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To pave the way for healthy aging in early treated phenylketonuria (ETPKU)

patients, a better understanding of the neurological course in this population is

needed, requiring easy accessible biomarkers to monitor neurological disease

progression in large cohorts. The objective of this pilot study was to investigate

the potential of glial fibrillary acidic protein (GFAP) and neurofilament light

chain (NfL) as blood biomarkers to indicate changes of the central nervous

system in ETPKU. In this single-center cross-sectional study, GFAP and

NfL concentrations in serum were quantified using the Simoa® multiplex

technology in 56 ETPKU patients aged 6–36 years and 16 age matched

healthy controls. Correlation analysis and hierarchical linear regression analysis

were performed to investigate an association with disease-related biochemical

parameters and retinal layers assessed by optical coherence tomography.

ETPKU patients did not show significantly higher GFAP concentrations (mean

73 pg/ml) compared to healthy controls (mean 60 pg/ml, p= 0.140). However,

individual pediatric and adult ETPKU patients had GFAP concentrations above

the healthy control range. In addition, there was a significant association of

GFAP concentrations with current plasma tyrosine concentrations (r = −0.482,

p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner

nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL

alterations in our ETPKU cohort. These pilot results encourage multicenter

longitudinal studies to further investigate serumGFAP as a complementary tool

to better understand and monitor neurological disease progression in ETPKU.

Follow-up investigations on aging ETPKU patients are required to elucidate the

potential of serum NfL as biomarker.
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Introduction

Phenylketonuria (PKU; OMIM #261600) is an autosomal

recessive inborn error of phenylalanine metabolism. Reduced

activity of the enzyme phenylalanine hydroxylase leads to

impaired degradation of the amino acid phenylalanine (Phe) to

tyrosine (Tyr), resulting in increased Phe levels and low Tyr

levels in blood and brain, and subsequently reduced biosynthesis

of biogenic amine neurotransmitters (1). If untreated, PKU leads

to severe brain damage with intellectual disability, seizures, and

spasticity (2).

The severe neurological phenotype of PKU has been

prevented by the introduction of newborn screening enabling

an early initiation of dietary therapy (3, 4) and/or cofactor

treatment with BH4 (Kuvan R©; sapropterin dihydrochloride)

(early treated phenylketonuria, ETPKU) (5–7). However,

ETPKU patients seem not to be free of sequelae (8). Several

studies found decreased mean neurocognitive function levels,

neuropsychiatric symptoms and imaging alterations such as

white matter abnormalities and cerebral atrophy even in early

and continuously treated patients (8–21). Furthermore, there

are concerns that ETPKU patients may be more susceptible to

develop classical neurodegenerative diseases (19, 20, 22), given

the suggested chronic effects of Phe toxicity and disturbed Phe

metabolism on the central nervous system (22–25). Eventually,

the chronic effects of PKU on the brain of patients treated early

and continuously remain elusive (19, 26, 27), not least because

the first PKU patients who benefited from early treatment are

only now reaching the sixth decade of life. These considerations

have stimulated the current debate on treatment targets for

ETPKU from the perspectives of overtreatment with medical,

psychological, social, and economic consequences (28, 29) and

undertreatment with possibly adverse outcome (27, 30).

To pave the way for healthy aging in ETPKU patients, we

need a better understanding of the neurological course in this

disease population, including the onset of age-related neuronal

degeneration compared to healthy individuals and the extent to

which the metabolic control throughout the patient’s lifespan

contributes to the neurological outcome (19). This requires

easily accessible biomarkers to monitor neurological disease

progression in large cohorts.

To date, neurodegeneration in ETPKU has been studied

primarily by magnetic resonance imaging (MRI) (9–16, 20).

However, MRI is a laborious and cost-intensive technology.

As a result, larger multicenter longitudinal studies are limited

in practicability.

Only recently, evidence for glial alterations and neuroaxonal

degeneration was found in ETPKU patients using optical

coherence tomography (OCT) (31–35). The hypothesis of retinal

glial alterations and neuroaxonal damage associated with brain

lesions in ETPKU (35) was strengthened by the finding of

increased S-100B protein concentration in serum (36) and t-tau

and p-tau in the cerebrospinal fluid of ETPKU patients (20).

