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Abstract

A model-based clustering method for compositional data is explored in this article. Most

methods for compositional data analysis require some kind of transformation. The proposed

method builds a mixture model using Dirichlet distribution which works with the unit sum

constraint. The mixture model uses a hard EM algorithm with some modification to over-

come the problem of fast convergence with empty clusters. This work includes a rigorous

simulation study to evaluate the performance of the proposed method over varied dimen-

sions, number of clusters, and overlap. The performance of the model is also compared with

other popular clustering algorithms often used for compositional data analysis (e.g. KMeans,

Gaussian mixture model (GMM) Gaussian Mixture Model with Hard EM (Hard GMM), parti-

tion around medoids (PAM), Clustering Large Applications based on Randomized Search

(CLARANS), Density-Based Spatial Clustering of Applications with Noise (DBSCAN) etc.)

for simulated data as well as two real data problems coming from the business and market-

ing domain and physical science domain, respectively. The study has shown promising

results exploiting different distributional patterns of compositional data.

Introduction

In statistics, compositional data are quantitative descriptions of the parts of some whole, which

means that it consists of relative information [1]. Mathematically, compositional data follows

the Aitchison geometry on the simplex [2]. Measurements including probabilities, propor-

tions, percentages, and ppm can all be thought of as compositional data. In general, composi-

tional data is written as,

SD ¼ x ¼ ½x1; x2; :::; xD� 2 R
D
jxi > 0; i ¼ 1; 2; :::;D;

XD

i¼1

xi ¼ c

( )

ð1Þ

In other words, compositional data is a D dimensional real vector, x = [x1, x2, . . ., xD] of

positive components on RD
such that the sum of all components is c. Often, we observe the

sum of all components to be 1; if not, all the components are divided by the sum of all compo-

nents, such that
PD

i¼1
xi ¼ 1. Analysis of such data is widely used in the fields of geochemistry

[3, 4], biology [5–7], ecology [8, 9], finance and business studies [10–12], etc. But it has
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emerged in the literature long before. [13] identified the problem of ‘spurious correlation’

between ratios of variables and [14] later extended the work and showed that some of the cor-

relations between components of the composition must be negative because of the unit sum

constraint. Many transformations have been proposed over the years (e.g. log transformation

[15], log ratio transformation [16]) to overcome the unit sum constraint, but still it is argued

when it comes to choosing the best transformation [17].

Another issue with compositional data refers to the dealing with zero values as both ratios

as well as logarithms are operations that require non-zero elements in the data matrix. Many

researchers have tried different approaches to deal with zero values (see [18–21]), but it

remains as an open problem even today; mostly because, zero values occur in compositional

data for different reasons. Often, the “zero problem” is linked with the missing data problem.

Missing data are generally classified into three categories [22], namely: missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR). In compo-

sitional data analysis, the rounded zeros are considered a NMAR case, where data cannot be

observed because their values are below a known value �. Zero values can also occur when the

count of an element is zero (known as count zero) and when zero signifies some property or

relevant information (known as essential zeros). For our study of compositional data in cluster

analysis, we have encountered round zeros and we have used a method proposed by [20],

where we replace the zeros with a small quantity and adjust others in a multiplicative way

which does not affect the covariance structure of the data. The adjusted values xrij can be writ-

ten as

xrij ¼

dij if xij ¼ 0

xij 1 �

P
kjxik¼0

dik

ci

� �

if xij > 0

8
>><

>>:

ð2Þ

where ci is usually the sum constraint. For row i and component j, the above adjustment in Eq

2 replaces the component xij by a very small quantity δij if xij = 0, else it multiplies a term

1 �

P
kjxik¼0

dik

ci

� �

with xij to maintain the unit sum constraint. Here, xik’s are the zero compo-

nents in row i. The multiplicative term is a fraction by which the non-zero terms to be reduced

in order to accommodate the added values of δik’s and keep the sum of rows fixed at ci.
For clustering compositional data there exists many methods in the literature [23, 24]. We

generally see two kinds of approaches, namely; model based methods, e.g. mixture models [25]

and methods based on dissimilarity distances (e.g. hierarchical clustering [26], KMeans [27].

But most of the time researchers go for Gaussian mixture model or KMeans for clustering pur-

poses [28].

For estimating the parameters of mixture models, the EM algorithm [29–31] is widely used.

In many applications of mixture models, e.g. in image matching [32], and audio and video

scene analysis [33], the EM algorithm is being used regularly. But the EM algorithm is often

not very convenient to apply for other than normal distributions, because it needs to be modi-

fied and adapted for each case. Sometimes, updating the parameters in the M step becomes

impossible for some distributions [34].

The main objectives of our study are to

• develop a clustering method without the need of transformation of compositional data,

• build a mixture model with distribution other than normal,
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• evaluate the performance of the method in different situations (different dimensions, differ-

ent number of clusters and varied overlap).

We are going to propose a model based clustering method without transformation of com-

positional data. We have used a Hard EM [35] with some modifications, to build mixture

models using Dirichlet distribution. For that purpose we need some point estimates of the par-

ent distributions. It is very convenient as it works with both, likelihood based and Bayesian

estimates. But the problem with hard assignment of cluster is that it ignores cluster member-

ship probabilities of less probable clusters. As a result, often the algorithm converges too

quickly with one or more clusters being empty. In our study we have also proposed a way to

deal with that problem. We have done rigorous simulation study to evaluate the performance

of the proposed method over varying dimension, number of clusters and overlap. We have

also used two real dataset from business and physical science domain to illustrate the method.

