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Severe COVID-19 is characterized by profound CD8+ T-cell dysfunction, which cannot
be specifically treated to date. We here investigate whether metabolic CD8+ T-cell
reprogramming by ketone bodies could be a promising strategy to overcome the
immunoparalysis in COVID-19 patients. This approach was triggered by our recent
pioneering study, which has provided evidence that CD8+ T-cell capacity in healthy
subjects could be significantly empowered by a Ketogenic Diet. These improvements
were achieved by immunometabolic rewiring toward oxidative phosphorylation. We here
report similar strengthening of CD8+ T cells obtained from severely diseased COVID-
19 patients: Flow cytometry and ELISA revealed elevated cytokine expression and
secretion (up to + 24%) upon ketone treatment and enhanced cell lysis capacity (+ 21%).
Metabolic analyses using Seahorse technology revealed upregulated mitochondrial
respiratory chain activity (+ 25%), enabling both superior energy supply (+ 44%) and
higher mitochondrial reactive oxygen species signaling. These beneficial effects of
ketones might represent evolutionary conserved mechanisms to strengthen human
immunity. Our findings pave the road for metabolic treatment studies in COVID-19.

Keywords: Ketogenic Diet (KD), SARS-CoV-2, COVID-19, T-cell immunometabolism, cytotoxic T cell, metabolic
therapy, nutritional immunology

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is keeping the world in suspense
for almost 2 years. Still, disease burden remains high and countless patients require hospitalization
up to intensive care. Pronounced T-cell immune dysfunction, particularly affecting CD8+ T cells, is
a hallmark of severe Coronavirus disease 2019 (COVID-19) (1–3). Importantly, an intact cytotoxic
T-cell response has been shown to be essential for effective protection against severe COVID-
19, control of viral replication and formation of long-lasting immunological memory (4). T-cell
function fundamentally depends on cellular metabolism and can be shaped by nutrient availability
(5). Consequently, T-cell immune dysfunctions are known to be linked to metabolic alterations (6).
Reprogramming CD8+ T-cell metabolism could hence be an innovative therapeutic approach to
treat the immune malfunction of COVID-19 patients.

In a pioneering study, we have recently provided evidence that a Ketogenic Diet (KD) markedly
enhances human T-cell immunity in healthy subjects. On a KD, very limited carbohydrate uptake
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results in endogenous production of ketone bodies—mainly
beta-D-hydroxybutyrate (BHB)—representing evolutionary
conserved metabolites, utilized for energy production via
mitochondrial oxidative phosphorylation (7). We demonstrated
that BHB boosters CD8+ T-cell function by inducing significantly
higher expression of central immune cytokines and enhanced
cytotoxicity. These changes were based on a substantial rewiring
of T-cell immunometabolism toward mitochondrial oxidative
energy production (8).

We thus assumed that ketone bodies might also augment the
impaired cytotoxic CD8+ T-cell response in severely diseased
COVID-19 patients. To test this tempting hypothesis, we
analyzed lymphocytes derived from patients with severe SARS-
CoV2 infection, consecutively enrolled within the COVID-19
Registry of the LMU Munich (CORKUM) network. In case
of favorable immunological results, nutritional intervention
could gain substantial importance in the treatment of COVID-
19 patients.

MATERIALS AND METHODS

Patient Sampling
Patients are part of the COVID-19 Registry of the LMU
University Hospital Munich (CORKUM, WHO trial id
DRKS00021225). Patient data were anonymized for analysis and
the study was approved by the local ethics committee (No: 20-
245 and No. 22-0128). Informed consent was obtained from all
patients. Research was performed according to the Declaration
of Helsinki (ethical principles for medical research involving
human subjects). Immune cells derived from patients with
PCR-verified COVID-19 infection, respiratory failure requiring
oxygen insufflation and disease severity WHO 4 or above
have been included into the experimental immunometabolic
intervention. Patient characteristics are depicted in Table 1.

