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Background: In-vivo MR-based high-resolution volumetric quantification methods of

the endolymphatic hydrops (ELH) are highly dependent on a reliable segmentation of the

inner ear’s total fluid space (TFS). This study aimed to develop a novel open-source inner

ear TFS segmentation approach using a dedicated deep learning (DL) model.

Methods: The model was based on a V-Net architecture (IE-Vnet) and a multivariate

(MR scans: T1, T2, FLAIR, SPACE) training dataset (D1, 179 consecutive patients with

peripheral vestibulocochlear syndromes). Ground-truth TFS masks were generated in

a semi-manual, atlas-assisted approach. IE-Vnet model segmentation performance,

generalizability, and robustness to domain shift were evaluated on four heterogenous

test datasets (D2-D5, n = 4×20 ears).

Results: The IE-Vnet model predicted TFS masks with consistently high congruence

to the ground-truth in all test datasets (Dice overlap coefficient: 0.9 ± 0.02, Hausdorff

maximum surface distance: 0.93 ± 0.71 mm, mean surface distance: 0.022 ± 0.005

mm) without significant difference concerning side (two-sided Wilcoxon signed-rank

test, p > 0.05), or dataset (Kruskal-Wallis test, p > 0.05; post-hoc Mann-Whitney U,

FDR-corrected, all p > 0.2). Prediction took 0.2 s, and was 2,000 times faster than a

state-of-the-art atlas-based segmentation method.

Conclusion: IE-Vnet TFS segmentation demonstrated high accuracy, robustness

toward domain shift, and rapid prediction times. Its output works seamlessly with a

previously published open-source pipeline for automatic ELS segmentation. IE-Vnet

could serve as a core tool for high-volume trans-institutional studies of the inner ear.

Code and pre-trained models are available free and open-source under https://github.

com/pydsgz/IEVNet.

Keywords: MRI, deep learning, endolymphatic hydros, endolymphatic and perilymphatic space, convolutional

neural network CNN, VNet, segmentation (image processing), inner ear imaging
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1. INTRODUCTION

In-vivo non-invasive verification of endolymphatic hydrops
(ELH) via intravenous delayed gadolinium (Gd) enhanced
magnetic resonance imaging of the inner ear (iMRI)
is increasingly becoming an essential standard clinical
diagnostic tool to distinguish leading causes of peripheral
vestibulocochlear syndromes (1, 2). In this context, a fast and
easily reproducible, yet more importantly, comparable and
standardized quantification method of the endolymphatic space
(ELS) is a prerequisite in any setting, be it clinical or research
(3). Unfortunately, such a quantification method is not entirely
available yet despite many efforts.

At first glance, clinical radiology approaches offer fast
and easily applicable visual semi-quantitative (SQ) ELH
classifications (4–9). Nevertheless, given the plurality of visual
SQ ELH classification approaches that may vary in wording,
resolution (3- or 4-point ordinal scale), or evaluation level
(anatomical fixpoint), and can be sensitive to human bias,
published results cannot be considered inherently reproducible,
comparable or standardized (10). Already an improvement
in comparability, manual measurement of the ELS area in 2D
within one MR-layer (11, 12), or better yet, the entire ELS
volume 3D over multiple MR-layers (13, 14) remain dependent
on human decisions.

Similar to optimizing entire iMR sequences in use to date
(15–17), automatic ELS quantification is predetermined by two
methodical sticking points (18): The first obstacle is to distinguish
between total fluid space (TFS) within the entire inner ears bony
labyrinth from the surrounding petrosal bone structures (19–
21). The second difficulty is distinguishing the two different
fluid spaces within the TFS (22, 23), namely ELS within the
membranous labyrinth and the surrounding perilymphatic space
(PLS) within the bony labyrinth. Current semi-automatic (24–26)
or automatic (27, 28) 3D ELS quantificationmethods havemostly
concentrated on ELS differentiation within TFS.

Most available 3D TFS segmentation approaches are either
manual (24, 26), or atlas-based (29, 30). However, atlas-
based segmentation uses deformable image registration that
entails several challenges (31). On the one hand, careful
parameterization and run-times between minutes to hours
of computation to obtain accurate segmentation prohibit

Abbreviations: ±, Standard deviation; 2D, Two-dimensional; 3D, Three-

dimensional; ANTS, Advanced Normalization Toolkit; aSCC, anterior semi-

circular canal; D1, Dataset 1, Training dataset; D2, Dataset 2, Test dataset; D3,

Dataset 3, Test dataset; D4, Dataset 4, Test dataset; D5, Dataset 5, Test dataset; DL,

Deep learning; ELH, Endolymphatic hydrops; ELS, Endolymphatic space; FLAIR,

Fluid-attenuated inversion recovery; FH, Full-head; FHT, Full-head template;

FOV, Field-of-view; GBCA, Gadolinium-based contrast agent; Gd, Gadolinium;

GRAPPA, Generalized auto-calibrating partially parallel acquisition; HC, Healthy

control; hSCC, horizontal semi-circular canal; IET, Inner ear template; IE-Vnet,

Inner ear dedicated deep learning model based on a V-Net architecture; iMRI,

Delayed intravenous gadolinium-enhanced MRI of the inner ear; iv, Intravenous;

L, Left; MRI, Magnetic resonance imaging; n, Number; OTB, Optimal Template

Building; PLS, Perlymphatic space; pSCC, posterior semi-circular canal; QC,

Quality-control (led); R, Right; ROI, Region-of-interest; SCC, Semi-circular canal;

SQ, Semi-quantitative; SPACE, Sampling perfection with application-optimized

contrasts by using different flip angle evolutions; SyN, Symmetric Normalization;

TFS, Total fluid space.

interactive analysis. Another challenge and important motivation
for this study are that the thin structures of the TFS, particularly
the semi-circular canals, often lead to misregistration, despite the
usage of multi-resolution registration.

A promising alternative tool is machine learning algorithms
based on deep neural networks (DNN, or deep learning).
Recently, an automated 2D measurement of hydrops ratio
using a three-layer convolutional neural network (CNN) based
segmentation (32) and a deep learning algorithm for fully
automated 3D segmentation of the inner ear (33) were proposed.
However, to the best of our knowledge, these algorithms are not
accessible to the public at large.

This work proposes an open-source approach for inner ear
TFS segmentation based on deep learning and using a specialized
V-Net architecture (IE-Vnet) that will be made available to the
scientific community. The discussion includes a comprehensive
comparison of the currently available deep learning algorithms
for 3D volumetric inner ear segmentation. In addition, we aimed
to investigate the following questions:

(i) Is the training of the IE-Vnet on semi-manual, atlas-based
pre-segmentations of inner ear TFS possible from a large
cohort with comparatively little manual segmentation effort?

