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Abstract

Lysosomes are cell organelles that degrade macromolecules to
recycle their components. If lysosomal degradative function is
impaired, e.g., due to mutations in lysosomal enzymes or mem-
brane proteins, lysosomal storage diseases (LSDs) can develop.
LSDs manifest often with neurodegenerative symptoms, typically
starting in early childhood, and going along with a strongly
reduced life expectancy and quality of life. We show here that
small molecule activation of the Ca2+-permeable endolysosomal
two-pore channel 2 (TPC2) results in an amelioration of cellular
phenotypes associated with LSDs such as cholesterol or lipofuscin
accumulation, or the formation of abnormal vacuoles seen by elec-
tron microscopy. Rescue effects by TPC2 activation, which pro-
motes lysosomal exocytosis and autophagy, were assessed in
mucolipidosis type IV (MLIV), Niemann–Pick type C1, and Batten
disease patient fibroblasts, and in neurons derived from newly
generated isogenic human iPSC models for MLIV and Batten dis-
ease. For in vivo proof of concept, we tested TPC2 activation in the
MLIV mouse model. In sum, our data suggest that TPC2 is a
promising target for the treatment of different types of LSDs, both
in vitro and in-vivo.
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Introduction

Lysosomal Ca2+ release is of significant physiological relevance.

Lysosomal Ca2+ regulates several cellular processes, e.g., autop-

hagy (Medina et al, 2015), membrane trafficking (Dong et al,

2010; Ruas et al, 2010; Cao et al, 2015), exocytosis (Samie

et al, 2013; Davis et al, 2020), nutrient adaptation (Cang et al,

2013), membrane repair (Cheng et al, 2014), and cell migration

(Bretou et al, 2017). Disruption of lysosomal Ca2+ content or

Ca2+ release is associated with several diseases, particularly

neurodegenerative lysosomal storage diseases (Kiselyov et al,

2010; Lloyd-Evans & Platt, 2011; Feng & Yang, 2016). Mucolipi-

dosis type IV (MLIV) constitutes the most direct link between

defective lysosomal Ca2+ release and neurodegeneration, caused
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by dysfunction of the lysosomal cation channel TRPML1 (also

called MCOLN1) (Slaugenhaupt, 2002; Feng & Yang, 2016).

TRPML1 signaling or TRPML1-mediated Ca2+ release is similarly

impaired in other LSDs such as Niemann–Pick type C1 (NPC1)

(Shen et al, 2012), Niemann–Pick type A (NPA; also called

infantile neurovisceral form of acid sphingomyelinase (SMPD1)

deficiency) (Zhong et al, 2016), and Fabry disease (Zhong et al,

2016). Pharmacological and genetic activation of TRPML1 ame-

liorates NPC1-associated lactosylceramide (LacCer) trafficking

defects and cholesterol accumulation (Shen et al, 2012), while

activation of the lysosomal big conductance Ca2+-activated

potassium (BK) channel TRPML1 dependently rescues aberrant

lysosomal storage in NPA and Fabry disease (Zhong et al,

2016). Furthermore, loss of FIG 4 (polyphosphoinositide phos-

phatase) and PYKfyve (FYVE finger-containing phosphoinositide

kinase), which are both involved in the synthesis of the

endogenous TRPML/two-pore channel (TPC) agonist PI(3,5)P2
(phosphatidylinositol 3,5-bisphosphate), is associated with neu-

rological or neurodegenerative disease phenotypes (Chow et al,

2007; Zhang et al, 2007; Zou et al, 2015), and TRPML1 activa-

tion in FIG 4�/� cells rescues lysosomal storage phenotypes

(Zou et al, 2015).

While activation of TRPML1 in LSDs is gaining traction, effects

of activating the related two-pore channel 2 (TPC2 or TPCN2)

remain unexplored. TPC2 shares several features with TRPML1:

both channels are permeable for Ca2+ and Na+ (Calcraft et al,

2009; Zong et al, 2009; Wang et al, 2012; Gerndt et al, 2020),

reside in endolysosomal membranes (Pryor et al, 2006; Calcraft

et al, 2009; Kim et al, 2009; Ruas et al, 2010), are activated by PI

(3,5)P2 (Dong et al, 2010; Wang et al, 2012; Gerndt et al, 2020),

are widely expressed in the CNS (Bae et al, 2014; Pereira et al,

2017; Foster et al, 2018; Minckley et al, 2019), cause trafficking

defects when lost (Dong et al, 2010; Shen et al, 2012; Chen et al,

2014; Grimm et al, 2014; Nguyen et al, 2017), interact with

mTOR/TFEB/autophagy pathways (Medina et al, 2011; Cang et al,

2013; Medina et al, 2015; Wang et al, 2015; Li et al, 2016; Ogun-

bayo et al, 2018; Scotto Rosato et al, 2019), and promote lysoso-

mal exocytosis (Medina et al, 2011; Samie et al, 2013; Gerndt

et al, 2020).

We therefore hypothesized that TPC2 activation may modulate

lysosomal Ca2+ signaling to rescue LSD phenotypes, particularly in

LSDs where TRPML1 is impacted. In our study, we focused on

MLIV and NPC1 on the one hand, LSDs that both have been

shown before to be connected to disrupted lysosomal Ca2+ signal-

ing and TRPML1 dysfunction (Shen et al, 2012). On the other

hand, we focused on juvenile neuronal ceroid lipofuscinosis

(JNCL) or Batten disease, caused by mutations in CLN3, an LSD

which shows prominent retinal and neurodegenerative phenotypes

with gradual vision loss and progressive cognitive decline as

observed in MLIV, and with a similar age-dependent disease onset

and evidence for disturbed lysosomal Ca2+ homeostasis (Chan-

drachud et al, 2015). By analyzing disease hallmarks in patient

fibroblasts, novel CRISPR/Cas9-engineered iPSCs/iPSC-derived

neurons, and the MLIV mouse upon treatment with a TPC2

small molecule agonist, TPC2-A1-P, we demonstrate that TPC2

activation ameliorates the phenotypes of these LSDs both in vitro

and in vivo.