Methodology

Let X1, X2, . . ., XN denote a random sample of size N, where Xi is a p dimensional random vec-

tor with probability density function f(xi) on Rp
. We can write X ¼ ðXT

1
; . . . ;XTNÞ

T
, where the

superscript T denotes vector transpose. Note that the entire sample is represented by X, i.e. X
is a N—tuple of points in Rp

or an N × p-matrix. x ¼ ðxT
1
; . . . ; xTNÞ

T
denotes an observed ran-

dom sample where xi is the observed value of the random vector Xi.
The density of a mixture model with k components for one observation xi is given by the

mixture density

pðxiÞ ¼
Xk

j¼1

pjfjðxijajÞ ; ð3Þ

where π = (π1, . . ., πk) contains the corresponding mixture proportions with
Pk

i¼1
pi ¼ 1, 0�

πi� 1. fj(xi|αj) is the density component of mixture j and αj, j = 1, 2, . . ., k, are vectors of com-

ponent specific parameters for each density. Then α = (α1, . . ., αk) denotes the vector of all

parameters of the model. The log likelihood of the model for a sample of size N is then given

by

log pðx1; . . . ; xN ja; pÞ ¼
XN

i¼1

log
Xk

j¼1

pjfjðxijajÞ

" #

: ð4Þ

The parameters can be estimated using the EM algorithm with some modifications. For

that purpose, let us introduce latent variables Zi, which are categorical variables taking on val-

ues 1, . . ., k with probabilities π1, . . ., πk such that Pr(Xi|Zi = j) = fj(xi), j = 1, . . ., k. Further,

probabilities γij are introduced (conditional on the observed data X = x and the parameters α):

gijðxiÞ ¼ PrðZi ¼ jjX ¼ x; aÞ ¼
pjfjðxijajÞ

Pk
j¼1
pjfjðxijajÞ

: ð5Þ

Eq 5 can be seen as a cluster membership probability of data point i for cluster j. For an EM

algorithm, we try to optimize the function

Qða; at� 1Þ ¼ E
XN

i¼1

logðpðxi; zijaÞÞjx; a
t� 1

" #

; ð6Þ

where t is the current iteration number. It is nothing but the expected complete data log
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likelihood. It can also be shown that (see [36]),

Qða; at� 1Þ ¼
XN

i¼1

Xk

j¼1

gij logpj þ
XN

i¼1

Xk

j¼1

gij log fjðxijajÞ ; ð7Þ

where the expected complete data log likelihood is expressed as sum of two parts. At the M

step, we optimize Q with respect to π and α. πj is estimated in the usual way by
Nj
N , where, Nj ¼

PN
i¼1
gij and for estimating α, we look at the part in Q (Eq 7) which depends on α, which is

given by,

lðaÞ ¼
XN

i¼1

Xk

j¼1

gij log fjðxijajÞ ð8Þ

Now, we choose αj such that atj ¼ argmax
aj

lðajÞ, which is obtained by the process of assign-

ing data points to respective clusters, given by argmax
j

gij, and estimate αj by some estimation

method based on the assigned observations to that cluster. It can be seen as a Bayesian concept

(although not strictly Bayesian) for learning where Eq 5 provides the cluster membership prob-

ability. The idea of choosing the cluster based on maximum probability is the same as choosing

the MAP estimate, the mode of the distribution of Pr(Zi = j|X, α).

To run the algorithm, at first, some trial values of the distribution parameters α and mixture

proportions π are initialized. Then the initial value of the log likelihood is evaluated. For differ-

ent distributions, different techniques can be used to choose suitable initial values. For exam-

ple, in the case of a GMM, the centroids of KMeans can be used as initial values of μ and the

empirical covariance matrix of each cluster can be taken as an initial value of Sj. On the other

hand, for a Dirichlet Mixture Model, centroids of KMeans can be multiplied with a scalar c
(for our study we have used c = 60) to get the initial values of the α parameters. Please recall

that the mean vector of a Dirichlet distribution consists of the ratios of α parameters and the

sum of all α parameters. Here, the scalar c acts as the sum of α parameter values. The initial val-

ues of π can be obtained by generating a random number from a Dirichlet (1,1,1,. . .,1) distri-

bution. The empirical ratios of the number of cluster members in the KMeans algorithm and

total observations can also be used as the initial values of π. For our study, we have used the

KMeans initialization technique mentioned above for all our experiments.

At the E step, the values of the probabilities γij are evaluated using the current parameter

values. For an usual EM algorithm (e.g. in a GMM), at the M step, a weighted mean and a

weighted covariance matrix are calculated using the γij values. But for other distributions,

where the model parameters are not mean and (co)variance, this technique can not be used.

So, for different distributions, different techniques needs to be used. And also, for such Hard

EM, sometimes the algorithm converges with one or more clusters being empty. Hence, one

might have to force the algorithm to re-iterate if one or more clusters are found to be empty at

each M step. To introduce a flexible, yet convenient solution, we propose a different technique

in our algorithm, where at the M step each data point is assigned to a cluster depending on the

probability of that data point belonging to each cluster. That cluster is assigned for which the

probability is maximum. Now, if one or more clusters are found empty then the initial value of

the parameter αj for empty cluster j is used. And for the non empty clusters, point estimates of

the parameters of each parent distributions are obtained using only the data points available in

each cluster. For faster convergence and convenience, maximum likelihood estimates can usu-

ally be recommended. The mixture component probabilities πj are estimated as mentioned
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above by
Nj
N . The newly set of estimated values of the parameters is then used as an update over

the previous one. After this step, the log likelihood is evaluated again using the updated param-

eter values. The process is then continued until convergence. The convergence properties of

this algorithm follow the properties of the usual EM algorithm, which has been explained in

detail by [37, 38].

