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Hippocampal representations 
for deep learning on Alzheimer’s 
disease
Ignacio Sarasua1,2*, Sebastian Pölsterl1 & Christian Wachinger1,2

Deep learning offers a powerful approach for analyzing hippocampal changes in Alzheimer’s disease 
(AD) without relying on handcrafted features. Nevertheless, an input format needs to be selected 
to pass the image information to the neural network, which has wide ramifications for the analysis, 
but has not been evaluated yet. We compare five hippocampal representations (and their respective 
tailored network architectures) that span from raw images to geometric representations like meshes 
and point clouds. We performed a thorough evaluation for the prediction of AD diagnosis and time-
to-dementia prediction with experiments on an independent test dataset. In addition, we evaluated 
the ease of interpretability for each representation–network pair. Our results show that choosing an 
appropriate representation of the hippocampus for predicting Alzheimer’s disease with deep learning 
is crucial, since it impacts performance and ease of interpretation.

Alzheimer’s disease (AD) is a progressive brain disorder characterized by a gradual and irreversible degrada-
tion of cognitive functions over time. Given the correlation between neuron loss and brain atrophy measured 
in magnetic resonance imaging (MRI)1, in vivo neuroimaging has become invaluable for studying trajectories 
of pathophysiological change in AD. Machine learning (ML) methods have been proposed to predict diagnosis 
and prognosis based on these AD related changes observed in MRI  sequences2,3. In particular, a focus on the 
hippocampus has been set due to its important role for the creation of new memory and measurable atrophy in 
MRI. In order to capture finer changes of this subcortical structure, shape vectors have been used given their 
higher sensitivity to anatomical variations compared to volume measures, e.g. early morphological changes in 
 subnuclei4–10.

More recently, deep learning methods have been proposed for predicting AD  diagnosis11 and  prognosis12–15 
from MRI. Instead of working with handcrafted features, deep learning offers the ability to learn representa-
tions that are optimal for the given  task16. Nevertheless, a format needs to be selected to serve as input to the 
neural network. A region of interest (ROI) of the scan around the hippocampus is one  possibility17–20, but does 
not provide any explicit geometric information or localization, which is available from segmentations of the 
hippocampus. Recent advances in the field of geometric deep  learning21 have provided novel neural network 
architectures that work on geometric objects. For AD prediction based on the shape of the hippocampus, inputs 
to neural networks have been binary volumetric  masks22,23, triangular  meshes24–26, and point  clouds27–29. Volumet-
ric masks are defined on a pixel grid, hence typical CNN architectures can be used and it is easy to extend them 
to volumetric texture representations of the hippocampus, by adding the MRI intensity values. Point clouds are a 
simple shape representation that consist of a set of 3D points that are typically sampled from the surface of the 
hippocampus. Meshes have connectivity information, which establishes a more comprehensive representation 
of the underlying anatomical surface that supports different levels of granularity.

Choosing the input representation to the neural net is important as it also determines the type of network 
architectures that are applicable. Yet, no comprehensive comparison is available to date. A direct comparison 
of published results for each representation would not meaningful, as studies vary in the number of subjects, 
dataset splits, and evaluation procedure.  Importantly11, have recently surveyed 32 deep learning methods for AD 
prediction and found that half of the studies were subject to one or more sources of data leakage. Hence a rigorous 
comparison the different hippocampus representations is necessary. In addition limiting the analysis to a single 
structure (instead of the whole brain) provides a fairer comparison between representations since the extension 
to multi-structural data is not as straight forward for all of them (e.g. meshes). Furthermore, the comparison 
should not only be limited to a performance evaluation, but should also assess the interpretability of different 
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representations, since this is a key factor for clinical acceptance. Finally, different neuroimaging tools (such as 
FSL and FreeSurfer) exist for the segmentation of the hippocampus that vary in the type of output (masks and 
meshes) and their impact on deep learning has not been evaluated yet.

In this study, we perform a rigorous comparison of five hippocampus representations that span a continuum 
from raw image intensities, over the usage of a hybrid of shape and texture, to pure shape representations with 
binary masks, meshes, and point clouds. For each representation, we select the corresponding state-of-the-art 
network architectures for the prediction of Alzheimer’s diagnosis and prognosis. For prognosis, we perform 
time-to-dementia prediction with survival analysis, which presents an appropriate statistical treatment of the 
progression to AD by explicitly modeling the timing of the event and by considering censoring and drop-out. We 
pay particular attention to the generation of the data splits to avoid confounding and data leakage. We further 
evaluate the generalizability of the models by evaluating on an independent dataset. While all our experiments 
are focused on hippocampus analysis, these finding can be extended to other anatomical structures and non-
medical applications, such as object recognition.

