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M O D E  COUPLING THEORY FOR THE CRITICAL DYNAMICS 
OF DIPOLAR FERROMAGNETS 

E. FREY and F. SCHWABL 

Institut .['fir Theoretische Physik, Physik-Department der Technischen Unioersitiit Miinchen, 
D-8046 Garching, FRG 

The critical dynamics of ferromagnets has been studied by various experimental methods 
sampling different regions in wave vector space. Nevertheless there seemed to be a list of 
contradictions between these experiments. Within a mode coupling theory including both 
short range exchange and long range dipolar interaction we are able to resolve the seemingly 
contradictory situation. 

Above T c the critical dynamics of isotropic ferromagnets has been studied by 
various experimental methods, sampling different regions in wave vector space. 
These measurements indicate that the critical dynamics of isotropic ferromagnets 
cannot  be explained solely on the basis of the short range exchange interaction. 
In hyperfine interaction (HFI) experiments on Ni and Fe a crossover in the 
dynamical critical exponent z from z = 5 / 2  to z = 2 was observed [1] indicating a 
crossover to a dynamics with a non conserved order parameter. This is confirmed 
by electron spin resonance (ESR) and magnetic relaxation experiments [2-6], 
where one finds a non vanishing Onsager coefficient at zero wave vector. 
However, the critical exponent deduced from the wave vector dependence of the 
neutron scattering data right at the critical temperature is 5 /2  [7-11]. But 
nevertheless the data could not be fitted by the Resibois-Piette [12] scaling 
function for isotropic ferromagnets [7]. Those apparent discrepancies were re- 
cently resolved by a mode coupling (MC) theory [13,14], which takes into account 
the long range dipole-dipole interaction present in all real ferromagnets. In this 
paper we will shortly review this theory and then concentrate on comparison with 
ESR, magnetic relaxation and HFI experiments. 

The Hamiltonian for a spin system with both short range exchange and long 
range dipolar interactions is given by 

d3q [ )SiJ + j q~qi ] 
H= f ~ - f  (Jo +Jq2 g q2 S i (q)SJ( -q) '  (1) 

where we have used the same notation as in ref. [13]. The parameter g char- 
acterizes the ratio of dipolar to exchange interactions and is related to the dipolar 
wave vector qD by ~ - =  qDa. The dipolar interaction has several characteristic 
features. (I) In contrast to the short range exchange interaction the dipole-dipole 
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interaction has a long range and therefore dominates  the asymptot ic  critical 
behavior of ferromagnets.  (II) It breaks the symmetry of the spin fluctuations 
longitudinal and transverse to the wave vector q. This implies that the longitudi- 
nal static susceptibility remains finite for q---, 0 and T ~  T c. Fur thermore  this 
suggests to decompose the spin operator  S(q) into a longitudinal  and two 
transverse components  with respect to the wave vector q. S(q)=Se(q)~+ 
sT'(q)~I(~) + sT'-(q)~2(~), where the or thonormal  set of unit  vectors can be 
found in ref. [13]. (III) The order parameter  is no longer conserved as can be 
inferred from the equations of mot ion  [13], the general structure of which is 

d 
. . . + . . .  s: } + . . .  ] .  

The terms proport ional  to g, resulting from the dipolar  term in the Hamil tonian 
remain finite with wave vector q tending to zero, whereas all the other terms 
vanish in this limit. This reflects the fact that the dipolar  forces lead to a 
relaxational dynamics in the limit of long wavelengths; i.e. the dynamical  critical 
exponent  z equals 2 in the asymptot ic  critical limit. (IV) The presence of a second 
length scale qgl  besides the correlation length ~ implies an extension of the 
dynamical  scaling law according to (a  = L, T) 

1 
~ ( q ,  g, co)= aq~S2~(x ' y)ep~(x, y, v~) (3) 

with the scaling variables 
1 qD ~0 

= - -  and v a = x q~, y =  q Aq:g2~(x ' y) 

and the characteristic frequencies I2"(x , y).  Here q~"(q, g, ~0) is the half sided 
Fourier t ransform of the Kubo relaxation function defined by 

�9 ~(q, g, t) = i l im  f~176 e- '* ( [S~(q ,  , ) ,  S~(q, 0) t ] )  (4) 
r ---* 0 -'1 

with the normalization q~"(q, g, t = 0) = 1; i.e. the spin variables are normalized 
with respect to the static susceptibilities. 

The  essential step of the MC is to consider only two mode  processes; i.e. after 
insertion of the equations of mot ion  into the transport  coefficients 

1 * ( S " ( q ,  t) S~(q,  0); q, g, t) (5) r"(q'  g' / ) =  x"(q, g) 

one makes a factorisation approximat ion of the resulting four-point  functions. 
This leads to 

d3k 
F~(q, g, t )=  2 j 2 k a T f  ~_~ O[3o(k," q, g, 0)(~ aT " l -  ~aT~flL~oL) 

,8,0 

x xa(k '  g ) x ~  g) ~ a ( k ,  g, t ) ~ ~  g, t) (6) 
X~'(q, g) 
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where the vertex functions u~o for the decay of the mode a into the modes fl and 
a can be found in ref. [13]. 