Exploring glial and neuroaxonal damage, the brain-specific

blood biomarkers glial fibrillary acidic protein (GFAP) and

neurofilament light chain (NfL) come into focus. Elevated levels

of GFAP, a cytoskeletal component of astrocytes (37–39), are

associated with astrocyte activation or injury (40). NfL is a

neuronal cytoskeletal component, and elevated levels of NfL are

linked to neuroaxonal damage (37). With the development of an

ultrasensitive single molecule array (Simoa R©), GFAP and NfL

have shown to be promising blood biomarkers for astrocytic

response and neuroaxonal injury within the central nervous

system in various neuroinflammatory and neurodegenerative

disorders (37, 41). As GFAP and NfL are indicative of ongoing

neuroinflammatory and neurodegenerative disease processes,

they are of great use in detecting earliest neuropathological

changes and provide information about neuropathological

progression (42–46).

GFAP and NfL concentrations in blood have not yet been

investigated in patients with ETPKU. The primary objective

of the present study was to investigate GFAP and NfL

concentrations in the serum (sGFAP, sNfL) of ETPKU patients

compared with age-matched healthy controls. The secondary

objectives were to determine whether the sGFAP and sNfL

concentrations of ETPKU patients associate with disease-related

biochemical parameters or OCT parameters.

Materials and methods

Study population

All patients who had been diagnosed with PKU by

neonatal screening, and who were under regular care including

routine blood sampling at the metabolic department of

the Ludwig-Maximilians-University hospital in Munich,

Germany were invited to participate in this study. Inclusion

criteria were confirmed ETPKU and age 6 years and older.

Exclusion criteria were chosen based on current knowledge

of confounding effects of comorbidities (47, 48): (i) history of

cardiovascular or cerebrovascular disease, cardiovascular risk

factors (hypertension, poor glycemic control, smoking) and

renal dysfunction, (ii) history of traumatic brain injury or any

peripheral or central nervous disease unrelated to PKU, (iii)

current pregnancy, and (iv) interfering medication or medical

procedures. Exclusion criteria were identified based on the

patient’s medical history.

Ninty eligible patients were prospectively identified and

approached about the possibility of study participation. 61

patients decided to participate, and of these 56 patients met

the inclusion criteria and were prospectively included in the

study between November 2020 and July 2021 (see Table 1). Five

patients could not be included due to pregnancy.

Eight pediatric (mean age 15 years, range 13-17, female 50%)

and 8 adult (mean age 28.5 years, range 22–36, female 50%)
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TABLE 1 Demographic data, disease-related information, and OCT measures.

Pediatric ETPKU Adult ETPKU

(N = 34) (N = 22)

Age in years (range) 11 (7–17) 25 (18–36)

Sex female N (%) 15 (44) 15 (68)

Comorbidities

Life-time depression N (%) 1 (2)

Attention deficit/hyperactivity disorder N (%) 1 (3)

Developmental delay N (%) 1 (3)

Reading/spelling weakness N (%) 4 (12)

Dyscalculia N (%) 1 (3)

BH4-responders N (%) 20 (59) 14 (64)

Blood Phe [µmol/l] mean SD mean SD

Childhood (0–10 years)

IDC 234 52 283 103

Average of yearly SD 133 51 169 46

Adolescence (11–16 years)

IDC 490 238 480 185

Average of yearly SD 146 68 145 51

Adulthood (17 years +)

IDC 459 n.a. 599 270

Average of yearly SD 4.0 n.a. 135 48

Lifetime

IDC 267 83 424 168

Mean Phe 269 82 417 141

Average of yearly SD 133 51 151 43

SD Phe 198 97 259 92

Current Phe 445 308 705 456

Past year

Mean Phe 386 217 617 321

SD Phe 102 45 95 86

Blood Tyr [µmol/l] 51.6 22.9 42.8 14.6

OCTmeasures

pRNFL [µm] 104 9.7 99 6.3

GCIPL [mm3] 0.60 0.05 0.59 0.04

INL [mm3] 0.26 0.03 0.24 0.02

IDC, average of yearly median phenylalanine levels; Phe, phenylalanine; Tyr, tyrosine; SD, standard deviation; ETPKU, early treated phenylketonuria; OCT, optical coherence tomography;

pRNFL, peripapillary retinal nerve fiber layer thickness; GCIPL, combined ganglion cell and inner plexiform layer; INL, inner nuclear layer.

healthy controls (HC) matched for age of the patients were also

included in the study.