Results

TPC2 activation modulates LSD phenotypes in human
patient fibroblasts

Based on the concept that disrupted endolysosomal Ca2+ homeosta-

sis constitutes a major pathomechanism underlying LSDs as evi-

denced by MLIV, we assessed the effect of our recently published PI

(3,5)P2-mimetic TPC2 agonist, TPC2-A1-P (Gerndt et al, 2020),

releasing both Ca2+ and Na+, on the phenotypes of the above-

mentioned LSDs. For NPC1 and MLIV, lactosylceramide (LacCer)

and cholesterol trafficking defects are reported (Shen et al, 2012;

Chen et al, 2014). Hence, we started our study by assessing these

defects in fibroblasts from NPC1 and MLIV patients compared to

control (CTR) fibroblasts. The lipid LacCer is internalized clathrin

independently and targeted to the Golgi apparatus in CTR cells,

whereas in several LSD fibroblasts including NPC1 and MLIV it accu-

mulates in late endosomes and lysosomes. Accordingly, we observed

significant endolysosomal accumulation of LacCer in NPC1 and

MLIV, and a range of other LSDs compared to CTR, but not for JNCL

(CLN3D1.02kb/D1.02kb) and Gaucher, as reported previously (Vitner

et al, 2010), demonstrating reproducibility of the assay (Fig 1A). We

next assessed the effect of TPC2 activation in MLIV and NPC1 versus

CTR fibroblasts. In MLIV fibroblasts, carrying the most common

patient variation (MCOLN1IVS3-2A>G/Ex1-7del; GM02048) TPC2 activa-

tion by TPC2-A1-P significantly reduced lysosomal accumulation of

LacCer (Mander’s coefficient) and the number of LacCer puncta per

area after incubation overnight (16 h) (Fig 1B and C), while in NPC1

cells (NPC1P237S/I1061T; GM03123), significant rescue was seen after

48 h incubation (Fig 1D and E). To assess maximal rescue effects,

we tested overexpression of a gain-of-function variant of TPC2

(TPC2M484L/G734E; Chao et al, 2017) with and without TPC2-A1-P

activation in MLIV fibroblasts (Fig 1F and G). Both TPC2 overexpres-

sion alone and overexpression in combination with TPC2-A1-P sig-

nificantly reduced lysosomal accumulation of LacCer in MLIV cells,

with a stronger effect seen in the combination. To exclude any poten-

tial toxic effects of TPC2-A1-P on fibroblasts, cell viability assays

were performed (Fig EV1A). Commercially available drugs reported

to activate TPC2 were examined alongside TPC2-A1-P (Zhang et al,

2019). In these tests, TPC2-A1-P showed no toxicity up to the maxi-

mal test concentration (100 lM; Fig EV1B). By using the Ca2+ chela-

tor BAPTA-AM, we could further demonstrate that reduction in free

intracellular Ca2+ induces a similar LacCer trafficking defect in CTR

as in MLIV or NPC1 cells (Fig 1H and I), suggesting a relevant role of

Ca2+ in the process. Furthermore, TPC2-A1-P rescued the lysosomal

LacCer accumulation in mock, but not in siTPC2-treated NPC1

fibroblasts, corroborating the on-target effect of TPC2-A1-P (Fig 1J

and K). LacCer trafficking is also affected by intracellular cholesterol

levels (Pryor et al, 2006; Vitner et al, 2010; Shen et al, 2012; Chen

et al, 2014). Cholesterol reduction reportedly restores proper LacCer

trafficking to Golgi, whereas cholesterol overload redirects LacCer to

endolysosomal compartments (Puri et al, 1999). We therefore next

assessed endolysosomal cholesterol accumulation, which has been

reported for both MLIV and NPC1 (Shen et al, 2012; Chen et al,

2014; Grimm et al, 2014). Altered cellular cholesterol homeostasis

can conveniently be visualized using the polyene antibiotic filipin.

While we could not detect cholesterol storage in JNCL cells, we
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could confirm that NPC1 and MLIV fibroblasts strongly accumulate

cholesterol (Fig 2A and B). In both NPC1 and MLIV cells, accumu-

lated cholesterol was efficiently reduced upon TPC2 activation with

TPC2-A1-P (Fig 2C and D). While in MLIV cells, significant effects

were seen already after 24 h treatment, again in NPC1 cells only after

48 h effects were significant (Fig EV2A and B). In a further set of

experiments, we tested TPC2M484L/G734E overexpression with and

without TPC2-A1-P activation, finding that only overexpression in

combination with the agonist significantly reduced intracellular

cholesterol (Fig 2E–G). Using BAPTA-AM, we could again demon-

strate, in analogy to LacCer, that chelation of Ca2+ results in choles-

terol accumulation (Fig EV2C and D), confirming free intracellular

Ca2+ to play a role in the process. BAPTA-AM was also shown to

blunt the effect of TPC2-A1-P (Fig EV2E and F). We further silenced

TPC2 expression in healthy human fibroblasts, which resulted in

cholesterol accumulation in siTPC2, but not in mock-treated cells

(Fig 2H and I), in accordance with previous observations in murine

TPC2 knockout fibroblasts (Grimm et al, 2014). Furthermore, TPC2-
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Figure 1. TPC2 agonist effect on lactosylceramide trafficking.

A Colocalization of LacCer and LysoTracker (LyTr) in different CTR and LSD patient fibroblasts. Mander’s coefficients were calculated using the Fiji JACoP plugin.
B, C Confocal images (B) and statistical analysis (C) showing colocalization of LacCer and LyTr in human CTR and MLIV fibroblasts, treated with TPC2-A1-P (30 lM,

16 h).
D, E Confocal images (D) and statistical analysis (E) showing colocalization of LacCer and LyTr in human CTR and NPC1 fibroblasts, treated with TPC2-A1-P (30 lM,

48 h).
F, G Confocal images and statistical analysis showing LacCer/LyTr colocalization in MLIV patient fibroblasts which were moc -electroporated and treated with DMSO or

electroporated with a gain-of-function hTPC2(M484L/G734E):mCherry TOPO 3.1 vector and treated with either DMSO or TPC2-A1-P (30 lM, 16 h).
H, I Ca2+ chelation (BAPTA-AM) dose dependently impairs LacCer trafficking in CTR fibroblasts.
J, K Confocal images (J) and statistical analysis (K) of NPC1 patient fibroblasts treated with 50 nM mock siRNA (siSCR) or siRNA targeting TPCN2 (siTPC2) for 72 h. Cells

were then treated with DMSO or TPC2-A1-P (30 lM).

Data information: Shown are mean values � SEM. n > 3 technical and biological replicates for each tested condition (each dot represents an imaged frame containing
several cells); one-way ANOVA, post hoc Bonferroni’s (A, C, E, G, I) or Tukey’s (K) multiple comparisons test. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-
value < 0.0001.
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A1-P rescued the cholesterol accumulation in mock-treated, but not

in siTPC2-treated NPC1 fibroblasts, corroborating the on-target effect

of TPC2-A1-P (Fig 2J and K). Efficacy of the siRNAs was validated

using qRT-PCR (Fig EV2G). We next used electron microscopy (EM)

to assess ultrastructural changes following compound treatment.