Peripheral Blood Mononuclear Cell
Culture and Stimulation
Peripheral blood mononuclear cells (PBMC) from patients
with verified COVID-19 infection were purified by density
centrifugation (Histopaque 1077, Sigma-Aldrich, St. Louis,
MO, United States). A ViCell analyzer (Beckman Coulter,
Fullerton, CA, United States) was used to determine cell count
and viability. Cultivation of PBMC was performed in RPMI
1640 (Invitrogen, Carlsbad, CA, United States) at a glucose
concentration of 80 mg/dl. Cell medium was supplemented
with 10% heat-inactivated fetal calf serum (Biochrom, Berlin,
Germany), 1% L-glutamine (Life Technologies, Carlsbad, CA,
United States) and 1% HEPES (Sigma-Aldrich, St. Louis, MO).
100 U/ml penicillin and 100 U/ml streptomycin (Biochrom,
Berlin, Germany) were added to prevent bacterial contamination.
For incubation with BHB, D/L-beta-hydroxybutyrate (Sigma
Aldrich, St. Louis, MO, United States) was added to the medium
achieving a final concentration of 10 mM. T-cell stimulation
was performed using CD3/CD28 Dynabeads (Thermo Fisher
Scientific, Waltham, MA, United States), providing a bead-
to-cell ratio of 1:8, and 50 U/ml IL2 (Miltenyi Biotec,

Bergisch-Gladbach, Germany). Cells were incubated at 37◦C and
5% CO2 for 5 days.

CD8+ T-Cell Cell Isolation
Cytotoxic CD8+ T cells were isolated from stimulated PBMC
via microbead-based separation using the AutoMACSPro
Separator following the manufacturer’s instructions (Human
CD8 MicroBeads, # 130-045-201, Miltenyi Biotec, Bergisch
Gladbach, Germany). Prior to separation, CD3/CD28 Dynabeads
were removed magnetically.

Cytotoxicity Assay
Analysis of CD8+ T-cell lysis capacity was carried out using a
calcein-acetoxymethyl (AM) lysis assay, cultivating calcein AM-
labeled K562 lymphoblasts (target cells) with CD8+ T cells (8µM
calcein AM; #C1359, Sigma Aldrich, Darmstadt, Germany).
Upon cell lysis of target cells, calcein fluorescence was determined
on the FilterMax F3 MultiMode Microplate Reader (excitation
filter: 480 nm; emission filter: 520 nm | Molecular devices.
LLC, San Jose, CA, United States). Relative cell lysis capacity
was calculated using the formula [(test release – spontaneous
release)/(maximum release – spontaneous release)]× 100.

Enzyme-Linked Immunosorbent Assay
Quantification of secreted proteins was performed by Enzyme-
linked Immunosorbent Assay (ELISA) (IFNγ: #430104; TNFα:
#430204; Granzyme B: #439207; Biolegend, San Diego, CA,
United States | Perforin: #3465-1HP-2, Mabtech, Nacka Strand,

TABLE 1 | Patient characteristics.

n Patient value Standard value

SOFA score 14 1.4 ± 0.44

Gender (%
female/male)

20 30/70

Age (years) 20 66.4 ± 19.7

Oxygen saturation (%) 18 92 ± 2

Body temperature (◦C) 15 37.4 ± 0.2

O2 Flow (l/min) 18 4.3 ± 0.8

WHO score 20 4.25 ± 0.14

Lymphocytes abs
(cells/µl)

9 909.1 ± 231.2 1,220–3,560

Lymphocytes rel (%) 9 15.44 ± 4.9 18–46

T cells abs (cells/µl) 9 506.0 ± 98.9 700–2,100

T cells rel (%) 9 63.6 ± 7.3 57–85

Cytotoxic T cells abs
(cells/µl)

9 182.4 ± 43.3 200–900

Cytotoxic T cells rel (%) 9 21.0 ± 4.1 10–39

CRP (mg/dl) 20 6.7 ± 1.6 <0.5

IL6 (pg/ml) 20 73.7 ± 16.8 <5.9

PCT (ng/ml) 20 0.2 ± 0.04 <0.1

SARS-CoV2 copy
number (copies/ml)

17 116,803,162 ± 97,958,804 <100,000

All data reported as mean ± SEM.
SOFA, Sepsis-related organ failure assessment score; O2, oxygen; WHO, World
Health Organization; abs, absolute; rel, relative; CRP, c-reactive protein; IL6,
interleukin 6; PCT, procalcitonin.
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Sweden). Assays were conducted following the manufacturer‘s
protocol. Absorbance was measured using a Filtermax F3 and
concentrations of target proteins quantified by plate-specific
standard curves.