Our results demonstrate the superior performance of meshes, compared to networks on point clouds and 
volumetric masks. They further demonstrate that hippocampus texture information contains helpful informa-
tion to shape for diagnosis, but not for prognosis prediction. Finally, meshes show the best generalization to an 
independent cohort, and enabled the most meaningful identification of important Hippocampus regions for 
AD prediction. Finally, we demonstrate that predictions based on segmentations of the hippocampus created 
by  FreeSurfer30 yield higher performance than those created by FSL  FIRST31.

We believe this work can be of great interest since such an objective comparison between representations, i.e. 
all methods and networks evaluated by the same authority and on the same data, has not been done in the past.

Hippocampus representations
Figure 1 shows an overview of this work. We consider five ways of representing the hippocampus: point clouds, 
meshes, volumetric masks, volumetric textures and volumetric ROIs. A point cloud is an un-ordered set of points, 
P = {p1, . . . , pN } , with pi = [xi , yi , zi] being the coordinates of point i on the surface of the hippocampus and 
N the number of points. A 3D mesh, M = (V,E ) is defined by a set of vertices, V ∈ R

N×3 , and edges, E , that 
connect the vertices.

Volumetric representations encode the hippocampus on a fixed image grid. Volumetric masks encode the 
hippocampus as 3D binary mask—voxels belonging to the structure are set to one and zero otherwise. Similarly, 
volumetric textures are formed by keeping the grayscale values of the hippocampus voxels and setting the rest to 
zero. Finally, volumetric ROIs are 3D bounding boxes around the hippocampus, which do not only encode the 
hippocampus information but also its neighboring structures.

Point clouds, meshes, and volumetric masks only contain shape information, whereas volumetric ROIs only 
contain images intensities. Volumetric textures are a hybrid of both. We believe this selection of representations 
captures the whole spectrum of representing a 3D object

We train one deep neural network for each of the five different hippocampus representations to predict (i) 
dementia diagnosis (healthy/demented) and (ii) the time to dementia onset, respectively. As opposed to images, 
point clouds and meshes are not represented on a regular grid of discrete values and therefore common CNN 
operations such as convolution and pooling are not explicitly defined anymore. In particular, defining local 
neighborhood for a given vertex becomes challenging. After a comparison between state-of-the-art architec-
tures for each representation (more details can be found in Table S5), we selected PointNet++32, SpiralNet++33 
and  ResNet34 for pointclouds, meshes and volumetric representations respectively, because they were the best 
performing models for their respective representation. In section “Networks” and Fig. 1, a description of each 
network can be found.

Experiments
We evaluate the predictive performance for the classification experiments using balanced  accuracy35 (BACC) 
and the area under the ROC Curve (AUC), and for the time-to-dementia experiments using the concordance 
 index36 (c-index). The latter measures the rank-correlation between the predicted risk scores and the time until 
disease onset (where a c-index of 1.0 indicates a perfect model and 0.5 a completely random model).

In our experiments, we use data from The Alzheimer’s Disease Neuroimaging Initiative  (ADNI37) and The 
Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing  (AIBL38), which are summarized in Fig. 2. 
We implemented the 5-fold cross-validation scheme described in section “Study population” on ADNI. The 
segmentations were obtained by using FSL-FIRST and FreeSurfer (see section “Data processing”). Moreover, 
we evaluated the performance of the five models trained on the ADNI data on an external patient population 
from AIBL. We also studied the effect of data augmentation as well as the interpretability of each method. Given 
that FreeSurfer does not provide registered meshes, we only provide mesh results for FSL. In addition, we note 
that the ROI extracted around the segmentation mask is the same for FSL and FreeSurfer and therefore is only 
reported once.

Dementia diagnosis prediction. Table 1 reports the classification accuracy of the different representa-
tions for processing the images with FSL FIRST and FreeSurfer, respectively. We report the accuracy for ADNI 
and AIBL, where only ADNI has been used for training and the AIBL results therefore indicate the generaliza-
tion to an independent test set.