Gross alterations in endolysosomal morphology have previously

been reported in MLIV and NPC1 fibroblasts (Garver et al, 2000; Ver-

garajauregui et al, 2008). We found an abundance of lysosomes with

aberrant/lamellar structures in NPC1 and to a lesser extent in MLIV

cells, but observed no changes in lysosomal morphology in JNCL

fibroblasts (Fig 2L and M). NPC1 fibroblasts showed a stronger dif-

ference from CTR than MLIV fibroblasts and only for the former we

found TPC2-A1-P treatment to significantly restore ultrastructural

morphology (Fig 2L and M). While neither ultrastructural changes

nor changes in LacCer trafficking or cholesterol accumulation were

detectable in JNCL cells, JNCL patient fibroblasts are known to accu-

mulate lipofuscin—appearing as an autofluorescent green-to-yellow

pigment under ultraviolet light (Mole et al, 2020). We used the cell
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Figure 2. TPC2 agonist effect on cholesterol accumulation and ultrastructural changes.

A, B Confocal images (A) and statistical analysis (B) of cholesterol accumulation in human CTR, MLIV, JNCL, and NPC1 fibroblasts. Cholesterol accumulation was evident
for NPC1 and MLIV fibroblasts but not for JNCL fibroblasts. The images show filipin staining to visualize cholesterol accumulation and TO-PRO3 as nuclear staining.

C, D TPC2-A1-P (30 lM, 48 h) rescued NPC1 and MLIV cholesterol accumulation.
E–G Confocal images (E-F) and statistical analysis (G) of MLIV patient fibroblasts mock electroporated and treated with DMSO or electroporated with a gain-of-function

hTPC2(M484L/G734E):mCherry TOPO 3.1 vector (white arrowheads) and treated with either DMSO or TPC2-A1-P (30 lM, 48 h).
H–K Confocal images (H-I) and statistical analysis (J-K) of human CTR and NPC1 patient fibroblasts treated with 50 nM mock siRNA (siSCR) or siRNA targeting TPCN2

(siTPC2) for 72 h. Cells were then treated with DMSO or TPC2-A1-P (30 lM).
L, M Statistics (L) and electron microscopy images (M) of human CTR, MLIV, JNCL, and NPC1 fibroblasts. The effect of the treatment with TPC2 agonist (30 lM, 48 h)

was examined in NPC1 and MLIV cells.

Data information: Shown are mean values � SEM. n > 3 technical and biological replicates for each tested condition (each dot represents an imaged frame containing
several cells); one-way ANOVA, post hoc Bonferroni’s multiple comparisons test (B, D, E, L), or two-tailed Student’s t-test (J and K). *p-value < 0.05; **p-value < 0.01;
***p-value < 0.001; ****p-value < 0.0001.
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cycle blocker mitomycin C to exacerbate the progressive storage of

lipofuscin within lysosomal compartments in JNCL fibroblasts

(Fig 3A–C). Treatment with TPC2-A1-P rescued this autofluores-

cence, decreasing it to CTR levels (Fig 3A–C). Furthermore, we used

fluorescently labeled Shiga toxin (STX) to visualize globotriaosylce-

ramide (Gb3) accumulation, a recently reported (Soldati et al, 2021)

phenotype in JNCL cells, and found that TPC2-A1-P rescued Gb3

accumulation significantly (Fig 3D and E). In conclusion, activating

TPC2 with TPC2-A1-P restores various LSD phenotypes in patient-

derived fibroblasts.

Generation of human isogenic iPSC models of MLIV and JNCL
using CRISPR/Cas9

To extrapolate our patient fibroblast data to human neurons with iso-

genic controls, we used CRISPR/Cas9 to generate iPSCs expressing

either the most common MLIV-causing mutation MCOLN1IVS3-2A>G

(Bargal et al, 2001) or the JNCL-causing mutation CLN3D416G. In

addition, we generated a knockout model for CLN3 (CLN3DEx4–7)

(Fig 4A and B). To identify a suitable JNCL point mutant candidate,

we performed a systematic analysis of the subcellular localization of
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Figure 3. TPC2 agonist effect on lipofuscin and Gb3 accumulation.

A Confocal images of CTR and JNCL fibroblasts. Images show LAMP1 staining and autofluorescence at 405 and 488 nm excitation wavelength, respectively,
corresponding to the lipofuscin autofluorescence spectrum. Cells were treated with DMSO or TPC2-A1-P (30 lM) following cell cycle arrest (2 h mitomycin C treat-
ment).

B Confocal images showing no autofluorescence signal at 594 nm excitation wavelength (used for LAMP1 staining).
C Mean autofluorescence intensity in LAMP1+ area.
D, E Confocal images of Gb3 accumulation stained with Shiga toxin (STX) in CTR and JNCL fibroblasts. Cells were treated with DMSO or TPC2-A1-P (30 lM) after cell

cycle arrest.

Data information: Shown are mean values � SEM. n > 3 technical and biological replicates for each tested condition (each dot represents an imaged frame containing
several cells); one-way ANOVA, post hoc Bonferroni’s multiple comparisons test. **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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disease-causing CLN3 point mutations and correlated them with

reported clinical phenotypes (Fig EV3A–E). Based on this analysis,

we chose CLN3D416G, which shows significant reduction in

endolysosomal localization compared to its WT counterpart but not

complete mislocalization. Clinically, CLN3D416G causes the classical,

severe JNCL phenotype, marked by retinitis pigmentosa and pro-

gressive neurodegeneration (Kousi et al, 2012). The mutations were

engineered into WT A18944 iPSCs (CTR) using CRISPR/Cas9-

mediated gene editing (Fig 4A and B) (Weisheit et al, 2020). Active

gRNAs (Brinkman et al, 2014) were transfected alongside spCas9

and repair template. Since the cut sites overlapped with introduced

mutations, our approaches did not require blocking mutations to

prevent re-editing, yielding several homozygously edited clones

(Paquet et al, 2016; Kwart et al, 2017). Established iPSC clones

were deeply quality controlled to exclude undesired on-target effects

by qgPCR and SNP genotyping (Weisheit et al, 2020, 2021), integra-

tion of editing components by confirming puromycin sensitivity,

chromosomal abnormalities by performing molecular karyotyping,

and off-target effects by sequencing the top off-target sites deter-

mined by two distinct algorithms (CFD/MIT) (Fig EV4A–E). Mainte-

nance of pluripotency in edited lines was confirmed by staining for

pluripotency markers Tra1-60, Oct4, SSEA4, and NANOG (Fig 4C).

