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Abstract: Overweight and obesity are associated with chronic low-grade inflammation and repre-

sent risk factors for various diseases, including COVID-19. However, most published studies on 

COVID-19 defined obesity by the body mass index (BMI), which does not encounter adipose tissue 

distribution, thus neglecting immunometabolic high-risk patterns. Therefore, we comprehensively 

analyzed baseline anthropometry (BMI, waist-to-height-ratio (WtHR), visceral (VAT), epicardial 

(EAT), subcutaneous (SAT) adipose tissue masses and liver fat, inflammation markers (CRP, ferri-

tin, interleukin-6), and immunonutritional scores (CRP-to-albumin ratio (CAR), modified Glasgow 

prognostic score, neutrophile-to-lymphocyte ratio, prognostic nutritional index)) in 58 consecutive 

COVID-19 patients of the early pandemic phase with regard to the necessity of invasive mechanical 

ventilation (IMV). Here, metabolically high-risk adipose tissues represented by increased VAT, liver 

fat, and WtHR strongly correlated with higher levels of inflammation, pathologic immunonutri-

tional scores, and the need for IMV. In contrast, the prognostic value of BMI was inferior and absent 

with regard to SAT. Multivariable logistic regression analysis identified an optimized IMV risk pre-

diction model employing liver fat, WtHR, and CAR. In summary, we suggest an immunometabol-

ically risk-adjusted model to predict COVID-19-induced respiratory failure better than BMI-based 

stratification, which warrants prospective validation. 

Keywords: COVID-19; obesity; metaflammation; invasive mechanical ventilation; body  

composition; immunonutritional scores 

 

1. Introduction 

The high prevalence and increasing incidence rates of overweight and obesity are 

major public health problems in Western societies due to their association with patholo-

gies such as diabetes, cardiovascular diseases, and cancer [1–4]. On the other hand, over-

weight and obesity are also risk factors for a number of infectious diseases [5] and are 

associated with higher frequencies of nosocomial infections, including respiratory tract 

infections and pneumonia, as again recently discussed for COVID-19 patients [5–7]. Gen-

erally, an excess of visceral adipose tissue negatively affects lung functions and ventila-

tion via mechanical and immunologic mechanisms, leading to obstructive and restrictive 

dysfunctions and more hypoventilated lung tissue [5,7]. Moreover, increased adipose 
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tissue masses, especially in the visceral compartment, are associated with systemic chronic 

low-grade inflammation, termed metaflammation, which is maintained by a constant el-

evation of adipokines and cytokines, such as tumor necrosis factor alpha (TNFα) and in-

terleukin-6 (IL-6) [7–12]. As a consequence, due to metaflammation, obese patients can 

suffer from ineffective immune responses without sufficient clearance of the causative 

pathogen [13,14].  

In COVID-19 patients, these obesity-associated immunologic changes have recently 

been suggested to enhance hyperinflammatory immune responses [7]. However, most 

published studies on COVID-19 patients define obesity solely based on body mass index 

(BMI). In other earlier reports on patients with cardiovascular diseases, BMI was already 

identified as an inferior predictor of obesity-associated pathologies compared with other 

anthropometric measures, such as waist-to-height or -hip ratios [15]. As BMI cannot assess 

distinct adipose tissue distribution patterns, immunometabolic high-risk patients are 

thereby ill-characterized. Here, visceral adipose tissue (VAT) has been extensively de-

scribed as a major contributor to metaflammation and its consecutive cardiovascular and 

metabolic pathologies [16–18]. The role of subcutaneous adipose tissue (SAT) is still con-

troversial due to heterogeneous effects on systemic inflammation and metabolic patholo-

gies [19]. Similar to VAT, epicardial adipose tissue (EAT) is of special interest with respect 

to the development of cardiovascular diseases, and its thickness has been described as a 

surrogate for visceral fat deposition [20]. Given EAT’s anatomical proximity to the heart, 

direct interactions with cardiac structures and the release of proinflammatory and fibrotic 

mediators can additionally drive cardiovascular pathomechanisms [20,21]. Finally, fat ac-

cumulation within the liver has been described not only as a risk factor for liver dysfunc-

tion and fibrosis but also as associated with cardiometabolic diseases [22]. 

Another way to depict an individual’s nutritional and inflammatory status is the use 

of immunonutritional scores such as the modified Glasgow prognostic score (mGPS) [23], 

the prognostic nutritional index (PNI) [24], and the neutrophile-to-lymphocyte ratio 

(NLR) [25]. These scores were originally developed to predict the outcome of cancer pa-

tients and are calculated based on serum levels of inflammatory markers, mostly includ-

ing albumin as a marker of patient nutritional status and CRP reflecting the inflammatory 

component [26]. CRP, being part of immunonutritional scores, including mGPS and the 

Prognostic Index [27], was repeatedly shown to be an independent prognostic marker for 

COVID-19 disease severity [28–30]; it gradually increases with the size of pneumonic in-

filtrates [31] and is an inherent part of the inflammatory cascade caused by COVID-19 

infection [32]. Recently, in the context of COVID-19 infections, immunonutritional scores 

showed a prognostic value for adverse outcomes [33]. Overall, NLR showed the highest 

potential as a prognostic marker for COVID-19 patients. In addition, albumin-based 

scores such as the CRP-to-albumin ratio (CAR) and PNI were also good predictors of 

COVID-19 disease severity. 