Focusing first on FSL results, we observe that SpiralNet++ with meshes yields higher accuracy than point 
cloud, mask or texture on ADNI. The addition of texture helps the diagnosis prediction, as shown by the higher 
accuracy compared to mask. Point clouds had a slightly worse accuracy than masks in this experiment. The AIBL 
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results show a similar ordering of the different representations, but meshes have the smallest decrease in accuracy 
by just 1.1%, while the other methods decrease between 2.8 and 3.8%  in accuracy.

Point clouds and masks extracted from FreeSurfer segmentations perform much better than their counter-
parts from FSL. Particularly, the accuracy of point clouds improve by more than 3% on ADNI and more than 
4% on AIBL. These results indicate that more Alzheimer’s specific information is contained in the FreeSurfer 
segmentations than in the ones from FSL. The results for texture are comparable for both processing streams. 

Figure 1.  Evaluation scheme overview. Left column shows the different ways of representing the hippocampus. 
Middle column describes the different model architectures. The right column defines the two tasks that we 
evaluated in this study: diagnosis and time-to-dementia/prognosis.
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Figure 2.  Top: Data statistics for the diagnosis task for ADNI and AIBL dataset. The data stratification strategy 
has been done according to three variables: age, sex and diagnosis. The total number of samples is 1505 for 
ADNI and 552 for AIBL. Bottom: Data statistics for the prognosis task. The data stratification across t the sets 
has been following 4 variables: time-to-dementia, sex, age and years of education
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Volumetric ROI has the second best performance on ADNI, but the accuracy drops by 4.6% on AIBL. The high 
accuracy of the ROI is expected, since it holds information about neighboring structures (see table S3), while 
the rest of the models only have access to the hippocampus.

Time-to-dementia prediction. The results for time-to-dementia prediction are summarized in Table 2. 
Overall, the performance of all models is relatively poor ranging between a mean c-index of 0.583 to 0.630, 
which is accompanied by a relatively high variance across folds. We can observe agreement with the results on 
dementia diagnosis in two experiments. First, the mesh-based network outperforms all competing methods by 
a considerable margin on the FSL data (0.032 higher mean c-index). Second, the point cloud network performs 
considerably worse on point clouds derived from FSL segmentations than on those derived from FreeSurfer 
segmentations (0.02 lower mean c-index). The results on volumetric texture are strikingly different for time-to-
dementia prediction, where including texture information degrades performance compared to using a volumet-
ric mask. When using a volumetric ROI, the gap becomes narrower, but the simpler volumetric mask representa-
tion is preferred in terms of mean performance (0.630 vs. 0.627 mean c-index), but suffers from almost double 
the variance across folds. Finally, the performance based on volumetric masks is comparable across FSL and 
FreeSurfer data, which is in contrast to the results on dementia diagnosis.

Data augmentation. Given that the amount of data is limited for Alzheimer’s Disease prediction tasks, 
especially when it comes to time-to-dementia prediction, we want to explore the effect of augmentation strat-
egies during training. We randomly apply rotation (maximum of 45 degrees) and translation (maximum of 
6 mm) to the volumetric representations (mask, texture and bounding box) for online augmentation. Notice that 
these techniques are only useful for the image representations, since PointNet++ and SpiralNet++ do not benefit 
from them. PointNet++ is rotation and translation invariant by design. SpiralNet++ relies on the precomputed 
operations on the template, hence, if these transformations are applied, the input shape would not be registered 
anymore.

Table 3 shows that augmentation yields an improvement on every metric for every representation. The clas-
sification accuracy for ROI with augmentation is highest, outperforming SpiralNet++. However, the accuracy 
on AIBL drops by 3.3%, so that is only 0.4% above SpiralNet++, while having a higher variance. The best results 
for prognosis prediction are obtained by texture from FreeSurfer. Also the prediction from the mask is better 

Table 1.  Classification results (BACC: balanced accuracy, AUC: Area under the ROC curve) on ADNI 
and AIBL for different representations. Top: Segmentations obtained using FSL FIRST software. Bottom: 
Segmentations obtained using FreeSurfer software.