(ii) Is the IE-Vnet able to generalize across domain shift
differences in MRI scanner hardware and sequence settings,
or patient pathology without significant loss of segmentation
accuracy, given appropriate augmentation techniques during
training?

2. MATERIALS AND METHODS

2.1. Setting and Institutional Review Board
Approval
This work was conducted at the interdisciplinary German Center
for Vertigo and Balance Disorders (DSGZ) and the Neurology
Department of the Munich University Hospital (LMU) between
2015 and 2019. This study used previously published datasets
(10, 27, 30, 34, 35). Institutional Review Board approval was
obtained before the initiation of the study (no. 094-10 and no.
641-15). All participants provided informed oral and written
consent in accordance with the Declaration of Helsinki before
inclusion in the study. The inclusion criterion was age between 18
and 80 years. The exclusion criteria were other (than vestibular)
neurological or psychiatric disorders, as well as any MR-
related contraindications (36), poor image quality, or missing
MR sequences.

2.2. Datasets and Cohorts
The study included five different real-life datasets, denoted as
D1–D5. Dataset 1 (D1, training dataset) was used to train the
deep neural network model. Datasets 2–5 (D2–D5, test datasets)
were used to investigate the model’s out-of-sample performance
due to MR scanner, MR sequence, or cohort and pathology. A
detailed description of the domain differences between D1 and
D2-5 is given in Table 1.
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TABLE 1 | Domain differences between training (D1) and test (D2-D5) datasets.

MR scanner # Channels ELH Vestibulocochlear syndrome Domain difference

D1 Skyra 20 Yes/No Yes No

D2 Skyra 20 No No ELH, pathology

D3 Skyra 20 Yes Yes No

D4 Verio 32 Unknown, but improbable No Scanner, coil, site, ELH, pathology

D5 Verio 32 Unknown, but possible Yes Scanner, coil, site

Test datasets with various properties were included to examine the robustness of the network’s segmentation performance toward domain shift. This shift was caused either by changes

in population (endolymphatic hydrops present or not, determined by an ELH grade ≥ 1; pathologies present or not), or by changes in the imaging hardware and sequence parameters

(scanner model, number of channels in the head RF coil), or both.

2.2.1. Training Dataset D1
D1 included 358 ears of 179 consecutive patients (102 female=
56.9%; aged 19–80 years, mean age 52.2 ± 15.7 years) with
peripheral vestibulocochlear syndromes that underwent iMRI
for exclusion or verification of ELH (51 without ELH, 49 with
unilateral ELH, 79 with bilateral ELH). Vestibulocochlear
syndromes comprised Meniere’s disease (n = 78), vestibular
migraine (n = 69), acute unilateral vestibulopathy (n = 14),
vestibular paroxysmia (n = 11), bilateral vestibulopathy
(n = 5), and benign paroxysmal positional vertigo (n =
2). Patients were clinically diagnosed according to the
respective international guidelines, such as the brny Society
(www.jvr_web.org/ICVD.html or https://www.baranysociety.nl)
when diagnosing vestibular migraine (37, 38), Menires disease
(39), vestibular paroxysmia (40), bilateral vestibulopathy (41),
acute unilateral vestibulopathy/vestibular neuritis (42) and
benign paroxysmal positional vertigo (43). A detailed description
of the diagnostic work-up of all cohorts can be found in the
Supplementary Material.

2.2.2. Test Dataset D2 and D3
In comparison to D1, these test datasets have the same
acquisition parameters (D2, D3) but differences in population
(D2). D2 included 20 ears of 10 consecutive Department
of Neurology inpatients (7 female= 70%; aged 24–45 years,
mean age 33.1 ± 6.7 years) without symptoms or underlying
pathologies of the peripheral and central audio-vestibular system
that underwent MRI with a contrast agent as part of their
diagnostic workup and agreed to undergo iMRI sequences after
4 h without any indication of ELH. Patients were admitted
into the clinic due to movement disorders (n = 3), epilepsy
(n = 2), trigeminal neuralgia (n = 2), viral meningitis (n = 1),
subdural hematoma (n = 1), and decompensated esophoria
(n = 1). D2 underwent audio-vestibular testing confirmed the
soundness of their peripheral end organs. D3 included 20 ears
of 10 consecutive patients (6 female= 60%; aged 20–58 years,
mean age 37.8 ± 13.6 years) with peripheral vestibulocochlear
syndromes that underwent iMRI for verification of ELH
(7 with unilateral ELH, 3 with bilateral ELH). Pathologies
comprehended patients with Meniere’s disease (n = 3),
vestibular migraine (n = 3), acute unilateral vestibulopathy
(n = 2), vestibular paroxysmia (n = 1), and bilateral
vestibulopathy (n = 1).

2.2.3. Test Dataset D4 and D5
In comparison to D1, these datasets differ regarding MR
acquisition parameters (D4, D5) and population (D4). D4

included 20 ears of 10 consecutive healthy controls (HC; 7
female= 70%; aged 25–52 years, mean age 36.6 ± 9.1 years).
D5 included 20 ears of 10 consecutive patients (4 female= 40%;
aged 27–44 years, mean age 37.5 ± 5.6 years) with bilateral
vestibulopathy. Measured MR sequences in D4 and D5 only
distinguished between TFS within the entire inner ears bony
labyrinth from the surrounding petrosal bone structure, but not
between ELS and PLS within the TFS. The existence of an ELH
cannot be excluded, but is unlikely in D4 and possible in D5.

2.3. MR Imaging Data Acquisition
2.3.1. Datasets D1-3
Four hours after intravenous injection of a standard dose
(0.1 mmol/kg body weight) of Gadobutrol (Gadovistr, Bayer,
Leverkusen, Germany), MR imaging data was acquired in a
whole-body 3 Tesla MR scanner (Magnetom Skyra, Siemens
Healthcare, Erlangen, Germany) with a 20-channel head coil.
Head movements were minimalized in all three axes using
a head positioning system for MRI (Crania Adult 01, Pearl
Technology AG, Schlieren, Switzerland). A 3D-FLAIR (fluid-
attenuated inversion recovery) sequence was used to differentiate
ELS from PLS within TFS, and a spin-echo 3D-SPACE (three-
dimensional sampling perfection with application-optimized
contrasts by using different flip angle evolutions) sequence to
delineate the TFS from the surrounding bone. ELH was classified
on 3D-FLAIR images as enlarged negative-signal spaces within
TFS, according to a previously reported convention (8, 10). The
3D-FLAIR had the following parameters: TE 134 ms, TR 6,000
ms, TI 2240 ms, FA 180◦, FOV 160 × 160 mm2, 36 slices, base
resolution 320, averages 1, acceleration factor of 2 using a parallel
imaging technique with a generalized auto-calibrating partially
parallel acquisition (GRAPPA) algorithm, slice thickness 0.5 mm,
0.5× 0.5× 0.5mm3 spatial resolution.