Oxygen Consumption Rate and
Extracellular Acidification Rate
Mitochondrial respiratory and glycolytic capacity were evaluated
using a Seahorse XF HS Mini for extracellular flux analysis
(Agilent, Santa Clara, United States). CD8+ T cells were seeded
into the wells of a poly-L-lysine (Biochrom, # L7240, Berlin,
Germany) coated 8-well HS mini plate (#103723-100, Agilent,
Santa Clara, United States). Seahorse RPMI (#103576-100,
Agilent, Santa Clara, United States) supplemented with 1 mM
sodium pyruvate, 2 mM glutamine and 5.5 mM glucose served as
assay medium. Experiments were run in duplicates or triplicates
with 70,000 cells per well. Extracellular acidification rate (ECAR)
and oxygen consumption rate (OCR) were measured in response
to Mito Stress Test (#103015-100). To this end, final well
concentrations of 1 µM Oligomycin, 1 µM FCCP and 0.5
µM Rotenone/Antimycin A were loaded into the respective
compound delivery ports of the sensor cartridge and added
sequentially during analysis.

Mitochondrial Membrane Potential
To examine mitochondrial membrane potential 1ψM, the
cationic carbocyanine membrane-permeable dye JC1 was used
according to the manufacturer’s protocol (Item No. 701560,
Cayman Chemical, Ann Arbor, MI, United States). Data were
acquired on a FACS Canto II flow cytometer (BD Biosciences,
Franklin Lakes, NJ, United States). In intact mitochondria,
1ψM-dependent JC-1 accumulation leads to the formation
of J-aggregates that emit red fluorescence (∼ 590 nm).
Depolarization of mitochondrial membrane potential results in
lower cellular concentrations of the dye, then forming green
fluorescent monomeric forms of JC1 (∼ 529 nm). 1ψM is
represented as the ratio of the mean fluorescence intensities of
red to green. The decoupling agent FCCP (Carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone) was applied as a negative
control, causing an almost complete disruption of 1 ψ M.

Cellular Reactive Oxygen Species
Quantification of intracellular reactive oxygen species (ROS)
was performed using CellROX Green (C10492, Thermo Fisher
Scientific, Waltham, MA, United States) in accordance with
the manufacturer’s instructions. N-acetylcysteine (NAC) and
tert-butyl hydroperoxide (TBHP) were used as negative and
positive controls, respectively. Analysis was performed on a
FACS Canto II flow cytometer (BD Biosciences, Franklin Lakes,
NJ, United States).

Antioxidant Capacity
Cellular antioxidant capacity was evaluated via quantification
of intracellular glutathione (GSH), using ThiolTracker (T10095,
Thermo Fisher Scientific, Waltham, MA, United States)
according to the manufacturer’s protocol. Data were acquired on

a FACS Canto II flow cytometer (BD Biosciences, Franklin Lakes,
NJ, United States).

Mitochondrial Mass Determination
MitoTracker Green FM (#9074, Cell Signaling Technology,
Danvers, MA, United States) was used for flow cytometric
determination of mitochondrial mass (200 nM MitoTracker
in the dark, 37◦C, 15 min). Mitochondrial mass per cell was
subsequently obtained by quantification of mean fluorescence
intensity (MFI) green on a FACS Canto II flow cytometer (BD
Biosciences, Franklin Lakes, NJ, United States).

Flow Cytometry
Antibody staining for flow cytometric analyses was performed
according to the manufacturer’s protocols. First, CD8+ T
cells were incubated with 2.5 µl Human TruStain FcXTM Fc
Receptor Blocking Solution (#422302, BioLegend, San Diego,
CA, United States). For extracellular CD4 + /CD8+ antibody
staining, cells were subsequently incubated on ice with the
designated antibody (PerCP anti-human CD8/anti-human CD4,
#344707/#317432 BioLegend, San Diego, CA, United States) for
a duration of 30 min, protected from light. Intracellular staining
of Interferon γ, Granzyme B and Perforin 1 was carried out using
FITC anti-human Interferon γ (#502506, BioLegend, San Diego,
CA, United States), BV421 anti-human Granzyme B (#396413,
BioLegend, San Diego, CA, United States) and APC anti-human
Perforin 1 (#308111, BioLegend, San Diego, CA, United States)
after cells had been fixed and permeabilized using eBioscienceTM