Effect of TPC2 activation in neurons derived from human
LSD iPSCs

JNCL and MLIV are both marked by primary neuronal dysfunction

as evidenced by neuronal monocultures developing pathological

characteristics such as autophagic defects, ultrastructural abnormal-

ities, and expansion of the lysosomal compartment (Curcio-Morelli
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Figure 4. Generation, differentiation, and characterization of lysosomal storage disease iPSCs.

A, B Timeline of gene editing, quality control, and differentiation. The A18944 iPSC line (CTR) was used for gene editing. iPSCs were electroporated with a plasmid
carrying spCas9, target gRNAs, and repair template. Target sites are shown in (B).

C Immunofluorescence images of pluripotency markers Tra1-60, Oct4, SSEA4, and NANOG demonstrate pluripotency of CTR and gene-edited iPSCs.
D Edited iPSCs were differentiated into cortical neurons expressing the neuronal markers TuJ and MAP2, and the cortical neuron transcription factor CTIP2.
E Using RT-qPCR, we assessed the expression of lysosomal storage disease genes (TRPML1 for MLIV and CLN3 for JNCL) and drug targets (TRPMLs and TPCs).
F, G iPSC-derived neurons were treated with apilimod to enlarge lysosomes, and TRPML1 responsiveness was assessed. ML-SA1 (10 lM)-elicited TRPML1 currents were

observed in CTR lysosomes but not in MLIV neurons, indicative of abrogated TRPML1 function.

Data information: Shown are mean values � SEM. n > 3 technical and biological replicates for each tested condition (each dot represents a single measurement from
distinct neuronal differentiations); Gaussian distribution assumed; one-way ANOVA, followed by Tukey post hoc test. **p-value < 0.01; ****p-value < 0.0001.
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et al, 2010; Lojewski et al, 2014; Kinarivala et al, 2020). We there-

fore employed our established protocol to differentiate iPSCs into

cortical neurons (Paquet et al, 2016) (Fig 4D) and assessed whether

these neurons express genes relevant for disease (TRPML1 for MLIV

and CLN3 for JNCL) and treatment (TRPML1 and TPC2). Tran-

scripts of TRPML1, TPC2, and CLN3 were readily detectable in the

cortical neurons, while the endolysosomal cation channels TRPML2,

TRPML3, and TPC1 were largely undetectable (Fig 4E). Measuring

TRPML1-dependent currents using the endolysosomal patch-clamp

technique (Chen et al, 2017), showed absence and presence in

MCOLN1IVS3-2A>G mutant and CTR neurons, respectively (Fig 4F

and G). Phenotypically, we assessed these neurons by analyzing

lysosomal cathepsin B (CtsB) activity, LysoTracker (LyTr) staining,

and ultrastructures by electron microscopy. To exclude any poten-

tial toxic effects of TPC2-A1-P on iPSC-derived neurons again, cell

viability assays were performed (Fig EV1C). Increased CtsB

activity is linked to cell death in MLIV (Colletti et al, 2012) and,

conversely, decreased CtsB activity has been reported in CLN3 dis-

ease (Metcalf et al, 2008). We applied fluorescence recovery after

photobleaching (FRAP) as established by Metcalf et al (2008), find-

ing MCOLN1IVS3-2A>G neurons to exhibit significantly increased CtsB

activity, while JNCL (CLN3D416G and CLN3DEx4–7) neurons either

exhibited slightly reduced or unchanged CtsB activity compared to

CTR. TPC2-A1-P treatment significantly decreased CtsB activity in

iPSC-derived MCOLN1IVS3-2A>G neurons (Fig 5A and B). We next

assessed the protein levels of intracellular CtsB by western blot anal-

ysis, finding increased CtsB levels in MCOLN1IVS3-2A>G compared to

CTR neurons, rescued by TPC2-A1-P treatment (Fig 5C and D).

We further assessed acidic compartments by LyTr (LysoTracker)

staining. The lysosomal compartment appeared expanded in MCOL-

N1IVS3-2A>G and JNCL neurons compared to CTR, which was

ameliorated upon TPC2-A1-P treatment (Fig 5E–G). We continued

with electron microscopy analyses of MCOLN1IVS3-2A>G and JNCL

neuronal progenitor cells to assess their ultrastructure. Lysosomal

inclusion bodies were readily detected in DMSO-treated MCOL-

N1IVS3-2A>G neuronal progenitor cells (NPC), and their number was

significantly decreased upon TPC2-A1-P treatment. Ultrastructural

analyses in JNCL cells on the other hand revealed no significant

change in inclusion body density, remaining further unchanged

upon TPC2 activation or DMSO treatment (Fig 5H and I). However,

the Cristae numbers per mitochondrial area were significantly

reduced in CLN3DEx4–7 compared to CTR NPC, and TPC2-A1-P treat-

ment significantly increased these numbers again (Fig 5H and I).

Lysosomal exocytosis and autophagy as potential
rescue mechanisms

We next examined the effect of TPC2-A1-P on lysosomal exocytosis

in LSD cells as potential mechanism, underlying the observed rescue

effects. Using LAMP1 translocation to the plasma membrane as read-

out, we found that TPC2-A1-P has a similar effect on lysosomal exo-

cytosis in CTR as well as in MLIV, NPC1, and JNCL patient

fibroblasts, demonstrating an intact TPC2-mediated exocytosis capa-

bility in the diseased cells (Fig 6A–D). As positive controls, the

TRPML1 agonist ML-SA1 and ionomycin were used. We next

assessed the effect of TPC2-A1-P on autophagy. Again, as positive

control, ML-SA1 was used. TPC2-A1-P increased starvation-mediated

autophagy in CTR fibroblasts (Fig 6E–G) in a TPC2-dependent

manner as demonstrated by siRNA experiments (Fig EV4F and G)

and recovered impaired autophagic flux in NPC1 and MLIV fibrob-

lasts (Fig 6F and G). Likewise, in iPSC-derived cortical neurons,

TPC2-A1-P increased starvation-mediated autophagy in CTR and

MCOLN1IVS3-2A>G (MLIV) neurons (Fig 6H). The autophagic flux

blockade in NPC1 and MLIV fibroblasts also leads to P62/Sequesto-

some 1 (SQSTM1) accumulation (Vergarajauregui et al, 2008; Elrick

et al, 2012; Sarkar et al, 2013). While starvation alone does not suffi-

ciently clear P62 accumulation, we found that treatment with TPC2-

A1-P under starvation conditions alleviates the autophagic flux

blockade in MLIV and NPC1 fibroblasts, clearing the accumulated

P62 (Figs 6I and J, and EV4H–K).

