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Patient-level proteomic network prediction by explainable
artificial intelligence
Philipp Keyl 1,11, Michael Bockmayr 1,2,3,11, Daniel Heim1, Gabriel Dernbach1,4, Grégoire Montavon4,5✉,
Klaus-Robert Müller 4,5,6,7✉ and Frederick Klauschen1,4,8,9,10✉

Understanding the pathological properties of dysregulated protein networks in individual patients’ tumors is the basis for precision
therapy. Functional experiments are commonly used, but cover only parts of the oncogenic signaling networks, whereas methods
that reconstruct networks from omics data usually only predict average network features across tumors. Here, we show that the
explainable AI method layer-wise relevance propagation (LRP) can infer protein interaction networks for individual patients from
proteomic profiling data. LRP reconstructs average and individual interaction networks with an AUC of 0.99 and 0.93, respectively,
and outperforms state-of-the-art network prediction methods for individual tumors. Using data from The Cancer Proteome Atlas,
we identify known and potentially novel oncogenic network features, among which some are cancer-type specific and show only
minor variation among patients, while others are present across certain tumor types but differ among individual patients. Our
approach may therefore support predictive diagnostics in precision oncology by inferring “patient-level” oncogenic mechanisms.
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INTRODUCTION
Carcinogenesis involves a profound dysregulation of cellular
control mechanisms that leads to excessive proliferation and
evasion of apoptosis1–3. Proteins that participate in these
dysregulated networks are potential pharmacological targets in
precision oncology; however, the identification of the functionally
relevant network modules is still subject to ongoing research4.
Attempts are made trying to establish patient-derived functional
models such as xenografts or organoids. However, the imple-
mentation of such models is technically challenging and often
takes too long to be useful in routine diagnostics. Therefore, the
ability to infer functional network information from proteomic
profiling data even from routine diagnostic formalin-fixed tissue
samples would entail great potential for diagnostics and therapy.
Several methods for the inference of networks from cohort omics
data have been proposed5–9. While many of these methods give
insight into regulatory networks of homogeneous data as they are
available from experimental model systems, the inference of
regulatory networks for more complex, heterogeneous clinical
data is a more demanding task. Here, the primary goal is not to
find average population effects but to identify individual network
characteristics that may be indicators of why some cancers
metastasize or respond to treatment in a different way than
others10,11. Precise information about the regulatory pathways in a
tumor of an individual patient could help personalize treatment
by specifically targeting dysregulated interactions and thus
improve therapeutic efficacy12. LIONESS13 is a recently introduced
method that can infer the regulatory interactions between genes
or proteins for individual samples by linearly interpolating
between two interaction networks reconstructed on the basis of

cohort data. Here, we propose an approach that relies on a neural
network model in combination with the explainable AI technology
layer-wise relevance propagation (LRP)14–18 to predict regulatory
networks from proteomic data for individual patients from a single
sample19. Our approach is based on the assumption that if a
neural network model is capable of reliably predicting the
expression of a target protein based on the expression of a set
of other source proteins, regulatory relationships exist between
the source and the target proteins20. The explainable AI method
LRP can then be used to infer the relevance of every source
protein for the target prediction which can be interpreted as a
measure for functional relationships between proteins. First
approaches have shown that LRP can infer average interactions
from multiple samples21. Here, we show that LRP can infer protein
interaction networks even for individual patients and report
differences and similarities of protein interaction networks across
and within cancer types.

RESULTS
Prediction of protein interaction across cancers
The reconstruction of protein interaction networks was based on
proteomic data from The Cancer Proteome Atlas (TCPA)22,23.
We first chose the model hyperparameters (hidden layers,

neurons per layer, learning rate, and number of training epochs)
based on a 10-time repeated cross-validation. For every instance
of validation, 50% of data was sampled as training data while the
rest was held out as test data. The neural network model with
three hidden layers, a learning rate of 0.03, and a neuron number
of 10 times the input dimension showed the best performance
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(mean squared error: 0.48) on this task after training for 3600
epochs. It was therefore chosen for the final training and
subsequent inference of protein interactions with LRP.
As a measure of the protein interaction strength, we computed

the absolute undirected LRP scores LRPau. LRPau is defined as
mean of the two absolute LRP values LRPA⇒B (relevance of protein
A for the prediction of protein B) and LRPB⇒A between two
proteins A and B. We report median LRPau scores across patient
samples that are more robust than the mean against individual
strong interactions to yield characteristic quantitative estimates of
interaction strength in different cancer types. Among the
100 strongest median LRP interactions (out of 10,731), 56
interactions were described in the Reactome database (p= 1.1 ⋅
10−18, hypergeometric test)24,25. In comparison, GENIE3, one of
the state-of-the-art methods for network prediction, captured only
42 Reactome interactions with its highest 100 predictions (p=
3.8 ⋅ 10−9)6. The predicted interactions between unphosphory-
lated proteins and their phosphorylated variants showed the
highest LRPau interaction scores (median LRPau between phos-
phorylated variants= 0.47, interquartile range (IQR)= 0.80; all
other interactions: median LRPau= 0.28, IQR= 0.31; p < 10−16,
Mann–Whitney U test).
In the following, we validated the strongest interactions inferred

by our explainable AI approach (Fig. 1) by comparing the findings
with published experimental data (indicated by ↦). The IQR and
the p value of the Kruskal–Wallis test that compares the sample
distribution between tumor groups are reported in Fig. 1 for the
strongest predicted protein interactions. Since close relationships
can be expected between proteins and their phosphorylated
variants, we excluded them from Fig. 1 and from the following
comparison to previous reported interactions.
Strong inferred interactions (high absolute undirected LRP

values (LRPau)) were found for proteins within the mTOR pathway,
e.g.,

● mTOR—Raptor: median LRPau score 1.0.↦ Reactome.

4E-BP1 showed several strong predicted interactions:

● 4E-BP1—EIF4E: median LRPau score 0.74.↦ Reactome.
● 4E-BP1—S6: median LRPau scores 0.79/0.8.↦ Regulation of 4E-

BP1 and P70 S6 kinase by mTOR by phosphorylation26.

The interaction between 4E-BP1 and S6 was pronounced in kidney
renal clear cell carcinoma (KIRC).
AKT showed particularly strong interactions in glioblastoma

(GBM) and uterine corpus endometrial carcinoma (UCEC):

● AKT—GSK3: median LRPau scores 0.74/0.66/0.8/0.75.↦ Reac-
tome.

● AKT—Tuberin: median LRPau score 0.68.↦ Reactome, AKT
phosphorylates Tuberin at site T146227.

Further predicted interactions were well characterized in the
literature.