Fixation/Permeabilization Concentrate, Diluent and Buffer (#00-
5123-43 | #00-5223-56 | #00-8333-56, Invitrogen, Carlsbad,
United States) as to the manufacturer’s protocol. Flow cytometry
data were acquired on a FACS Canto II (BD Biosciences, Franklin
Lakes, NJ, United States). Data analyses were performed using
FlowJo v10 (FlowJo, Ashland, United States).

mRNA Expression Analysis
Expression of mRNA was quantified on a LightCycler 480
instrument (Roche Diagnostics, Mannheim, Germany) as
previously described (9, 10). In brief, RNA was isolated
using the miRNeasy RNA Isolation Kit (#217004, Quiagen,
Hilden, Germany). After on-column DNA digestion, cDNA
was synthesized from equal amounts of RNA using a
Superscript III reverse transcriptase (Invitrogen, Carlsbad,
CA, United States), random hexamers and oligo (dT) primers.
Succinate dehydrogenase subunit A (SDHA), and TATA
Box Binding Protein (TBP) served as reference genes in all
experiments. Primers and probes are specified in Supplementary
Table 1. The second derivative maximum method was used to
determine quantification cycles by the LightCycler software.
Quantification cycle (Cq) cut-off was defined for Cq 35, values
beyond cut-off were considered unspecific.

Statistical Analyses
Statistical analysis was performed using GraphPad Prism 9.2
(GraphPad Software, Inc., United States). Paired t-test or
Wilcoxon matched-pairs signed rank test, as appropriate, served
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FIGURE 1 | Beta-hydroxybutyrate enhances human T-cell immune capacity during COVID-19. Human peripheral blood mononuclear cells (PBMC) were cultivated
for 5 days in RPMI containing 80 mg/dl glucose (NC) and supplemented with 10 mM D/L-beta-hydroxybutyrate (BHB). T-cell stimulation was performed through
CD3/CD28 Dynabeads at a bead:cell ratio of 1:8. (A) Flow cytometric quantification of CD8+ T cells expressing intracellular Granzyme B (left), n = 15 individual
patients. For better visualization, a histogram example of one patient is shown. (B) Mean fluorescence intensity (MFI) Granzyme B per cell, measured in CD8+ T cells
(right), n = 15 individual patients. (C) Protein expression of TNFα/IFNγ/Perforin/Granzyme B in the supernatant of stimulated PBMC, n = 17/14/17/18 individual
patients. (D) Relative CD8+ cell lysis activity as measured by calcein-fluorescence of isolated CD8+ T cells, n = 8 individual patients. Paired t-test or Wilcoxon
matched-pairs signed rank test, as appropriate. *p < 0.05, **p < 0.01.

for comparisons. Normal distribution was tested using the
D’Agostino and Pearson test. Data were depicted as mean± SEM
(MFI, OCR and protein data) or as box plots with mean, median,
twenty-fifth and seventy-fifth percentiles and range (all other),
with dots indicating individual values. ∗p < 0.05, ∗∗p < 0.01.
Biological replicates are reported in the figure legends.

RESULTS

Study subjects exhibited disease severity WHO grade IV or
above and respiratory failure requiring continuous oxygen
insufflation. Patient characteristics are depicted in Table 1.
Lymphocytes were subjected to an established cell culture
model (8) and cultivated with D/L-BHB (BHB+) under T-cell
specific stimulation (CD3/CD28 dynabeads, Supplementary
Figures 1A–D). These cells will be referred to as BHB+
CD8+ T cells.

COVID-19 has been shown to severely impair CD8+ T-cell
immunity. One hallmark of this cell exhaustion is a decline
in cell number (1). Laboratory results of our study cohort
corroborate these findings by displaying reduced T lymphocyte
and cytotoxic T lymphocyte numbers in COVID-19 patients
(Table 1). To evaluate the effect of BHB on the immune
function of CD8+ lymphocytes, we performed flow cytometric

analysis of intracellular cytokines. We detected a significant
increase of BHB+CD8+ T cells expressing the central cytolytic
protein granzyme B (Figure 1A) and a substantially augmented
granzyme B expression per cell (+ 12% ± 5.4%, p = 0.038)
(Figure 1B). Functional investigations revealed a profound
enhancement of CD8+ immune capacity during COVID-19
upon BHB incubation. Secretion of CD8+ T-cell cytokines
IFNγ (+ 8.3% ± 2.2%, p = 0.0026), TNFα (+ 16% ± 7.9%,
p = 0.0248), Perforin (+ 24% ± 11%, p = 0.045) and
Granzyme B (+ 19% ± 5.2%, p = 0.0023) was markedly elevated
(Figure 1C). Consequently, BHB+CD8+ T cells were found to
have significantly increased cell lysis capacity (+ 21% ± 4.9%,
p = 0.0043; Figure 1D). Taken together, we provide evidence
for substantial augmentation of COVID-19 patients’ CD8+ T-cell
response after treatment with BHB.

