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We present a complete mode coupling theory for the critical dynamics of ferromagnets above the Curie point with both short
range exchange and long range dipolar interaction. This theory allows us to determine the full Kubo relaxation functions at the
critical point. In particular, we are able to explain recent spin echo measurements.

An increasing quantitative understanding of the critical dynamics of isotropic ferromagnets such as EuQ,
EuS and Fe above T, has been achieved recently by taking into account the long range dipolar interaction,
which is present in all real ferromagnets. The results of various experimental methods [1-11] (neutron scat-
tering, electron spin resonance and hyperfine interaction ), sampling different regions in g-space, could be ex-
plained in a unified fashion within a mode coupling (MC) theory [12,13]. Therefore dipolar interactions are
seen to be highly relevant for the description of the critical dynamics of real ferromagnets.

The standard procedure of MC theory usually incorporates two approximations. The first is to consider only
two-mode decay processes, which amounts to a factorisation approximation of the Kubo relaxation functions
after insertion of the microscopic equations of motion. The second step is a lorentzian approximation for the
Kubo relaxation functions of the spin variables S'(gq, ¢), which are defined by

=]

@Y(g, t)=ilim | dre " ([S'(g, 1), (g, 0)"),
€0

t

with the normalization @ 9(g, t=0)=1; i.e. the spin variables are normalized with respect to the static sus-
ceptibilities. The corresponding frequency dependent functions are defined by a half sided Fourier transform

DV (g, w)= Jdte“”’d’”(q, t).
Q

The lorentzian approximation gives for most purposes an excellent approximation for the linewidth as can
be inferred from refs. [12] and [13]. However, in order to obtain information about the lineshape one has
to refrain from this approximation. This has been achieved for the case of pure exchange interaction by Hub-
bard [14] and Wegner [15], using a discrete version of the MC theory. A simplified version of the coupled
mode equations has been given recently by Lovesey and Williams [16] and Balucani et al. [17]. Besides these
MC theories there exist renormalization group (RG) calculations for isotropic ferromagnets [ 18-22]. All these.
theories, taking into account only the short range exchange interaction, are unable to explain the nearly ex-
ponential decay of the transverse relaxation function for small times, found in spin echo measurements on EuO
[23]. This led Balucani et al. to the conclusion that neither MC theory nor RG theory is valid in the time
regime probed in Mezei’s experiments. To fit the experimental results they proposed a “hybrid theory”, which
is a phenomenological interpolation scheme between the short and long time limits. In constrast we will show

0375-9601/88/% 03.50 © Elsevier Science Publishers B.V. 343
( North-Holland Physics Publishing Division )



Volume 129, number 5,6 PHYSICS LETTERS A 30 May 1988

in this Letter that the experiment can be explained naturally within our MC theory by including dipolar forces
without any need for a special treatment of the short time behaviour.

The hamiltonian for a spin system including both short range exchange and long range dipolar interactions
is given by [24]

d*q
H= J(z E [(J0+Jq)

where S'(g) = [d*xe'7*S’(x) are the Fourier transforms of the cartesian components of the spin operator $'(x).
The parameter g=a, (g s )>/2Ja*= (gpa)’ characterizes the ratio of the dipolar to the exchange interaction
J. Here g, is the Landé factor and the coefficient a, depends on the latice structure; i.e.: @, =4n (sc), 3*/°n
(bee), 2°/n (fec). The parameter J, does not enter the equations of motion. In eq. (1) we assumed that the
dipolar forces are weaker than the exchange interaction [24]; i.e. g < 1. All quantities are given in units of
the lattice spacing a.

The symmetry of the hamiltonian suggests decomposing the spin operator S(g) into one longitudinal and
two transverse components with respect to the wavevector ¢; i.e. S(g) =S"(g)§+ST' (¢)f' (§) +S™(g)f*(§),
where the orthonormal set of unit vectors is defined by §=¢/q, t'(§) =gXes//qi+q3 1*(§)=¢xt'(§). For
vanishing components of ¢ the limits are taken in the order of increasing cartesian components.