● GSK3—Tuberin: median LRPau scores 0.83/0.81.↦ GSK3 phos-
phorylates Tuberin28. The interaction with GSK3, but not
GSK3αβ, is registered in Reactome.

● NFκB—Tuberin: median LRPau score 0.98.↦ Both are phos-
phorylated by GSK328.

● Rictor—Tuberin: median LRPau score 0.68.↦ Reactome.
● β-Catenin—E-cadherin: median LRPau score 0.91.↦ Reactome.
● EGFR—HER2: median LRPau score 0.96.↦ Reactome.

The LRP scores between these two proteins were highest in head
and neck squamous cell carcinoma, lung adenocarcinoma (LUAD)
as well as GBM. The interaction between LCK and SYK was
particularly differential between tumors. It was strongest in
adenoid cystic carcinoma; however, the number of patients with
this cancer was the lowest in the data set (n= 46), possibly
reducing the quality of this prediction.

● LCK—SYK: median LRPau score 0.77.↦ Reactome.
● LCK—PI3K: median LRPau score 0.69.↦ Reactome.
● EGFR—SHC: median LRPau score 0.8.↦ Reactome.
● BAD—P38-MAPK: median LRPau score 0.77.↦ P38-MAPK has

been shown to regulate the phosphorylation of BAD at site
S11229.

● MEK1—P38-MAPK: median LRPau score 0.65.↦ Reactome.

The strongest interaction (median 1.5) was found for MAPK and
MEK1.

● MAPK—MEK1: median LRPau score 1.5.↦ Reactome.
● MAPK—SRC: median LRPau score 0.67.↦ Reactome. This

interaction was the most homogeneous interaction in Fig. 1
across tumors.

● BCL2—BIM: median LRPau score 0.79.↦ Reactome.
● BCL2—p27: median LRPau score 0.66.↦ BCL2 upregulates

p2730.
● Caveolin1—Collagen VI: median LRPau score 0.67.↦ Reac-

tome.
● c-Jun—JNK: median LRPau score 0.6.↦ Reactome.

The interaction between Cyclin B1 and FOXM1 was particularly
pronounced in UCEC and ovarian cancer.

● Cyclin B1—FoxM1: median LRPau score 0.88.↦ Reactome.
● MEK1—YB1: median LRPau score 0.68.↦ Interaction has been

shown for acute lymphatic leukemia31 and colorectal cancer32.
● S6—YB1: median LRPau scores 1.04/0.67.↦ YB1 has been

shown to be a downstream target of S6 kinases that is an
essential mechanism for the survival of breast cancer cells33.

Our analysis yielded additional, less well-known or unknown,
potentially novel interactions between the protein pairs
N-Cadherin and BID, Stathmin and BID, Caspase-7 and Lck,
Fibronectin and PAI-1 as well as p21. For the following predicted
interactions with high LRP score, the proteins had a similar
functional context:

● BID—Stathmin: median LRPau score 0.72.↦ Relevance in
apoptosis34.

● BID—N-Cadherin: median LRPau score 0.8.↦ Regulatory role
associated with the cell cycle35.

● Caspase-7—LCK: median LRPau score 0.78.↦ Participate in
regulation of apoptosis36.

● Fibronectin—PAI-1: median LRPau score 0.78.↦ Both are
regulated by TGF-β37,38 and their interaction might therefore
be of an indirect nature.

● Fibronectin—p21: median LRPau score 0.66.↦ Fibronectin has
been shown to suppress p21 expression39.

More predicted interactions can be found in Supplementary
Figs. 1 and 2.

Reconstruction of regulatory networks for individual patients
While our approach demonstrated the ability to reconstruct
protein interactions averaged over samples from the same tumor
type, tumors of the same entity may show substantial differences
among individual patients. Therefore, for clinical diagnostics as
well as for research it would be of interest to infer regulatory
networks for individual tumors. In the following, we applied our
approach to examine the individual interaction networks of
tumors of the TCPA data set. To compare the interaction networks
of individual patients we performed a t-SNE analysis (Fig. 2a)
based on the predicted interaction strengths (10,731 LRPau scores
between every pair of proteins), which showed that patients could
be separated into different groups, depending on their protein
interaction networks. First, in many cases, tumors of the same
cancer type were clustered together, indicating that they
exhibited a similar inferred interaction profile and can therefore
be assumed to be functionally similar. Prostate adenocarcinoma
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(C11), thyroid carcinoma (THCA, C6, C7), kidney renal papillary
carcinoma (C8), and KIRC (C3) could be well separated from other
cancers. The brain cancers GBM (C4) and lower-grade glioma (C10)
also formed two distinct, but relatively close clusters compared to
the other tumor types. While the t-SNE analysis suggests that
these tumors’ inferred protein interaction networks are closely
related, THCA is an example of cancer for which protein
interactions were distributed among several different clusters
(C6, C7, C9). Second, certain interaction network clusters were not
dominated by one cancer type but composed of tumors of several
types pointing to the existence of tumor type-independent
proteomic network features.

A closer examination of the strongest inferred interactions (Fig.
2a) underlined that the inferred interaction patterns were mostly
conserved across tumors of the same cluster, although differential
regulatory patterns exist even within clusters (e.g., GBM in cluster
4 and THCA in cluster 7). Some interactions were specific for their
cluster, e.g., the interaction between RAB11 and CD31 showed
strong associations in cluster 3 (KIRC), while Fibronectin and
Annexin-1 showed strong associations in cluster 7 (thyroid cancer).
A group of cancers that contained stomach adenocarcinoma,

LUAD, pancreatic adenocarcinoma, colon adenocarcinoma, and
rectal adenocarcinoma formed one cluster (C2) and showed very
similar protein networks (Fig. 2a, cluster 2). The most important