Representation Network ADNI BACC ADNI AUC AIBL BACC AIBL AUC 

FSL

Point cloud PointNet++ 0.755± 0.014 0.821± 0.017 0.727± 0.005 0.802± 0.007

Mesh SpiralNet++ 0.824± 0.022 0.894± 0.012 0.813± 0.015 0.887± 0.005

Mask Resnet 0.766± 0.015 0.843± 0.016 0.728± 0.015 0.813± 0.015

Texture Resnet 0.788± 0.021 0.861± 0.018 0.753± 0.036 0.843± 0.014

FreeSurfer

Point cloud PointNet++ 0.790± 0.015 0.864± 0.009 0.780± 0.011 0.849± 0.009

Mask Resnet 0.787± 0.014 0.855± 0.014 0.754± 0.029 0.828± 0.018

Texture Resnet 0.786± 0.007 0.854± 0.013 0.757± 0.030 0.843± 0.025

ROI Resnet 0.811± 0.012 0.882± 0.021 0.765± 0.006 0.857± 0.015

Table 2.  Time-to-dementia prediction performance on ADNI for different representations. Top: 
Segmentations obtained using FSL FIRST software. Bottom: Segmentations obtained using FreeSurfer software.

Representation Network c-index

FSL

Point cloud PointNet++ 0.572± 0.024

Mesh SpiralNet++ 0.629± 0.036

Mask Resnet 0.597± 0.036

Texture Resnet 0.583± 0.029

FreeSurfer

Point cloud PointNet++ 0.592± 0.042

Mask Resnet 0.630± 0.029

Texture Resnet 0.610± 0.031

ROI Resnet 0.627± 0.016
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than ROI for this task. These results indicate that shape information is more important for prognosis than for 
diagnosis when augmentation is considered.

Post-hoc explanation via relevance maps. Computing relevance maps is a helpful way of assessing the 
decision-making process of a classification model, since it allows us to know which areas of the hippocampus 
are more affected when developing the disease. We used Integrated Gradients (IG)39 for computing the gradi-
ent of the model’s prediction output to its input features. Given an input representation and a baseline (which is 
defined by the user), IG creates a set of interpolated inputs between the two. The final contribution is calculated 
through averaging the gradients of all the interpolations. Since our focus is on understanding the main areas of 
the hippocampus that get affected by Alzheimer’s disease, we compute the IG for all the patients diagnosed with 
AD and average the individual saliency maps to obtain a final one describing the population. Note that this type 
of analysis cannot be applied to point clouds given its lack of order in the input points. As baseline for the mesh, 
we randomly selected a CN patient, since we are only interested in the contributions of the AD population. For 
the volumetric representations (volumetric mask, texture and bounding box), we define a black 64 × 64 × 64 
cube as baseline.

Figure 3a–c shows the relevance maps for volumetric representations: mask, texture, and ROI. The texture 
highlights more regions in the interior of the hippocampus than the mask. From the ROI, we observe that also 
regions outside of the hippocampus are relevant, but the focus is on the hippocampus. Overall, it is difficult to 
clearly identify relevant regions from these maps, as there is no one-to-one correspondence between images 
so that averaging yields blurring of the relevant regions. In contrast, saliency maps on meshes, see Fig. 3d, do 
allow for a more detailed analysis of relevant regions, because correspondences between all meshes exist. Thus, 
meshes not only show the geometry of the hippocampus but also offers a more granular representation of the 
important regions.

Discussion
In this work, we have compared five representations of the hippocampus for the prediction of Alzheimer’s 
disease. Based on our results, the choice of the most suitable representation will come down to the application’s 
requirements. A common criterion is the performance yielded by the combination of the representation and 
its associated network for a given task. We evaluated the capabilities of each representation–network pair for 
predicting Alzheimer’s disease diagnosis and the time to dementia. On both tasks, meshes with SpiralNet++ 
provide the highest performance. However, volumetric representations follow a grid-like structure and therefore 
can directly benefit from advances in CNNs, such as data augmentation (section “Data augmentation”). When 
adding on-the-fly augmentation, the volumetric ROI and texture yield the best results for diagnosis and time-
to-dementia prediction tasks (Table 3), respectively. In addition, the former requires the least pre-processing, 
since it only extracts a 3D bounding box around the hippocampus without requiring an accurate segmentation.

The volumetric ROIs do not only include the hippocampus, but also neighboring structures. Table S3 shows 
that the hippocampus has the highest relative importance, but also the other structures contribute to the pre-
diction. While this leads to high performance, the results are not directly comparable to the other representa-
tions and it is less suited if the focus should be on studying hippocampus’ atrophy due to dementia. For that 
application, shape representations, i.e., point clouds, meshes, and volumetric mask, are more suitable since the 
network predictions are exclusively driven by changes in their structure without taking into account the texture 
information. In particular, mesh-based SpiralNet++ is the best representation-method combination for this type 
of application—provided a template is available, as it is the case for segmentations using FSL.