The resulting equations of motion can be found in ref. [12]. From these one obtains by the first step of MC
theory the following set of coupled integro-differential equations for the Kubo relaxation fucntions &*(g, g,
t) and the transport coefficients I'“(q, g, t) (a=L, T) for the longitudinal and transverse modes (with respect
to the wave vector ¢) [13]:

. l
%¢"(q,g,t)=— Jdrl’“(q,g,t—rﬂp“(q,g, 7). (2)

0

]S (9)5'(—q), (1)

The transport coefficients I'*(q, g, t) are related to the relaxation functions @*(g, g, t) by

3
(g8 t)=4ks T j ((21 P Y v%.(k, g, 8 0)(§°T+5*TgPLs7h)
Bk, g)x’(1q—k|,
X (k,g)x°(lq9—kl|, q) Pk, g, )D(|q—k|.g.1) . 3

x%(q,8)

where the k-space integration runs over the first Brillouin zone (BZ). The vertex functions v§, for the decay
of the mode « into the modes S and ¢ can be found in refs. [12,13] and x*(q, g) denote the static susceptibilities.

Now the essential point is that the MC equations (2) and (3) are consistent with the generalised dynamical
scaling laws

1

I'“(q,8 w)=Aq°Q%(X, )7 (X, ¥, Vo), P4, & ®W)= -0 09(x, 1, V), 4
Agaen Y @
where in the present case we have to introduce the scaling variables
1
L s)

= q& q T Ag°Q%(x,y)

The scaled frequencies contain the characteristic frequencies 2%(x, y). This implies for the Laplace trans-
formed quantities the scaling laws

D (g, 8 1)=0%(x,,7a), I'*(q, 8 1)=[AG"2%(x, y) 1*Y*(x, ¥, o) , (6)

where the scaled time variable 7, is given by

344



Volume 129, number 5,6 PHYSICS LETTERS A 30 May 1988

T,=AG°Q%(x, )t . (7)

Inserting eq. (6) together with the static scaling law x*(g, ) = (1/J¢*)#%(x, y) into egs. (2) and (3) we find
for the dynamic scaling functions
Pecut

2 1
ron =2 gr=) [ an [ 9oz 5 im0 m@Trom TS
R 0 Fa

Q%(x, y)
7 (x/p, 2°(x/p_,vIp_)
<A ALLR YRULEPYIP) g1 ¢, y/p, s, 3, 9))0° (51, Y1 Tarl5 3P ) ()
and the integro-differential equations
9 T
;d)“(x,y, Tg)=— jdw“(x,y, T —=T)P%(X, ¥, T) , (9)

0

which connect the scaling functions for the transport coefficients with the scaling functions for the Kubo re-
laxation functions. In eq. (8) we used the notations p=k/q, p_=|qg—k|/q, n=cos(q, k) and t,5(x, ¥, )=
7,48 (x/A, y/A)/Q%(x, ¥).

The non-universal frequency scale of eq. (4) is found to be

A=a’? JTks T/ 27 = 5% ke Ta,/4m° .
D

The above relations contain the critical dynamic exponent z=5/2, where one has to realize that the crossover
of the critical dynamic exponent is contained in the scaling functions for the transport coefficients y*(x, y, 1.),
the scaling functions for the Kubo relaxation functions ¢*(Xx, y, 1) and the characteristic frequencies £2°(x,
¥). The scaled vertex function 9§,(y, p, 1) can be found in refs. [12,13].

Due to the fact that the k-space integration is bounded by the Brillouin zone there is a cutoff in the p-in-
tegration of eq. (8), which is given by p...=dgsz/9= (gpz/dp )y, where gg; denotes the boundary of the first
Brillouin zero and ¢y, is the static crossover wavevector. This cutoff is important for small times, because the
integrand of eq.(8) is proportional to 1 for =0 and p>»> 1. Hence for small times wavevectors near the zone
boundary are expected to be important for the relaxation mechanism. These non-universal modes are included
in the above MC equations.

In order to incorporate the leading crossover behaviour into the time scale 1, it is convenient to choose the
characteristic frequencies 2%(x, y) as the linewidths resulting from the MC equations including the lorentzian
approximation Q%(x, y) =y (x, ¥), where the scaling functions for the lorentzian linewidths »{.(x, y) are
determined by a set of coupled integral equations (see eq. (10) in ref. [12]).