Fig. 1 Protein interactions with top LRP scores in the TCPA data set. Each subplot shows the median LRPau score (IQR indicated by error
bars), grouped by tumor type, as a measure of the interaction strength for each pair of proteins given in the headings. In addition, the
interquartile range (IQR) and the result of the Kruskal–Wallis test are reported. Several interactions our approach identifies are well known and
belong to the mTOR pathway or regulate the cell cycle or apoptosis. Some interactions are highly differential between cancer types, e.g., EGFR
and HER2, have particularly strong inferred interactions in glioblastoma, head and neck squamous cell carcinomas, and lung cancer and the
strongest interactions between Cyclin B1 and FOXM1 are predicted for endometrial carcinoma and ovarian cancer. The reported influence on
phosphorylation of BAD at site S112 by P38-MAPK and Tuberin at site T1462 by AKT is reflected in high LRPau scores. Interactions marked with
“*” have been reported in the Reactome database. More predicted interactions can be found in the Supplementary materials.
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Fig. 2 Interaction network prediction for individual patients. a t-SNE of tumors according to their predicted protein interactions. Every dot
refers to one tumor sample. Multiple groups of samples can be separated, and in many cases, tumors of the same cancer type fall into the
same cluster. Cancer types that build distinct groups are thyroid cancer (C6, C7), clear cell renal carcinoma (C3), and prostate adenocarcinoma
(C11). Samples of the brain cancers glioblastoma (C4) and low-grade glioma (C10) are embedded in close proximity, but can still be separated
from each other. The subplots in (a) illustrate the individual interaction networks for the eight largest clusters from the t-SNE analysis
(additional clusters can be found in Supplementary Figs. 3 and 4). The interaction graphs are arranged according to their computed position
in the t-SNE analysis to show differences in networks within one cluster. For illustration, only the strongest 0.1% of raw LRP scores are
displayed (red: LRPr > 0, blue: LRPr < 0). Samples within the same cluster had similar strongest interactions and some clusters are tumor type
specific (e.g., C3, C6, C7, C11), whereas others contain different tumor types (e.g., C2, C5). The finding that highly similar predicted network
features can be found across certain tumor types is particularly clearly visible for cluster 2. b Median interaction network for each of the
clusters in (a). Interactions with EGFR play an important role in cluster 4 (glioblastoma), while Beclin and YB1 are important in cluster 3 (renal
clear cell carcinoma). The group of homogeneous networks in cluster 2 shows the strongest interactions between cMET, ERCC1, Caspase-8,
Snail, PARP, Rb, and SMAC.

P Keyl et al.

4

npj Precision Oncology (2022)    35 Published in partnership with The Hormel Institute, University of Minnesota



network features were the proteins PARP, Caspase-8, Snail, c-Met,
ERCC1, and RB. Importantly, these predicted network patterns that
appear to be highly conserved across these samples have also
been reported in a study that examined protein regulation in a
cohort of LUAD (see also discussion)40. Further analysis showed
that the inferred interaction strength between these proteins had
a bimodal distribution in cancers of the gastrointestinal tract, the
lung, and the uterus while LRP scores for other tumors only were
distributed around the lower peak (see Supplementary Fig. 5).
These two peaks imply that certain tumor samples show
concerted pathway activity not present in other tumor samples
of the same type. The LRP scores between these proteins strongly
correlated with Pearson’s r ranging between 0.7 (Parpcleaved-
Snail with RB-ERCC1) and 0.99 (CMET-ERCC1 with ERCC1-
Parpcleaved) between every pair of these interactions, suggesting
a potential common regulatory mechanism.

Validation of network prediction using synthetic data
We validated our method using synthetic data to demonstrate the
capability of LRP to predict interaction networks. To this end, we
created two synthetic data sets, SD1 and SD2, which each
consisted of 4000 samples with 32 proteins with known synthetic
interactions. SD1 contained homogeneous data in the sense that
all synthetic cancer samples had the same interaction network
(Fig. 3a, b). Each sample consisted of four different groups of eight
proteins and interactions were set to exist only between members
of the same group, but not between proteins of different groups.
We compared the interactions inferred by LRPau with the
interactions inferred by Pearson’s correlation coefficient as well
as the tree-based method GENIE36 as baselines, which are
common methods for the reconstruction of interaction networks
from cohort data. LRPau (Fig. 3c, d; AUC= 0.996, CI= 0.993–0.999)
and GENIE3 (Fig. 3g, h; AUC= 0.988, CI= 0.983–0.993) clearly
outperformed correlation between proteins (Fig. 3e, f; AUC=
0.755, CI= 0.709–0.800) as a measure for interaction strength.
The second synthetic data set, SD2, contained inhomogeneous

data in the sense that each sample was based on one of four
interaction groups. Each group allowed interactions between
proteins within a set of eight proteins (Fig. 3k), while all other
proteins had no interactions in this group. In each group, a
different set of eight proteins was selected. This task introduced
an additional level of difficulty, because the neural network had to
predict the correct interaction network for each individual sample.
Our LRP-based approach identified the correct interactions for
individual samples with an AUC of 0.934 (CI= 0.933–0.935). The
inference of interactions with one of the current state-of-the-art
methods for individual network prediction, LIONESS13, using
Pearson’s r, returned an AUC of 0.893 (CI= 0.892–0.894). Due to
the choice of true interactions in this synthetic data set, many
interactions were homogeneously missing in all samples. When
we evaluated only those interactions that existed in some samples
while missing in others, LRP (AUC= 0.956, CI= 0.955–0.956)
outperformed lionessR even more clearly (AUC= 0.739, CI=
0.737–0.741).

DISCUSSION
Developments of targeted precision cancer therapies have mostly
relied on understanding oncogenic mechanisms obtained from
functional experimental studies of model systems. However, these
approaches have limited utility in capturing the complex
molecular landscape across individual patients observed in routine
diagnostics samples beyond the major oncogenic drivers41,42. To
exploit the large numbers of available diagnostic samples and to
improve the mechanistic insight into oncogenic processes, we
presented a method based on explainable AI capable of inferring

protein interaction networks from protein expression data for
single tumor samples of individual patients.
The reverse-engineering of interaction networks based on

expression data has gained interest with the increasing availability
of next-generation sequencing methods and several approaches5,9

have been proposed. Many of these methods have in common
that they reconstruct an interaction network based on a set of
samples and thus return an average representation over all the
underlying interaction networks irrespective of their individual
variability. However, due to the emergence of comprehensive
molecular analysis in routine cancer diagnostics, molecular profiles
are becoming increasingly complex and show substantial varia-
bility even in patients with the same cancer43–45. While functional
measurements of patient-derived models are difficult in a routine
diagnostic setting, averaged cohort analyses of FFPE tissue samples
do not capture important individual patient differences. Inferring
(functional) interaction networks for individual patients from (non-
functional) proteomics measurements of cancer tissue samples
would therefore be one prerequisite for understanding functional
implications of molecular profiles and ultimately to support
targeted therapy selection in a routine diagnostic setting9.
Approaches that try to model gene pathways for individual
patients ("N-of-1 methodologies”9) often rely on several samples
from the same patient or on additional information like gene
ontology46,47. While several methods have been developed to
detect enrichment of disease genes in individual patients9,46,47,
inferring the interaction strength between pairs of proteins (or e.g.,
genes) can help reveal mechanisms and reconstruct functional
networks.
Unlike previous methods, our approach relies on a neural