We also explored the ability for the models to generalize to unseen data. Studies can differ in the image acquisi-
tion protocol and also in the population composition, which can complicate the transfer of models. Representa-
tions that only depend on intensity values like volumetric ROIs are more affected by acquisition variations, than 
those that rely on shape representations that present a higher level of abstraction. Besides high performance 
in the prediction tasks, meshes also provide the highest granularity when running interpretability algorithms, 
producing heat maps that allow us to perform subfield analysis. The areas that are highlighted in Fig. 3d) are 
the medial part of the body in the subiculum and parasubiculum areas, the lateral part of the body in the CA1 
area and the inferior part of the hippocampus head in the subiculum area. Those areas correspond to previous 
findings in neuroscience  research40. These findings provide great clinical value, since it can help building trust 
on the model decisions. Yet, a reference template is not always available, e.g., for FreeSurfer segmentations. In 
those cases, point clouds also provide a light weight representation and perform better than volumetric masks. 
Finally, although ADNI provides the largest neuroimaging resource for AD, the sample size is still orders of 
magnitude smaller than large-scale computer vision datasets. Hence, the amount of training data is limited, so 
that networks with a low number of learnable parameters are very relevant. SpiralNet++ approaches this issue by 
pre-defining the convolution sequences and pooling operations on the template, which besides decreasing run 
time, also can help reducing the number of parameters.

In our study, we have paid particular attention on a rigorous evaluation of the different representations. We 
carefully split the data in training, validation and test set, to avoid data leakage and confounding bias (see sec-
tion “Data stratification”). It was recently noted that many studies for AD prediction with deep learning are sub-
ject to one or more sources of data  leakage11, which can inflate the reported results. We resolved bias by splitting 
data so that age, sex, and education distributions match across splits (see section “Data stratification”). Next to 
carefully partitioning the data, we have also reported results on an independent test set to ensure reproducibility.

Our results indicate that Time-to-dementia prediction is more challenging than AD Diagnosis. In the former, 
images are taken at baseline from which we want to predict the time of dementia onset, which can be a dec-
ade in the future (see Fig. 2). The median time of MCI to dementia progression is 5 years in ADNI. However, 
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neuroanatomical changes, as captured by structural MRI scans, manifest in the late stages of AD, which makes 
predictions for patients at the early stage of AD extremely challenging. In addition, these neuroanatomical 
changes are mostly related to structural atrophy and texture carries little additional information. Finally, we 
would like to point out that the path to dementia is highly heterogeneous and neuroanatomical changes are only 
one piece of the puzzle. Therefore, a clinically useful model for time-to-dementia prediction has to incorporate 

Figure 3.  Average of integrated gradients computed across the AD population for the volume (a–c) and mesh 
representations (d). (a–c) Shown for only on slice in sagital, coronal and axial (respectively): (a) volumetric 
mask, (b) texture, and (c) ROI. (d) Views (from left to right): superior, medial, lateral and inferior
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multi-modal  data29. Our study provides valuable information about the best representation to augment with 
additional clinical information.

We note that the selection of a representation also implies the selection of a particular set of network archi-
tectures (e.g., meshes cannot be processed with regular CNNs). While this can limit the one-to-one comparison 
between representations, we believe that by choosing the state-of-the-art architecture for each representation, 
we obtained a fair comparison of the predictive performance of each hippocampus representation.

In conclusion, our findings support that mesh-based representations of the hippocampus are the preferred 
choice in terms of ease of interpretability. However, these are outperform by ROIs when augmentation is consid-
ered. Considering that AD is a multifactorial and heterogenous diseases, future research should focus on multi-
modal DL approaches. Our work highlights that how data is represented can have far-reaching consequences 
on performance and interpretability. This will likely be even more important when combining multi-modal data 
and should be at the center of future multi-modal approaches. In addition, we believe the obtained results could 
be extrapolated to other applications, such as the analysis of other organs or even objects. The objectiveness of 
the experimental set up can help a better understanding of the benefits and drawbacks of each representation 
when evaluated under the exact same conditions.