TPC2 expression in brain assessed by RT-qPCR and by analyzing a
novel reporter mouse model

To investigate the in vivo efficacy of TPC2-A1-P, we made use of

the MLIV mouse model (Venugopal et al, 2007; Grishchuk et al,

2014, 2015; Walker & Montell, 2016). One essential prerequisite

for TPC2 as a drug target for neurodegenerative LSDs is expres-

sion in various cell types of the CNS. To assess Tpc2 expression

in the brain, we generated a TPC2 reporter mouse model

(Tpcn2IRES-Cre/eR26-sGFP) (Figs 7A and EV5A and B) (Wyatt et al,

2017). The labeling of TPC2-positive cells via expression of sGFP
is dependent on the expression of Cre recombinase under control

of the TPC2 promotor. Focusing on the hippocampus and cerebel-

lum, two vulnerable brain regions in LSD-associated neurodegen-

eration (Frei et al, 1998; Prasad et al, 2000; Greene et al, 2001;

Pontikis et al, 2004; Walkley & Suzuki, 2004; Grishchuk et al,

2014, 2015), we observed the most distinct Tpc2 expression pat-

tern in neuronal fibers extending toward the hippocampal CA3

pyramidal layer. Furthermore, throughout the hippocampus, Tpc2+

pyramidal neurons and processes were readily observed (Fig 7B).

Tpc2 was also expressed in hippocampal and cerebellar astro-

cytes, microglia, and mural cells (CD13+) (Fig 7B). To quantify

channel expression, we analyzed Tpc2 transcript levels in the

mouse brain, finding Tpc2 transcripts in cortex, hippocampus,

cerebellum, and other brain regions (Fig 7C). We also assessed

TPC2 transcription in the human brain (Fig 7D). The highest

TPC2 expression was observed in hippocampus, cerebellum, cor-

pus callosum, nucleus accumbens, and paracentral and postcentral

gyrus (Fig 7D). We further quantified cell-type-specific expression

in hippocampus, cerebellum, and corpus callosum using the

reporter mouse model (Fig 7E). In conclusion, TPC2 is expressed

in all relevant cell types and regions of the brain to treat the lyso-

somal storage diseases under investigation here (Fig 7F).

Pharmacokinetics and in vivo testing of TPC2-A1-P in the MLIV
mouse model

To determine blood–brain barrier permeability and clearance of

TPC2-A1-P, we injected CTR (WT) mice with the compound and

measured its levels in plasma and brain by LC–MS/MS. Following

its injection, TPC2-A1-P decayed rapidly both in plasma and

brain, being undetectable after 240 min (Fig 8A). We determined

the elimination rate constants in the plasma and brain, fitting a

two-phase decay model to plasma elimination, and a one-phase

decay model in the brain (Fig 8B). We extrapolated these results
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to predict that an injection of 20 mg/kg TPC2-A1-P would yield a

therapeutic dose for ca. 20 min upon injection (estimated C0

between 30 and 60 lM and above 10 lM for ca. 20 min; Fig 8C).

Due to its rapid clearance, we opted for a daily intraperitoneal

treatment regimen. After 3 months of daily injections, mice were

sacrificed, and brains were collected for histology. Previous

reports demonstrated gliosis in both human patients (Folkerth

et al, 1995) and the MLIV mouse model (Grishchuk et al, 2014;

DeRosa et al, 2021). We assessed gliosis in cerebellum and

hippocampus of the MLIV mouse model, observing prominent

astrogliosis in the cerebellar arbor vitae (av) and granular (gr) cell

layer, and mild microgliosis of the cerebellar arbor vitae, while no

significant differences were seen in hippocampus (Fig 8D). Mice

injected with TPC2-A1-P were found to show significant ameliora-

tion of the astrogliosis phenotype in the cerebellar av (Fig 8D and

E). Furthermore, P62/SQSTM1 aggregates were shown previously

to accumulate in the central nervous system of the MLIV mouse

model, suggesting an impairment in protein degradation (Micsenyi
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Figure 5. Effect of TPC2-A1-P on human neuronal LSD phenotypes.

Cortical neurons were differentiated from iPSCs, generating lysosomal storage disease neurons and isogenic controls.
A, B Lysosomal proteolysis was measured following pre-treatment with DMSO/TPC2-A1-P, using the magic red (MR) cathepsin B substrate, and performing FRAP mea-

surements to assess the proteolysis rate. MCOLN1IVS3-2A>G (MLIV) neurons showed increased proteolysis, while CLN3D416G and CLN3DEx4–7 neurons (JNCL) exhibited
either significantly lower or slightly reduced proteolysis rates, respectively.

C, D Western blot analysis of cathepsin B (CtsB) in CTR and MCOLN1IVS3-2A>G neurons treated with TPC2-A1-P (30 lM) or DMSO.
E–G Cortical neurons were treated with compounds and acidic compartments stained with LysoTracker (LyTr). The endolysosomal expansion was observed in

MCOLN1IVS3-2A>G, CLN3D416G, and CLN3DEx4–7 neurons, which was ameliorated by TPC2-A1-P (30 lM) treatment.
H, I Electron microscopy analysis of neuronal rosettes (neuronal progenitor cells, NPC) treated with DMSO or TPC2-A1-P. TPC2-A1-P treatment significantly decreased

the number of inclusion bodies (black arrowheads) in MCOLN1IVS3-2A>G. CLN3D416G and CLN3DEx4–7 lacked an appropriate assay window and showed no significant
accumulation of inclusion bodies. However, CLN3DEx4–7 NPC showed significantly more mitochondria with aberrant cristae numbers (white arrowheads), a pheno-
type which was rescued by TPC2-A1-P (30 lM) treatment.

Data information: Shown are mean values � SEM. n > 3 technical and biological replicates for each tested condition (each dot represents an imaged frame containing
several cells, obtained from at least three distinct neuronal differentiations); one-way ANOVA, post hoc Tukey’s multiple comparisons test, or two-tailed Student’s t-test
(C). **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001.
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et al, 2009). Indeed, we observed a massive accumulation of P62/

SQSTM1 inclusions in the MLIV mouse cerebellar granular cell

layer and in the hippocampus compared to CTR (WT). Treatment

with TPC2-A1-P significantly reduced the number of P62/SQSTM1

aggregates (Fig 8F–I). Finally, we tested TPC2-A1-P- versus

vehicle-treated mice on motor performance on the accelerating

rotarod tasks (Walker & Montell, 2016), demonstrating a signifi-

cant rescue effect of TPC2-A1-P over vehicle treatment in MLIV

mice (Fig 8J). In contrast to rotarod, no significant differences

between CTR and MLIV mice were found in horizontal explora-

tory activity in the open-field test (Fig EV5C). Altogether, these

data suggest that TPC2 activation is able to restore central
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Figure 6. Effect of TPC2-A1-P on lysosomal exocytosis and autophagy.