Algorithm 1: Clustering algorithm for mixture of Dirichlet distributions with provision for

empty clusters (Hard DMM 1)
Replace zero values in the data, if any, using Eq 2;
Initialize the model parameters, α and π. Evaluate the initial value
of the log likelihood from Eq 4;
while log likelihood difference � � do
Evaluate γij from Eq 5, using the parameter values and data;

pnewj ¼
Nj
N, where, Nj ¼

PN
i¼1
gij;

for i in 1 to N do
cluster ¼ argmax

j
gij;

Assign data point xi to cluster zi;
end
for j in 1 to k do
if cluster j is empty then
Use initial values of αj as an update;

else
anewj ¼ a

MLE
j ;

end
end
Re-evaluate log likelihood using the new estimates of the
parameters.

end
For our experiments, we have used 0.0001 as the value of � in Algorithm 1.

For clustering compositional data, a Dirichlet Mixture Model can be used. The Dirichlet

density component j is given by

fjðxiÞ ¼
Gð
Pp

m¼1
ajmÞ

Qp
m¼1

GðajmÞ

Yp

m¼1

xajm � 1

im ;

where
Xp

m¼1

xim ¼ 1; xim’s > 0 ; ajm’s > 0 :

ð9Þ

If we make a finite mixture with k components, the model is given by Eq 3 and subse-

quently, the log likelihood is given by Eq 4.

The model parameters, can be easily estimated using our generalized approach. For that we

need a good point estimate of the parameters of a Dirichlet distribution to be used in the M

step of our algorithm. [39] has discussed a way to find out the maximum likelihood estimates

of a Dirichlet distribution, where he proposed to perform a fixed point iteration, given an ini-

tial value of the α parameters. The equation is given by

Cðanewjm Þ ¼ C
Xp

m¼1

aoldjm

 !

þ
1

Nj

XNj

i¼1

logðximÞ ð10Þ

At each iteration, for an old value of the parameter aoldjm , a new value anewjm is obtained. This

iteration in the algorithm requires inverting C, which is a digamma function. A suitable initial

value and inversion algorithm is also discussed by [39].
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A special provision of Bayesian estimates for clusters with fewer data

points

It is possible to add a further step in algorithm 1 to consider the case when there are very few

data points in a cluster due to hard assignment. In this situation, Bayesian estimates can be

very useful as they can use some prior information about the model parameters. Also, for

fewer data points, maximum likelihood estimates are known to be less accurate. However,

Bayesian estimation of Dirichlet parameters is tricky due to several reasons. Even though the

Dirichlet distribution has a conjugate prior for being a member of the exponential family, the

posterior distribution is difficult to use in practical problems and not analytically tractable.

Few authors have proposed some approximation to the posterior distribution of Dirichlet

parameters (e.g. [40] have used multivariate Gaussian distribution), but no method seems to

yield satisfactory results. Also, using some Markov Chain Monte Carlo (MCMC) algorithm at

each iteration step of the clustering algorithm makes it too time-consuming, which is not prac-

tically feasible. Considering all these challenges, we are going to propose a suitable solution

that can be adopted in our clustering algorithm.

Let us recall that, if (X1, X2, . . ., Xp) follows a Dirichlet distribution, with parameters

(α1, α2, . . ., αp) then the marginal distribution of Xi follows a Beta distribution with parameters

ðai;
Pp

j¼1
ðaj � aiÞÞ. Now, if we choose the prior distribution of αi as Gamma (a, b), then under

certain assumptions, the posterior distribution of αi can be obtained in closed form. It can be

shown that (see [41]), posterior distribution of αi follows a Gamma distribution with parame-

ters (a + n) and 1

b�
Pn

i¼1
log xi

, where n is the sample size.

Thus, for our clustering problem, the Bayesian estimates of αjm,m = 1, 2, . . .p for cluster j
can be obtained by the posterior mean, which is given by,

a
Bayes
jm ¼ EðajmÞ ¼

aþ Nj

b �
PNj

i¼1 log xim
ð11Þ

For our experiment, we have chosen the values of a and b to be 1. The extended algorithm

with Bayesian estimates for clusters with fewer data points (Hard DMM 2) is explained below.