In most studies, the effects of anthropometric measures, body composition, and im-

munonutritional scores on the outcomes of COVID-19 patients were investigated isolated 

from each other. Therefore, we aimed to perform a comprehensive analysis highlighting 

interactions within immunometabolic host factors in the context of COVID-19 disease by 

performing a retrospective analysis of a single-center COVID-19 cohort. 

2. Methods 

2.1. Patients 

We performed a retrospective chart review of all patients with symptomatic con-

firmed COVID-19 who were hospitalized at the LMU University Hospital in Munich, Ger-

many, between 29 February 2020 and the date of data cutoff on 6 May 2020. A confirmed 

case of COVID-19 was defined as a positive result on real-time reverse transcriptase pol-

ymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. Only 

laboratory-confirmed cases were included in the analysis. Patients without thoracic CT 
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scans were excluded from the study. A total of 58 out of 75 patients who were admitted 

during this time period met these study criteria (Suppl. Figure S1). Clinical characteristics 

included pre-existing comorbidities (hypertension, diabetes, chronic kidney injury, 

chronic obstructive pulmonary disease (COPD)), laboratory parameters at the time of ad-

mission (c-reactive protein (CRP), ferritin, IL-6, albumin, differential blood count, tro-

ponin, creatinine), and patient clinical and demographic data, which were extracted from 

the clinical records. The overall patient cohort was split according to invasive mechanical 

ventilation (IMV) requirement. These criteria were chosen as analogues to previous stud-

ies assessing the severity of similar serious infectious diseases, such as H7N9 infection 

[34]. COVID-19 patients who did not require IMV were admitted to normal wards, where 

they were treated with oxygen supply via nasal cannula if needed. Within this study co-

hort, there was no case in which a patient was denied ICU admission due to medical cir-

cumstances or a shortage of ICU capacities. Patients are part of the COVID-19 Registry of 

the LMU University Hospital Munich (CORKUM, Trial ID: DRKS00021225). Patient data 

were anonymized for analysis, and the study was approved by the institutional review 

board (No: 20-767). 

2.2. Assessment of Body Composition and Immunonutritional Scores 

For body composition analyses, we used chest computer tomography (CT) scans 

taken on the day of admission or between 2 weeks before or after the diagnosis of COVID-

19, depending on which was closest to the day of hospitalization. Segmentation analyses 

of a single CT slice at thoracic spine 12 (TH12)—as the most caudal common reference 

point—were performed to quantify SAT, VAT, and waist circumference as well as the fat 

contents of both the liver and spleen (Figure 1A,B). Adipose tissue discrimination was 

based on predefined Hounsfield unit (HU) ranges (−190 to −30 HU for SAT [35], −150 to 

−50 HU for VAT [35], and −190 to −30 HU [36] for EAT). EAT content was measured at the 

bottom, middle (the 4-chamber view), and top (left main coronary artery view) of the 

heart, and the mean of these three areas was calculated (Figure 1B). Organ fat content of 

the liver and spleen were determined by analysis of the HU values in randomly selected 

regions of interest (ROI; liver: 7 ROI; spleen: 3 ROI) in a single CT slice at TH12. A lower 

attenuation of the liver indicates a higher level of hepatic fat involvement. The mean HU 

values of the spleen were used as a control. Cross-sectional areas of respective tissues were 

also computed for each image. Segmentation analyses were performed Slice-O-Matic soft-

ware package (version 5.0, Tomovision, Magog, Quebec, Canada). Abdominal circumfer-

ence was measured with ImageJ software (version 2.0.0, U. S. National Institutes of 

Health, Bethesda, MD, USA). 
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Figure 1. Study overview and adipose tissue quantification. (A) Analyses of adipose tissue distri-

bution, anthropometric parameters and immunonutritional scores were performed on COVID-19 

patients. (B) Examples for adipose tissue quantification at TH12 vertebrae level for visceral (green) 

and subcutaneous (red) adipose tissue as well as liver fat (blue spots). Epicardial adipose tissue was 

quantified at top, middle and bottom view of the heart (blue). Abbreviations: CAR = CRP-to-albu-

min ratio, mGPS = modified Glasgow Prognostic Score, NLR = Neutrophile-to-Lymphocyte-Ratio, 

PI = Prognostic Index, PNI = Prognostic Nutrtitional Index. 