A Confocal images of plasma membrane (PM) LAMP1 immunofluorescence in CTR fibroblasts. LAMP1 on the PM is expressed as fold change relative to DMSO-treated
cells.

B Statistical analysis of lysosomal exocytosis data as shown in (A).
C Lysosomal exocytosis in CTR, MLIV, NPC1, and JNCL human fibroblasts. PM-localized LAMP1 was measured by flow cytometry, expressed as percent of CTR

DMSO-treated cells. Ionomycin in (A–C) (4 lM; 10 min treatment) was used as a positive control. TPC2-A1-P and ML-SA1 (30 lM, each; 90 min treatment in A–C).
D Cartoon showing lysosomal exocytosis. Statistics (B, C): Shown are mean values � SEM. n > 3 for each tested condition (in (B), each dot represents an imaged

frame containing several cells, and in (C) each dot is the mean FITC intensity value expressed as a percentage obtained from at least 1 × 104 events); two-way
ANOVA, post hoc Dunnett’s (B), or Tukey’s (C) multiple comparisons test; *p-value < 0.05; ***p-value < 0.001; ****p-value < 0.0001.

E Cartoon showing the roles of LC3 and P62 in the autophagic pathway.
F, G Immunoblot analysis of endogenous LC3 (LC3I-II) following TPC2-A1-P or ML-SA1 (30 lM, each) treatment, alone or with BafA1, under fed (complete media), or star-

vation (HBSS) conditions in CTR, MLIV, and NPC1 patient fibroblasts. Graphs show densitometry of LC3II bands normalized to actin.
H Immunoblot analysis of endogenous LC3 (LC3I-II) following TPC2-A1-P (30 lM) or DMSO treatment, under fed (complete neurobasal/B27), or starvation (DMEM/F12

free) conditions in CTR and MLIV iPSC-derived cortical neurons. Graphs show densitometry of LC3II bands normalized to actin.
I, J Immunoblot and statistical analysis of endogenous SQSTM1 (P62) upon TPC2-A1-P or ML-SA1 (30 lM, each) treatment, under fed (complete media), or starvation

(HBSS) conditions in CTR, MLIV, and NPC1 patient fibroblasts.

Data information: In (G, H, J) shown are mean values � SD. n = 3 lysates per condition pooled from three independent experiments; two-tailed Student’s t-test.
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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nervous system defects and the decline in motor performance in

the MLIV mouse model.

Discussion

Boosting lysosomal trafficking, autophagy, and exocytosis shows a

promising therapeutic strategy to improve lysosomal function in

several diseases (Medina et al, 2011; Bae et al, 2014; Grimm et al,

2014; Medina et al, 2015; Garc�ıa-R�ua et al, 2016; Zhong et al,

2016; Grimm et al, 2017; Bonam et al, 2019; Tsunemi et al, 2019).

Here, we assessed the effect of TPC2 activation on LSD pheno-

types in human fibroblasts and isogenic iPSC-based neuronal mod-

els. We show that TPC2 activation with TPC2-A1-P rescues

storage phenotypes in MLIV, NPC1, and JNCL cells. Our in vivo

results further indicate that TPC2-A1-P restores central nervous

system defects, including astrogliosis and accumulation of P62/

SQSTM1 inclusions in MLIV mice (Folkerth et al, 1995; Grishchuk

et al, 2014; DeRosa et al, 2021), as well as improves their motor

performance (rotarod). Endolysosomes depend on the activity of

their channels and transporters, dysfunction of which often

severely affects organelle function and underlies neurodegenerative

disease pathology. TRPML1 and TPC2 are the primary lysosomal

Ca2+ release channels, mediating the Ca2+ efflux that so often is

impaired in neurodegeneration (e.g., NPC1, MLIV, Fabry, and

Alzheimer’s disease (Feng & Yang, 2016)). TRPML1 function is

directly affected in MLIV (Chen et al, 2014), while in NPC1 and

other LSDs, TRPML1 activity is reduced, e.g., by accumulating

sphingomyelin (Shen et al, 2012). In addition, lysosomal pH is

often increased in LSDs, affecting the activity of not only many

lysosomal enzymes but also TRPML1 (Dong et al, 2010). While

TRPML1 activity is pH dependent, decreasing with increasing pH,

C
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Figure 7. Expression of TPC2 in human and mouse brains.

The TPC2 reporter mouse Tpcn2IRES-Cre/eR26-sGFP was generated as previously described (Wen et al, 2011; Wyatt et al, 2017).
A–B Both neurons and glia were found to express Tpc2 in the corpus callosum, the hippocampus, and the cerebellum (so, stratum oriens; sp, stratum pyramidale; sr,

stratum radiatum; mo, molecular layer; gr, granular layer). Subpopulations of astrocytes (Gfap) and microglia (Iba1) express Tpc2 (E).
C One week (1w)- or 8-week (8w)-old mouse brains were dissected, and brain Tpc2 transcript was mapped.
D A cDNA array was used to map TPC2 transcripts in the human brain.
E Quantification of astrocytes(Gfap), microglia (Iba1) and neurons in different brain areas and percentage of cells coexpressing Tpc2 and the respective marker (Dbl =

double labeled).
F Tpc2 expression in the Tpc2 reporter mouse, mouse brain, and human brain is summarized as cartoons, finding highest expression in cerebellum and hippocampus

(top panels). Affected brain regions in the lysosomal storage diseases MLIV, JNCL, and NPC1 based on patient and mouse data are color-coded.
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TPC2 activation by PI(3,5)P2 is pH independent (Wang et al,

2012), which may be an advantage when targeting TPC2. Our

results provide an incentive to further investigate the potential

benefit of TPC2 activation in various LSDs. Besides LSDs,

TRPML1/TPC2 activation may also have relevance for adult-onset

neurodegenerative disease therapy. Indeed, stimulation of

lysosomal exocytosis via TRPML1 has recently been shown to

clear a-synuclein accumulation in Parkinson’s disease dopaminer-

gic neurons (Tsunemi et al, 2019), while another study demon-

strated that activation of TRPML1 cleared amyloid-beta (Ab),
which accumulates by unknown mechanisms in the lysosomal and

autophagic compartments of neurons in the HIV-infected brain
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Figure 8. TPC2-A1-P pharmacokinetics and in vivo rescue effects in MLIV mice.