Algorithm 2: Clustering algorithm for mixture of Dirichlet distributions with special provi-

sion for clusters with fewer data points (Hard DMM 2)
Replace zero values in the data, if any, using Eq 2;
Initialize the model parameters, α and π. Evaluate the initial value
of the log likelihood from Eq 4;
while log likelihood difference � � do
Evaluate γij from Eq 5, using the parameter values and data;

pnewj ¼
Nj
N, where, Nj ¼

PN
i¼1
gij;

for i in 1 to N do
cluster ¼ argmax

j
gij;

Assign data point xi to cluster zi;
end
for j in 1 to k do
if cluster j is empty then
Use initial values of αj as an update;

else
if number of data points in cluster j � 30 then
anewj ¼ a

Bayes
j ;

else
anewj ¼ a

MLE
j ;

end
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end
end
Re-evaluate log likelihood using the new estimates of the
parameters.

end

Simulation study

Comparison with other clustering algorithms

We have done simulation study to check the efficiency of the proposed technique. For a Hard

DMM, algorithm 1 and algorithm 2 can be used without any alteration. The objective of our

simulation study is to compare the performance of Hard DMM 1 and Hard DMM 2 with

other popular clustering algorithms which researchers often use for clustering compositional

data. For our study we have considered hierarchical agglomerative clustering with linkage cri-

teria ward, single, average and complete respectively [42]. We have also used partition around

medoids (PAM) [43], Clustering Large Applications based on Randomized Search (CLAR-

ANS) [44], Fuzzy CMean [45], Kmeans, Gaussian Mixture Model (GMM), Gaussian Mixture

Model with hard EM (Hard GMM), spectral clustering [46] and DBSCAN [47] for compari-

son. We have checked three measures to evaluate the performance.

• Accuracy: The total accurate classifications divided by number of observations.

• Precision: True positives divided by sum of true positives and false positives.

• Recall: True positives divided by the sum of true positives and false negatives.

A detail description of all the measures can be found in [48].

In this section, we have generated data under two schemes.

• Scheme 1: 500 random samples from Dirichlet(30,20,10), 100 random samples from Dirich-

let (10,20,30) and 300 random samples from Dirichlet (15,15,15).

• Scheme 2: 500 random samples from Dirichlet(10,10,3), 100 random samples from Dirichlet

(10,20,50), 300 random samples from Dirichlet (15,15,15) and 400 random samples from

Dirichlet(0.2,0.5,3)

The data has been generated in python programming language using numpy library [49].

The algorithms of Hard DMM 1, Hard DMM 2 and Hard GMM are also written in python

programming language. All the hierarchical clustering algorithms, PAM, KMeans, GMM spec-

tral clustering and DBSCAN algorithm are available in python from scikit-learn, a machine

learning library in python [50]. The algorithm for Fuzzy CMean is available in scikit-fuzzy

python library [51] and CLARAN is available in PyClustering library [52].

We have generated data under two schemes mentioned above and used different clustering

algorithms to find patterns. We have measured the performance of algorithms in terms of

accuracy, precision and recall. Fig 1 shows the data generated under scheme 1 with true clus-

ters. And Fig 2 shows how different algorithms finds pattern on the data. We see that Hard

DMM 1, Hard DMM 2, KMeans, GMM and Hard GMM recognize pattern in the data some-

what similar to the original pattern. Other algorithms fail to recognize the true patterns. The

detailed result can be seen in Table 1. The data generated under scheme 2 is shown in Fig 3.

We can see that the data has more complex patterns than data under scheme 1. From Fig 4, we

see that only Hard DMM 1 and Hard DMM 2 are able to find pattern similar to the true pat-

terns. All other algorithms fail to understand the true patterns of the generated data. The cor-

responding results in detail can be seen in Table 2.
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From Fig 5 we see that Hard DMM 1 and Hard DMM 2 have the highest accuracy, preci-

sion and recall on data generated under scheme 1. On the other hand from Fig 6 also, we see

that Hard DMM 1 and 2 work better than all other algorithms we considered when it comes to

the data generated under scheme 2. Hard DMM 1 and Hard DMM 2 have shown best perfor-

mance in terms of accuracy, precision and recall on our generated dataset. On this note, it is

important to understand the interpretation of precision and recall in classification. Precision

gives the ratio of number of elements correctly classified under a certain class (or cluster) and

all number of elements which actually belong to that class (or cluster). On the other hand,

recall gives the ratio of number of elements correctly classified under a certain class (or cluster)

and total number of elements classified under that class both correctly and incorrectly. Even

though both of these measures are very important, unfortunately we can not maximize both at

the same time. When we have different algorithms with same accuracy, we must choose the

model with better precision and recall. In our simulation study,both versions of Hard DMM

have the best accuracy on both the dataset along with very good precision and recall. Scheme 2

produces a dataset with a complex, non spherical patterns which makes it very difficult to clus-

ter with generic algorithms or mixture model with Gaussian distributions. When composi-

tional data shows asymmetric and non spherical patterns, mixture model using Dirichlet

distribution is expected to give better results as Dirichlet distribution can adopt both symmet-

ric and asymmetric shapes. Our simulation study confirms that Hard DMM can be a suitable

choice for both spherical and non spherical data when it comes to clustering.

Fig 1. Simulated data generated under scheme 1 with true clusters.

https://doi.org/10.1371/journal.pone.0268438.g001
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Fig 2. Outcome of different clustering algorithms on simulated data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g002

Table 1. Accuracy, precision and recall of different clustering algorithms on data generated under scheme 1.