The MC result for the transport coefficients eq. (6) together with 

a fo'drP"(q, g, t ~')q~"(q, g, r )  (7) 0tqb~(q, g, t ) =  - 

constitute a complete set of self consistent equations. These equations were solved 
at T c and above T c recently [14]. If the transport coefficients vary only slowly 
with o~ one may approximate the relation functions by Lorentzians. This results 
in a set of coupled integral equations for the Lorentzian line widths F~(q, g) = 
F~(q, g, ~o = 0). 

j 2k sT  f+ldnf vho q, g,~/ + 
~176 ~ (k, )(8oT ~Ts~L~oL ) 

F~(q' g ) =  2~r2x~(q, g) -a o ~,o 

x xa(k '  g ) x ~  g) (8) 
Fa( k, g )+ F o ( I q - k l ,  g)" 

Using the scaling law 

tO(q, g)=Aq~y~(x,  y) (9) 

these equations were solved in ref [13]. Concerning the critical dynamical expo- 
nent one finds for the longitudinal line width a crossover from z = 5 / 2  in the 
isotropic critical region to z = 0 in the dipolar critical region, whereas for the 
transverse line width the crossover is from z = 5 / 2  to z = 2. 

In neutron scattering experiments one measures the cross-section for inelastic 
magnetic scattering. Therefore one is able to measure the dynamical scaling 
functions as functions of both temperature and wave vector. We have found that 
precisely at the critical temperature the crossover of the transverse width from 
z = 5 / 2  to z = 2 is shifted with respect to the static crossover to wave vectors 
smaller by almost one order of magnitude [13]. This explains why up to now this 
crossover escaped detection by neutron scattering experiments. Concerning the 
longitudinal width, experiments are still lacking. Our prediction is that the 
crossover from z - - 5 / 2  to an uncritical behavior z = 0 should be more pro- 
nounced in this case and, in contrast to the transverse width, it occurs in the 
immediate vicinity of the static crossover, Characterized by qD- Hence it should be 
detectable in the experimentally accessible wave vector region. The experimental 
results of Mezei [7,8] on Fe at T >/T~ taken at a series of temperatures show the 
(q~5)-a-dependence of our theory. For a quantitative comparison with the experi- 
ment it may be necessary (i) to reanalyze the experiments including the crossover 
in the static exponent y (ii) to use the correct theoretical shape [14] for the 
determination of the line width (iii) to take into account additional relaxation 
mechanism (uniaxial terms, spin orbit interaction leading to pseudodipolar forces, 
etc.), which are asymptotically irrelevant but may lead to an enhancement  of the 
line width in the non asymptotic region. 



770 E. Frey, F. Schwabl / Mode coupling theory 

Table 1 
The dipolar wave vector qD, the Curie temperature Tc, the experimental non universal constant for 
the Onsager coefficient LCxv and for the autocorrelation time H~xp. 

EuS EuO CdCr2S 4 CdCr2Se 4 Fe Ni 

qD [,~- 1] 0.24 0.147 0.0584 0.0351 0.045 0.013 
T~ [K] 16.6 69.7 84.4 127.8 1040 631 
L~x n [GHz] 66 21 9.0 5.5 - - 
Hr p [10 -13 sec] . . . .  6.0 9.2 

In ESR and magnetic relaxation experiments one measures the real and 
imaginary part of the electronic response function respectively at zero wave 
vector and determines therefrom the Onsager coefficient. Turning to our MC 
equations (8) we find that the longitudinal and transverse line widths at zero wave 
vector are given by 

g2j2 TfaOOdkk2 nL(k ,  g ) x T ( k ,  g)  
F g ( g )  = 30r2xg(g ) k u v  rL(k, g) + VT(k, g)" (10) 

As before the temperature dependence of F0~(~_entering via ~ is not indicated 
explicitly. Introducing polar coordinates ( r  = ~ /x2+7 5 , y / x  = tan q0) and using 
the scaling properties of the static and dynamic quantities this coefficient can be 
written as 

Fo"(g ) - BF(g~2) = BY0(g~2). (11) 
2) 

The universal crossover function F on the Onsager coefficient following from eq. 
(11) is 

= drr , /2  2L(r, ~0)2T(r, Cp) (12) 
rL(r, + yW(r, 

and the scaling functions )~(g~2) for the susceptibilities at zero wave vector are 
given by 

1 for a = L 
)~g(g~2) = 1 + (g~2) -1 (13) 

g~2 for a = T 

4_,,~.2 A , . ,5/2 Finally B denotes a non universal constant B = 3 . . . .  ~D �9 Because the Onsager 
coefficient F=X " does not depend on the sample shape and is the same for the 
transverse and the longitudinal mode this quantity is the most convenient for a 
comparison with experiment. The universal crossover function F(g~2) is plotted 
in fig. 1 in units of its value at criticality F(oo) versus 1/qDli. For temperatures 
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Fig. 1. Universal crossover function F(g~ 2) for the Onsager coefficient at zero wave vector versus 
the scaling variable 1/qt>~ (solid line) in units of its value at criticality F(oo). Experimental results 
for the Onsager coefficient in units of L~p for EuS (n, ref. [3]), EuO ( + ,  ref. [6] and *, ref. [2]), 
CdCrzS 4 (a (yB =1.004 GHz), ref. [5]) and CdCr2Se 4 (O ('rB = 0.698 GHz) and o (~,B = 9.581 

GHz), ref. [4]). 

larger than the dipolar crossover temperature F shows a ~7/2 behavior and 
approaches a constant in the strong dipolar limit; i.e. very close to T~. The latter 
reflects the non conserved nature of the order parameter due to the presence of 
the dipolar interaction. 