The spin-echo 3D-SPACE sequence had the following
parameters: TE 133 ms, TR 1000 ms, FA 100◦, FOV 192 ×

192 mm2, 56 slices, base resolution 384, averages 4, acceleration
factor of 2 using GRAPPA algorithm, 0.5 mm slice thickness,
0.5 × 0.5 × 0.5 mm3 spatial resolution. Further structural
sequences included a T2-weighted sequence (TE 89 ms, TR
4,540 ms, FOV 250 × 250 mm2, 42 slices, base resolution 364,
averages 1, acceleration factor of 2 using GRAPPA algorithm,
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slice thickness 3 mm, voxel size 0.7× 0.7 × 3 mm3) and a
T1-weighted magnetization-prepared rapid gradient echo (MP-
RAGE) sequence with an isotropic spatial resolution of 1.0× 1.0
× 1.0 mm3 (TE 4.37 ms, TR 2,100 ms, FOV 256 × 256 mm2,
160 slices).

2.3.2. Datasets D4-5
MR imaging data were acquired in a whole-body 3.0 Tesla
MR scanner (Magnetom Verio, Siemens Healthcare, Erlangen,
Germany) with a 32-channel head coil. Head movements were
minimalized in all three axes using a head positioning system
for MRI (Crania Adult 01, Pearl Technology AG, Schlieren,
Switzerland). A spin-echo 2D-SPACE sequence was used to
delineate the bony labyrinth (TR 1,000 ms, TE 138 ms, FA 110◦,
FOV 180 × 180 mm2, 60 slices, base resolution 384, averages 2,
slice thickness 0.5 mm, 0.5 × 0.5 × 0.5 mm3 spatial resolution).
Further structural sequences included a T2-weighted sequence
(TE 94 ms, TR 4,000 ms, FOV 230 × 230 mm2, 40 slices, base
resolution 364, averages 1, acceleration factor 2 using GRAPPA
algorithm, slice thickness 3 mm, voxel size 0.7× 0.7 × 3 mm3)
and a T1-weighted magnetization-prepared rapid gradient echo
(MP-RAGE) sequence with a field-of-view of 256 mm and an
isotropic spatial resolution of 1.0× 1.0 × 1.0 mm3 (TE 4.37 ms,
TR 2,100 ms, 160 slices).

2.4. Creation of Ground Truth Using
Atlas-Based Segmentation
The ground-truth (or gold standard) segmentation for D1-5
was created using the T2 and SPACE MRI volumes in a semi-
manual process, with the assistance of automatic, atlas-based
segmentation. 2D- or 3D-SPACE MRI volumes served as input
to the IE-Vnet model. A flowchart of the (semi-)manual ground-
truth segmentation can be viewed in Figure 1. Figure 2 depicts
an exemplary T2 volume along with a ground-truth segmentation
mask. First, two custom templates and atlases were created
from scratch, specifically for automated pre-segmentation of the
inner ear. Then, registrations were performed using linear affine
and non-linear Symmetric Normalization [SyN, (44)] as well as
Optimal Template Building [OTB, (45)], which are part of the
Advanced Normalization Toolkit (ANTs)1. Also, all subjects T1,
T2 and FLAIR volumes were spatially co-aligned with the SPACE
volume via intra-subject rigid registration.

The first atlas localized the inner ears inside full-head (FH) or
limited FOV (field-of-view) MRI scans. To this end, a full-head
template (FHT) was created from T2 volumes using ANTs OTB,
and the inner ear structures’ central location was annotated with
a single landmark for each side, respectively. Finally, FHT plus
annotations, i.e., the full-head atlas, were non-linearly registered
to all subjects’ volumes. Thus, left and right inner ears could be
located in all participants’s heads.

The second atlas enabled automatic pre-segmentation of the
inner ear. Therefore, inner ear localization landmarks were
transferred from the FH T2-FLAIR scans to the narrow FOV
SPACE scans. Here, inner ears were cropped using a 4 × 3 × 2
cm region-of-interest (ROI) that contained the entire inner ear

1ANTs open-source code and binaries: https://stnava.github.io/ANTs/.

FIGURE 1 | Flowchart of the inner ear’s auto-segmentation.

Auto-segmentation of the inner ear (IE) involved data preparation and manual

ground-truth annotation of the IEs total fluid space (TFS) masks in training (D1,

grey shading) and test (D2-D5, white shading) datasets. First,

pre-segmentations (orange boxes) were obtained in D1-D5 via a custom-built

full-head template (FHT) and an inner-ear template (IET). Then, manual quality

control (QC), followed by manual refinement of IE segmentations (purple

boxes), trained and examined the IE-Vnet model. Finally, its predictions were

validated under various forms of domain shift in the test datasets D2-D5 (cf.

Table 1).
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FIGURE 2 | Inner ear MR example case. Depiction of an exemplary SPACE volume along with its ground-truth segmentation masks. (A) Depiction of ten axial slices

from the SPACE MRI sequence volume, through the right inner ear, from caudal to cranial, covering a range of 12.4 mm (∼ 1.4 mm slice distance). (B) Like (A), but

with the manually segmented total fluid space (TFS) mask (colored in red). (C) Volume rendering of the right inner ear ROI, which serves as input to the IE-Vnet model.

(D) Like (C), but the manually segmented TFS surface overlaid in red.

structure and a sufficient margin of 5–10 mm to all sides to
account for slight localization errors. Inside the ROI, SPACE
voxel intensities were resampled at 0.2 mm isotropic resolution
(i.e., 200 × 150 × 100 voxels). All ROI cubes were geometrically
centered to the origin ([0, 0, 0]) coordinate. At the origin, right-
sided inner ears were re-oriented onto the left inner ears through
horizontal flipping. A single inner ear template (IET) using ANTs
OTB was computed from this uni-directed set of inner ears.
This template was annotated with manual segmentation of the
total fluid space (TFS), first by intensity thresholding with Otsu’s
method (46), followed by manual refinement with various 3D
mask editing tools “Segment Editor Module”, mainly 3D brush,
eraser, and scissor tool in 3D Slicer 2 (47).