In healthy subjects undergoing KD, immunometabolic
reprogramming of T cells occurs, which enables higher
mitochondrial energy production through oxidative
phosphorylation (8). To evaluate whether ketone bodies
also enhance CD8+ T-cell energy levels during COVID-19, we
performed Seahorse analyses. BHB+CD8+ T cells displayed
significantly higher basal (+ 17% ± 9.4%, p = 0.0463) and
maximum respiratory chain activity (+ 34.6% ± 25.3%,
p = 0.0294) as well as superior spare respiratory capacity
(+ 42% ± 30.5%, p = 0.0315), providing evidence for

Frontiers in Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 923502

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-923502 June 11, 2022 Time: 14:12 # 5

Hirschberger et al. BHB Augments T-Cell-Immunity During COVID-19

FIGURE 2 | Beta-hydroxybutyrate shifts human T-cell metabolism toward oxidative phosphorylation enabling higher mROS production. Human peripheral blood
mononuclear cells (PBMC) were cultivated for 5 days in RPMI containing 80 mg/dl glucose (NC) and supplemented with 10 mM D/L-beta-hydroxybutyrate (BHB).
T-cell stimulation was performed through CD3/CD28 Dynabeads at a bead:cell ratio of 1:8. CD8+ T cells were isolated via magnetic cell separation. (A–D) Oxygen
consumption rate [OCR] (A), basal (B), maximum (C) and spare respiratory capacity (D) were measured using a Seahorse HS mini Analyzer, n = 5 individual patient
samples, each performed in 2–3 technical replicates. (E) Mitochondrial mass determined via MitoTracker green, indicated by MFI FITC in human CD8+ T cells,
n = 12 individual patient samples. Histogram depicting exemplary change of MitoTracker green. (F) Quantification of mitochondrial superoxide production using
MitoSOX, displayed as MFI PE in human CD8+ T cells, n = 11 individual patient samples. Histogram depicting exemplary change of MitoSOX fluorescence.
*p < 0.05, **p < 0.01.

strengthened mitochondrial energy production (Figures 2A–
D and Supplementary Figure 1D). Of note, this metabolic
rewiring did not come at the expense of cellular glycolysis, as
extracellular acidification rate did not decrease in BHB+CD8+
T cells (Supplementary Figure 1E). These functional results
were complemented by structural analyses, showing a trend
toward increased mitochondrial mass in BHB+CD8+ T cells
(+ 26% ± 17.7%; Figure 2E). Collectively, these data indicate
that ketone bodies direct human CD8+ T cells toward aerobic
mitochondrial metabolism during COVID-19, thereby enabling
superior energy supply.

Mitochondrial respiratory chain complexes are the main
source for reactive oxygen species (ROS) (11). Mitochondrial
[m]ROS are indispensable for an adequate T-cell immune
response (12, 13). Thus, we investigated whether augmented ROS
production due to elevated OXPHOS activity in BHB+CD8+ T
cells provides an additional basis for the reported augmentation
of cytotoxic immune function during COVID-19. Indeed,
mitochondrial ROS were significantly elevated after incubation
with ketone bodies (+ 12% ± 5.9%, p = 0.0029, Figure 2F). Of
note, we did not detect uncontrolled expansion of ROS, as cellular
levels of ROS remained unchanged (Supplementary Figure 2A),
highlighting the concept of mitohormesis (14, 15). Consequently,
neither cellular expression of anti-oxidative glutathione nor the
integrity of the mitochondrial membrane were impaired upon
incubation with ketone bodies (Supplementary Figures 2B,C).

Of note, analysis of CD4+ T-cells showed no alteration
to mitochondrial mass or ROS production in response to
BHB (Supplementary Figures 2D–H). In conclusion, these
findings demonstrate an increase of [m]ROS production serving
as T-cell second messenger in BHB+CD8+ T cells without
compromising cell viability.