For the static susceptibilities we will use in the numerical calculations the Ornstein-Zernike forms

o 1
X (q,g)_ J(q2+§—2+5a,Lg) 4

where we note that MC theory does not account for effects of the critical exponent 7, which will be neglected
in the following. Here é=&[(T—7,.)/T.)]~" is the correlation length, which contains the static crossover
through the effective exponent v~ ye/2 [25].

Using a self-consistent numerical procedure we have solved the set of coupled integro-differential equations
(8) and (9) at the critical temperature (x=0), where we have used the values gp=0.145 A-'and g5=1.06
A-"! corresponding to EuO from ref. [23]. The transverse and longitudinal scaling functions ¢*(x=0, y, 7,)
versus the scaling variables 7, and y=g¢p/q are shown in figs. 1 and 2. The characteristic frequencies
y&.(x, y) versus y~ ' can be found in fig. 7 of ref. [ 13]. The lineshapes for the longitudinal and transverse Kubo
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Fig. 1. Scaling function for the transverse Kubo relaxation func- Fig. 2. Scaling function for the longitudinal Kubo relaxation
tion ¢T(x=0, y, 1) versus y=¢qp/gand trat T=T.,. function ¢ (x=0, v. 7,) versus y=¢gp/gand 7, at T="T..

relaxation function differ significantly, especially for small wavevectors g < g,; i.e. y > 1. Both functions drop
off quadratically at t=0, as is implied by eq. (9), but the transverse relaxation function obeys this behaviour
in a very small time domain only and may be approximated best by an exponential function for y > 1. The
longitudinal relaxation function shows a pronounced oscillatory behaviour.

Now we compare our theoretical results with experimental data starting with the spin echo measurements
of Mezei [23] on EuQ. Taking a cut of the transverse Kubo relaxation function in fig. 1 at the wavevector
g=0.024 A-" we find the relaxation function shown in fig. 3 as the solid line versus time in ns, where we have
used the theoretical value for the non-universal scale 4=7.1/5.1326 meV A/2. There is an excellent agreement
with the experimental data for < 1ns. The experimental data are above the theoretical curve for ¢> 1ns. This
may be due to finite collimation effect in this time domain, as noted by Mezei [23]. To substantiate this point
we have also plotted in fig. 3 the relaxation function at g=0.028 A~ (dash-dotted curve), which is significantly
higher than the curve for ¢=0.024 A~! for r> 1ns. The fairly large difference of the curves with ¢=0.024 A~
and ¢=0.028 A~ comes from the vicinity of the crossover region.

In order to exhibit the difference from the MC theory including only short range exchange interaction, we

Fig. 3. Transverse Kubo relaxation function @7(q, g, t) at
g=0.024 A~ (solid line) and ¢=0.028 A~' (dash-dotted line)
for dipolar ferromagnets versus time ¢ in ns. The dashed line is
the transverse Kubo relaxation function for short range exchange
interaction only at g=0.024 A~'. Data points from fig. 1 of ref.
[23].
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have solved eqs. (8) and (9) for this special case; i.e. y=0, x=0 and p.,.=¢sz/q with g=0.024 A~". The result
is the dashed curve in fig. 3, which differs drastically from the lineshape including the long range dipolar in-
teraction. So we conclude that the dipolar interaction is essential for the lineshape in the critical region. It is
important to realize that the crossover in the lineshape starts nearly at g, whereas the linewidth still scales
with the isotropic critical dynamic exponent z=15/2 in this wavevector region.