The study was performed in accordance with the Helsinki

II Declaration and approved by the ethics committee of the

Ludwig-Maximilians-University of Munich, Medical Faculty

(project no 19-0453 and 20-997). All participants and/or their

legal representatives gave written informed consent.

Clinical data

Disease-related parameters were obtained from the

patients’ records.

First, disease type (BH4 responsive or non-responsive)

was collected.

Second, indices for Phe control were determined. For the

ETPKU patients, comprehensive Phe monitoring data were

available. Limited data were available only for patients who were

treated at other metabolic centers in childhood (N = 1), or had

poor adherence in adolescence (N = 2) or adulthood (N = 1).

Indices of Phe control based on dried blood spot measurement

were calculated as described before (16, 35, 49, 50). We averaged

Phe control in the following age bands: childhood 0–10 years of

age, adolescence 11–16 years of age, adulthood 17 years of age to

present, and lifetime. For each age band we considered the two
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measures Phe average and Phe variation (49). The Phe average

was calculated by averaging the yearly median Phe levels (IDC).

The Phe variation was calculated by averaging the standard

deviation (SD) for each year (49).We furthermore calculated the

mean (mean Phe) and SD (SD Phe) of all available Phe levels for

each patient (16). Furthermore, we considered the mean and SD

of all available Phe levels the year prior serum sampling, which

is referred to hereafter as the mean/SD Phe of the past year, and

the current plasma Phe concentration determined at the time of

serum sampling for GFAP and NfL measurement.

Third, current plasma Tyr concentrations determined at the

time of serum sampling were collected.

Biomarker measurement

Serum samples were collected through venipuncture.

Samples were allowed to clot at room temperature, subsequently

centrifuged at 1,800 g for 10min, and stored at −80◦C in

polypropylene tubes. Samples were thawed at room temperature

and centrifuged at 10,000 g for 10min. GFAP and NfL

concentrations of ETPKU patients and pediatric HC were

quantified with the Simoa R© Human Neurology 2-Plex B Kit

(Quanterix) on a HD-1 analyzerTM (Quanterix) according to

manufacturer’s instructions. GFAP and NfL concentrations in

adult HC were quantified with the Simoa R© Human Neurology

4-Plex B Kit (Quanterix) on a HD-X analyzerTM (Quanterix).

All samples were measured in duplicates by aspirating two

aliquots from a single well. The mean concentration of the two

measurements was used for the analysis. In one patient, only

one measurement could be obtained for each protein of interest.

Given the low intra-sample variation between duplicate readings

for the remaining samples in NfL and GFAP, these values were

included in the analysis. The intra-assay coefficient of variation

(CV) was calculated between duplicate readings for each protein.

The mean CVs was 6.1% for GFAP and 7.1% for NfL. Samples

with CVs above 20% were excluded from further analysis (GFAP

n = 1, NfL n = 2). The inter-assay CV of two quality control

samples over the two runs was on average 5.6% CV for GFAP

and 1.9% CV for NfL.

Spectral-domain optical coherence
tomography (OCT)

OCT examination was performed using a SD-OCT

(Spectralis, Heidelberg Engineering, Heidelberg, Germany)

with automatic real time (ART) function for image averaging

as described before (35). Data are reported for peripapillary

retinal nerve fiber layer thickness (pRNFL) to assess axonal

degeneration, volume of combined ganglion cell and inner

plexiform layer (GCIPL = GCL + IPL) as marker for

neuronal degeneration, and for inner nuclear layer (INL).

Macular layers were calculated for a 3mm diameter cylinder

around the fovea from a macular volume scan (20◦ x 20◦,

25 vertical B-scans, ART ≤ 49). The pRNFL was measured

with activated eye tracker using 3.4mm ring scans around the

optic nerve (12◦, 1536 A-scans, ART ≤100). Segmentation of

all layers was performed semi-automatically using software

provided by the OCT manufacturer (Eye Explorer 1.9.10.0 with

viewing module 6.3.4.0, Heidelberg Engineering, Heidelberg,

Germany). All scans were checked for sufficient quality

and segmentation errors and corrected, if necessary. OCT

data are reported according to the APOSTEL (2.0) and

OSCAR-Ib recommendations (51–53). Both eyes of each

subject were included in subsequent analysis as statistically

dependent duplicates.

Statistical analyses

Statistical analyses were performed using SPSS Statistics 26

(IBM) by the authors (ASL-H).