All inner ears in training (D1) and testing (D2-5) were
pre-segmented using two atlas registrations; first, an inner ear
localization with the FHT, followed by TFS segmentation with
the IET. Then, an automatic refinement step was performed post-
registration by intersecting an Otsu-thresholded mask with a 0.5
mm dilated atlas mask to account for patient-wise shape- and
intensity- variations. Despite this automatic refinement, every
automatic segmentation needed to be quality-controlled (QC)
and corrected for mistakes in an additional manual process.
Two different QC and correction strategies were implemented in
the training dataset (D1) and test datasets (D2–D5) to balance
the amount of manual annotation effort and the TFS masks
criticality. The automatic segmentation underwent a visual QC
check in each of the 358 training inner ears (D1). Inner ear
localization worked very robustly, without any inner ears being
missed or mislocalized. In contrast, the atlas-based segmentation

23D Slicer open-source code and binaries: https://www.slicer.org/.

was not as robust, with severe mis-segmentations (e.g., partially
incomplete or entirely missed semi-circular canals or cochlear
turns) in 64 out of 358 training inner ear ROIs (17.9%).
These were manually refined before network training, while the
remaining 302 inner ears were used for training, even if minor
visual errors in the atlas auto-segmentations were present. In
contrast, atlas-segmentation in the test datasets (D2–D5) was not
only visually inspected, but all 80 inner ears were thoroughly
error-corrected and manually refined with the aforementioned
3D Slicer mask editing tools. Manual refinement of a single inner
ear, for an experienced annotator familiar with the 3D Slicer user
interface, took on the order of 5–15 min.

The pre-processing steps necessary for inner ear segmentation
in new MRI volumes are limited to localizing the left and
right inner ear. This can be achieved automatically using a
full-head registration (performed in this work) and requires no
manual interaction. Alternatively, the inner ears can also be
manually localized using landmark annotation. Depending on
the workstation hardware and registration parametrization, a
fully automatic inner ear ROI localization can be performed in 1–
2min. However, amanual localization ismuch faster and requires
two clicks, which can be performed in seconds.

2.5. IE-Vnet Neural Network Architecture
and Training
2.5.1. Architecture and Loss Function
The deep learning architectures for volumetric 3D segmentation
were based on a V-Net model (48), which is a variant of the
3D U-Net family of architectures (49). The basic idea of these
fully convolutional architectures is to extract hierarchical image
features using learnable convolutional filters at an increasingly
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coarse resolution and image representation. The down-sampling
and up-sampling operations are achieved via pooling/un-
pooling operations (49) or forward/transpose convolutions (48).
In this work, the network was designed as a variant of
a V-Net architecture, with four down-sampling levels, with
[16, 32, 64, 128, 256] 3D-convolutional filters at each level (kernel
size: 3 × 3 × 3 voxels), and with residual blocks spreading two
convolutional layers each within each level. Each convolutional
layer is followed by Instance Normalization (50), channel-wise
random dropout (p = 0.5), and non-linear activation with
Parametrized Rectified Linear Units (PReLU) (51). The loss
function used for training was the Dice loss (48). The recently
published cross-institutional and open-source deep learning
framework “Medical Open Network for AI” (MONAI) (52)3 was
used to implement the network, pre-processing, augmentation
and optimization. Figure 3 visualizes the architecture.

2.5.2. Pre-processing and Augmentation Scheme
All volumes in D1–D5 were pre-processed with simple spatial
padding to a volume size [208, 160, 112], and intensity scaling
to the range [0 . . . 1]. The dataset D1 was split into 90% training
data (N = 161 subjects, 322 inner ears) and 10% validation data
(N = 18 subjects, 36 inner ears). Random image augmentation
was used to enlarge the training set size artificially, since fully
convolutional segmentation networks require large amounts of
training data for robust and accurate prediction. Augmentation
steps included random contrast adjustment (gamma range:
[0.3, . . . 1.5], probability of occurrence po = 0.9), addition
of random Gaussian noise (µ = 0, σ = 1.0, po = 0.5),
random horizontal flipping (po = 0.5), and random affine-
elastic transformation (po = 0.75; 3D translation: 15% of ROI
dimensions; 3D rotation: 20◦; scaling: ±15%; grid deformation:
magnitude range [5 . . . 100], sigma range: [5 . . . 8]).

2.5.3. Optimization
Adam stochastic optimization algorithm (53) at a learning rate of
3e− 4 was used to train the network weights.

2.6. Validation Parameters
Segmentation accuracy was quantified using spatial overlap
indexes, such as Dice overlap coefficient (54, 55), Hausdorff
distance (56, 57), and mean surface distance (58).

Localized performance issues within the inner ear were
visually assessed using a semi-quantitative five-point Likert-type
response scale (59, 60). Therefore, the level of agreement in
the segmentation outcome of the cochlea, sacculus, utriculus,
the anterior semi-circular canal (aSCC), posterior SCC (pSCC),
and horizontal SCC (hSCC), respectively, were quantified using
the following categories: 5-Strongly agree (no structure missing,
no false-positive segmentation, clean contour), 4-Agree (no
structure missing, no false-positive segmentation, ≤ 1 unclean
contour), 3-Neither agree nor disagree, (no structure missing, ≤
1 false-positive segmentation, > 1 unclean contour), 2-Disagree
(≤ 1 missing structure, > 1 false-positive segmentation, clean or

3Project MONAI documentation and code: https://monai.io/.

unclean contour), and 1-Strongly disagree (> 1missing structure,
> 1 false-positive segmentation, clean or unclean contour).

2.7. Statistical Testing
Normal distribution of Dice overlap measures across datasets
was determined using Shapiro and Wilk testing (61) and
homoskedastic across datasets was determined using Bartlett and
Fowler testing (62) before statistical analysis. Consequently non-
parametric testing was further applied. Given their ordinal nature
(63), non-parametric testing was also applied to the Likert-type
expert ratings.

Statistical hypothesis tests were then performed to investigate
two questions: First, the sidedness of the network was checked,
i.e., whether there was a statistically significant difference in
segmentation accuracy (Dice overlap coefficients, Likert ratings)
between left and right inner ears. To this end, a non-parametric
Wilcoxon signed-rank test was applied to the Dice, and Likert
outcomes, paired between the left and right inner ears of each
test subject. Second, the null-hypothesis was verified, i.e., that
the Dice overlap median outcomes of the four test datasets
D2-D5 were equal. The purpose of this was to investigate the
generalization capability of the network, i.e., whether a shift
in population or imaging parameters or both (cf. Table 1) led
to a measurable deterioration of segmentation performance. To
this end, a non-parametric Kruskal-Wallis test for independent
samples was employed with the concatenated left and right Dice
and Likert outcomes as the dependent variable and the test
set indicator (D2–D5) as the independent variable. Post-hoc, a
non-parametric tests [Mann-Whitney U (64)] between Dice and
Likert outcomes was performed in all pairs of test datasets D2–
D5. All statistical analyses were applied using the open-source
libraries Scipy Stats (65), Statsmodels (66), and Pingouin (67).
Values are presented as means± standard deviations.

3. RESULTS

Results are presented separately for the training and testing stage,
followed by statistical comparisons.