Methods
Networks. For each representation, we selected the current state-of-the-art architecture for Alzheimer’s dis-
ease diagnosis according to previously published results.

Point cloud network. The main idea of PointNet++ is to capture features at increasingly larger scales along a 
multi-resolution hierarchy. For every hierarchy level h, three main operations are defined: sampling, grouping, 
and feature extraction.

The input of each hierarchical level will be the coordinates of the points, i.e., centroids of the previous hier-
archical level, Ph−1 = {ph−1

1 , . . . , ph−1

Nh−1 }

and point cloud descriptors Fh−1 composed of the local point features extracted from the previous hierarchi-
cal level Fh−1 = [fh−1

1 , . . . , fh−1

Nh−1 ] with fh−1
i = [ch−1

1 , . . . , ch−1

Ch−1 ] being the point feature associated to the ph−1
i  

centroid’s neighborhood and cj its j-th channel.

Sampling. In this step, Nh points from the input Ph−1 (with Nh ≤ Nh−1 ) are sampled and used as centroids of 
the pooling regions for the next hierarchical level. The sampling method must be invariant to the order of the 
points,  hence32, proposes farthest point sampling (FPS).

Grouping. Once the Nh centroids have been sampled, the next step is to define their respective neighbor-
hoods. As shown  in32, selecting a K number neighbors is not as effective as query ball sampling (given a radius), 
especially if the points are not equally distributed along the point cloud. The radius of the query ball increases 
for each hierarchical level, emulating the receptive field of filters in a CNN. Note that the number of samples 
for each centroid can vary as the feature network maps sets with different number of points into a fixed length 
feature vector.

Feature extraction. Finally, given Nh point coordinates and their associated point features extracted in the pre-
vious level, the coordinates of the points in each local region are first expressed relative to the region’s centroid 
and then concatenated to the point features, Fh−1 , extracted in the previous hierarchical level. The concatenated 
vector is passed through a  PointNet41, shared along Nh sub-sets of point cloud descriptors in the hierarchical 
level, to compute the new local point features fhi  that form the new point cloud descriptors Fh . Notice that in 
h = 1 , C0 = 3 since the point features will be the zero-centered coordinates of points inside the query balls.

Table 3.  Effect of augmentation for volumetric representations (BACC: balanced accuracy, AUC: Area under 
the ROC curve) on ADNI and AIBL, as well as, the concordance index (c-index) for ADNI.

Repr Aug ADNI BACC ADNI AUC AIBL BACC AIBL AUC c-index

FSL

Mask × 0.766± 0.015 0.843± 0.016 0.728± 0.015 0.813± 0.015 0.597± 0.036

Mask � 0.801± 0.011 0.869± 0.007 0.765± 0.016 0.853± 0.006 0.623± 0.017

Texture × 0.788± 0.021 0.861± 0.018 0.753± 0.036 0.843± 0.014 0.583± 0.029

Texture � 0.819± 0.014 0.888± 0.007 0.795± 0.019 0.870± 0.010 0.631± 0.028

FreeSurfer

Mask × 0.787± 0.014 0.855± 0.014 0.754± 0.029 0.828± 0.018 0.630± 0.029

Mask � 0.803± 0.011 0.879± 0.008 0.781± 0.012 0.868± 0.004 0.646± 0.037

Texture × 0.786± 0.007 0.854± 0.013 0.757± 0.030 0.843± 0.025 0.610± 0.031

Texture � 0.808± 0.011 0.886± 0.006 0.783± 0.014 0.864± 0.005 0.657± 0.037

ROI × 0.811± 0.012 0.882± 0.021 0.765± 0.006 0.857± 0.015 0.627± 0.016

ROI � 0.850± 0.004 0.916± 0.007 0.817± 0.019 0.892± 0.016 0.637± 0.037
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Mesh network. For learning on meshes, we use the recently introduced SpiralNet++33, which has achieved state-
of-the-art performance in several computer vision tasks, as well as, for Alzheimer’s  detection25. SpiralNet++ pro-
posed a novel message passing approach to deal with irregular representations like meshes. The encoder blocks of 
SpiralNet++ are formed by two main operations: spiral convolution and mesh pooling.

Spiral convolution. Due to the nature of triangular meshes, a spiral serialization of neighboring nodes is pos-
sible. Given a vertex in V33, defines its spiral sequence by choosing an arbitrary starting direction in counter-
clockwise manner. Figure 1 illustrates a spiral sequence. In comparison to  SpiralNet42, SpiralNet++ defines these 
sequences only once for a template shape and then applies them to the aligned samples in the dataset, highly 
increasing the efficiency of the method.