A TPC2-A1-P was injected intravenously, and mice were sacrificed at the indicated time. TPC2-A1-P was measured in plasma and brain by LC–MS/MS. TPC2-A1-P was
rapidly eliminated, being undetectable by 240 min.

B Elimination rate constants were determined using a semi-log plot. A two-phase decay model could fit the obtained data points in plasma, while a one-phase decay
model fits the data in the brain.

C Brain [TPC2-A1-P] was simulated for various injected doses. 20 mg/kg TPC2-A1-P was chosen to avoid off-target activity while providing a therapeutic dose for
> 20 min.

D, E From 2 months of age, MLIV mice were injected daily with TPC2-A1-P i.p. and sacrificed after 13 weeks; av, arbor vitae; gr, granular cell layer; slm, stratum lacuno-
sum moleculare; and sp, stratum pyramidale. Mild microgliosis (Iba1) was observed only in the cerebellar av, while astrogliosis (Gfap) was observed in the cerebellar
av and gr layers in MLIV mice. TPC2-A1-P ameliorated MLIV-associated cerebellar astrogliosis.

F, G Plots showing mean numbers of P62 aggregates per section (cerebellum (F) and hippocampus (G)).
H, I Confocal images of endogenous P62/SQSTM1 inclusion in CTR and MLIV mouse cerebellar coronal (H) and hippocampal (I) sections.
J Results of the rotarod experiments using MLIV mice treated with vehicle or TPC2-A1-P, respectively, compared to vehicle-treated WT littermates (CTR).

Data information: Shown in (D) are mean cell densities for the indicated marker � SEM; shown in (F, G) and (J) are mean values � SEM (each dot represents an imaged
frame containing several cells, >3 frames per condition (F, G) or single animals (J)); two-way ANOVA, post hoc Bonferroni’s (D), Dunnett’s (F, G), or Tukey’s (J) multiple com-
parisons test. *p < 0.05; **p < 0.01; ***p-value < 0.001; ****p < 0.0001. The following mouse numbers per condition were used: CTR+DMSO, n = 6; MLIV + DMSO, n = 3;
MLIV + TPC2-A1-P, n = 4 (D–I); CTR+veh, n = 10; MLIV + veh, n = 11; MLIV + TPC2-A1-P, n = 13 (J).
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(Bae et al, 2014). These examples encourage further investigation

of targeting TRPML1/TPC2 also in adult-onset neurodegenerative

disease therapy.

Materials and Methods

Human fibroblast cell culture and electroporation

The following human fibroblast cells isolated from healthy/diseased

individuals were investigated: CTR (control) (GM00969), MLIV

(GM02048/MCOLN1IVS3-2A>G/Ex1-7del), NPC1 (NPC1P237S/I1061T;

GM03123), NPA (SMPD1L302P/L302P; GM00112), Gangliosidosis

(GLB1R201C/R201C; GM02439), Gaucher (GBAN370S/V394L; GM01607),

and Fabry (GLAW162+IVS4-16A>G+IVS6-22C>T; GM00107) from Coriell,

and JNCL fibroblasts (CLN3D1.02kb/D1.02kb; MIN30068). The cells

were grown in DMEM (supplemented with 1 g/l glucose, pyruvate,

GlutaMAX, 15% FBS, and 1% P/S) and kept at 37°C with 5% CO2.

Cells were electroporated using the Neon system (Invitrogen) with

100 ll tips according to the manufacturer’s instructions, electropo-

rating 106 cells at a time with 5 lg plasmid using 2 × 20 ms 1,400 V

pulses. Following electroporation, 30,000 cells were seeded for cell

biological assays into ibiTreat-coated eight-well chambers (ibidi) or

onto poly-L-lysine-coated 12 mm glass coverslips.

Lactosylceramide (LacCer) trafficking assay

Human fibroblasts were cultured in ibiTreat eight-well chambers

(ibidi) for live-cell imaging overnight prior to treatments. Cells

were treated with 30 lM agonist in DMSO (to a final DMSO con-

centration of 0,3%) overnight or up to 48 h, and the lactosylce-

ramide trafficking assay was subsequently initiated: Cells were

washed once with PBS, and 25 lM LacCer (BODIPY FL C5-

Lactosylceramide, Invitrogen) pulsed in serum-free culture medium

for 1 h at 37°C. Cells were washed twice with PBS and chased

with complete DMEM (including 15% FBS and the indicated ago-

nists) for 2 h at 37°C. LyTr-DR (LysoTracker-Deep Red; diluted

1:10,000, Invitrogen) was added 1,5 h into the chase time to visu-

alize acidic organelles. The cells were subsequently washed three

times with PBS, before adding a complete phenol-red-free medium

for imaging. The cells were transferred to a pre-heated 37°C incu-

bation chamber mounted onto a Zeiss Confocal microscope (LSM

880) and imaged using a 63 X water objective at 488 nm (LacCer)

and 633 nm (LyTr) excitation wavelength, respectively. For data

quantification, the Fiji software was used alongside the JACoP

plugin for colocalization quantification, calculating the Mander’s

coefficient for LyTr-DR overlapping LacCer. LacCer density calcula-

tions were performed using Harmony High-Content Imaging and

Analysis Software (PerkinElmer).

Filipin unesterified cholesterol storage assay

Human fibroblasts were cultured in 24-well chambers on poly-L-

lysine-coated coverslips overnight prior to treatments. Cells were

treated with 30 lM agonist in DMSO (to a final DMSO concentra-

tion of 0.3%) for 48 h, and the filipin staining was initiated: Cells

were washed twice with ice-cold PBS, and fixed in 4% PFA for

30 min. Fixed cells were again washed with cold PBS, and

unesterified cholesterol was visualized by filipin staining (PBS with

0.05 mg/mL filipin, Sigma-Aldrich, and 10% FBS) for 2 h at room

temperature in a dark humid chamber. Cells were subsequently

washed with ice-cold PBS twice, and nuclei stained using TO-PRO-3

(1:500, Invitrogen). Cells were washed twice and mounted on

microscope slides overnight for imaging. Images were captured

using a Zeiss Confocal Microscope (LSM 880), using a 40X oil

objective, at 405 nm (filipin), 560 nm (mCherry), and 633 nm (TO-

PRO-3). For data quantification, we calculated average filipin inten-

sity per cell using Harmony High-Content Imaging and Analysis

Software (PerkinElmer).