We further calculated the following immunonutritional scores based on the labora-

tory values at the time point of admission: modified Glasgow prognostic score (mGPS), 

prognostic index (PI), prognostic nutritional index (PNI), CRP-to-albumin ratio (CAR), 

and neutrophile-to-lymphocyte ratio (NLR). Scoring systems and calculations are sum-

marized in Suppl. Table S1. 

2.3. Statistics 

Patient characteristics, body composition, and serum parameter analyses were com-

pared using the Mann–Whitney test for continuous variables and the Fisher’s exact test 

and Chi-squared test for categorical variables. Continuous variables are reported as me-

dian and interquartile range (IQR) if not stated otherwise. To measure the relationship 

between two continuous variables, Spearman correlation analyses were used. The area 

under the curve (AUC) and the 95% confidence interval (95% CI) of the receiver operating 

characteristic (ROC) analysis were computed using the predicted probability of the need 

for IMV. Optimal discriminatory thresholds were determined by optimizing the 
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respective Youden J statistic. Logistic regression analyses were used to calculate univari-

ate odds ratios (OR). Multivariable analysis was performed as both-directional stepwise 

binary logistic regression for the outcome of IMV requirement. The model included body 

composition parameters and immunonutritional scores with an AUC > 0.74 in ROC anal-

yses. Significance was defined as p < 0.05. Statistical analysis was performed using 

GraphPad Prism v9.0 (GraphPad Software, Inc., San Diego, CA, USA) and R statistical 

software v4.1.0. 

3. Results 

3.1. Patient Characteristics 

We screened the clinical records of 75 patients consecutively admitted to our medical 

center between February to May 2020. Based on data availability and completeness, 58 

patient records were included in the analysis of anthropometric measures, body compo-

sition, and immunonutritional scores (Figure 1 and Suppl. Figure S1). Depending on the 

need for IMV, we subdivided the entire cohort into two groups (Table 1). All but one of 

the patients needed IMV due to COVID-19-associated ARDS (mild: 3, moderate: 6, severe: 

5, cardiac decompensation: 1; Suppl. Table S2). The median age of the entire patient cohort 

was 63 years (range 32–91 years) without relevant differences between patients with IMV 

and without IMV. A total of 27.6% of all patients were female. A higher proportion of 

patients among the COVID-19 patients without IMV were female (non-IMV: 32.6% vs. 

IMV: 13.3%, p = 0.19). Within the entire patient cohort, 56.9% had none of the considered 

comorbidities, 31% had one, and 12% had at least a combination of two or more of the 

considered comorbidities. The number of comorbidities was similarly distributed be-

tween patients with and without the need for IMV (p = 0.39). Although diabetes was more 

prevalent in COVID-19 patients with IMV (IMV: 26.7% vs. non-IMV: 14%), the overall 

distribution of pre-existing comorbidities was similar between groups (p = 0.75). As labor-

atory surrogates for the considered pre-existing comorbidities, we compared creatinine 

and high-sensitive troponin levels. We found increased levels of creatinine and troponin 

in the serum of COVID-19 patients who needed IMV (creatinine: IMV: 1.1 (0.8–2.1) 

mg/dLvs. Non-IMV: 0.9 (0.4–6.0) mg/dL; troponin: IMV: 0.02 (0–0.04) ng/mL vs. non-IMV: 

0 (0–0.18) ng/mL). However, median levels of creatinine were still within normal ranges 

(creatinine < 1.2 mg/dL), and, for troponin, barely past our institutional upper limits (tro-

ponin < 0.018 ng/mL). 

Table 1. Baseline Patient Characteristics. 

Characteristic 

 Invasive Mechanical Ventilation 

p-Values All Patients  

(N = 58) 

No  

(N = 43) 

Yes  

(N = 15) 

Age, median (range) [years] 63 (32–91) 61 (31–91) 64 (47–82) 0.66 

30–50 years 13 (22.4) 12 (27.9) 1 (6.7) 

0.13 51–70 years 27 (46.6) 17 (39.5) 10 (66.7) 

>71 years 18 (31) 14 (32.6) 4 (26.7) 

Female 16 (27.6) 14 (32.6) 2 (13.3) 0.19 

Comorbidities         

None 33 (56.9) 24 (55.8) 9 (60) 

0.39 1 comorbidity 18 (31) 15 (34.9) 3 (20) 

≥2 comorbidities 7 (12) 4 (9.3) 3 (20) 

Diabetes 10 (27.2) 6 (14) 4 (26.7) 

0.75 
Coronary heart disease 13 (22.4) 10 (23.3) 3 (20) 

COPD 5 (8.6) 4 (9.3) 1 (6.7) 

Chronic kidney disease 5 (8.6) 4 (9.3) 1 (6.7) 
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Serum parameters         

Creatinine, median (range) [mg/dL] 0.95 (0.4–6.0) 0.9 (0.4–6.0) 1.1 (0.8–2.1) 0.006 

Troponin, median (range) [ng/mL] 0 (0–0.18) 0 (0–0.18) 0.02 (0–0.04) 0.002 

All values are shown in number (percent) if not stated otherwise. Abbreviations: COPD = chronic 

obstructive pulmonary disease. 