network model and explainable AI. By using the absolute value of
the LRP score as a measure of functional dependence between
proteins, we focus on the interaction strength between proteins.
Thus, our method can pick up nonlinear relationships between
proteins that may include positive and negative effects (LRP
values) that would otherwise sum up to zero effect. In our
validation experiments, LRP performed at least as well as GENIE3,
one of the current state-of-the-art models for the prediction of
average networks. However, the full potential of LRP lies in the
simultaneous prediction of the underlying interaction networks
for individual patients. It identified interaction networks in
heterogeneous data (SD2) on a single-sample basis with high
discriminatory power. This property facilitates the reconstruction
of interaction networks for individual patients after training the
neural network on a data set consisting of the combined data of
many different cancers. Since GENIE3 only predicts average
networks over samples, we compared the performance of our
method for this task against LIONESS combined with Pearson’s r,
which has been used for the analysis of biological data in the
original paper13. LIONESS is a recent approach to predict an
individual interaction network based only on expression values by
reconstructing the average interaction network of a whole data
set with and without a particular sample. Subsequently, the
network of an individual tumor is estimated based on the
difference between the two average networks. This explanation
procedure, however, depends on the data distribution (e.g., if
duplicate or strongly similar examples are present in the data set).
Our approach outperformed LIONESS at detecting interactions for
individual tumor samples, especially when focusing on the
identification of interactions that are differential between samples.
While LIONESS’s performance decreased for these interactions,
LRP showed very stable results and the AUC even slightly
increased.
To estimate the effect of a pharmacological intervention on a

protein and thus a signaling path, it may be necessary to predict
the causal direction of an interaction between two proteins. Since
there are two LRP scores computed between every pair of
proteins, future studies with larger data sets should evaluate if this
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can provide further information about the causal structure of
interaction networks.
Similar to many other network prediction algorithms6,8, we

report a measure for interaction strength on a continuous scale.
The lack of a clear rationale to define thresholds is consistent with
the fact that regulatory relationships between proteins can often

not be regarded as binary (i.e., existing or not existing), but that
they have variable strengths (binding kinetics) from very weak to
strong.
A substantial number of the interactions predicted with our

approach are validated by well-established knowledge from
experimental studies, such as interactions among proteins of the

Fig. 3 Network reconstruction on synthetic data. Synthetic data SD1: Interactions were defined only between proteins that are members of
the same group of eight proteins. The existence or absence of interactions between two proteins can be represented with an interaction
graph (b) or, alternatively, as entries of an adjacency matrix (a) that are set to one if two proteins interact and to zero if they do not.
c–h Reconstructed interactions (top) and respective ROC analyses (bottom). LRPau (c, d) and GENIE3 (g, h) can reconstruct the interaction
graph almost perfectly and clearly outperform Pearson’s r (e, f). Synthetic data SD2: i Reconstruction of protein interactions for individual
samples of data set SD2 with LRPau. In each sample, only members of one of four protein groups interacted with each other while all other
proteins had no interactions. The first column illustrates a ground truth interaction network (visualized as adjacency matrix), while all further
panels of the row represent the LRP reconstruction of the interaction network for individual samples from this interaction group. Overall,
interactions could be reconstructed with an AUC of 0.934. j Each subplot shows the averaged strength of predicted interactions between the
different protein groups (logarithmic scale). Median is indicated by center line, bounds of boxes indicate interquartile range, and whiskers
extend to a maximum distance of 1.5 ⋅ IQR from the hinge. High values were found specifically between proteins of the same group (on the
diagonal) and only if the interaction group to which the sample belonged, permitted interactions in this set of proteins. k t-SNE analysis of
samples according to their reconstructed interactions. Each point represents one sample, and colors indicate the four different interaction
groups. Samples that had the same interactions are separable from other samples.
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mTOR pathway (mTOR, AKT, Rictor, Raptor, S6, TSC2 (Tuberin), and
4E-BP1) that received top interaction scores with our approach48.
At the same time, most predicted interactions differed signifi-
cantly between cancer types. Other predicted interactions are less
well-established by previous studies and here our results may
contribute to formulate novel hypotheses on so far unknown, but
potentially relevant mechanisms. Whether these predicted inter-
actions correspond to true functional relationships between these
proteins, certainly requires future experimental validation.
The investigation of interaction networks revealed, in most

cases, an expected strong dependence on the tumor type49.
However, a substantial number of individual tumors of the same
cancer type showed differential protein interactions, e.g., the
interaction networks of some THCAs were separated into three
different groups. The molecular network features of one of these
groups, cluster 2, appeared to be less tumor type specific and
contained, apart from thyroid cancer, tumors from the gastro-
intestinal tract, pancreatic cancer, and endometrial as well as
cervical carcinoma. The dominant network features in tumors of
this cluster were formed by the proteins c-Met, ERCC1, Caspase-8,
Snail, PARP, and RB. This expands the results of Datta et al. who
described this regulatory pattern for LUAD using a partial least
squares method40. The largest regulatory network they found
included ERCC1, PARP, Snail, c-Met, Caspase-8, and Rb, but
connections to RB were reduced in a subgroup that showed tumor
progression. While clinical information about the tumors in our
data set is not sufficient for a similar analysis, the description of
this regulatory network in Datta et al. is consistent with our results
(Fig. 2, cluster 2). Furthermore, we observe that this particular
regulatory pattern only appears in certain patients while it is not
present in others with the same cancer.
RB is a well-known tumor suppression factor50. c-MET is

associated with relapse of breast cancer51 and drug resistance in
cancer52. Snail is associated with the epithelial-mesenchymal
transition relevant for the ability of cancer to metastasize53. PARP
has different functions and plays a role both in cell growth and
DNA repair54, and PARP is associated with drug resistance in
cancer55. It is hypothesized that Caspase-8 promotes cancer
progression and resistance to therapy in some cancers56. Our
results suggest that a common underlying regulatory mechanism
exists between these proteins that may be related to drug
resistance. However, this hypothesis certainly needs to be
investigated in further studies.
The method proposed in this paper underlines the great

potential of explainable artificial intelligence in cancer research
57–62. While the prediction of sample-wise networks is applied to
proteomic data here, it can in principle be applied to any kind of
molecular profiling data. It may therefore contribute to the
investigation of regulatory networks when large-scale observa-
tional data are abundant. The method may be applied to data
obtained from routine diagnostic samples to study oncogenic
mechanisms in individual patients and may in the future support
predictive diagnostics in precision oncology.
Precision therapy strongly relies on the molecular characteriza-

tion of individual patients’ tumors by molecular profiling. Since, in
many cases, this does not sufficiently predict a tumor’s response
to therapy, more functional information such as protein interac-
tion networks could help improve therapy selection. In this study,
we proposed a method that uses LRP to predict protein
interaction networks for individual patients. On synthetic data,
we showed that LRP predicts networks of individual samples with
high precision. Using proteomic data across major cancers, we
predicted protein interactions that showed a high agreement with
current knowledge and the Reactome database. As an example,
we found a highly characteristic network pattern consisting of the
proteins c-MET, PARP, Caspase-8, Rb, SNAIL, and ERCC1, some of
which are known to be related to drug resistance. Using our
approach we could show that this pattern appears only in tumors

of some but not all patients with certain cancer types. These
findings suggest a great potential for explainable artificial
intelligence for precision oncology.