Comparison of demographic data between the patient and

control group was analyzed by Chi-Square test. Spearman

correlation analysis and curve fitting regression analysis

were performed to analyze associations of sGFAP and sNfL

concentrations with age.

To compare ETPKU patients with HC, the Mann-Whitney-

U test was applied.

Subsequent analyses evaluating an association between

biomarkers and disease-related parameters or OCT parameters

were performed following natural log transformation of

biomarker concentrations (47). Normal distribution of

transformed biomarkers was tested with distributional plots and

the Shapiro–Wilk test.

At first, partial correlation analysis controlling for age

was applied to investigate an association of disease-related

parameters and biomarkers in ETPKU.

Additionally, hierarchical linear regression analysis was

computed to examine the contribution of disease-related

parameters to serum biomarkers in ETPKU patients. The

independent variables were entered into the equation in the step-

wise manner as follows: BH4 responsiveness, Phe indices (IDC,

average of yearly SD, current Phe concentration, mean/SD Phe

of the past year), and current Tyr concentration. Age as potential

confounder was also added to the model. An autocorrelation

scatter plot and the Durbin-Watson (DW) statistic were

applied to account for autocorrelation. No autocorrelation

was assumed for a random distribution in the scatter plot

and a DW value between 1.5 and 2.5. The variance inflation

factor (VIF) was calculated to test for multicollinearity. Critical

levels of multicollinearity were assumed if VIF was greater

than 5.

For two reasons, correlation and regression analyses were

performed only for the group of ETPKU patients 18–36 years of
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FIGURE 1

Serum glial fibrillary acidic protein (sGFAP) in early treated phenylketonurie (ETPKU) patients. (A) Association of sGFAP concentrations and age.

The quadratic relationship between sGFAP concentrations and age is depicted by the continuous line. (B) sGFAP concentrations in ETPKU 12-17

(N = 12) and 18-36 (N = 22) years of age compared to healthy controls (HC; N = 8 / 8). (C) Association of natural log-transformed sGFAP

concentrations in adult ETPKU (N = 22) and current concentrations of tyrosine (Tyr) in plasma. The relationship of the variables was linear, as

depicted by the continuous line.

age (N = 22): (i) as expected from the literature (54), sGFAP and

sNfL concentrations were not associated with age in this cohort,

(ii) documentation of Phe levels from childhood, adolescence,

and adulthood was available.

For all analyses, p ≤ 0.05 were considered significant.

Results

Patients’ characteristics and disease
features

Table 1 shows demographic data, disease-related parameters

and OCT measures.

59% of the pediatric and 64% of the adult ETPKU patients

were BH4-responsive. On average, the ETPKUpatients showed a

good Phe control in childhood, adolescence, and adulthood (27).

Variability in Phe was largely consistent across all age ranges.

Current Phe (705 µmol/l) and mean Phe of the past year

(617 µmol/l) in the adult cohort were slightly above the target

range recommended in Europe (27).

The average Tyr concentrations in plasma were within the

reference range (34–112 µmol/l) in pediatric (51.6 µmol/l)

and adult ETPKU patients (42.8 µmol/l). Five pediatric and

eight adult ETPKU patients had current Tyr concentrations in

plasma below the reference range (mean ± SD 28.4 ± 2.9 and

30.4± 2.0).

All ETPKU patients attended regular school, were socially

integrated and active in their lives, as confirmed by partners or

parents. 14% of the ETPKU patients had been diagnosed with

comorbidities such as depression, attention deficit hyperactivity

disorder, developmental delay, reading/spelling weakness, or

dyscalculia, that were still present at the time of serum

sampling (Table 1).

The patients examined in this study were part of a previously

published cohort of PKU patients studied with OCT (35). The

pRNFL thickness and GCIPL and INL volumes of the ETPKU

patients in this study are shown in Table 1.

sGFAP levels in ETPKU

In the entire ETPKU cohort (N = 56, 6–36 years of

age), there was a quadratic relationship between sGFAP

concentrations and age (R2 = 0.337, p = 0.000) with a negative

association of sGFAP concentrations and age below an age of

12 years (Figure 1A). Maximum sGFAP concentrations were 171

± 68 pg/ml at ≤7 years of age, with a steep decline in sGFAP

concentrations by 9 years of age. No significant correlation of

sGFAP concentrations and age was observed in ETPKUwith 12–

36 years of age (N = 34, mean age 21 years, r = −0.148, p =

0.403). Correlation analysis of the age matched HC cohort also

showed no association of sGFAP with age in this age range (N =

16, mean age 22 years, r= −0.068, p= 0.717).