The convolution operation in layer k for features xi associated to the i-th vertex is therefore defined as:

where γ denotes multi-layer-perceptron (MLP) and ‖ is the concatenation operation. S(i, l) is an ordered set 
consisting of l vertices inside the spiral.

Mesh pooling. The down-sampling operation or pooling is obtained by iteratively contracting vertex pairs that 
would minimize the quadric  error43. In Fig. 1, we illustrate this process. For efficiency, the coordinates of the 
vertices that must be pooled in each level are computed for the template and then applied to the samples in the 
dataset.

More details about the method and its implementation can be found  in33.

Convolutional neural network. For volumetric representations, one can draw upon the pool of convolution 
neural networks. In Table S4, we compare a regular ConvNet, like the one proposed  in11, to a 3D version of the 
 ResNet34 (depicted in Fig. 1). The latter outperformed the former and therefore was selected for all the experi-
ments on the volumetric representations. It comprises ten convolutional layers with kernel size 33 followed by 
batch  normalization44 and rectified linear unit (ReLU) activation. We half the spatial resolution of the feature 
map in the second convolutional layer by using a stride of 2. It is followed by one residual block without down-
sampling, and two more residual blocks with downsampling. Finally, we perform global average pooling across 
the spatial resolution of the feature maps and use a linear layer to output a log-probability.

Study population. Dementia diagnosis. For dementia diagnosis, we restricted data to the baseline visit 
and included all patients that have been diagnosed as either healthy control or as demented, for which age and 
gender have been recorded, and for which a MRI scan was available and produced a valid segmentation with 
 FreeSurfer30 and FSL  FIRST31. This resulted in a total of 1505 patients for ADNI, and 552 patients for AIBL. The 
overall data set characteristics are summarized in Table S1.

Time-to-dementia progression. For analyzing time-to-dementia progression, we included all patients that were 
diagnosed with mild cognitive impairment (MCI) at baseline, had at least one follow-up visit, and remained 
MCI or progressed to dementia during the entire follow-up period, i.e., patients with bidirectional change in 
diagnosis were excluded. As for diagnosis, only patients for which an MRI scan was available and produced a 
valid segmentation with FreeSurfer and FSL FIRST were included. The time to progression was defined as the 
time difference between the first visit with MCI diagnosis and the first visit with dementia diagnosis. If patients 
were not diagnosed as demented during their entire follow-up period, we considered their time-to-progression 
as right censored and used the time of the last follow-up visit as time of censoring. In total we included 795 
patients. Table S2 summarizes the patient characteristics.

Data stratification. Fair evaluation of methods is a non-trivial task in neuroimaging, as several sources of data 
leakage can lead to biased performance estimates. We implemented a 5-fold cross-validation scheme that avoids 
four common sources of bias highlighted by Wen et al.11: (i) the use of multiple scans per subject, (ii) applying 
data augmentation before data splitting, (iii) overfitting on the test set, and (iv) differences in the distribution of 
age, sex, and education across folds (more details .

To address issue (i), we only considered data from baseline visits in our experiments such that only a single 
scan per patient is included. Issue (ii) is prevented by applying data augmentation exclusively to the training 
portion of the data, and issue (iii) by selecting the model with highest performance on the validation set and 
reporting its final performance on the test set, where each fold is used once as test data and the four remaining 
folds are combined such that 80% of it comprise the training set and 20% the validation set.

Finally, we resolve bias due to issue (iv), by splitting data in a manner that ensures age, sex, and education 
distributions match across splits. To this this end, we assessed the balance of a split by computing the propensity 
score, i.e. the probability of a sample belonging to the training data, based on a logistic regression model com-
prising age, sex, and education. Next, we compared the percentiles of the propensity score distribution in the 
training and test data and used the maximum deviation across all percentiles as a measure of  imbalance45. For 
all experiments, we account for differences in age and sex, because they are known confounders in neuroimag-
ing  studies46. For time-to-dementia prediction, we additionally account for differences in education, which is 
a proxy for cognitive reserve that is affecting the rate of  progression47. For each of the 5 splits, this process has 
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been repeated for 1000 randomly selected partitions and the partition with the with minimum imbalance was 
ultimately the selected split. More details of the data distribution can be found in Fig. 2.