In conventional neutron scattering one measures the scattering function S(g, @)

. w/kgT
S(q, w)oc2kgTq 27" (x, y)F(g, @) Tz,/kﬂ )
where the spectral weight function F (g, w) is related to the real part of the transverse Kubo relaxation functions
by

1

F(q,w)=Re(¢T(q,w))=m

Re(¢7(q, 1)) . (10)
The real parts of the transverse and longitudinal scaling functions for the Kubo relaxation functions ¢*(x=0,
¥, Vy) are given in figs. 4 and 5 versus y and the scaled frequency variables »,. A sensitive tool for the de-
termination of the lineshape are constant energy scans for the scattering functions S(g, w). Taking the the-
oretical value for the non-universal constant 4="7.1/5.1326 meV A%/? we have calculated constant energy scans
for a set of energies: E=0.1 meV, 0.2 meV and 0.3 meV. The results are shown as the solid lines in fig. 6.
Comparing these results with experimental constant-E scans at E=0.2 meV and E=0.3 meV [26] we find a
good agreement of the peak positions as well as the shape of the scans (compare fig. 3 of ref. [26]). For a
quantitative comparison the theory has to be convoluted with the instrumental resolution function. We note
that RG calculations [18-22], which include only exchange forces, account for the experimental data equally
well as our MC theory in the energy domain probed by the experiments. This leads us to the conclusion that
there is no significant influence of the dipolar forces on constant energy scans above 0.2 meV. However, for
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Fig. 4. Real part of the scaling function for the transverse Kubo
relaxation function ¢7(x=0, y, v1) versus y=gp/q and vt at
T=T.. Inset: Linewidth of the transverse scaling function versus

[N

y~'=g/qp at T.. Solid line: half width at half maximum of the Fig. 5. Real part of the scaling function for the longitudinal Kubo
complete solution of the MC equations; dash-dotted line: relaxation function ¢ (x=0, y, v, ) versus y=¢p/q and v, at
lorentzian approximation. T=T.
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S
8
4
2
i Fig. 6. Constant-F scans at T for energies: E=0.1 meV, 0.2 meV
0 ! and 0.3 meV versus wavevector ¢ in A~". Solid line: MC theory

including dipolar interactions; dash-dotted line: RG theory with-
out dipolar interactions (eqs. (40). (41) of ref. [20]).

lower energies the dipolar interaction shifts the peak positions to smaller wavevectors with respect to the RG
results. This is exhibited in fig. 6, where we compare our MC results for dipolar ferromagnets with RG results
(see eqs. (40) and (41) in ref. [20]), which include exchange forces only. Further experiments at lower ener-
gies are needed to test this prediction.

Recently, in constant energy scans above 7, [27] significant disagreement was found with the RG results
of ref. [19]. We expect that this failure of isotropic scaling may be remedied naturally within our MC theory.
This requires the solution of the MC equations (15), (16) above 7, which is in progress.

For the numerical solution of the MC equations it was convenient to scale the frequencies with linewidths

obtained in the lorentzian approximation. Of course from the final result the exact haif width at half maximum
(HWHM) of the relaxation functions can be obtained. In the inset of fig. 4 we compare these two characteristic
frequencies for the transverse Kubo relaxation function ¢7(x=0, y, ) at T, where both functions are nor-
malized to 1 for y~! > 1. This leads for the lorentzian width to an effective non-universal constant A.=7.1
meV A%2 and for the HWHM to a value A.;=8.5 meV A%2. The latter is quite close to the experimentally
fitted values 8.3 meV A%2 [26] and 8.7 meV A2 [2]. Taking into account this enhancement of the non-
universal constant A by a factor 1.2 we find A.q=128.6 meV A%/2 for Fe, which is also quite close to the ex-
perimental value 130 meV A%/2 [2]. Except for this change of the non-universal scale there are only minor
differences between the lorentzian width and the HWHM, which makes clear why the lorentzian approximation
gives a good description for quantities depending on the linewidth only [12,13].
In conclusion we note that there is a crossover in the lineshape of the transverse Kubo function due to the
additional dipolar interaction from a shape similar to that found in renormalization calculations at small y
(i.e. ¢=¢qp) to a lorentzian like shape at ¢ << gp. The time dependence of the longitudinal shape function is
gaussian for small times and shows an oscillatory behaviour. The lineshape crossover has only small effects on
the crossover in the linewidth, which explains why the lorentzian approximation is excellent for the linewidth.
Comparing our theory with Mezei’s spin echo measurements, we have found that the MC theory accounts very
well for the data. Especially the rapid drop off at small times is explained very naturally in contrast to theories
taking into account solely the exchange interaction.

This work has been supported by the German Federal Minister for Research and Technology (BMFT) under
contract number 03-SC1TUM-0.
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