Mitomycin C treatment and JNCL autofluorescence analysis

Human fibroblasts (CTR and JNCL) were treated for 2 h with

30 lM mitomycin C (Millipore) to induce cell cycle arrest. Cells

were seeded onto a glass coverslip (2,5 x 104) overnight. After

16 h, t0 cells were fixed with PFA 4% or treated for 72 h with

DMSO, TPC2-A1-P, or ML-SA1 (30 lM). After 72 h, cells were

fixed with 4% PFA. PFA was quenched for 10 min with 50 mM

NaCl in DPBS 1X. Cells were then blocked and permeabilized in

blocking buffer (0.05% Saponin, 1%BSA, and 50 mM NaCl) for

20 min. LAMP1 antibody exposure was performed overnight

(1:800, SantaCruz). Cells were then incubated with Alexa Fluor

594-conjugated secondary antibody (Thermo Fisher) for 1 h at

room temperature. Nuclei were stained using To-Pro (Thermo

Fisher, 1:500 in PBS 1X) for 20 min. Confocal images were

acquired using an LSM 880 microscope (Zeiss) with 40X magnifi-

cation. Autofluorence mean intensities at 488 nm and 405 nm

excitation in the LAMP1+ area were calculated using unsaturated

images on ImageJ 1.52a software.

Lysosomal exocytosis experiments and isolation and culture of
primary macrophages

Lysosomal exocytosis experiments were performed as described pre-

viously (Gerndt et al, 2020). Further details are provided in the

Appendix Supplementary Methods.

Autophagy assays

Human CTR, MLIV, and NPC1 fibroblasts (5 × 104) were seeded in

12-well plate overnight. Treatment was performed for 180 min in

complete media or HBSS 10 mM Hepes (Thermo Fisher) with DMSO

or TPC2-A1-P (30 lM) or ML-SA1 (30 lM). To determine the ampli-

tude of the autophagic flux, a cotreatment with 100 nM of the vac-

uolar ATPase inhibitor Bafilomycin A1 (Millipore) was performed.

Samples were then prepared for western blot analysis. For western

blot analysis, antibodies were used as indicated in the

Appendix Supplementary Methods.

Site-directed mutagenesis and colocalization analysis using
confocal microscopy

All human CLN3 mutants were generated from WT cDNA templates

using QuikChange Site-Directed Mutagenesis Kit (Stratagene), fol-

lowing manufacturer’s instructions. Further details are provided in

the Appendix Supplementary Methods.
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Generation and quality control of lysosomal storage disease
iPS cells

The protocol for generating homozygous knock-in mutations in

induced pluripotent stem cells (iPSCs) has previously been exten-

sively described (Paquet et al, 2016). All details are provided in the

Appendix Supplementary Methods.

Differentiation and staining of lysosomal storage disease iPSC-
derived cortical neurons and staining

Cortical neurons were obtained as previously described (Paquet

et al, 2016). All details are provided in the Appendix Supplementary

Methods.

Real-time quantitative PCR analysis

In order to assess the expression levels of the target channels

and disease genes, we used real-time quantitative PCR (RT-qPCR).

Further details are provided in the Appendix Supplementary

Methods.

LysoTracker (LyTr) staining

iPSC-derived neurons were terminally matured in glass-bottom,

poly-ornithine/laminin-coated eight-well chambers (ibidi) as previ-

ously described, using DAPT and 5-FU for 7 days, and kept in cul-

ture for another week before imaging. iPSC-derived neurons were

treated with 0.3% DMSO or 30 lM TPC2-A1-P for 48 h prior to live-

cell imaging. LyTr-DR was added at a dilution factor of 1:10,000 to

the culture medium 30 min prior to confocal microscopy. The cells

were transferred to a pre-heated 37°C incubation chamber mounted

onto a Zeiss Confocal microscope (LSM 880) and imaged using a 63

X water objective and an excitation wavelength of 633 nm (LyTr).

Quantification of captured images was performed using the Fiji soft-

ware. A mask was generated around the neuronal cell bodies, and

the mean intensity was recorded.

Magic Red Cathepsin B activity measurements

We used fluorescence recovery after photobleaching (FRAP)

approach previously utilized for assessing proteolysis upon CLN3

knockdown (Metcalf et al, 2008) to assess proteolysis in iPSC-

derived neurons. Further details are provided in the Appendix Sup-

plementary Methods.

Endolysosomal patch-clamp experiments

Endolysosomal patch-clamp experiments were performed as

described previously (Chen et al, 2017). Further details are provided

in the Appendix Supplementary Methods.

Generation of the TPC2 reporter mouse line

Mice harboring the Tpcn2IRES-Cre locus were bred with ROSA26-

floxed stop-sGFP mice, giving rise to mice constitutively expressing

sGFP under the control of the TPC2 promoter. Further details are

provided in the Appendix Supplementary Methods.

Pharmacokinetic study of TPC2-A1-P in C57Bl/6N mice

The purpose of this study was to determine the pharmacokinetic

characteristics of TPC2-A1-P in C57Bl/6N mice following single

intravenous (IV) dosing. Study design, animal selection, handling,

and treatment were all in accordance with the Enamine PK study

protocols and conducted by the animal laboratory personnel at

Enamine/Bienta. All details of the study are provided in the

Appendix Supplementary Methods.

Electron microscopy experiments

Electron microscopy experiments were performed as recently

described (Polishchuk et al, 2019). Details are provided in the

Appendix Supplementary Methods.

Cell viability assay

Cell viability assays were performed using CellTiter-Blue reagent

according to the manufacturer’s protocol. Further details are pro-

vided in the Appendix Supplementary Methods.

Rotarod and open field

Rotarod and open-field experiments were performed as recently

described (Giordano et al, 2018; De Risi et al, 2021). Details are pro-

vided in the Appendix Supplementary Methods.

Statistics

Detailed information about statistics is provided in every figure

legend.

Data availability

This study includes no data deposited in external repositories.

The paper explained

Problem
Batten disease (JNCL), mucolipidosis type IV (MLIV), and Niemann–Pick
type C1 (NPC1) are fatal neurodegenerative rare lysosomal storage
diseases. There is currently no curative therapy available for either of
these diseases.

Results
We show here that treatment with a PI(3,5)P2-mimetic small molecule
agonist of the endolysosomal cation channel TPC2, TPC2-A1-P, amelio-
rates cellular disease phenotypes in patient fibroblasts and iPSC-
derived neuronal models of MLIV, NPC1, and JNCL as well as disease
phenotypes in the mouse model of MLIV in vivo.

Impact
Our data suggest that activation of TPC2 has the potential to serve as
a novel approach to treat different lysosomal storage disorders, in
particular those going along with a disturbed endolysosomal Ca2+

homeostasis.
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Expanded View for this article is available online.
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