Methods Accuracy Precision Recall

Hard DMM 1 0.928889 0.897778 0.917724

Hard DMM 2 0.928889 0.897778 0.917724

Ward 0.882222 0.877333 0.883416

Single 0.557778 0.337778 0.852264

Average 0.844444 0.854667 0.818948

Complete 0.711111 0.627111 0.615798

CLARANS 0.824444 0.833778 0.767597

PAM 0.805556 0.834889 0.741326

Fuzzy CMean 0.832222 0.854889 0.767149

KMeans 0.852222 0.869556 0.787949

GMM 0.882222 0.891111 0.891111

Hard GMM 0.921111 0.890444 0.910820

Sprectal 0.616667 0.664667 0.664667

DBSCAN 0.555556 0.333333 0.333333

https://doi.org/10.1371/journal.pone.0268438.t001
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Performance testing

We wanted to test the performance of our proposed model (Hard DMM 1) for varied dimen-

sions, varied number of clusters and varied overlap. We have simulated data with dimensions

5, 10, 20, 35, 50, 70 and 100 with number of clusters 2 to 6. For each dimension and number of

clusters, we have generated data 100 times and used our proposed model to check accuracy.

For clusters 2 to 5, we have set very less to none overlap in the data. And for 6 clusters we have

introduced overlap in the data with increasing dimension. Let us recall that p denotes the

dimension, k denotes the number of cluster and αj = (αj1, . . ., αjp) denotes the parameters of

Dirichlet distribution from mixture component j. The data generating schemes are mentioned

below.

• k = 2: 800 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 1 and 110, sorted in ascending order. 500 random samples from a Dirichlet dis-

tribution, with p parameters drawn randomly from a range 1 and 110, sorted in descending

order.

• k = 3: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 400 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 1 and 110, sorted in descend-

ing order. 300 random samples from a Dirichlet distribution, with all p parameters equal to

50.

• k = 4: 400 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 1 and 100, sorted in ascending order. 300 random samples from a Dirichlet dis-

tribution, with p parameters drawn randomly from a range 1 and 100, sorted in descending

Fig 3. Simulated data generated under scheme 2 with true clusters.

https://doi.org/10.1371/journal.pone.0268438.g003
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Fig 4. Outcome of different clustering algorithms on simulated data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g004

Table 2. Accuracy, precision and recall of different clustering algorithms on data generated under scheme 2.

Methods Accuracy Precision Recall

Hard DMM 1 0.925385 0.928167 0.909739

Hard DMM 2 0.925385 0.928167 0.909739

Ward 0.830000 0.858625 0.803385

Single 0.385385 0.250625 0.346824

Average 0.464615 0.495000 0.455818

Complete 0.490000 0.581208 0.511178

CLARANS 0.502308 0.531250 0.454768

PAM 0.510769 0.495250 0.512096

Fuzzy CMean 0.846923 0.877417 0.807752

KMeans 0.858462 0.882708 0.816642

GMM 0.726154 0.786875 0.786875

Hard GMM 0.756154 0.800833 0.764774

Sprectal 0.562308 0.632167 0.632167

DBSCAN 0.384615 0.250000 0.250000

https://doi.org/10.1371/journal.pone.0268438.t002
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order. 800 random samples from a Dirichlet distribution, with all p parameters equal to 50.

500 random samples from a Dirichlet distribution with l parameters equals to 110 and rest

p − l parameters drawn randomly from Uniform (1,5) distribution, sorted in ascending

order. l = (2, 3, 5, 8, 12, 15, 18) for p = (5, 10, 20, 35, 50, 70, 100) respectively.

• k = 5: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 100 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 110 and 500, sorted in

descending order. 300 random samples from a Dirichlet distribution, with p parameters

Fig 5. Plot of accuracy, precision and recall of different clustering algorithms on data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g005

Fig 6. Plot of accuracy, precision and recall of different clustering algorithms on data generated under scheme 2.

https://doi.org/10.1371/journal.pone.0268438.g006
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drawn randomly from a range 1 and 110, sorted in ascending order. 400 random samples

from a Dirichlet distribution, with p parameters drawn randomly from a range 1 and 110,

sorted in descending order. 300 random samples from a Dirichlet distribution, with all p
parameters equal to 50.

• k = 6: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 100 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 110 and 500, sorted in

descending order. 300 random samples from a Dirichlet distribution, with p parameters

drawn randomly from a range 1 and 110, sorted in ascending order. 400 random samples

from a Dirichlet distribution, with p parameters drawn randomly from a range 1 and 110,

sorted in descending order. 300 random samples from a Dirichlet distribution, with all p
parameters equal to 50. 500 random samples from a Dirichlet distribution with l parameters

equals to 110 and rest p − l parameters drawn randomly from Uniform (1,5) distribution,

sorted in ascending order. l = (2, 3, 5, 8, 12, 15, 18) for p = (5, 10, 20, 35, 50, 70, 100)

respectively.

The T-SNE [53, 54] plots in Figs 7 and 8 show that with p = 5 there is some overlap in one

cluster and with p = 100 one cluster has completely been overlapped on another. The perfor-

mances of the model for varied dimension, number of clusters and overlap is shown in Figs

9–13 respectively.

From results in Table 3, we see that increasing dimension and increasing number of clusters

do not have much impact on the accuracy of Hard DMM. But increasing overlap has signifi-

cant impact on the accuracy of Hard DMM. It is to be noted that many algorithms suffer from

Fig 7. T-SNE plot of data with p = 5 and k = 6.

https://doi.org/10.1371/journal.pone.0268438.g007
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“Curse of Dimensionality” with increasing dimension in the data. For example, in case of

GMM, a p dimensional mean vector and p × p symmetric covariance matrix need to be esti-

mated for each k clusters. In other words for a GMM with k clusters and p dimensions, (k − 1)

+ kp(1 + (p/2 + 1/2)) number of parameters need to be estimated. On the other hand, in case

of a DMM with k clusters and p dimensions, we need only (k − 1) + kp parameters to estimate.