3.1. Training Results
Figure 4 shows the evolution of Dice loss for model training
and the corresponding Dice metric on the withheld validation
set. The maximum validation Dice overlap metric of 0.944 was
obtained at epoch 113, and this best-performing model was saved
for forwarding inference on the withheld test datasets D2-D5
(cf. Sections 3.2, 3.3), as well as for open-source dissemination.
Notably, the loss curve showed a steady convergence toward
the minimum obtained at the final iteration. Simultaneously, the
validation metric showed a steady convergence without any signs
of overfitting throughout the entire optimization procedure.
The total training time took around 11 h on a consumer-level
workstation (AMD Ryzen Threadripper 1950X 8-core CPU, 32
GB RAM, Nvidia 1080 Ti GPU).

3.2. Test Results
The total inference time for 80 samples was 15.2 s, i.e., on
average 0.19 s ± 0.047 s for each cropped and up-sampled
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FIGURE 3 | Schematic representation of the IE-Vnet architecture. The IE-Vnet architecture is designed as a variant of a V-Net architecture with four down-sampling

levels, [16, 32, 64, 128, 256] 3D-convolutional filters at each level (kernel size: 3× 3× 3 voxels), and with residual blocks spreading two convolutional layers each

within each level. Each convolutional layer is followed by Instance Normalization (50), channel-wise random dropout (p = 0.5), and non-linear activation with

Parametrized Rectified Linear Units (PReLU) (51). The convolutions aim to extract features from the data and, at the end of each stage, reduce its resolution by using

appropriate stride. The left part of the network consists of a compression path, while the right part decompresses the signal until its original size is reached. A more

detailed description can be found in Milletari et al. (48).

FIGURE 4 | IE-Vnet training loss and validation metrics. IE-Vnet training loss (left graphic) and validation (right graphic) metrics were observed during 120 epochs

of training. In addition, the maximum validation Dice overlap metric of 0.944 was obtained at epoch 113. Notably, the loss curve showed a steady convergence

toward the minimum obtained at the final iteration. At the same time, the validation metric showed a steady convergence without any signs of overfitting throughout

the entire optimization procedure.
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FIGURE 5 | IE-Vnet segmentation quality control. Alignment between ground-truth and prediction in the four test datasets D2-D5 (20 IE each, 80 IE altogether) was

measured by the quantitative metrics of Dice overlap coefficient (upper row), Hausdorff maximum surface distance (middle row), and average surface distance

(lower row). Results of left ears (blue) are depicted on the left (L), while results of the right ears (black) are shown on the right (R). In most cases across D2-5,

congruence between model prediction and manual ground-truth was high.

inner ear volume at 0.2 mm isotropic resolution (i.e., 200 ×

150 × 100 voxels). The agreement of TFS segmentation between
manual ground-truth and the networks prediction was quantified
by three metrics: Dice overlap coefficient “Dice”, maximum
Hausdorff surface distance “HDmax”, mean surface distance
“SDmean”, along with five-point Likert-type response scale “LS”.
These metrics are illustrated with boxplots in Figure 5, and
summarized numerically in Table 2.

Several points are noteworthy. On average, across all left
and right inner ears and in all four test datasets, the Dice
overlap coefficient showed a mean value of 0.900 ± 0.020, the
Hausdorff maximum surface distance a mean value of 0.93
± 0.71 mm), and the mean surface distance a mean value
of 0.022 ± 0.005 mm). Thus, the segmentation performance
seems quantitatively consistent across the test datasets D2–D5
(cf. Figure 5 and Table 2A), which was further confirmed by
statistical analyses (cf. Section 3.3). The mean Likert scales of
the inner ear structures were altogether consistently high (4.913
± 0.337) across both inner ears and in all four test datasets.
However, depending on the location, shape and intricacy of the
separate inner ear structures, Likert scores consistently differed

in performance success (cf. Table 2B) with the most robust
results in the vestibulum (sacculus: 4.988 ± 0.112, utriculus:
5.000 ± 0.000), intermediate results in cochlea (4.925 ± 0.265)
and posterior SCC (4.888 ± 0.477), and least robust results
in the anterior (4.813 ± 0.576) and horizontal SCC (4.863 ±

0.590). The mentioned pattern can be verified in the several
outliers, in particular in the Hausdorff distance values in both
right and left inner ears. Two cases with outlier Hausdorff
distances on the order on 3 mm and above are presented in
Figures 6C,D. Visual inspection reveals that these comparatively
high surface errors stem either from challenging cases, which
were also difficult in manual ground truth segmentation in the
horizontal and posterior SCC (panel D), or minor prediction
artifacts in the anterior SCC such as isolated blobs, rather
than gross mis-segmentations (panel C). Such artifacts could
be filtered away through minor post-processing like connected-
components filters. In most cases, it is noteworthy that surface
congruence between model prediction and manual ground truth
was very high, with mean surface distances on the order on
0.02 mm, and with very few cases of surface distances above
0.03 mm. This is also reflected in the form of visual agreement

Frontiers in Neurology | www.frontiersin.org 8 May 2022 | Volume 13 | Article 663200

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ahmadi et al. IE-Vnet: DL-Based IE Segmentation

TABLE 2 | IE-Vnet segmentation results on four test datasets D2-D5 (20 inner ears each) compared to manual ground-truth.

Dataset D2 D3 D4 D5

Mean SD Mean SD Mean SD Mean SD

(A) Accuracy

Dice 0.906 0.012 0.895 0.021 0.904 0.014 0.894 0.026

HDmax 0.949 0.862 0.804 0.476 1.170 0.774 0.811 0.565

SDmean 0.020 0.003 0.023 0.005 0.021 0.003 0.023 0.006

(B) Performance

Cochlea 4.950 0.224 4.900 0.308 4.900 0.308 0.950 0.224

Sacculus 5.000 0.000 5.000 0.000 4.950 0.224 5.000 0.000

Utriculus 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000

aSCC 4.800 0.616 4.800 0.616 4.900 0.308 4.750 0.716

pSCC 4.900 0.447 4.900 0.447 4.850 0.671 4.900 0.308

hSCC 4.950 0.224 4.850 0.671 4.850 0.671 4.800 0.696

Segmentation accuracy (A) was measured by the quantitative metrics of Dice overlap coefficient (“Dice”), Hausdorff maximum surface distance (“HDmax,” in [mm]), and average surface

distance (“SDmean,” in [mm]). Localized performance (B) issues within the inner ear were assessed using a semi-quantitative five-point Likert-type response scale for the cochlea,

sacculus, utriculus, the anterior semi-circular canal (aSCC), posterior SCC (pSCC), and horizontal SCC (hSCC) respectively. A detailed description of the used categories can be found

in Section 2.6.

between ground truth and prediction, as visible in two cases in
Figures 6A,B.