METHODS
Machine learning-based inference of protein interactions
We used a machine learning approach for inferring protein interactions
from observed protein data. Our analysis consisted of two steps: First, a
neural network was trained to maximum accuracy in order to predict held-
out protein abundances from the remaining protein abundances. Then an
explainable AI technique, specifically LRP, was applied to identify relevant
interactions between proteins at the input and output of the network.

Neural network
A fully-connected neural network model with ReLU activation between
layers was trained on the training set to solve an imputation task in which
for each sample the abundance of a number of proteins was hidden and
had to be predicted given the observed proteins.
For every training sample, each protein was hidden with a probability p,

with p drawn randomly and uniformly from [0.01, 0.99]. Drawing p from
[0.01, 0.99] for every sample at every iteration during training results in a
neural network capable of imputing the missing proteins from any number
of known proteins. As a consequence, the number of hidden proteins
followed a binomial distribution Bðn; pÞ with parameter n fixed to the total
number of proteins, and parameter p drawn randomly and uniformly from
[0.01, 0.99].
To distinguish between zero-valued and missing proteins, proteins were

given as input in the expanded form ϕ(x)= [x, 1− x] where x denotes the
protein value, and were set to ϕ(x)= [0, 0] if the protein was hidden.
The loss was computed as the mean squared error over the hidden

proteins between the predicted protein value and the ground truth. The
model was trained by gradient descent with a batch size of 250 and a
momentum of 0.9. Learning rate (0.03), number of hidden layers (3),
number of neurons per layer (10 * input dimension), and number of
epochs (3600) were determined by 10-time repeated cross-validation, each
time using a train-test-split of 50–50% (see Supplementary Fig. 6).

Layer-wise relevance propagation (LRP)
Once the neural network was trained, we applied LRP14,63. The LRP method
identifies which input variables of the neural network have contributed to
a given predicted output. The method starts in the top layer by assigning
Rout← yout, where yout denotes the predicted value for some protein. The
method then redistributes Rout layer after layer, until it reaches the input
layer. Let j and k be indices for the neurons of two adjacent layers, and

ak ¼ max 0;
X
0;j

ajwjk

 !
(1)

be one neuron connecting these two layers. The notation ∑0,j denotes
summing over all neurons j in the lower layer plus a bias term w0k with a0
= 1. The redistribution performed by LRP applies a propagation rule at
each layer. In our work, we apply and extend the rules in63. In particular, we
consider as a starting point the LRP-0/ϵ/γ rules given by:

Rj ¼
X
k

aj � ðwjk þ γwþ
jk Þ

ϵþP0;jaj � ðwjk þ γwþ
jk Þ

Rk ; (2)

where wþ
jk ¼ maxð0;wjkÞ. Neurons j are assumed to be positive and the

neuron k in the next layer is assumed to be passed to a ReLU activation.
The parameter γ can be set between 0 and ∞, and can be seen as
implementing a tradeoff between the robustness of the explanation and
its bias. The larger the γ, the more robust the explanation; the smaller the γ,
the closer it becomes to a gradient-based explanation. The parameter ϵ
can be set between 0 and ∞ as well, and if set to a positive value, it
encourages the LRP procedure to retain only the most salient elements of
the explanation.
In practice, our neural network for protein prediction received real-

valued inputs in the first layer and it had a top-level linear layer that
produced real-valued outputs. For the more general neuron definition

ak ¼ g
X
0;j

ajwjk

 !
(3)
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with aj 2 R and the activation function g : R ! R being either a ReLU
function or an identity function, we can define the more general
symmetrized LRP rule:

Rj ¼P
k

aþj ðwjk þ γwþ
jk Þþ a�j ðwjk þ γw�

jk Þ
ϵþ
P

0;j
aþj ðwjk þ γwþ

jk Þþ a�j ðwjk þ γw�
jk Þ
1ak > 0Rk

�

þ aþj ðwjk þ γw�
jk Þþ a�j ðwjk þ γwþ

jk Þ
�ϵþ

P
0;j
aþj ðwjk þ γw�

jk Þþ a�j ðwjk þ γwþ
jk Þ
1ak < 0Rk

�
;

(4)

where wþ
jk ¼ maxð0;wjkÞ and w�

jk ¼ minð0;wjkÞ, and similarly for aj. This
rule addresses the four cases of input and output (positive/positive,
negative/negative, positive/negative, and negative/positive) separately,
and recombines them into a single propagation rule. This rule reduces to
the standard LRP-0/ϵ/γ rules when inputs and outputs are both positive.
In order to predict sample-wise protein interaction networks, we first

choose a target protein that is always hidden while all other proteins are
hidden with a probability of p= 0.5. We then let the neural network
predict the target protein based on the proteins that are visible. The choice
of p= 0.5 results in every combination of hidden proteins being equally
likely. After the prediction of the target protein, our symmetrized LRP rule
is applied at each layer from the output of the network to the input. Once
the LRP procedure arrives at the input features, the contribution of a given
(visible) input protein for the prediction of the target protein is obtained by
summing over the two input neurons forming the protein expansion ϕ(x).
This is repeated 100 times and the LRP scores are averaged over these 100
random imputations in order to average over different combinations of
predicting (visible) proteins which results in raw LRP scores LRPr between
the target protein and all other proteins. We repeat this for every target
protein to arrive at a full matrix connecting each protein to each other
protein.
In order to derive a measure for the undirected interaction strength

between two proteins, we use the average of the two absolute LRP values
between two proteins and call it LRPau.
In previous experiments, we found that the best protein interaction

matrices are obtained by setting the LRP hyperparameter γ= 0.01. We
chose ϵ= 10−5 for numerical stability. This choice of hyperparameters
transferred well qualitatively to the real-world data. Both training of the
neural network and the computation of LRP values were conducted in
Python/pytorch.