In comparison to the HC cohort, ETPKU patients in this age

range did not show significantly different sGFAP concentrations

(ETPKU; mean 73 pg/ml, SD 31 pg/ml, CI 63–84 pg/ml, median

67 pg/ml, IQR 51–89 pg/ml vs. HC; mean 60 pg/ml, SD 20

pg/ml, CI 49–71 pg/ml, median 58 pg/ml, IQR 45–74 pg/ml, p

= 0.140). There were also no significant differences of sGFAP

concentrations in ETPKU patients compared to HC when the

pediatric (ETPKU; N = 12 and HC; N = 8) and adult (ETPKU;

N= 22 and HC; N= 8) cohorts were considered separately [12–

17 years; ETPKUmean 75 pg/ml, SD 40 pg/ml, CI 50–100 pg/ml,

median 56 pg/ml, IQR 49–99 pg/ml vs. HC mean 64 pg/ml, SD

22 pg/ml, CI 46–83 pg/ml, median 65 pg/ml, IQR 45−83 pg/ml,

p= 0.678, 18–36 years; ETPKUmean 73 pg/ml, SD 26 pg/ml, CI

61–84 pg/ml, median 70 pg/ml, IQR 53–90 pg/ml vs. HC mean

56 pg/ml, SD 18 pg/ml, CI 41–71 pg/ml, median 52 pg/ml, IQR
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TABLE 2 Partial correlation analysis of log-transformed sGFAP and sNfL concentrations in adult ETPKU patients with disease-related parameters.

Disease-related parameters log (sGFAP) log (sNfL)

r p r p

IDC 0–10 yrs 0.100 0.684 0.083 0.735

IDC 11–16 yrs −0.021 0.932 0.143 0.559

IDC 17 yrs+ 0.011 0.966 0.202 0.408

Past year mean Phe 0.120 0.624 0.406 0.085

Current Phe 0.025 0.920 0.344 0.150

Average yearly SD 0–10 yrs 0.027 0.912 0.236 0.330

Average yearly SD 11–16 yrs 0.171 0.485 0.439 0.060

Average yearly SD 17 yrs+ 0.238 0.328 0.221 0.362

Past year SD Phe −0.159 0.515 0.014 0.954

Current Tyr −0.482 0.036* −0.029 0.907

log(sGFAP), log-transformed serum glial fibrillary acidic protein; log(sNfL), log-transformed serum neurofilament light chain; IDC, average of yearly median phenylalanine levels; Phe,

phenylalanine; Tyr, tyrosine; SD, standard deviation; r, correlation coefficient.
*p ≤ 0.05. r- and p-values were calculated using partial correlation analysis controlling for age.

43–74 pg/ml, p = 0.185] (Figure 1B). However, two pediatric

and seven adult ETPKU patients showed sGFAP concentrations

above the HC range (Figure 1B).

Association between sGFAP and
disease-related parameters

As shown in Figure 1C, log-transformed sGFAP

concentrations significantly correlated with current Tyr

concentrations (r = −0.482, p = 0.036). No significant

correlation of log-transformed sGFAP concentrations was

observed with any of the Phe indices (IDC, average of yearly SD,

current Phe concentration, mean/SD Phe of the past year) (for

all p > 0.05) (Table 2).

In the hierarchical linear regression model used to analyze a

contribution of disease-related parameters on log-transformed

sGFAP concentrations (adjusted r2 = 0.210), current Tyr

concentration was the only significant predictor (β = −0.501, p

= 0.024) (Table 3). There was no indication for auto-correlation

(Durbin-Watson 2.1) or multicollinearity (VIF 1.0). All other

independent variables (BH4-responsiveness, Phe indices, and

age) did not reveal a significant contribution and were thus

excluded from the model (Table 3).

sNfL levels in ETPKU

In the entire ETPKU cohort (N = 56, 6–36 years of age),

there was a quadratic relationship between sNfL concentrations

and age (R2 = 0.278, p = 0.000) with a negative association

of sNfL concentrations and age below an age of 12 years and

a positive association above 12 years of age (Figure 2A). The

maximum sNfL concentration was 8.9 pg/ml at 6 years of age.