3.2. Patients with the Need for IMV Have More Adipose Tissue and Adverse Immunonutritional 

Scores 

Analysis of anthropometric parameters revealed a median BMI of 25.7 kg/m2 for the 

entire cohort, with increased numbers of obese patients within the IMV group (IMV: 6 

(40%) vs. non-IMV: 7 (16.7%); Table 2). Accordingly, COVID-19 patients with IMV had a 

higher median BMI (IMV: 27.8 (20.4–45.8) kg/m2 vs. non-IMV: 24.8 (17.7–38.5) kg/m2, p = 

0.03). Besides BMI differences, waist circumference (IMV: 111.2 (103.2–150.4) cm vs. non-

IMV: 103.4 (77.7–134) cm, p = 0.003) and WtHR (WtHR, IMV: 0.66 (0.57–0.8) vs. non-IMV: 

0.59 (0.47–0.71), p = 0.0006) were both significantly higher in patients who required IMV. 

Analysis of adipose distribution patterns from body composition analyses further dis-

played that the differences in anthropometric data were predominantly based on the vis-

ceral adipose depot. Here, patients who required IMV displayed a significantly higher 

amount of VAT compared with patients who did not need IMV (IMV: 133.4 (64.7–300.3) 

cm2 vs. non-IMV: 84.6 (7–237.2) cm2, p = 0.005), whereas SAT and EAT were increased 

without reaching significance level (Table 2). In addition, the IMV cohort also had higher 

amounts of hepatic fat as indicated by a lower attenuation in the computer tomography 

with significantly lower HU values (IMV: 45 (28.6–57) HU vs. non-IMV: 48.6 (31.3–61.2) 

HU, p = 0.004). As a control, we also analyzed splenic tissue attenuation, which showed 

no differences between the two groups (Table 2). 

Table 2. Distribution of Anthropometric and Body Composition Parameters and Immunonutri-

tional Scores Between COVID-19 Cohorts Based on IMV Requirement. 

   Invasive Mechanical Ventilation  

 Characteristic 
All Patients 

(N = 58) 

No  

(N = 43) 

Yes  

(N = 15) 
 p-Value 

Anthropometric Parameters       

BMI [kg/m²] 25.7 (17.7–45.8) 24.8 (17.7–38.5) 27.8 (20.4–45.8) 0.03 

BMI ≥ 30, number (percent) 

[kg/m²] 
13 (22.8%) 7 (16.7%) 6 (40%)   

Waist circumference [cm] 107.5 (77.7–150.4) 103.4 (77.7–134) 111.2 (103.2–150.4) 0.003 

WtHR [rel.] 0.61 (0.47–0.8) 0.59 (0.47–0.71) 0.66 (0.57–0.8) 0.0006 

Adipose Tissue Distribution     

SAT [cm²] 97 (8.5–383.6) 92.9 (8.5–383.6) 118 (40.8–343.7) 0.07 

VAT [cm²] 88.9 (7–300.3) 84.6 (7–237.2) 133.4 (64.7–300.3) 0.005 

EAT [cm²] 12.3 (3.4–32.3) 11.9 (3.4–30.7) 13.2 (5.9–32.3) 0.08 

Liver Fat [HU] 46.7 (28.6–61.2) 48.6 (31.3–61.2) 45 (28.6–57) 0.0044 

Spleen [HU] 44.4 (29–55.1) 44.4 (29–55.1) 45.7 (31.2–54.8) 0.984 

Immunonutritional Scores     

NLR  [rel.] 4.3 (0.9–20.4) 3.5 (0.9–19.1) 5.8 (2.5–20.4) 0.06 

PNI [rel.] 42.6 (27.1–54.8) 43.1 (36.4–54.8) 36.6 (27.1–46.7) <0.0001 

CAR [rel.] 0.8 (0–9.8) 0.5 (0–9.8) 2.6 (0.6–4.9) 0.0007 

mGPS         

 0 45 35 10 0.007 

 1 6 6 0   

 2 7 2 5   

PI         

 0 43 35 8 0.09 
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 1 12 6 6   

 2 3 2 1   

Abbreviations: BMI = body mass index, CAR = CRP-to-albumin ratio, mGPS = modified Glasgow 

Prognostic Score, NLR = Neutrophile-to-Lymphocyte-Ratio, PI = Prognostic Index, PNI = Prognostic 

Nutritional Index, Waist = waist circumference, WtHR = waist-to-height-ratio, S/V/EAT = subcuta-

neous/visceral/epicardial adipose tissue. 