Synthetic data for validation experiments
For the validation of our method, it was necessary to simulate a data-
generating system in which interactions between features could be
controlled. Our data generator consisted of a neural network h with two
hidden layers that simulated interactions between certain pairs of proteins.
Interactions were restricted to protein pairs by multiplying the fully-
connected layers of the neural net with the adjacency matrix of a
predefined interaction network. A 32-dimensional protein abundance
vector a0 was initialized to 0 and was updated by the generator according
to the following rule:

at ¼ hðat�1 þ ϵÞ ϵ � Nðμ; ΣÞ; (5)

where Nðμ; ΣÞ describe a normal distribution with μ= 0 and the
covariance matrix Σ chosen uniformly at random. a50, the protein
abundance vector generated after 50 iterations, was taken as a sample
for the data set, and the procedure was repeated until the requested
amount of samples had been generated. A rectified linear unit was applied
to the output of the first layer of h and a sigmoid function to the output of
the second layer so that the neural network output would not diverge.
Our LRP method was validated on two different data sets, SD1 and SD2,

consisting of a training set and a test set with 2000 samples each. In SD1
the artificial proteins had the same interactions in all samples. The
adjacency matrix was chosen as the block matrix such that interactions
between proteins were restricted to four different protein groups
consisting of eight proteins each, while there were no interactions
between proteins of different protein groups. LRP values were computed
for all combinations of two proteins and for each sample and then the
mean absolute undirected LRP score LRPau was used as a measure for the
interaction strength between every pair of proteins. Differences between
the ground truth adjacency matrix and the reconstruction by LRP were
analyzed with a receiver operating characteristic (ROC) curve and
compared to the reconstruction of features when using the absolute
Pearson’s correlation coefficient between two proteins as a measure of
interaction strength. The noise ϵ that induced random differences between

samples was correlated between features that simulated confounding
dependencies between proteins that may occur at the hand of proteins
that are not measured in the data set.
In SD2, proteins of each sample interacted according to one of four

different interaction networks. Each interaction network allowed interac-
tions only between proteins of one protein group. Each protein group
consisted of 8 proteins and each protein was a member of one
protein group.
These data simulate certain basic properties of protein regulation like

nonlinear interactions and a network topology that consists of different
communities64.

Protein data and functional interaction network
Preprocessed protein and phosphoprotein data were obtained from TCPA
for 5114 cancer samples and 258 measured proteins (Version TCGA-
PANCAN19-L4.csv)65. Functional protein interaction data were obtained
from ReactomeFI (FIsInGene_031516_with_annotations.txt)66. An interac-
tion network was constructed by linking all proteins with described
interaction in the ReactomeFI data using the R package igraph67. For
phosphoproteins, additional interactions were defined with the non-
phosphorylated protein as well as with all proteins interacting with the
non-phosphorylated protein. To avoid isolated proteins without interac-
tions, all proteins with less than four neighbors were excluded, resulting in
a data set of 147 proteins used for the subsequent analyses. In effect, 1838
protein pairs interacted according to Reactome, and 8893 did not. Data
were divided into training and test sets of equal size. While the size of the
training data is relatively small as compared to other deep learning
applications, the random selection of input proteins during training
effectively generates many more training cases. We chose to only calculate
LRP interactions for the test set, as we wanted to present a realistic use
case that shows that LRP can infer networks on samples that have not
previously been seen by the model. The training data were normalized to
mean = 0 and standard deviation = 1. The normalization parameters from
the training set were then used to normalize the test set.

Further analysis
All subsequent analyses were conducted in the statistical programming
language R68. Heatmaps were computed with ggplot269, network
visualizations were created with igraph67.
All statistical tests were two-sided and results were regarded as

significant when p < 0.05. All confidence intervals were computed at the
95% confidence level.
The median of LRPau scores was used to predict interactions for the

validation tests and for the comparison of reconstructed protein
interactions with the Reactome interactions, since it performed well and
is more robust against outliers and we regard it as more suited to catch
group features that are characteristic to most of the group’s samples.

Network inference using synthetic data
The predefined interactions of the synthetic data set SD1 were inferred by
taking the median of the absolute undirected LRPau scores over all samples
from the test set. The reconstruction of true interactions by the absolute
Pearson’s r between proteins as well as the reconstruction by GENIE3 was
used as baselines for network prediction performance. The Bioconductor
version (Release (3.13)) of GENIE36 was used as a baseline method for
network prediction and in analogy to the symmetrical LRPau scores, we
computed the average of the two directed GENIE3 scores as a measure of
interaction strength between two proteins. For the prediction of
interaction networks for individual samples (SD2), the LRPau values were
compared to the respective ground truth adjacency matrices with ROC
analyses on the basis of individual interactions. We compared our method
with LIONESS13, a recent approach to infer interaction networks for
individual samples. The R implementation of LIONESS was used70 and all
default settings were adopted. To infer the interaction network for an
individual sample of the test data set, lionessR was applied to the
combination of this test sample with the training data set. This prevents
lionessR from using information of the test data other than the test sample
in question at inference time. This approach was repeated for each sample
of the test set.
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Inference of averaged interactions for the TCPA data set
The median LRPau score was used as a measure of interaction strength to
receive robustness against particularly strong interactions. For 147 proteins
10731 LRPau interaction scores were predicted.
A hypergeometric test (R package “stats”) was applied to test if the

100 strongest inferred interactions were more likely to be reported in the
Reactome database24. This result was compared against the symmetrized
GENIE3 scores as a baseline. The 36 strongest inferred interactions were
compared to reported interactions from the scientific literature and
visualized, separated by tumor type, as barplot. The Kruskal–Wallis test was
applied to test if the interactions were differential between tumor types.
The p value was adjusted for the 36 examined interactions using the
Holm–Bonferroni correction.

Comparison of individual LRP networks
In this section, protein interaction networks for individual tumor samples
are compared. To allow for better visibility between individual interaction
networks, a subset of 639 samples (25%) for which the neural network’s
imputation results correlated best with the ground truth expression data
was displayed. Furthermore, the display of raw LRPr scores (instead of
LRPau) in different colors (blue: negative LRPr, red: positive LRPr) allows for a
better illustration of differences between individual networks. A t-SNE
analysis was applied to compute a 2D-embedding in order to visualize
similarities and differences between samples71. The LRPau scores of each
sample (10,731 LRPau scores per sample) were used as input.
The individual interaction networks were visualized depending on their

position in the t-SNE plot to show gradual differences and dependencies
on the tumor type.
In order to receive an example plot for every cluster, the median LRPau

scores of every interaction over all samples of the cluster were taken and
the strongest interactions (up to a protein count of 8) were shown as a
labeled network graph.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data used in this article are available at https://github.com/PhGK/
ProteinNetworkLRP https://doi.org/10.5281/zenodo.6370802.

CODE AVAILABILITY
All computer code used in this article is available at https://github.com/PhGK/
ProteinNetworkLRP.