No significant correlation of sNfL concentrations and age was

observed in ETPKU patients with 12-17 years of age (N = 12,

mean age 14 years, r = −0.147, p = 648) or 18–36 years of age

(N= 22, mean age 25 years, r= 0.369, p= 0.091). This was also

true for the age matched HC cohort (12–17 years; N = 8, mean

age 15 years, r=−0.061, p= 885, 18–36 years; N= 8, mean age

29 years, r= 0,675, p= 0.066).

In both age groups, there was no significant difference of

sNfL concentrations in ETPKU patients compared to HC [12–17

years; ETPKU mean 3.4 pg/ml, SD 1.6 pg/ml, CI 2.3–4.5 pg/ml,

median 2.9 pg/ml, IQR 2, 4–4,6 pg/ml vs. HC mean 2.7 pg/ml,

SD 1.3 pg/ml, CI 1.6–3.8 pg/ml, median 2.2 pg/ml, IQR 1.9–3.0

pg/ml, p = 0.115, 18–36 years; ETPKU mean 4.5 pg/ml, SD 1.3

pg/ml, CI 3.8–5.0 pg/ml, median 4.5 pg/ml, IQR 3.6–5.0 pg/ml

vs. HC mean 6.2 pg/ml, SD 2.5 pg/ml, CI 4.2–8.3 pg/ml, median

6.6 pg/ml, IQR 3.5–8.5 pg/ml, p= 0.056 (Figure 2B)].

Association between sNfL levels and
disease-related parameters

Partial correlation analysis adjusted for age

revealed no association of log-transformed sNfL

concentrations with any of the Phe indices (IDCs,

average of yearly SDs, current Phe concentration, mean

Phe of the past year) or current Tyr concentration

(for all p > 0.05) (Table 2).

In the hierarchical linear regression model used to

analyze a contribution of disease features on log-transformed

sNfL concentrations (adjusted r2 = 0.338), the age was

the only predictor (β = 0.610, p = 0.004). There was

no indication for auto-correlation (Durbin-Watson 2.15)

or multicollinearity (VIF 1.0). All other independent

variables (BH4-responsiveness, all Phe indices, and
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TABLE 3 Hierarchical linear regression analysis to predict a contribution of disease-related parameters on log-transformed sGFAP or sNfL

concentrations in adult ETPKU patients.

Disease-related parameters log(sGFAP) log(sNfL)

β p VIF β p VIF

Age −0.153 0.476 1.028 0.610 0.004* 1.000

BH4-responsiveness 0.228 0.295 1.080 0.183 0.343 1.010

IDC 0–10 yrs −0.030 0.887 1.001 0.078 0.735 1.408

IDC 11–16 yrs −0.062 0.772 1.006 0.121 0.559 1.138

IDC 17 yrs+ −0.184 0.409 1.114 0.160 0.408 1.004

Past years mean Phe 0.085 0.689 1.007 0.322 0.085 1.002

Current Phe −0.010 0.961 1.011 0.273 0.150 1.007

Average yearly SD 0–10 yrs −0.136 0.536 1.069 0.189 0.330 1.013

Average yearly SD 11–16 yrs 0.099 0.643 1.006 0.350 0.060 1.016

Average yearly SD 17 yrs+ 0.167 0.433 1.017 0.175 0.362 1.000

Past year SD Phe −0.157 0.461 1.014 0.012 0.954 1.059

Current Tyr −0.501 0.024* 1.000 −0.023 0.907 1.028

log(sGFAP), log-transformed serum glial fibrillary acidic protein; log(sNfL), log-transformed serum neurofilament light chain; BH4, sapropterin dihydrochloride; IDC, average of yearly

median phenylalanine levels; Phe, phenylalanine; Tyr, tyrosine; SD, standard deviation; β, beta coefficient.

*p ≤ 0.05. VIF; variance inflation factor. β-, p-, and VIF-values were calculated using hierarchical linear regression analysis.

FIGURE 2

Serum neurofilament light chain (sNfL) in early treated phenylketonurie (ETPKU) patients. (A) Association of sNfL concentrations and age. The

quadratic relationship between sNfL concentrations and age is depicted by the continuous line. (B) sNfL concentrations in ETPKU 12-17 (N =

12) and 18-36 (N = 18) years of age compared to healthy controls (HC; N = 8 / 8).

current Tyr concentration) did not reveal a significant

contribution and were thus excluded from the model

(Table 3).