Next to body composition, we found significant differences in immunonutritional 

scores between the two cohorts. In particular, the scores including serum albumin levels 

showed adverse values in the IMV cohort (PNI: IMV 36.6 (27.1–46.7) vs. non-IMV 43.1 

(36.4–54.8), p = < 0.0001; CAR: IMV 2.6 (0.6–4.9) vs. non-IMV 0.5 (0–9.8), p = 0.0007), 

whereas the scores NLR and PI, focusing on combinations of leukocyte subsets, showed a 

nonsignificant trend (Table 2). Results for single inflammatory markers (CRP, ferritin, in-

terleukin-6, albumin, leukocytes) were similar and in accordance with previous publica-

tions (Suppl. Table S3). 

3.3. ROC Analyses Identify WtHR, VAT, Liver Fat, and Immunonutritional Scores as Risk Fac-

tors for the Requirement of IMV 

To evaluate the prognostic value of the body composition parameters and im-

munonutritional scores for the requirement of IMV, we performed ROC analyses (Figure 

2). The scores mGPS and PI were excluded from these analyses due to their categorial 

distribution. Regarding the anthropometric parameters, ROC analyses revealed that waist 

circumference and WtHR were superior to BMI as measured by AUC (BMI: AUC 0.69 

(0.53–0.85), p = 0.03; waist: AUC: 0.76 (0.63–0.88); WtHR: AUC 0.79 (0.67–0.91), p = 0.0009; 

Table 3). Similarly, ROC of VAT and liver fat resulted in an AUC of 0.74 (VAT: p = 0.006; 

liver fat: 0.005), whereas AUC of SAT and EAT reached maximal values of 0.66 (Table 3). 

Accordingly, WtHR, VAT, and liver fat showed the strongest effects in univariate logistic 

regression. 

 

Figure 2. Receiver Operating Characteristic (ROC) curves for prediction of IMV need in COVID-19 

patients based on anthropometric data, adipose tissue distribution and immunonutritional scores. 

(A) ROC curves for BMI, waist and WtHR. (B) ROC curves for liver fat, SAT, VAT and EAT. (C) 
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ROC curves for CAR, PNI and NLR. Abbreviations: BMI = body mass index, CAR = CRP-to-albumin 

ratio, NLR = Neutrophile-to-Lymphocyte-Ratio, PNI = Prognostic Nutritional Index, Waist = waist 

circumference, WtHR = waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adipose 

tissue. 

Table 3. Results of ROC Analyses and Odds Ratios for Anthropometric Parameters, Adipose Tissue 

Distribution and Immunonutritional Scores. 

  AUC (95%CI) p Value AUC Discriminatory Value OR (95%CI) p-Value OR 

Anthropometric Parameters      

BMI 0.69 (0.53–0.85) 0.03 26.1 kg/m² 1.13 (1.01–1.29) 0.04 

Waist 0.76 (0.63–0.88) 0.003 109.3 cm 1.09 (1.03–1.16) 0.009 

WtHR 0.79 (0.67–0.91) 0.0009 0.635 cm/m² 1.21 (1.09–1.4) 0.002 

Adipose Tissue Distribution     

SAT 0.66 (0.5–0.82) 0.07 86.7 cm² 1.01 (1–1.01) 0.16 

VAT 0.74 (0.6–0.88) 0.006 67.4 cm² 1.01 (1.01–1.02) 0.006 

EAT 0.65 (0.49–0.81) 0.08 9.7 cm² 1.09 (1–1.2) 0.048 

Liver fat 0.74 (0.6–0.89) 0.005 46.2 HU 0.88 (0.79–0.97) 0.01 

Inflammation Scores     

CAR 0.79 (0.67–0.91) 0.001 0.7 1.28 (0.97–1.76) 0.1 

PNI 0.84 (0.7–0.99) 0.0002 38.7 1.15 (1.02–1.32) 0.03 

NLR 0.71 (0.51–0.9) 0.057 4.75 1.17 (1.05–1.43) 0.01 

Abbreviations: 95% CI = 95% confidence interval, AUC = area under the curve, BMI = body mass 

index, CAR = CRP-to-albumin ratio, HU = Hounsfield unit, NLR = Neutrophile-to-Lymphocyte-Ra-

tio, OR = Odds Ratio, PNI = Prognostic Nutritional Index, Waist = waist circumference, WtHR = 

waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adipose tissue. 

Regarding the immunonutritional scores, CAR (AUC 0.79 (0.67–0.91), p = 0.001) and 

PNI (AUC 0.84 (0.7–0.99), p = 0.0002) showed a good prognostic value for IMV require-

ment in ROC analyses, whereas NLR did not reach significance level. In univariate logistic 

regression, PNI and NLR remained prognostic factors for the requirement of IMV (Table 

3). Single inflammatory parameters reached similar or better AUCs, which was particu-

larly true for IL-6 (Suppl. Figure S2, Suppl. Table S3). 