Received: 29 October 2021; Accepted: 15 April 2022;

REFERENCES
1. Darnell, J. E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2,

740–749 (2002).
2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144,

646–674 (2011).
3. Croce, C. M. Oncogenes and cancer. N. Engl. J. Med. 358, 502–511 (2008).
4. Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision

medicine. Nat. Rev. Drug. Discov. 17, 183–196 (2018).
5. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking

algorithms for gene regulatory network inference from single-cell transcriptomic
data. Nat. Methods 17, 147–154 (2020).

6. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory net-
works from expression data using tree-based methods. PLoS One 5, e12776
(2010).

7. Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory network inference
from single-cell data using multivariate information measures. Cell Syst. 5,
251–267 (2017).

8. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of
gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

9. Ozturk, K., Dow, M., Carlin, D. E., Bejar, R. & Carter, H. The emerging potential for
network analysis to inform precision cancer medicine. J. Mol. Biol. 430,
2875–2899 (2018).

10. Duffy, M. J., O’Donovan, N. & Crown, J. Use of molecular markers for predicting
therapy response in cancer patients. Cancer Treat. Rev. 37, 151–159 (2011).

11. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-
positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

12. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J.
Med. 366, 489–491 (2012).

13. Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-
specific regulatory networks. iScience 14, 226–240 (2019).

14. Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS One 10, e0130140 (2015).

15. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and under-
standing deep neural networks. Digit. Signal Process. 73, 1–15 (2018).

16. Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Müller, K.-R. Explaining
deep neural networks and beyond: a review of methods and applications. Proc.
IEEE 109, 247–278 (2021).

17. Schnake, T. et al. Higher-order explanations of graph neural networks via relevant
walks. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/
TPAMI.2021.3115452 (2021).

18. Binder, A. et al. Morphological and molecular breast cancer profiling through
explainable machine learning. Nat. Mach. Intell. 3, 355–366 (2021).

19. Samek, W., Wiegand, T. & Müller, K.-R. Explainable artificial intelligence: under-
standing, visualizing and interpreting deep learning models. ITU J.: ICT Discov. 1,
39–48 (2018).

20. Janzing, D. & Schölkopf, B. Causal inference using the algorithmic markov con-
dition. IEEE Trans. Inf. Theory 56, 5168–5194 (2010).

21. Vecoven, N. et al. Nets versus trees for feature ranking and gene network inference.
In International Conference on Discovery Science, 231–245 (Springer, 2020).

22. Li, J. et al. TCPA: a resource for cancer functional proteomics data. Nat. Methods
10, 1046–1047 (2013).

23. Li, J. et al. Explore, visualize, and analyze functional cancer proteomic data using
The Cancer Proteome Atlas. Cancer Res. 77, e51–e54 (2017).

24. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48,
D498–D503 (2020).

25. Wu, G. & Haw, R. Functional interaction network construction and analysis for
disease discovery. Methods Mol. Biol. 1558, 235–253 (2017).

26. Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR complex 1
pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322 (2010).

27. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic Acids Res. 43, D512–520 (2015).

28. McCubrey, J. A. et al. GSK-3 as potential target for therapeutic intervention in
cancer. Oncotarget 5, 2881–2911 (2014).

29. Grethe, S. & Pörn-Ares, M. I. p38 MAPK regulates phosphorylation of Bad via
PP2A-dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-
alpha induced endothelial apoptosis. Cell Signal 18, 531–540 (2006).

30. Greider, C., Chattopadhyay, A., Parkhurst, C. & Yang, E. BCL-x(L) and BCL2 delay
Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-
dependent kinases. Oncogene 21, 7765–7775 (2002).

31. Kariminia, A. et al. Y-box-binding protein 1 contributes to IL-7-mediated survival
signaling in B-cell precursor acute lymphoblastic leukemia. Oncol. Lett. 13,
497–505 (2017).

32. Chu, P. C. et al. Mutant KRAS promotes liver metastasis of colorectal cancer, in
part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling path-
way. Oncogene 37, 3440–3455 (2018).

33. Stratford, A. L. et al. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating
cells by inactivating Y-box binding protein-1 in triple-negative breast cancers.
Stem Cells 30, 1338–1348 (2012).

34. Li, J. et al. Reduced STMN1 expression induced by RNA interference inhibits the
bioactivity of pancreatic cancer cell line Panc-1. Neoplasma 61, 144–152 (2014).

35. Rubin, C. I. & Atweh, G. F. The role of stathmin in the regulation of the cell cycle. J.
Cell. Biochem. 93, 242–250 (2004).

36. Belka, C., Gruber, C., Jendrossek, V., Wesselborg, S. & Budach, W. The tyrosine
kinase Lck is involved in regulation of mitochondrial apoptosis pathways.
Oncogene 22, 176–185 (2003).

37. Kutz, S. M. et al. TGF-beta 1-induced PAI-1 expression is E box/USF-dependent
and requires EGFR signaling. Exp. Cell Res. 312, 1093–1105 (2006).

38. Liu, C., Yao, J., Mercola, D. & Adamson, E. The transcription factor EGR-1 directly
transactivates the fibronectin gene and enhances attachment of human glio-
blastoma cell line U251. J. Biol. Chem. 275, 20315–20323 (2000).

39. Han, S., Sidell, N. & Roman, J. Fibronectin stimulates human lung carcinoma cell
proliferation by suppressing p21 gene expression via signals involving Erk and
Rho kinase. Cancer Lett. 219, 71–81 (2005).

P Keyl et al.

9

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2022)    35 

https://github.com/PhGK/ProteinNetworkLRP
https://github.com/PhGK/ProteinNetworkLRP
https://doi.org/10.5281/zenodo.6370802
https://github.com/PhGK/ProteinNetworkLRP
https://github.com/PhGK/ProteinNetworkLRP
https://doi.org/10.1109/TPAMI.2021.3115452
https://doi.org/10.1109/TPAMI.2021.3115452


40. Datta, A., Sikdar, S. & Gill, R. Differences in protein-protein association networks for
lung adenocarcinoma: a retrospective study. Bioinformation 10, 647–651 (2014).

41. Treue, D. et al. Proteogenomic systems analysis identifies targeted therapy
resistance mechanisms in EGFR-mutated lung cancer. Int. J. Cancer 144, 545–557
(2019).

42. Klauschen, F. Systems proteogenomics for precision oncology. Oncotarget 10,
692–693 (2019).

43. Jurmeister, P. et al. Machine learning analysis of DNA methylation profiles dis-
tinguishes primary lung squamous cellcarcinomas from head and neck metas-
tases. Sci. Transl. Med 11, eaaw8513 (2019).

44. Heim, D., Montavon, G., Hufnagl, P., Müller, K. R. & Klauschen, F. Computational
analysis reveals histotype-dependent molecular profile and actionable mutation
effects across cancers. Genome Med. 10, 83 (2018).