So for 10 clusters and 100 dimensional data GMM estimates 51509 parameters, whereas DMM

estimates only 1009 parameters on the same situation. So, DMM has an added advantage over

GMM when it comes to high dimensionality. That is why we have noticed in our study that

increasing dimension has very little to none impact on the performance of Hard DMM. Also

with increasing number of cluster, the number of parameters increase linearly. And with a

good starting value in the EM algorithm, the model converges soon with satisfactory results.

On the contrary, overlap in the data leads to misclassification, which in turn decreases the per-

formance of Hard DMM significantly.

Real data applications

We have applied the proposed methods on two real data problems. Our main idea was to

check how our model works for the given data and not to provide an optimum solution for the

problems. We have checked three measures to evaluate the performance, namely: accuracy,

precision and recall. All measures have been compared with hierarchical agglomerative

Fig 8. T-SNE plot of data with p = 100 and k = 6.

https://doi.org/10.1371/journal.pone.0268438.g008
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clustering with linkage criteria ward, single, average and complete, PAM, CLARANS, Fuzzy

Cmean, KMeans GMM, Hard GMM, Spectral clustering and DBSCAN algorithm. At first we

have checked for missing data. In our study there was no missing data. The class labels were

subsequently label encoded in order to make it compatible with python. Using L1 normaliza-

tion [55] the data was then converted into compositional data and zero values were treated

using multiplicative replacement which is available in scikit-bio [56], a python library.

Wholesale customers data

We have used a data from Marketing and Management domain for our first experiment. [57]

has used this data for logical discriminant models. The dataset can be downloaded from UCI

Machine Learning Repository. The data refers to 440 customers of a wholesale distributor,

where 298 customers are from the Horeca (Hotel/Restaurant/Café) channel and the rest 142

customers are from the Retail channel. The wholesale customers are grouped in above two

classes according to frequency spending degrees of four types:

• low frequency-low spending;

• high frequency-low spending;

• regular frequency-regular spending;

• high frequency-high spending.

Fig 9. Mean accuracy of hard DMM 1 with 2 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g009
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Fig 10. Mean accuracy of hard DMM 1 with 3 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g010

Fig 11. Mean accuracy of hard DMM 1 with 4 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g011
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The first two spending patterns are captured by the class Horeca and the second two pat-

terns are captured by the class Retail. The wholesale data concerning the customers consists of

annual spending in monetary units (m.u.) on different product categories, namely: fresh prod-

ucts, milk products, grocery, frozen products, detergents and paper products and delicatessen.

The summary statistics of the data is shown in Table 4. The aim of the analysis is to find if

there are different spending patterns for the two groups of customers and if so, maybe the

wholesale could differentiate its marketing actions directed to these groups. For our study we

will restrict ourselves to clustering analysis. In this case we have p = 6, k = 2 and N = 440. The

T-SNE plots in Fig 14 shows complex distributional patterns. We have used different algo-

rithms for clustering and checked their performances. The corresponding results are shown in

Table 5.

From Fig 15 we see that both versions of Hard DMM work better than all other algorithms

under consideration in terms of Accuracy. Precision and recall are found to be little better in

GMM and Hard GMM than Hard DMM. As discussed before, when there are different algo-

rithms with same level of accuracy, it is better to choose the algorithm with more precision

and recall. In this experiment Hard DMM has the highest accuracy with comparatively good

precision and recall value. So, Hard DMM can still be considered as a suitable choice in this

situation.

Wine data

The dataset we heve chosen for our second experiment is from physical science domain. These

data are the results of a chemical analysis of wines grown in the same region in Italy but

derived from three different cultivars. The analysis determined the quantities of 13 constitu-

ents found in each of the three types of wines. The 13 components are namely: Alcohol, Malic

acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenol,

Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines and Proline. This data

Fig 12. Mean accuracy of hard DMM 1 with 5 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g012
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has been used by many researchers, (see [58–60]). This dataset can also be downloaded from

UCI Machine Learning Repository. The aim of the analysis is to identify the different types of

wines based on its components. But the attributes color intensity and hue do not constitute

chemical components of wine. Hence, we have dropped those two variables for our composi-

tional data analysis. We have used it for clustering purpose. In this case, we have p = 11, k = 3

and N = 178. The summary statistics of the data is shown in Table 6. Fig 16 displays the T-SNE

plot of the data which shows difficult cluster patterns. Like before, we have performed cluster-

ing with different clustering algorithms. The results in detail is shown in Table 7.

From Fig 17, we see that, both versions of Hard DMM work better than all other clustering

algorithms in terms of accuracy, precision and recall. For complex distributional pattern of

compositional data, Hard DMM work better than other models as, compositional data can be

naturally modelled using Dirichlet distribution.