3.4. Metabolically High-Risk Adipose Tissue Sites Correlate with Inflammatory Parameters and 

Immunonutritional Scores 

To further investigate whether obesity-associated metaflammation contributes to the 

differences in the COVID-19 cohorts, we correlated body composition parameters with 

inflammatory markers and immunonutritional scores (Figure 3). We found that the body 

composition parameters with the biggest differences between IMV and non-IMV patients 

also displayed the strongest correlations with inflammatory markers and immunonutri-

tional scores. For instance, among the anthropometric parameters, WtHR significantly 

correlated with ferritin, IL-6, and albumin levels (WtHR/ferritin: r = 0.39, p = < 0.01; 

WtHR/IL-6: r = 0.29, p = 0.03; WtHR/albumin: r = −0.31, p = 0.03) and showed correlation 

trends with CRP and CAR. In contrast, BMI only correlated with ferritin (BMI/ferritin: r = 

0.31, p = 0.02). Regarding adipose tissue distribution, similar correlations were noticed for 

VAT and liver fat, with the latter displaying the strongest effects overall. Notably, SAT 

did not show any correlations or trends. Overall, correlations were generally stronger for 

CRP, ferritin, and IL-6 compared with albumin and were stronger between body compo-

sition parameters with single inflammatory markers compared to immunonutritional 

scores. 
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Figure 3. Metabolically high-risk adipose tissue compartments correlate inflammatory serum mark-

ers and immunonutritional scores. Each of the anthropometric parameters (BMI, Waist, WtHR) and 

adipose tissue compartments (SAT, VAT, EAT, Liver Fat) were correlated with inflammatory mark-

ers (CRP, ferritin, interleukin-6, albumin) and immunonutritional scores (CAR, NLR, PNI). (A) 

Heatmap displays Spearman correlation coefficient from -1 (blue) to 1 (red). (B) Matrix shows the 

respective p-values to correlations shown in A. Yellow cells = p-value between 0.1 and 0.05, red cells 

= p-value below 0.05. Abbreviations: BMI = body mass index, CAR = CRP-to-albumin ratio, NLR = 

Neutrophile-to-Lymphocyte-Ratio, PNI = Prognostic Nutritional Index, Waist = waist circumfer-

ence, WtHR = waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adipose tissue. 

3.5. Stepwise Multivariable Logistic Regression Identifies an Optimal Model for IMV Require-

ment including Liver Fat, WtHR, and CAR 

Since body composition parameters correlated with inflammatory markers and im-

munonutritional scores, we next wanted to evaluate these parameters in a multivariable 

model for the prediction of IMV requirement. For the base model, we included all param-

eters with an AUC > 0.74 based on the ROC results, and we dichotomized variables based 

on discriminatory thresholds calculated by Youden statistics (Table 3). Due to multicol-

linearity of waist circumference and WtHR, only WtHR was retained in the base model, 

which finally included the parameters WtHR, VAT, liver fat, CAR, and PNI. Because of 

the small study cohort, we performed a stepwise both-directional multivariable logistic 

regression analysis resulting in a final model that included liver fat (OR 5.6 (1.03–38.3), p 

= 0.02), WtHR (OR 5.6 (1.11–35.5), p = 0.07), and the immunonutritional score CAR (OR 

22.3 (3–496.1), p = 0.03) (Table 4). Thus, in our modeling approach, body composition pa-

rameters and immunonutritional scores are independently associated with IMV require-

ment in COVID-19 patients. 

Table 4. Step-wise Multivariable Logistic Regression Analysis Identifies an Optimal Model Includ-

ing Liver Fat, WtHR and CAR for the Prediction of IMV Requirement. 

Parameter Discriminatory Threshold Odds Ratio 95%CI p-Value 

Liver Fat < 46.2 HU 5.6 1.03–38.3 0.02 

WtHR > 0.635 5.6 1.11–35.5 0.07 

CAR > 0.7 22.3 3.01–496.1 0.03 

Abbreviations: 95%CI = 95% confidence interval, CAR = CRP-to-albumin ratio, HU = Hounsfield 

unit, WtHR = Waist-to-Height-Ratio. 
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4. Discussion 

Obesity has been described as a risk factor for developing severe COVID-19 and res-

piratory failure. However, most published studies employed only BMI-based determina-

tion of overweight and obesity. In this study, we aimed to perform a comprehensive anal-

ysis of immunometabolic host features, including body composition and laboratory-based 

inflammation and nutrition status, with regard to their impact on the risk for respiratory 

failure and invasive ventilation in hospitalized COVID-19 patients of the early pandemic 

phase. Our results suggest that the assessment of immunometabolically active—especially 

visceral—adipose tissue sites is superior to the widely used BMI, which neglects body 

composition and tissue distribution patterns. Moreover, in this cohort, we demonstrate 

that the combination of adipose tissue quantification with immunonutritional scores 

based on standard laboratory data added further value to identify patients at the highest 

risk for the need for IMV. 