The data points in fig. 1 are results from magnetic relaxation experiments 
[2,3,6] and ESR experiments [2-5] for the Onsager coefficient in EuS, EuO, 
CdCr2S 4 and CdCr2Se 4 normalized with respect to their values at criticality Lex p. 
Because ESR experiments are done in magnetic field B there should be an effect 
on the relaxation rate starting at ~,B = F(q = ~-~) [15]. Those data points are not 
given in fig. 1. We note that there is no adjustable parameter for the scaling 
variable 1/qo$ Being normalized with respect to their non universal frequency 
scale Lex p all experimental data join the theoretical curve. This shows nicely 
universality concerning the above substances and gives a strong confirmation of 
our MC theory. 

In HFI experiments one observes the nuclear relaxation rate due to the 
surrounding fluctuating electronic magnetic moments. The standard experiments 
are performed in the motional narrowing regime [1]. Then assuming a contact 
interaction H(t)=AcontactlS(t ) between I the nuclear and S the electronic 
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spins, the nuclear relaxation rate "r~ 1 is directly proportional to the (averaged) 
spin autocorrelation time % 

= f dtl  y" G~'"(r=O, t), (13) 
- - 0 0  ~X 

where G""(r, t) = �89 S~(r, t), S~(O, 0)}) is the spin autocorrelation function. 
With 

G~(r' t)= --~qfB z d3qeiq'f+~176 ei~tG'~"(q' (14) 

and the fluctuation dissipation theorem, which in the special case 60 = 0 reduces 
to 

G""(q, o~=0) "~t. T X'(q'  
g) 

='-~B r~,(q, g ) ,  

we find for the autocorrelation time 

kBT r 3 1 X"(q, g) (15) 
*c - ~ Jszd r (q, g)" 
The q-integration extends over the Brillouin zone (BZ), the volume of which is Vq. 
Using the static and dynamic scaling laws eq. (15) can be written as 

1 
o: 4~r f dkk-~ 5 ~ (16) % 

If there were no dipolar interaction, one could extract the temperature depen- 
dence from the integral in eq. (16) with the result %r ~-a. We use this 
expression to define an effective dynamical exponent zaf (~'), which depends on 
the reduced temperature -r by % cx ~.~ In the presence of dipolar forces one 
finds after introducing polar coordinates 

( 1--L-]~ ~176 ] 2 1_3 - -  ~ ( r ,  qo )y . ( r ,  qo)' (17) % = H 1 + drr '-  Y'~ 
ro 

where z = 5 /2  and the non universal constant H is given by 

H =  (kBT)2 (qoa) -3/2. 
32,r6( Aa-5/2) 3 

The lower cutoff r 0 is 

qD ~/ l 
r0 = ~-Bz l + - -  g~2 
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Fig. 2. Auto correlation time ~-c/H (in units of the non universal constant H) versus the scaling 
variable 1/qDli (solid line). Experimental results for the auto correlation time in units of /-/,xp for 

Fe (ref. [1]: O) and Ni (ref. [161: •, ref, [17]: A ref. [1]: o). 

where qBz is the boundary  of the Brillouin zone. In the critical region it can be 
neglected (r  0 = 0), since qBz >> qD and the integrand in eq. (17) is proportional to 
v~- for small r. For  very small ~ (outside the critical region) the cutoff  reduces the 
autocorrelation time with respect to the critical value. 

The autocorrelation time % is shown in fig. 2 in units of the non universal 
constant  H (see table 1) versus the scaling variable 1/qD~. In the asymptotic 
dipolar region % diverges like % tx ~ corresponding to an effective dynamic 
exponent  zef f = 2. By leaving the dipolar critical region there is a crossover to the 
isotropic Heisenberg region, where "r~ is characterized by another power law 
"re c~ ~3/2 corresponding to zeff = 5 /2 .  The data points in Fig. 2 are results of HFI  
experiments on Fe and Ni [1,16,17] for the autocorrelation time ~'~ (in units of 
their non universal frequency scale H) .  As before there is no fit parameter for the 
scaling variable 1/qD~. So we conclude that our MC theory accounts well for the 
experimental data demonstrat ing the universal crossover behavior from zCr f = 5 / 2  
to z,ff = 2 as the critical temperature is approached. 

In conclusion we may say that the available experimental data for ferromag- 
nets above Tr are in quantitative agreement with our MC theory. This demon- 
strates that long range dipolar forces are of great importance for the critical 
dynamics of real ferromagnets. 
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