DISCUSSION

We have recently reported a strong positive impact of a KD
on human T-cell immune capacity in healthy volunteers (8).
In the current study, we found the same pattern of effects
in disease: The attenuated CD8+ T-cell functions of severely
diseased COVID-19 patients were significantly empowered.
Again, this phenomenon was based on a higher respiratory
capacity -enabling superior energy production- and increased
mitochondrial ROS which serve as T-cell second messenger.
It is conceivable that the observed effects of ketone bodies
represent evolutionary conserved mechanisms for stabilizing
human immunity in health and disease.

Functional exhaustion of T-cells is known to be linked
to mitochondrial dysfunction. Thus, we hypothesized that
mitochondrial empowerment through BHB could improve
T-cell function during COVID-19. We provide evidence for
an increased energetic capacity of BHB+CD8+ T-cells during
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COVID-19. T cells are capable of using BHB via Krebs cycle
oxidation, which is known to fuel OXPHOS with superior efficacy
(16, 17). Therefore, augmented cellular energy supply through
metabolization of BHB could enable an enhanced immune
response of CD8+ T-cells.

Elevated mitochondrial oxidative phosphorylation translates
into increased mROS, as respiratory chain complexes are the
major source of mROS (18). T-cell activation and function
inevitably relies on mROS, rendering them a pivotal signaling
molecule for T-cell immunity (12, 19). We show increased
mROS in response to BHB, which might provide the second
immunometabolic basis for the augmented CD8+ T-cell
immune capacity.

Patients PBMC were incubated using 10 mM D/L-BHB. As
only D-BHB is metabolically active (7, 20–22), this refers to 5
mM D-BHB, which is similar to maximum blood ketone levels
achievable via ad libitum KD (8). Since in vitro no BHB synthesis
is occurring, higher initial BHB concentrations must be used
to ensure adequate ketosis during cell culture. Of note, BHB
concentration in cell culture medium at the end of incubation
was in the range of 2 mM, thus almost identical to mean blood
BHB in vivo (Supplementary Figure 2I). Accordingly, lower
initial concentrations of BHB in vitro did not evoke comparably
positive effects on human T-cell immunometabolism. On a KD,
exogenous supply of ketone esters or the use of MCT oil could
help to achieve blood ketone levels close to 2 mM BHB.

In our previous investigations, KD had only a limited effect
on CD4+ T-cells. In the current study, again, CD4+ T-cells
do not respond to BHB. CD4+ T cells are essential regulators
of the human immune system (23). They can be further
divided into distinct subsets with individual immunological
function and metabolic characteristics (24, 25). We assume
that this subset heterogeneity might be responsible for
amelioration of the overall effect of KD when analyzing
bulk CD4+ T-cells. Thus, further studies are required to
dissect the impact of KD on individual CD4+ T-cell subsets in
health and disease.

Due to their multidimensional beneficial immunometabolic
effects, ketone bodies have been proposed as a countermeasure
against viral infections (26). To date, no study investigated the
impact of BHB on human viral infections. In mice, BHB has
already shown to induce a protective immune response against
influenza virus infection (27). Similarly, in beta coronavirus-
infected mice, KD improved γδ T-cell immunity and dampened
inflammation (28). The potential benefit of KD also expands to
other immune cell types. Macrophages contribute to detrimental
immune responses to COVID-19, which could be ameliorated
through redirection of M1 to M2 phenotype via metabolic
rewiring on a KD (29). Beyond immunological effects, KD has
been proposed as a metabolic therapy against COVID-19 through
restoration of systemic energy metabolism (30). Of note, KD
in vivo might evoke additional positive effects: carbohydrate
restriction results in diminished levels of glucose and insulin, thus
breaking the cycle of glucose-insulin-dependent inflammation
and immunosuppression (31–36). This could be of exceptional
importance, since metabolic comorbidities have a devastating
impact on COVID-19 patients (37–40).

Consequently, a retrospective data analysis of COVID-19
patients on a KD revealed correlations to a reduced mortality
(41). Prospective randomized clinical trials will now have to
evaluate the precise impact of BHB on human metabolism in vivo
during COVID-19.

Our study paves the road for the development of metabolic
treatment strategies against COVID-19, which now have to be
evaluated within the framework of controlled prospective studies.
Of note, the required nutrition formula and protocols are already
available. A clinical trial evaluating the impact of KD in sepsis
patients has already finished the enrolling phase, and results are
expected in the near future (42).
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