Fig 13. Mean accuracy of hard DMM 1 with 6 clusters, varied dimensions and increasing overlap.

https://doi.org/10.1371/journal.pone.0268438.g013

Table 3. Mean accuracy of hard DMM 1 with varied dimensions and number of clusters.

k p = 5 p = 10 p = 20 p = 35 p = 50 p = 70 p = 100

2 1.000000 1.000000 1.000000 1.00000 1.00000 1.000000 1.000000

3 0.991658 0.999992 1.000000 1.00000 1.00000 1.000000 1.000000

4 0.993945 0.999925 1.000000 1.00000 1.00000 1.000000 1.000000

5 0.980044 0.997838 0.999994 1.00000 1.00000 1.000000 1.000000

6 0.942976 0.849214 0.695095 0.65829 0.65009 0.655305 0.683252

https://doi.org/10.1371/journal.pone.0268438.t003
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Conclusion

In this paper we have shown a convenient way to build Dirichlet mixture model to cluster

compositional data. The model can be used without any transformation. In this case, Dirichlet

distribution is a natural choice as it works with the unit sum constraint. Researchers generally

use generic algorithms for clustering compositional data, whereas Hard DMM offers an exclu-

sive solution specially for compositional data considering both the spherical and non spherical

cluster patterns. Dirichlet distribution is well known for modelling symmetric and asymmetric

data. This advantage can be exploited using Hard DMM.

We wanted to use a distribution other than normal in the mixture model and check

whether it works as par with predominantly used methods such as GMM and KMeans. From

the simulation study and two real data problems we see that when there is a pattern in the

composition (proportions), both versions of Hard DMM are able to identify the clusters with

quite a satisfactory result. For clustering purpose we had to be cautious while using data used

for classification, as not always classification and clustering done on same ground. For exam-

ple, if images are classified based on presence of a dog in it and the data contains values of red,

green and blue channel, clustering algorithm tries to find completely a different pattern.

Table 4. Summary statistics of wholesale customers data.

Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen

count 440.000 440.000 440.000 440.000 440.000 440.000 440.000 440.000

mean 1.322 2.543 12000.297 5796.265 7951.277 3071.931 2881.493 1524.870

std 0.468 0.774 12647.328 7380.377 9503.162 4854.673 4767.854 2820.105

min 1.000 1.000 3.000 55.000 3.000 25.000 3.000 3.000

25% 1.000 2.000 3127.750 1533.000 2153.000 742.250 256.750 408.250

50% 1.000 3.000 8504.000 3627.000 4755.500 1526.000 816.500 965.500

75% 2.000 3.000 16933.750 7190.250 10655.750 3554.250 3922.000 1820.250

max 2.000 3.000 112151.000 73498.000 92780.000 60869.000 40827.000 47943.000

https://doi.org/10.1371/journal.pone.0268438.t004

Fig 14. T-SNE plot of wholesale customer data.

https://doi.org/10.1371/journal.pone.0268438.g014
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We have also done an extensive simulation study to evaluate the performance of our pro-

posed method. We see that increasing number of dimensions (upto 100) and increasing num-

ber of clusters do not seem to have much effect on the performance. But increasing overlap

makes the accuracy decrease accordingly. DMM can also be advantageous in high dimensional

setting as it requires relatively less number of parameters to be estimated when compared to

other mixture model. Due to the complexity of maximum likelihood (ML) estimation for

Dirichlet parameters, Dirichlet distribution has long been ignored for clustering purpose. In

our study, we have shown a novel way to use ML estimates of dirichlet parameters conve-

niently in mixture set up which can be used to cluster compositional data.

In our study, we have considered the number of clusters to be known in advance. But in

reality, sometimes we need to estimate k before we can start clustering. We have also not

Table 5. Performance comparison of different model based clustering methods on wholesale customers data.

Methods Accuracy Precision Recall

Hard DMM 1 0.770455 0.780769 0.750448

Hard DMM 2 0.770455 0.780769 0.750448

Ward 0.756818 0.757798 0.732705

Single 0.675000 0.498322 0.338269

Average 0.768182 0.764344 0.741682

Complete 0.406818 0.320612 0.319944

CLARANS 0.718182 0.744021 0.713506

PAM 0.740909 0.755270 0.725436

Fuzzy CMean 0.731818 0.748558 0.718779

KMeans 0.731818 0.748558 0.718779

GMM 0.740909 0.790292 0.790292

Hard GMM 0.754545 0.789300 0.752955

Sprectal 0.734091 0.750236 0.750236

DBSCAN 0.677273 0.500000 0.500000

https://doi.org/10.1371/journal.pone.0268438.t005

Fig 15. Plot of accuracy, precision and recall of different algorithms on on wholesale customers data.

https://doi.org/10.1371/journal.pone.0268438.g015
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Table 6. Summary statistics of wine data.

0 1 2 3 4 5 6 7 8 9 10 11

count 178.000 178.0000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000

mean 1.938 13.000 2.336 2.366 19.494 99.741 2.295 2.029 0.361 1.590 2.611 746.893

std 0.775 0.811 1.117 0.274 3.339 14.282 0.625 0.998 0.124 0.572 0.709 314.907

min 1.000 11.030 0.740 1.360 10.600 70.000 0.980 0.340 0.130 0.410 1.270 278.000

25% 1.000 12.362 1.602 2.210 17.200 88.000 1.742 1.205 0.270 1.250 1.937 500.500

50% 2.000 13.050 1.865 2.360 19.500 98.000 2.355 2.135 0.340 1.555 2.780 673.500

75% 3.000 13.677 3.082 2.557 21.500 107.000 2.800 2.875 0.437 1.950 3.170 985.000

max 3.000 14.830 5.800 3.230 30.000 162.000 3.880 5.080 0.660 3.580 4.000 1680.000

https://doi.org/10.1371/journal.pone.0268438.t006

Fig 16. T-SNE plot of wine data.

https://doi.org/10.1371/journal.pone.0268438.g016

Table 7. Performance comparison of different model based clustering methods on wine data.