3.3. Impact of Side and Domain Shift
We investigated whether the IE-Vnet segmentation model is
affected by a side bias and whether its segmentation performance
is affected by variance of the population or imaging parameters
(cf. Table 1). The first test was performed in a paired manner
between Dice overlap measures in the left and right inner
ears for all 40 test subjects (D2–D5). This analysis yielded
no significant difference between sides (two-sided Wilcoxon
signed-rank test: p = 0.061; normality rejected, Shapiro-Wilk
test: p < 0.001). Further, we examined whether differences
in image acquisition led to domain shifts across the four test
datasets that impacted our model’s segmentation performance.
This test yielded no significant difference between Dice overlap
outcomes across datasets D2–D5 (Kruskal-Wallis test: p = 0.146;
homoscedasticity rejected, Bartlett test: p < 0.01). Further,
the pair-wise post-hoc tests between datasets D2-D5 yielded no
significant differences in Dice overlaps (Mann-Whitney U, all
BH-FDR corrected p-values at p > 0.20). Equivalent results were
obtained for qualitative expert ratings of segmentation results
upon visual inspection. No significant differences in Likert scale
ratings were found across any of the rated regions (cochlea,
sacculus, utriculus, anterior, posterior, and horizontal SCC),
neither between sides (Wilcoxon signed-rank test, all p-values
above p = 0.162), nor between group-medians across D2–D5
(Kruskal-Wallis test: all p-values above p = 0.392), nor pair-
wise across D2–D5 (post-hoc, Mann-Whitney U, all BH-FDR
corrected p-values at p > 0.860).

4. DISCUSSION

The current work proposes a novel inner ear TFS segmentation
approach using a dedicated deep learning (DL) model based

on a V-Net architecture (IE-Vnet). A variant of a V-Net
deep convolutional neural network architecture was trained
to perform segmentation inference on inner ear volumes.
During training, various image augmentation techniques were
used to account for expected variations in out-of-sample
datasets, such as image contrast and intensity, noise, or
affine/deformable distortions of geometry. The training dataset
was constructed through atlas-based pre-segmentations with
comparatively minor manual correction and segmentation effort
(aim i). As a result, the inferred IE-Vnet segmentations on
four testing datasets were free from side bias and robust to
various domain shift sources, such as MRI scanner hardware and
sequences and patient pathology (aim ii). Compared to atlas-
based segmentation, the novel model was roughly 2,000 times
faster and managed to avoid gross mis-segmentations in more
than 20% of test cases, especially in high-volume datasets. In
the following, IE-Vnet, compared to currently available neural
network algorithms used for MR inner ear segmentation, its
technical and clinical implications, methodical limitations, and
future work will be discussed.

4.1. Technical Implications
4.1.1. Accuracy of Segmentation
The average Dice values during testing (0.900) are noticeably
lower when compared to training (0.944). This effect can be
attributed to the fact that the TFS ground-truth regions were
manually refined in every test sample with considerably more
effort than the training set. Nevertheless, these indicate accurate
segmentation (31), especially in structures like the semi-circular
canals, where the Dice metric is known to degrade quickly
for small regions or regions with fine-grained protrusions (68).
Furthermore, the overall low surface distance of 0.02 mm can
be attributed to the fact that the volumes were bi-cubically up-
sampled to a resolution of 0.2 mm before inference. Therefore,
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FIGURE 6 | IE-Vnet 3D segmentation predictions visualized. Visualization of

3D segmentations predicted by the IE-Vnet model (color: cyan), overlaid onto

manual ground-truth 3D surface contours (color: red). (A) Exemplary case of a

highly accurate segmentation Dice > 0.92, Hausdorff maximum surface

distance < 0.5 mm, mean surface distance < 0.02 mm, 5/5 Likert scale (LS)

for cochlea, sacculus, utriculus, anterior, posterior and horizontal SCC. Manual

ground-truth and prediction are in high agreement over the entire surface. (B)

Another example of a highly accurate segmentation. The arrow denotes a

location with hypo-intense semi-circular canal voxels, as marked manually in

red, and the model prediction predicts a thinning at the same location. LS was

5/5 for cochlea, sacculus, utriculus, anterior, posterior and horizontal SCC. (C)

An exemplary case of an overall accurate segmentation, but with a high

Hausdorff surface distance of > 4 mm. LS was 5/5 for cochlea, sacculus,

utriculus, posterior and horizontal SCC, and 2/5 for anterior SCC. Visual

inspection reveals two isolated blobs, which could be removed with simple

post-processing, such as connected components analysis and removal of

small islands. (D) A failure case. Notably, manual ground-truth creation in this

sample was challenging as well. LS was 5/5 for utriculus and anterior SCC,

4/5 for cochlea and sacculus, 2/5 for horizontal SCC, and 1/5 for posterior

SCC. Low-contrast and high noise in SPACE sequences, with further potential

challenges like motion artifacts, can lead to irregular ground-truth contours (left

arrow) or unusually thin semi-circular canal segments (middle and right arrow).

In such cases, model predictions may result in in-contiguous semi-circular

canals and noisy surface contours.

the manual ground-truths predicted outer surfaces are smooth
and consistent even in the presence of fine-grained details.

4.1.2. Generalization
The validation metric showed a steady convergence without
any signs of overfitting throughout the entire optimization
procedure that points to a well-parameterized network and
data augmentation scheme. Furthermore, the results from
our statistical analyses on Dice overlap in both inner ears
imply the models freedom from side bias. Further, Dice
overlap comparisons (group- and pair-wise) across the four
testing datasets show no measurable difference in segmentation
performance, indicating that the trained network is robust to
variations in scanner hardware, image sequence parameters,
and population characteristics. When discussing generalization,

it is important to also consider whether quantitative metrics
are sufficient to obtain trustworthy and interpretable results. A
recent study (69) on chest X-ray classification for computer-
aided diagnosis of COVID-19 cases has shown that it is vital
to incorporate expert validation into the validation of results.
Otherwise, it is possible that AI models learn to classify disease
statuses based on confounding factors, rather than based on
true pathology image content. In particular, image segmentation
suffers less from the danger of spurious correlations than image
classification: the segmentation output can be overlaid with the
source image, and the model predictions become inherently
interpretable. However, apart from quantitative metrics like Dice
overlap score, or Hausdorff surface distance, a model validation
can benefit from additional, expert-based qualitative ratings of
the segmentation result. Hence, a differentiated Likert scale
rating for the different inner ear structures (cochlea, sacculus,
utriculus, anterior, posterior and horizontal semi-circular canal)
was incorporated and obtained further insight into the model’s
performance. In particular, a performance pattern became
evident in which, in decreasing order, the most robust results
were found in the vestibulum (sacculus, utriculus), while cochlea
and posterior SCC performed moderately well. Horizontal SCC
and anterior SCC were most susceptible to segmentation errors.
Notably, the lack of statistically significant differences in Likert
ratings confirms that our model generalizes well. Ideally, these
results should be corroborated in further prospective studies and
larger cohorts.