Correlation of serum biomarker levels
and OCT measures

Partial correlation analysis adjusted for age of log-

transformed sGFAP concentrations with the optical measures

pRNFL, GCIPL and INL (Table 4) showed a significant

association with the INL (r = 0.451, p = 0.040). No correlation

of sNfL with any of the OCT measures was found (for all p >

0.05) (Table 4).

Discussion

This study was performed to investigate the potential of

GFAP and NfL as blood biomarkers for astrocytic response

and neuroaxonal injury in ETPKU patients. Our data did

not show significantly different sGFAP levels in ETPKU

compared to HC. However, it must be mentioned that individual
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TABLE 4 Partial correlation analysis of log-transformed sGFAP and

sNfL concentrations in adult ETPKU patients with OCT measures.

OCTmeasures log(sGFAP) log(sNfL)

r p r p

pRNFL −0.164 0.477 −0.031 0.893

GCIPL 0.036 0.877 0.076 0.742

INL 0.451 0.040* 0.328 0.147

OCT, optical coherence tomography; log(sGFAP), log-transformed serum glial fibrillary

acidic protein; log(sNfL), log-transformed serum neurofilament light chain; pRNFL,

peripapillary retinal nerve fiber layer thickness; GCIPL, combined ganglion cell and inner

plexiform layer; INL, inner nuclear layer; r, correlation coefficient.

*p ≤ 0.05. r- and p-values were calculated using partial correlation analysis controlling

for age.

pediatric and adult ETPKU patients showed clearly higher

sGFAP levels than the range of HC. Analyzing a possible

association between the biomarker concentrations, disease-

related biochemical parameters, and OCT parameters, we found

a correlation of sGFAP with current plasma Tyr concentrations

and with the retinal inner nuclear layer volume. There was no

evidence of sNfL alterations in our ETPKU cohort.

Evidence for sGFAP elevation in ETPKU

The negative association of sGFAP concentrations with age

in our pediatric ETPKU cohort below 12 years of age is in line

with previously published data in HC (55). The age dependent

sGFAP concentrations were within similar ranges in our ETPKU

cohort compared to published HC (55).

Also in adolescent (12–17 years) and adult patients (18–36

years), our data did not indicate significantly elevated levels of

sGFAP in ETPKU. Larger, multicenter studies and follow-up

investigations are needed to clarify the observation that sGFAP

concentrations of individual ETPKU patients were above the HC

range (39, 41, 56).

None of the patients of our ETPKU cohort had symptoms

indicative of advanced neurodegenerative disease. However, it

has recently been shown for Alzheimer‘s disease that sGFAP

is a promising biomarker to identify patients at-risk (42,

57). Therefore, one could speculate that also in ETPKU,

sGFAP might be a biomarker to identify patients at-risk for

neurodegenerative disease, a hypothesis that needs further

investigation in prospective studies.

In accordance with our observation of sGFAP

concentrations above the HC range in individual ETPKU

patients, a previous study in the Pahenu2 mouse, an animal

model for PKU, demonstrated that oligodendrocytes expressed

GFAP filaments in response to Phe loading (58). It is important

to note that the Pahenu2 mice in this study were exposed to

increasing concentrations of Phe, whereas all patients included

in our study were following therapy and therefore did not have

their (high) baseline Phe levels at the time of sGFAP sampling.

This might be the reason, why we found no correlation between

sGFAP concentrations and any of the calculated Phe indices,

including the current Phe level. Beyond this, there is evidence

that the processes in the brain of PKU patients are due to

secondary disturbances rather than solely to neurotoxic effects

of high Phe levels (59). This was also suggested by a recent study

using organic hippocampal slice cultures as a model to study

glial integrity in PKU, in which unchanged GFAP expression was

observed upon exposure to high vs. physiological concentrations

of Phe (60).

Interestingly, sGFAP concentrations in adult ETPKU

patients correlated negatively with current plasma Tyr

concentrations, and current Tyr concentrations were a

significant predictor of sGFAP concentrations in hierarchical

linear regression analysis. The negative association of current

plasma Tyr and sGFAP concentrations may be explained by

the following considerations: Reduced Tyr concentrations

in plasma have been considered to be an indicator for low

cerebral Tyr and dopamine concentrations (31, 61), and

dopamine deficits have been suggested to contribute to

brain damage in adult PKU patients (22). As astrocytes

have been demonstrated to respond to dopamine released at

synaptic sites (62), one might suppose that altered dopamine

concentrations have a negative effect on astrocyte stimulation.