45. Heim, D. et al. Cancer beyond organ and tissue specificity: next-generation-
sequencing gene mutation data reveal complex genetic similarities across major
cancers. Int. J. Cancer 135, 2362–2369 (2014).

46. Li, Q. et al. N-of-1-pathways MixEnrich: advancing precision medicine via single-
subject analysis in discovering dynamic changes of transcriptomes. BMC Med
Genomics 10, 27 (2017).

47. Yang, X. et al. Single sample expression-anchored mechanisms predict survival in
head and neck cancer. PLoS Comput. Biol. 8, e1002350 (2012).

48. Mamane, Y., Petroulakis, E., LeBacquer, O. & Sonenberg, N. mTOR, translation
initiation and cancer. Oncogene 25, 6416–6422 (2006).

49. Uhlén, M. et al. Proteomics. tissue-based map of the human proteome. Science
347, 1260419 (2015).

50. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2,
103–112 (2002).

51. Ponzo, M. G. et al. Met induces mammary tumors with diverse histologies and is
associated with poor outcome and human basal breast cancer. Proc. Natl Acad.
Sci. USA 106, 12903–12908 (2009).

52. Nguyen, K. S., Kobayashi, S. & Costa, D. B. Acquired resistance to epidermal
growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers
dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer
10, 281–289 (2009).

53. Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is
accelerated through immunosuppression during Snail-induced EMT of cancer
cells. Cancer Cell 15, 195–206 (2009).

54. Boulares, A. H. et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in
apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in
transfected cells. J. Biol. Chem. 274, 22932–22940 (1999).

55. Yuan, K., Sun, Y., Zhou, T., McDonald, J. & Chen, Y. PARP-1 regulates resistance of
pancreatic cancer to TRAIL therapy. Clin Cancer Res. 19, 4750–4759 (2013).

56. Fianco, G. et al. Caspase-8: a novel target to overcome resistance to che-
motherapy in glioblastoma. Int. J. Mol. Sci 19, 3798 (2018).

57. Klauschen, F. et al. Scoring of tumor-infiltrating lymphocytes: from visual esti-
mation to machine learning. Semin. Cancer Biol. 52, 151–157 (2018).

58. Chereda, H. et al. Explaining decisions of graph convolutional neural networks:
patient-specific molecular subnetworks responsible for metastasis prediction in
breast cancer. Genome Med. 13, 42 (2021).

59. Schulte-Sasse, R., Budach, S., Hnisz, D. & Marsico, A. Graph convolutional networks
improve the prediction of cancer driver genes. In International Conference on
Artificial Neural Networks, 658–668 (Springer, 2019).

60. Ye, Q., Xia, J. & Yang, G. Explainable ai for covid-19 ct classifiers: an initial com-
parison study. In 2021 IEEE 34th International Symposium on Computer-Based
Medical Systems (CBMS) 521–526 (IEEE, 2021).

61. Yang, G., Ye, Q. & Xia, J. Unbox the black-box for the medical explainable ai via
multi-modal and multi-centre data fusion: a mini-review, two showcases and
beyond. Information Fusion 77, 29–52 (2022).

62. Liu, Y. et al. Exploring uncertainty measures in bayesian deep attentive neural
networks for prostate zonal segmentation. IEEE Access 8, 151817–151828 (2020).

63. Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-wise
relevance propagation: an overview. In Explainable AI, volume 11700 of Lecture
Notes in Computer Science, 193–209 (Springer, 2019).

64. Budayeva, H. G. & Kirkpatrick, D. S. Monitoring protein communities and their
responses to therapeutics. Nat. Rev. Drug Discov. 19, 414–426 (2020).

65. Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome
Atlas. Nat. Commun. 5, 3887 (2014).

66. Wu, G., Feng, X. & Stein, L. A human functional protein interaction network and its
application to cancer data analysis. Genome Biol. 11, R53 (2010).

67. Csardi, G. & Nepusz, T. The igraph software package for complex network
research. InterJournal, Complex Systems 1695 (2006).

68. R Core Team. R: A Language and Environment for Statistical Computing (R Foun-
dation for Statistical Computing, Vienna, Austria, 2019).

69. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New
York, 2016).

70. Kuijjer, M. L., Hsieh, P. H., Quackenbush, J. & Glass, K. lionessR: single sample
network inference in R. BMC Cancer 19, 1003 (2019).

71. Krijthe, J. H. Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut
Implementation, R package version 0.15 (2015).

ACKNOWLEDGEMENTS
This work was supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grants funded by the Korean Government (No. 2017-0-
00451, Development of BCI based Brain and Cognitive Computing Technology for
Recognizing User’s Intentions using Deep Learning and No. 2019-0-00079, Artificial
Intelligence Graduate School Program, Korea University), by the German Ministry for
Education and Research (BMBF) under Grants 01IS14013A-E, 01GQ1115, 01GQ0850,
01IS18025A, 01IS18037A, MSTARS/MSCORESYS; and by the German Research Founda-
tion (DFG) under Grant Math+, EXC 2046/1, Project ID 390685689.

AUTHOR CONTRIBUTIONS
Conceptualization: P.K., M.B., G.M., K.-R.M., and F.K. Methodology: P.K., M.B., G.M., K.-R.
M., and F.K. Formal analysis: P.K., M.B., and G.M. Investigation: all authors. Resources:
M.B., K.-R.M., and F.K.. Data curation: P.K. and M.B. Writing—original draft: P.K. Writing
—review and editing: all authors. Visualization: P.K., M.B., and G.M. Supervision: G.M.,
K.-R.M., and F.K. Funding: K.-R.M. and F.K.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICAL APPROVAL
Ethics approval was not required as all data were downloaded from public databases
(REACTOME: Creative Commons Public Domain (CC0) License66, TCGA: Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License65).

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-022-00278-4.

Correspondence and requests for materials should be addressed to Grégoire
Montavon, Klaus-Robert Müller or Frederick Klauschen.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

P Keyl et al.

10

npj Precision Oncology (2022)    35 Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-022-00278-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Patient-level proteomic network prediction by explainable artificial intelligence
	Introduction
	Results
	Prediction of protein interaction across cancers
	Reconstruction of regulatory networks for individual patients
	Validation of network prediction using synthetic data

	Discussion
	Methods
	Machine learning-based inference of protein interactions
	Neural network
	Layer-wise relevance propagation (LRP)
	Synthetic data for validation experiments
	Protein data and functional interaction network
	Further analysis
	Network inference using synthetic data
	Inference of averaged interactions for the TCPA data set
	Comparison of individual LRP networks
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Ethical approval
	ADDITIONAL INFORMATION