4.1.3. Inference Speed Compared to Atlas
On average, the segmentation of a single volume with IE-
Vnet took 0.19 ± 0.047 s, including volume loading and
pre-processing, and 0.093 s for inference alone. The average
segmentation time for inner ears was 377.0 ± 36.9 s using
deformable registration. In total, the segmentation was about
2,000 times faster than a state-of-the-art atlas-based method.
However, atlas registration is computed on the CPU, while the
inference is fully GPU accelerated; hence the comparison is not
entirely fair. It is worth noting that GPU-accelerated deformable
registration libraries were introduced recently with speedups
in the order of 10–100 times (70). Moreover, deep models for
deformable (71) and diffeomorphic (72) image registration were
recently proposed, allowing for registration times comparable to
those of our model. However, deep models for registration are
trained with dataset sizes in the order of a few thousand sample
volumes (71, 72). Furthermore, atlas-based registration was less
robust than IE-Vnet segmentation, as all test dataset volumes
required manual correction after atlas pre-segmentation. Hence,
our IE-Vnet model was not only trained on TFS contours
obtained from registration. Instead, our segmentation model
learned patient-wise adaptations, including individual threshold-
based refinements and entire manual corrections of atlas auto-
segmentations. Patient-specific prediction of the TFS contour,
along with the fast inference in the order of milliseconds, makes
deep convolutional network models like IE-Vnet attractive for
large-scale studies in clinical and neuroscientific imaging-based
studies of the inner ear.
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4.1.4. Robustness Compared to Atlas
Atlas-based auto-segmentation in our datasets led to severe mis-
segmentations (e.g., incomplete or missing semi-circular canals
or cochlear turns), which occurred in 17.9% of cases in the
training dataset (D1) and 22% of all cases in the test datasets
(D2-5), and almost all cases in D2-5 required minor manual
corrections along the entire TFS surface. Therefore, the actual
speedup is probably much higher regarding automated post-
processing or manual refinement steps necessary to fix atlas
segmentation failures. The exact reason for the high rate of atlas
mis-segmentations is unclear. It cannot be excluded that a better
parameterization of the deformable registration could improve
the success ratio. As mentioned, the very thin and, at times, low-
contrast semi-circular canals would remain a challenge for atlas
registration.

4.2. Comparison to Currently Available
Neural Network Algorithms for MR Inner
Ear Segmentation
In recent years, deep learning has revolutionized medical image
analysis, particularly segmentation (73). Among an ever-growing
number of architectures and approaches proposed for volumetric
segmentation, two of the most popular and successful methods
(74, 75) are 3D U-Net (49) and the previously proposed V-Net
(48). In addition, the latest published suggestions for inner ear
segmentation can also be seen in this development- whether
for CT (76–78) or MRI (32, 33). In the following, currently
available neural network algorithms used for MR inner ear (IE)
segmentation will be compared (see Table 3 for an overview).

To the best of our knowledge, there are two machine
learning MR IE segmentation proposals to date. First, Cho et
al. (32) developed an automated measurement of 2D cochlea
and vestibulum hydrops ratio from iMRI using CNN-based
segmentation. Its primary difference is its usage of 2D data and
focused usability on ELH area ratios in cochlea and vestibule.
This tool should prove helpful to make ELH classifications (4,
5, 8, 9) more objective and comparable for clinical radiologists
during the diagnostic assessment. For research purposes, ELH
classification and 2D- or 3D- quantification methods were
reliable and valuable for diagnosing endolymphatic hydrops (25).
However, the reliability increases from ELH classification to
2D- and again to 3D-quantification methods (10). A model for
complete 3D segmentation of TFS, including semi-circular canals
(SCC), not only enables 3D volumetric analyses but gives it a
substantially wider application area, e.g., IE surgical planning.

Second, Vaidyanathan et al. (33) recently suggested a fully
automated segmentation of the inner ears TFS based on deep
learning similar to our current approach. There are many
overlaps in methodology and application, e.g., a similar network
architecture. In the following, it will be referred to as IE-Unet.
Compared to IE-Vnet, IE-Unet does not need to localize the
inner ears in a separate pre-processing step. On the other hand,
IE-Vnet operates at a more than twice higher resolution (0.2
mm isotropic vs. 0.45 mm), which leads to smoother surface
boundaries of the output segmentation and can better deal
with partial volume effects due to low voxel resolution in MRI.

Notably, both solutions follow a similar approach to the same
problem (IE MR TFS segmentation), which highlights their
relevance and value compared to the method of Cho et al.,
whose usability is limited to the hydrops ratio in cochlea and
vestibulum. Most importantly, though, both IE-Vnet and IE-
Unet are highly complementary, making both trained models
highly valuable. Therefore, we are choosing to publish our pre-
trained model and accompanying code for training and inference
open-source replication in other centers and alleviate similar
studies in the community.

4.3. Clinical Implications
Deep learning models for medical image analysis have reached
a maturity (74) that makes them relevant for further clinical
and research-based investigations of the inner ear in the neuro-
otological and vestibular domain. Once released, the proposed
inner ear TFS segmentation approach using a dedicated deep
learning (DL) model based on a V-Net architecture (IE-Vnet)
has the potential to become a core tool for high-volume trans-
institutional studies in vestibulocochlear research, such as on the
endolymphatic hydrops (ELH).

IE-Vnet bridges the current gap existing for available
automatic 3D ELS quantification methods. In particular, its input
can be seamlessly combined with a previously published open-
source pipeline for automatic iMRI ELS segmentation (27) via
the TOMAAT module (81) in 3DSlicer (82).