For their part, astrocytes (and other astroglial cells) respond to

neuropertubative conditions with cell hypertrophy and GFAP

expression (40).

In addition, our analyses revealed a correlation of sGFAP

concentrations with the retinal INL volume. In the retinal

INL, the Mueller cells, astroglial cells of the retina, are

located. Like other astroglial cells, hypertrophy and GFAP

expression have also been demonstrated for Mueller cells

as a reaction to tissue stress (63–66). Considering this, one

may hypothesize that neuropertubative conditions in ETPKU

patients, such as biogenic amine neurotransmitters depletion

and oxidative stress (22, 24), lead to a general astroglial response

(in astrocytes and Mueller cells) reflected by elevated sGFAP

concentrations (mainly in astrocytes) and higher INL volume

(in Mueller cells).

sNfL is not altered in pediatric and young
adult ETPKU

No alterations of sNfL concentrations in ETPKU patients

were found in this study. The negativ association of sNfL

concentrations with age in children below 12 years of age

and the positive association in adults were consistent with

data from HC previously described (55, 67–69). The sNfL

concentrations in our ETPKU cohort were not elevated
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compared to our age-matched healthy cohort, and were

within previously published percentiles (54, 55, 67–71),

assuming that data collected with other testing methods are

comparable (37, 72).

In contrast to sGFAP that is promising in identifying

patients at-risk for neurodegenerative disease such as

Alzheimer‘s disease, sNfL as a biomarker detecting axonopathy

is considered to be more helpful in discriminating later

stages (42, 57). On this basis, one could speculate that the

normal sNfL levels in our ETPKU cohort, also in those

patients with sGFAP concentrations above the HC range,

are due to the absence of advanced, clinically relevant

astrogliosis. In addition, the ETPKU cohort studied is still quite

young—like all PKU patients who benefited from early and

continuous treatment.

With regards to the concern that ETPKU patients may

be more susceptible to develop classical neurodegenerative

disease (19, 20, 22), longitudinal studies with repeated sNfL

investigation in the future elderly PKU patients treated early and

continuously may contribute to understand whether there is a

potential value of sNfL as a biomarker of neuroaxonal damage

in ETPKU.

Limitations of the study

ETPKU is a rare disease and various disease-related

parameters might have an impact on neuropathological

processes. A potential bias could be caused by study-specific

characteristics (e.g., phenotype, metabolic control) as well as

the small sample size. The latter might be one reason why

the results of the sGFAP evaluation did not reach the level

of significance.

A possible influence on biomarker concentrations

could also result from unrecognized comorbidities. We

aimed to minimize the risk of influence by choosing the

exclusion criteria, and the bias would have affected both

the ETPKU and HC cohort. Nevertheless, larger studies

are needed to minimize the potential bias. Both, sGFAP

and sNfL measurements are promising for multicenter

approaches enabling future cross-sectional and longitudinal

studies (41, 73).

Another limitation of this study is that biomarker

concentrations were quantified in adult HC with a different

assay (Human Neurology 4-Plex B) than in the ETPKU

and pediatric HC cohorts (Human Neurology 2-Plex

B). However, according to the manufactures data sheet

(Quanterix Corporation, Inc. SimoaTM), comparable values

are expected for both assays. When comparing the two

assays, one would expect lower concentrations for the

Human Neurology 2-Plex B Kit if there were any differences

at all.

Conclusion

These pilot results motivate multicenter longitudinal studies

to further investigate blood-based biomarkers such as GFAP

and NfL as a complementary tool to better understand and

monitor neurological disease progression in ETPKU for the

following three reasons. First, our data did not show significantly

elevated sGFAP levels in ETPKU. Nevertheless, based on the

sGFAP levels that were above the HC range in individual

ETPKU patients, active astrogliosis can be suspected in these

patients. Second, the negative association with plasma Tyr

concentrations and the correlation with retinal INL volume

may suggest a common pathomechanism based on disturbed

dopamine metabolism and tissue stress, a question necessitating

also further basic research. And third, in our rather young

ETPKU cohort, sNfL levels were not increased as a marker of

neuroaxonal damage compared with HC, but follow-up studies

in aging ETPKU patients will elucidate the potential of sNfL

as biomarker.
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