We found increased waist circumference, WtHR, VAT mass, and liver fat contents to 

be strongly associated with IMV requirement. From the anthropometric measures, an in-

creased waist circumference or WtHR was a stronger predictor for IMV than a BMI-based 

assessment of obesity. This is in line with data from the pre-COVID-19 era. Here, a large 

meta-analysis demonstrated the superiority of WtHR compared with BMI in assessing the 

risk for cardiometabolic diseases [15]. In addition, waist circumference as a measure of 

visceral obesity was also associated with higher risks of influenza in adults and children 

compared with BMI measures [37,38]. Similarly, in our cohort, adipose tissue distribution 

patterns confirmed the high immunometabolic risk derived from visceral fat depots com-

pared with subcutaneous and epicardial adipose tissue sites, which is displayed by the 

increased risk of COVID-19 patients for IMV. Previous reports on COVID-19 patients have 

shown similar results [39–43]. In addition to the published literature on body composition 

analyses in COVID-19 patients, this study additionally investigated CT-derived liver fat 

content based on radiologic signal attenuation within the liver. With this approach, we 

found significantly lower liver signals in the IMV cohort, indicating a higher liver fat in-

volvement in those patients. An increased liver fat content was a strong prognostic factor 

for IMV risk and comparable to visceral adipose tissue mass. As a control, spleen attenu-

ation was neither significantly associated with invasive mechanical ventilation nor did it 

correlate with laboratory inflammation indicators. The strong effects exerted by liver fat 

in our cohort might reflect the transformation from a metabolically low-risk state to a met-

abolically high-risk state of obesity, as discussed previously [44], and matches the findings 

of other cohorts, in which nonalcoholic/metabolic associated fatty liver disease 

(N/MAFLD) is associated with a worse outcome for COVID-19 patients [45]. However, 

whether MAFLD displays an independent risk factor or is rather a byproduct of visceral 

obesity remains controversial [46–48]. To conclude, our study adds further information 

that overweight and obesity play a crucial role in COVID-19 and highlights that the 

widely accepted single use of BMI as a measure of excess adipose tissue is insufficient and 

might not display the effective risk. 

To comprehensively assess the immunometabolic status of the present cohort, we 

complemented body composition analyses with calculations of immunonutritional scores. 

Here, we employed established scores that include serum albumin levels in combination 

with several immunological parameters, such as CRP, lymphocyte, or neutrophil num-

bers. Originally developed as prognostic scores in solid cancer patients, the use of these 

scores was also validated in other diseases, such as postoperative infections [49–52],cardi-

ovascular diseases [53] and rheumatologic diseases [54–56]. Particularly in the context of 

COVID-19, NLR, CAR, and PNI have been described as prognostic markers for disease 

severity and survival. In our cohort, mGPS, PNI, and CAR had the strongest correlation 

with IMV needs, whereas PI and NLR were less strongly associated. This strengthens pre-

vious data that found albumin-based immunonutritional scores such as PNI have a high 

prognostic value for COVID-19 disease severity [33,57,58]. Taken together, immunonutri-

tional scores seem to reflect an adverse metabolic and inflammatory status in COVID-19 
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patients, but more studies are needed to clarify whether their use is superior to the single 

factors they are composed of. 

Since the beginning of the COVID-19 pandemic, several studies have analyzed po-

tential underlying mechanisms mediating obesity-associated risks for COVID-19 patients. 

In this regard, the following mechanisms were discussed: an adipocyte-associated in-

crease in thrombogenic material within the blood, pulmonary microvascular dysfunction, 

and functional impairment of the alveolar-capillary unit mediated by obesity-associated 

lung inflammation and obesity-associated impaired lung physiology [59]. Moreover, the 

interaction of SARS-COV-2 with the renin–angiotensin system (RAAS) via angiotensin-

converting enzyme 2 (ACE2) has attracted widespread attention as a mechanism [60,61]. 

SARS-COV-2 predominantly binds to ACE2-expressing tissues, which leads to a disbal-

ance in the RAAS cascade, resulting in increased cytokine release [60]. Since adipose tissue 

abundantly expresses ACE2 [62,63], it was hypothesized that it might serve as a viral res-

ervoir enabling viral shedding, immune activation, and cytokine amplification, predis-

posing obese COVID-19 patients to a severe course of the disease [60]. However, data on 

obesity-associated ACE2 expression patterns are still in part conflicting; thus, further 

studies are needed in this regard [64]. Moreover, the role of adipokines was evaluated in 

the context of COVID-19, showing that adiponectin as an anti-inflammatory cytokine is 

decreased in COVID-19 patients [65]. Regarding the proinflammatory adipokine leptin, 

results are yet inconclusive [66,67]. In addition to these mechanisms, obesity-associated 

low-grade inflammation (i.e., metaflammation) was suspected of contributing to worse 

outcomes in overweight and obese patients [7,59,68]. To further investigate metaflamma-

tion as a mechanism, we correlated body composition parameters with inflammatory 

markers and immunonutritional scores. Notably, among the quantified adipose tissue 

sites, known metabolically active deposits like VAT and liver fat showed strong correla-

tions with inflammatory markers such as IL-6, ferritin, and albumin in our cohort, 

whereas the metabolically rather inactive SAT did not correlate with any of the inflamma-

tory markers. Similarly, anthropometric features reflecting visceral obesity such as waist 

and WtHR showed stronger correlations than BMI. The association between increased 