Methods Accuracy Precision Recall

Hard DMM 1 0.674157 0.693130 0.749177

Hard DMM 2 0.674157 0.693130 0.749177

Ward 0.646067 0.642660 0.689409

Single 0.398876 0.389671 0.427611

Average 0.584270 0.532527 0.521509

Complete 0.516854 0.490513 0.404811

CLARANS 0.612360 0.597660 0.591908

PAM 0.668539 0.672008 0.692386

Fuzzy CMean 0.511236 0.487177 0.490715

KMeans 0.511236 0.487177 0.486869

GMM 0.528090 0.494173 0.494173

Hard GMM 0.539326 0.521899 0.545030

Sprectal 0.612360 0.594180 0.594180

DBSCAN 0.331461 0.333333 0.333333

https://doi.org/10.1371/journal.pone.0268438.t007
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explored the situation when the data is very high dimensional and sparse. Both the issues

would require further research and we keep that for our future work.

Compositional data is getting very popular in biology domain. We hope to see more future

applications of Dirichlet distribution and DMM in compositional data analysis.

Author Contributions

Conceptualization: Samyajoy Pal.

Methodology: Samyajoy Pal.

Software: Samyajoy Pal.

Supervision: Christian Heumann.

Writing – original draft: Samyajoy Pal.

Writing – review & editing: Christian Heumann.

References

1. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society:

Series B (Methodological). 1982; 44(2):139–160.

2. Smith PF, Renner RM, Haslett SJ. Compositional data in neuroscience: If you’ve got it, log it! Journal of

neuroscience methods. 2016; 271:154–159. https://doi.org/10.1016/j.jneumeth.2016.07.008 PMID:

27450923

3. Buccianti A, Tassi F, Vaselli O. Compositional changes in a fumarolic field, Vulcano Island, Italy: a sta-

tistical case study. Geological Society, London, Special Publications. 2006; 264(1):67–77. https://doi.

org/10.1144/GSL.SP.2006.264.01.06

4. Miesch A, Chapman R. Log transformations in geochemistry. Journal of the International Association

for Mathematical Geology. 1977; 9(2):191–198. https://doi.org/10.1007/BF02312512

5. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. 2012;.

6. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional:

and this is not optional. Frontiers in microbiology. 2017; 8:2224. https://doi.org/10.3389/fmicb.2017.

02224 PMID: 29187837

7. Godichon-Baggioni A, Maugis-Rabusseau C, Rau A. Clustering transformed compositional data using

K-means, with applications in gene expression and bicycle sharing system data. Journal of Applied Sta-

tistics. 2019; 46(1):47–65. https://doi.org/10.1080/02664763.2018.1454894

8. Aebischer NJ, Robertson PA, Kenward RE. Compositional analysis of habitat use from animal radio-

tracking data. Ecology. 1993; 74(5):1313–1325. https://doi.org/10.2307/1940062

Fig 17. Plot of accuracy, precision and recall of different algorithms on on wine data.

https://doi.org/10.1371/journal.pone.0268438.g017

PLOS ONE Clustering compositional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268438 May 18, 2022 22 / 24

https://doi.org/10.1016/j.jneumeth.2016.07.008
http://www.ncbi.nlm.nih.gov/pubmed/27450923
https://doi.org/10.1144/GSL.SP.2006.264.01.06
https://doi.org/10.1144/GSL.SP.2006.264.01.06
https://doi.org/10.1007/BF02312512
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
http://www.ncbi.nlm.nih.gov/pubmed/29187837
https://doi.org/10.1080/02664763.2018.1454894
https://doi.org/10.2307/1940062
https://doi.org/10.1371/journal.pone.0268438.g017
https://doi.org/10.1371/journal.pone.0268438


9. Bingham RL, Brennan LA, Ballard BM. Misclassified resource selection: compositional analysis and

unused habitat. The Journal of wildlife management. 2007; 71(4):1369–1374. https://doi.org/10.2193/

2006-072

10. Belles-Sampera J, Guillen M, Santolino M. Compositional methods applied to capital allocation prob-

lems. Journal of Risk, Forthcoming. 2016;. https://doi.org/10.21314/JOR.2016.345

11. DeSarbo WS, Ramaswamy V, Chatterjee R. Analyzing constant-sum multiple criterion data: A segment-

level approach. Journal of Marketing Research. 1995; 32(2):222–232. https://doi.org/10.2307/3152050

12. Longford NT, Pittau MG. Stability of household income in European countries in the 1990s. Computa-

tional statistics & data analysis. 2006; 51(2):1364–1383. https://doi.org/10.1016/j.csda.2006.02.011

13. Pearson K. Mathematical Contributions to the Theory of Evolution. III. Regression. Heredity, and Pan-

mixia Philosophical Transactions of;.

14. Chayes F. On correlation between variables of constant sum. Journal of Geophysical research. 1960;

65(12):4185–4193. https://doi.org/10.1029/JZ065i012p04185

15. McAlister D. XIII. The law of the geometric mean. Proceedings of the Royal Society of London. 1879; 29

(196-199):367–376. https://doi.org/10.1098/rspl.1879.0061

16. Kotz S, Balakrishnan N, Johnson NL. Continuous multivariate distributions, Volume 1: Models and

applications. John Wiley & Sons; 2004.

17. Rehder S, Zier U. Letter to the Editor: Comment on “Logratio Analysis and Compositional Distance” by
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