Data processing. Image segmentation. We processed T1-weighted brain MRI scans from The Alzhei-
mer’s Disease Neuroimaging Initiative  (ADNI37) and The Australian Imaging, Biomarker & Lifestyle Flagship 
Study of Ageing  (AIBL38) using the following procedure. First, we conformed scans to 1mm3 isotropic voxel 
size and a resolution of 256× 256× 256 . (Using FreeSurfer’s mri_convert--conform30) Next, we applied 
bias field correction using the N4ITK  algorithm48, and registered the resulting image to the MNI space with the 
ICBM 2009c non-linear symmetric  template49,50 using the SyN algorithm for affine registration as implemented 
in  ANTs51. Our processing pipeline is similar to the minimal processing pipeline  in11.

To obtain shape representations of the left hippocampus, we segmented pre-processed scans using  FreeSurfer30 
and FSL  FIRST31. FreeSurfer is an atlas-based segmentation algorithm, whereas FSL FIRST employs an active 
appearance model to incorporate intensity information and a shape-based prior about likely variations in ana-
tomical shape. We manually inspected all segmentations and excluded instances where either FreeSurfer or FSL 
FIRST failed.

Hippocampus representations. After segmentation, we extracted five hippocampus representations: meshes, 
point clouds, volumetric masks, volumentric textures, and volumentric ROIs. The details differ depending on 
the segmentation algorithm and are detailed below.

FreeSurfer produces a voxel-wise segmentation map from which we reconstructed a 3D surface using the 
marching cubes  algorithm52, for which we adjusted the vertex coordinates using Laplacian smoothing. The 
resulting surfaces can have an arbitrary number of vertices, and there are no cross-subject correspondences.

FSL FIRST directly produces a 3D triangular mesh of 732 vertices for the left Hippocampus such that cross-
subject correspondences of vertices are maintained. We refined the mesh by subdividing the surface into 2922 
vertices and 5840 faces using the Butterfly  Scheme53.

To obtain volumetric representations, we defined a bounding box with 643 voxels in MNI space around the 
left hippocampus based on FreeSurfer and FSL FIRST segmentations. The same bounding box is used for all three 
volumetric representations. To create volumetric masks, we either used FreeSurfer’s segmentation map or FSL 
FIRST’s volumetric output after boundary correction. For volumetric textures, only the image intensities inside 
hippocampus region are used and everything else is set to zero. For volumetric ROI, the MRI scan is cropped to 
the bounding box, so there is no difference for this representation between FreeSurfer and FSL.

Data transformation. We trained our mesh network based on meshes produced by FSL FIRST (see sec-
tion “Image segmentation”), where we adjusted vertex coordinates of each mesh by centering the mesh at the 
origin and scale it by the maximum vertexwise Euclidean distance to the origin, such that all meshes fit into the 
unit sphere. Point cloud networks were trained on point clouds derived from meshes produced by FreeSurfer 
and FSL FIRST, respectively (see section “Image segmentation”). The point clouds have the same vertex coordi-
nates as the meshes, but do not account for connectivity. Since point clouds from FreeSurfer and FSL FIRST have 
different number of points, we subsampled each point cloud to 1,024 vertices (uniformly random). Analogous to 
meshes, we centered each point cloud at the origin and scaled it to fit into the unit sphere. The CNN was trained 
with ROIs of size 64× 64× 64 around the left hippocampus as described in section “Image segmentation”. Voxel 
intensities were normalized to the range [0, 1] based on the min and max values of each individual image.

Training strategy. All the models were trained to minimize the Cross-entropy loss for diagnosis prediction, 
and the Cox  loss54 for time-to-dementia prediction. We used  Adam55 as the optimization algorithm with a learn-
ing rate of 0.001. We did not observe a significant difference when trying to optimize the learning rate for each 
shape representation, so we decided to fix it for a fairer comparison. The batch size was set to 20, and the training 
duration to 200 epochs. In order to avoid over-fitting, the model with highest performance on the validation set 
is evaluated on the test set for reporting the final results (Validation curves can be found in Fig. S1).

Data availability
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarker & Lifestyle Flagship 
Study of Ageing (AIBL) used in this study were available at the databases (http:// adni. loni. usc. edu/) and (http:// 
aibl. csiro. au/), respectively, upon registration and compliance with the data usage agreement.
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