Sup-
plementary Movie 8. During an initial phase, droplets of agents are
formed and undergo Ostwald-type ripening. Once spiral waves are
established as persistent signaling sources, the droplets show directed
motion toward the strongest of these sources, i.e., they become ‘active’
droplets. The coalescence of these active droplets leads to the for-
mation of collective density streams. Eventually, streams and active
droplets approach the source of the organizing signal, where they
condense into stable clusters. The interplay of aggregation due to the
intrinsic signaling and the self-propulsion of the polar active matter
typically results in localized vortex solutions. As a means of classifying
the various collective states discussed above, namelydroplets, streams
and vortices, we analyze clusters with densities ρ>0:7 (above the sys-
tem’s average density, which we typically set to ρ0 =0:6) by quantify-
ing their total mass, spatial extension along their main axes, and the
direction of the effective self-propulsion of the cluster. The latter
represents the direction of the cluster’s center-of-mass motion,
∼
R
pðr, tÞdr. In particular, wemeasure the spatial extension of clusters

along their main axes (axes with largest spatial extent), the angle
between the main axis and the averaged cluster polarity, and the
intrinsic vorticity ∇×p of the orientational field.

We classify a given aggregate as a stream if the shape factor (the
ratio of major to minor diameter) is larger than 1.4 and the angle
between the major axis and polarity is smaller than π=4; if the shape

factor is less than 1.4 and themean vorticity inside the domain exceeds
a value of 0.01, the aggregate is classified as a vortex. Clusters char-
acterized as neither streams nor vortices are classified as droplets.
Information about domain position, orientation and shape is obtained
by using the first three central moments of the binarized domain with
density threshold ρ=0:7.

As a measure for emerging order in the system, and to quantify
the impact of the signaling machinery on the aggregation process, we
consider the total amount of information stored in the system. Fol-
lowing references47,48, the information content can be obtained by
lossless compression of the system’s data, i.e., the data points of the
discretized continuous fields, Eqs. (6)–(9), for a given time.We analyze
the fields at discrete time points with step size Δt = 200 for total
simulation times of tsim =40,000. In order to measure the informa-
tion content of the system for a given time, we saved the data of all the
separate fields into a collective image with a spatial discretization of
128 by 128 pixels per field and 256 gray values per pixel. Subsequently
we use the lossless compression in the PNG format to compute the
stored information content. The resulting file sizes then give a corre-
sponding amount of stored information as discussed in the main text;
see Fig. 3e, f. Information processing in the system is facilitated by two
distinct processes: polar ordering due to pairwise collisions and
decision-making of the individual signaling units, as specified by the
excitable signaling field dynamics. Below the isotropic-to-polar tran-
sition at the critical density (ρc = 1), the disordering effect of the agent’s
angular diffusion dominates over their ordering alignment dynamics,
such that in the absence of chemical signaling the system must relax
toward a homogeneous disordered state. This relaxation process is
expected to proceed at a rate λ. As an organizing factor, the signaling
machinery counteracts the natural trend of the polar active-matter
system toward the homogeneous state. We hypothesize that most of
the information processing occurs through the signaling machinery,
and we quantify its activity by the information processing rate R. The
latter is represented by the area fraction of the excitable system in the
refractory state. Specifically, we define this state as exhibiting a super-
threshold concentration in the chemical signaling field, c>1. Taken
together, we posit that the time evolution of the stored information
content I can be approximated as given in Eq. (10). By means of this
dynamic equation, and based on the assumption that information in
the system ismainly processed by the signalingmachinery, we are able
to predict the temporal evolution of the total stored information.
Starting from a value of the system’s initial information content, and
supplied with the time-dependent processing rates R, Eq. (10) allows
for a prediction of the temporal dynamics of the stored information.
The comparison between this prediction and the actual dynamics of
the stored information content quantifiedby thefile sizeof the lossless
compressed data at a given time in Fig. 3e yields good agreement. This
again validates the basic assumption of signaling-mediated informa-
tion processing in the system.

Based on the cluster classification and cluster number analysis, we
can quantify the three main stages of the aggregation process descri-
bed above and in the main text; see also Fig. 3 and Supplementary
Movies 1 and 8. In the following, we describe the basic modes of mass
aggregation in terms of the efficiency of the processes. Consider a
system of droplets of equal size, concentration n and diffusion coef-
ficient D∼ Sγ, with a yet-to-be determined exponent γ relating the
diffusion to the droplet sizes S. For diffusion-limited coalescence of
droplets in two spatial dimensions, the time dependence of droplet
sizes and numbers is given by54

S∼ tz ,Nc ∼ t�z , ð16Þ

where the exponent z can be determined from the hydrodynamic
equations underlying the aggregation process at the corresponding
stages. For instance, the probability of coalescence in a binary collision
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process is given by n2, and thus, the mean-field equation for the
droplet density n reads

dn
dt

= � D Sð Þn2 = � D0S
γn2: ð17Þ

Substituting the expressions for S and n, one obtains for the
exponent

z =
1

1� γ
: ð18Þ

For the case where diffusion does not depend on the cluster size,
γ =0, one obtains Nc ∼ 1=t. This behavior is similar to the interface-
controlled Ostwald ripening for which the coarsening of droplets is
independent of their diffusive motion. In addition, our hydrodynamic
model gives rise to directedmotion of active droplets, which is guided
by organizing spiral waves. Including the guided movement of active
droplets toward the organizing vortices, one can estimate the cluster
number dynamics by

Nc tð Þ∼ N0 � κt2
� �

=t, with κ>0: ð19Þ

This estimate incorporates the directed ballistic motion of clus-
ters toward a collective aggregation center ∼N0 � κt2. Moreover,
these clusters may still exhibit interface-driven coarsening, which is
accounted for by an additional factor t�1. Thus, the estimate captures
the main behavior of the first two aggregation stages, which are
dominated by Ostwald ripening and coordinated movement of dro-
plets toward spiralwaves as organizing centers. This becomesmanifest
in a good qualitative agreement between the estimate and the mea-
sured evolution of the cluster number as shown in Fig. 3a, with fit
parameters N0 = 382,000 and κ =0:15. However, at longer times,
vortex-vortex competition, which is not accounted for in the given
estimate, becomes increasingly important. Therefore, the deviations
between the estimated andmeasureddynamicsof the cluster numbers
grow as the aggregation process progresses.

Data availability
The data that support the findings of this study are available in the
main text, methods, and supplementary information. Additional
information is available from the corresponding authors upon request.

Code availability
The code used in this study is available from the corresponding
authors upon request.
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