VAT/MAFLD measures and chronic inflammation has already been well described [69,70] 

as a consequence of adipose tissue infiltrating activated immune cells [71]. Although these 

clinical analyses are not sufficient to dissect mechanistic causalities, our findings point 

toward an active part of metabolically high-risk adipose tissue sites for systemic inflam-

matory processes and add further evidence for the role of metaflammation in COVID-19 

and infectious diseases. 

Limitations of this study include its retrospective and single-center design, as well as 

the overall small sample size and the differences between group sizes. In addition, sub-

group analyses of male and female patients that would have been of high interest in the 

light of sex-specific body composition patterns and different degrees of metaflammation 

could not be performed due to the fact that males were the dominating cohort. Various 

differences in innate and adaptive immune responses between men and women have al-

ready been described. As an example, in women, macrophages and neutrophils show 

higher phagocytic and degranulation activities, dendritic cells present antigens to T cells 

more efficiently, and B cells are more abundant compared to men. In contrast, men have 

more natural killer cells, and upon stimulation, CD4-positive T cells more often mount an 

IL-17-polarized response compared with TH1-type and interferon-γ polarized responses 

in women [72]. In addition, adipose distribution patterns also differ between males and 

females, with males tending to develop higher amounts of VAT, whereas, in women, sub-

cutaneous adipose tissue plays an important role [16]. Since sex impacts both immune 

system functionality and adipose tissue distribution patterns, larger patient cohorts are 

needed to evaluate the impact of sex disparities on the proposed immunometabolically 

risk-adapted model for COVID-19 outcomes. Finally, since our cohort represents the early 

pandemic phase and the patients were presumably infected with the SARS-CoV-2 wild-

type strain only, our results need to be validated for later SARS-CoV-2 variants that are 
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characterized by specific mutations within the viral core and spike proteins, which impact 

their virulence and immunogenicity [73,74]. 

Still, these present findings are hypothesis-generating, and further clinical and trans-

lational investigation is warranted. If confirmed prospectively, we see useful clinical ap-

plications. First, our results highlight the potential impact of overweight and obesity on 

infectious diseases, which becomes more important as incidence rates of overweight and 

obesity in (emerging) industrialized countries are rapidly increasing [75]. This is specifi-

cally important in the context of the simultaneously increasing distribution of resistant 

pathogens [76]. Therefore, public diet- and exercise-based interventions might be useful 

to not only reduce the risk of cardiovascular diseases and cancer but also to diminish the 

risk of developing severe infectious diseases, finally leading to lower hospitalization rates 

and public health costs. Second, the present study shows that routinely performed tho-

racic CT scans in respiratory diseases might comprise additional diagnostic value for the 

assessment of body composition. Since CT scans can be used to directly measure adipose 

tissue areas or volumes, it is considered a reference method for the quantification of adi-

pose deposits. In comparison to magnetic resonance imaging, CT-based quantification is 

less likely to be affected by breathing artifacts [77]. Whereas body composition is typically 

assessed on the L3 vertebrae level [77], we implemented an analysis algorithm measuring 

on the level of the 12th thoracic spine as the most common caudal spine of the present 

cohort. Similar analyses have been described as robust and valid direct measurements of 

adipose tissue in patients after lung transplantation [78]. Thus, in patients with respiratory 

infections, body composition might be easily assessed by low-dose CT scans at TH12 to 

evaluate metabolically high-risk adipose tissue sites without the need for further diagnos-

tic procedures. 

5. Conclusions 

The present study suggests that CT-derived assessments of anthropometric measures 

such as WtHR and of metabolically high-risk adipose tissue distributions including liver 

fat in combination with immunonutritional scores are superior to BMI in predicting the 

necessity for IMV in COVID-19 patients. Body composition measurements can easily be 

performed by segmentation analysis of caudal thoracic CT images and do not require ad-

ditional diagnostic procedures or larger CT areas. Moreover, the link between metaboli-

cally high-risk adipose tissue compartments, immunonutritional scores, and inflamma-

tory markers indicate that obesity-associated metaflammation might play a critical role in 

SARS-CoV-2-triggered hyperinflammatory responses and ARDS development. 
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