4.4. Limitations and Future Work
There are methodical limitations in the current study that need
to be considered in interpreting the data. One limitation of IE-
Vnet in its current form is its reliance on a pre-localization and
cropping of a cubical inner ear ROI obtained via deformable
registration of the FHT and a transfer of the inner ear
annotations. Their computational time was not considered in the
discussion since both IE-Vnet, and the IET atlas-segmentation
assume a previous localization and ROI cropping of the inner
ear. The pre-processing steps are limited to localizing the left
and right inner ear in the present work. This can be achieved
fully automatically using a full-head registration and requires no
manual interaction (other than, e.g., a post-registration visual
inspection of whether the cropped ROI indeed contains the
inner ear). In the current study, inner ear localization was
successful for all 100% of inner ears. This can be achieved
fully automatically using a full-head registration and requires
no manual interaction (other than e.g., a post-registration visual
inspection whether the cropped ROI indeed contains the inner
ear). In this study, inner ear localization was successful for all
100% of inner ears. Given that IE-Vnet is trained to be robust
toward a localization uncertainty of ∼1 cm (cf. augmentations
in Section 2.5.2) this registration can be parametrized at a
reasonably low resolution (e.g., deformation fields at 5 mm
resolution). Consequently, in our study, inner ear localization
via deformable registration was comparatively fast and took
25 s for both inner ears of each subject on a commodity
laptop with 4a CPU. Alternatively, the inner ears can also be
manually localized using landmark annotation. Depending on
the workstation hardware and registration parametrization, a
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TABLE 3 | Overview of MR IE deep learning segmentation algorithms in comparison.

IE-Vnet IE-Unet INHEARIT

Machine learning technique Deep learning Deep learning Deep learning

Network structure 3D Vnet (48) 3D Unet (49) 2D CNN based on VGG-19 (79)

Input T2-weighted sequences T2-weighted sequences Hydrops-Mi2 (80)

Output 3D TFS segmentation 3D TFS segmentation 2D hydrops ratio

Output resolution 0.2 x 0.2 x 0.2 mm3 0.45 x 0.45 x 0.45 mm3 0.5 x 0.5 mm2

(A) Training and testing parameters

Ground truth Semi-manual atlas-based

segmentation

Manual segmentation Manual segmentation

Training dataset Mono-centric (n=179) Mono-centric (n=944) Mono-centric (n=124)

Features 3T, multi-scanner, multi-scale 1.5T, 3T, multi-vendor,

multi-scale

3T, 1 scanner, 1 scale

Participants Vestibular pathologies and HC IE pathologies MD, VM, VN

Test dataset Mono-centric (n=80) Multi-(n=3)-centric (n=276) 5-fold cross validation of

Features 3T, multi-scanner, multi-scale 1.5T, 3T, multi-vendor,

multi-scale

Training dataset

Participants Vestibular pathologies and HC IE pathologies see above

(B) Model performance

Accuracy (Dice) 0.90 ± 0.02 0.87 (CI 0.87-0.88) 0.83 ± 0.04

Robustness 100% in test sets D2-5 98.3% in test centers B-D n.r.

To artifacts n.a. Yes n.r.

To outliers Yes Yes n.r.

To noise Yes Yes n.r.

Speed (localization/segmentation) 25s / 0.19 s n.r. / 6.5 s n.r. / within 1 s

Ability to segment diseased IE Yes Yes Yes

Full automatization Yes Yes Yes

Manual intervention needed IE localization Data preparation No

Data availability No No No

Model availability Yes No No

Source availability Yes No No

In the following the current study is referred to as “IE-Vnet.” The approach of Vaidyanathan et al. (33) is referred to as “IE-Unet.” Cho et al. (32) called their approach “INHEARIT” and are

referred to as such. INHEARIT offers an automatic 2D area ELH (endolymphatic hydrops) ratio segmentation customized to the needs of a clinical radiologist, while IE-Vnet and IE-Unet

enable 3D volumetric TFS segmentation with broad usability. The comparison considers a) parameters of the training and testing of the models, as well as their b) performance. IE-Vnet

and Unet represent a similar approach to the same problem and can be complementary. However, while Unet offers a large dataset, IE-Vnet operates at a more than twice higher

resolution, and its pre-trained model and accompanying codebase will be published open-source. CI, confidence interval 95%; ELH, Endolymphatic hydrops; HC, Healthy controls;

Hydrops-Mi2, HYbriD of Reversed image Of Positive endolymph signal and native image of positive perilymph Signal- Multiplied with heavily T2-weighted MR cisternography; IDL,

idiopathic hearing loss; IE, inner ear; INHEARIT, INner ear Hydrops Estimation via ARtificial InTelligence; MD, Morbus Mnire; MRC, MR cisternography; n.a., not analyzed; n.r., not

reported; TFS, Total fluid space; VM, Vestibular migraine; VN, Vestibular neuritis.

fully automatic inner ear ROI localization could be performed
in 1–2 min. A manual localization is much faster and requires
two clicks, which can be performed in the order of seconds.
However, it would be attractive to incorporate this step into the
deep learning architecture itself, either via a cascaded setup of two
networks (83), one for ROI localization and one for segmentation
(IE-Vnet), or via a sliding-window inference approach (84).
Both approaches are exciting avenues for future work. Another
issue is that rare cases with strong artifacts can still lead to
mis-segmentations (e.g., Figure 6D). However, such cases are
statistically rare (long-tail problem) and challenging to solve.
Instead, prior knowledge of the shape and topology of the inner
ears TFS could be incorporated into the regularization model,
e.g., through statistical shape models (85, 86).

5. CONCLUSION

The current work proposes a novel volumetric MR image
segmentation approach for the inner ears total fluid space
(TFS) using a dedicated deep learning (DL) model based
on V-Net architecture (IE-Vnet). IE-Vnet demonstrated high
accuracy, speedy prediction times, and robustness toward
domain shifts. Furthermore, its output can be seamlessly
combined with a previously published open-source pipeline
for automatic iMRI ELS segmentation. Taken together, IE-
Vnet has the potential to become a core tool for high-
volume trans-institutional studies of the inner ear in vestibular
research and will also be released as a free and open-source
toolkit.
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Datasets D1-5: Measurement of the
Auditory, Semicircular Canal, and Otolith
Functions
Diagnostic work-up included a careful neurological (e.g., history-
taking, clinical examination), and neuro-orthoptic assessment
with, e.g., Frenzel goggles, fundus photography, adjustments of
the subjective visual vertical (SVV), video-oculography (VOG)
during caloric stimulation and head-impulse test (HIT), as
well as pure tone audiometry (PTA). A tilt of the SVV is a
sensitive sign of a graviceptive vestibular tone imbalance. SVV
was assessed when sitting in an upright position in front of a
half-spherical dome with the head fixed on a chin rest (87). A
mean deviation of > 2.5 from the true vertical was considered a
pathological tilt of SVV (87). The impairment of vestibulo-ocular
reflex (VOR) in higher frequencies was measured by using high-
frame-rate VOG with EyeSeeCam ((88), EyeSeeTech, Munich,
Germany). A median gain during head impulses < 0.6 (eye
velocity in ◦/s divided by head velocity in ◦/s) was considered
a pathological VOR (89). Furthermore, horizontal semicircular
canal responsiveness in lower frequencies was assessed by caloric
testing with VOG. This was done for both ears with 30◦C cold
and 44◦ C warm water. Vestibular paresis was defined as >25%
asymmetry between the right- and left-sided responses (90).
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