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Combining graph neural networks 
and spatio‑temporal disease 
models to improve the prediction 
of weekly COVID‑19 cases 
in Germany
Cornelius Fritz1,3, Emilio Dorigatti1,2,3 & David Rügamer1*

During 2020, the infection rate of COVID‑19 has been investigated by many scholars from different 
research fields. In this context, reliable and interpretable forecasts of disease incidents are a vital tool 
for policymakers to manage healthcare resources. In this context, several experts have called for the 
necessity to account for human mobility to explain the spread of COVID‑19. Existing approaches often 
apply standard models of the respective research field, frequently restricting modeling possibilities. 
For instance, most statistical or epidemiological models cannot directly incorporate unstructured 
data sources, including relational data that may encode human mobility. In contrast, machine 
learning approaches may yield better predictions by exploiting these data structures yet lack intuitive 
interpretability as they are often categorized as black‑box models. We propose a combination of 
both research directions and present a multimodal learning framework that amalgamates statistical 
regression and machine learning models for predicting local COVID‑19 cases in Germany. Results 
and implications: the novel approach introduced enables the use of a richer collection of data types, 
including mobility flows and colocation probabilities, and yields the lowest mean squared error scores 
throughout the observational period in the reported benchmark study. The results corroborate that 
during most of the observational period more dispersed meeting patterns and a lower percentage of 
people staying put are associated with higher infection rates. Moreover, the analysis underpins the 
necessity of including mobility data and showcases the flexibility and interpretability of the proposed 
approach.

In December 2019, the region of Wuhan, China, experienced an outbreak of a novel coronavirus, COVID-19, 
initially infecting around 40  people1. The disease quickly spread throughout the world, because ill people are 
already infectious in the pre-symptomatic stage of the disease and transmission occurs through the exchange 
of virus-containing droplets or expiratory  particles2. Consequentially, the World Health Organization declared 
COVID-19 a pandemic in March 2020, and more than 66 million infections and 1.5 million deaths were regis-
tered worldwide by the end of that  year3.

Given this development, it was repeatedly pondered if and how mathematical modeling could help to contain 
the COVID-19  crisis4,5. We argue that data science and machine learning can provide urgently needed tools to 
doctors and policymakers in various applications. For instance, model-assisted identification and localization 
of COVID-19 in chest X-rays can support doctors in achieving correct and precise  diagnoses6. Meanwhile, 
policymakers benefit from studies determining and evaluating specific  policies2. In one noteworthy example, 
it was possible to quantify to what extend targeted non-pharmaceutical interventions aided in eliminating the 
exponential growth rate of COVID-19  cases7. This work is often quoted as the main driver of the social distancing 
measures implemented in the UK, thus allowing the British government to pursue evidence-based containment 
strategies. Other works use mobility data provided by multiple technology companies, such as  Apple8,  Google9, 
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and  Facebook10. To name a few  examples11, assess the similarities between the spread of COVID-19, community 
activity as measured by data provided by Apple, and financial performance. Heterogeneities in the welfare cost of 
staying at home between different census block groups, on the other hand, are uncovered by relying on mobility 
data from Google  in12.  Finally13, utilize data from Facebook to gauge social and geographic spillover effects from 
loosening shelter-in-place orders.

In order to adequately evaluate the role of specific policies and implement a successful containment strategy, a 
robust and interpretable forecast of the pandemic’s state into the future is necessary. Among other purposes, this 
endeavor allows authorities to better manage healthcare resources such as hospital beds, respirators, and vaccines. 
The corresponding modeling task is broad and can be tackled at various levels of spatio-temporal granularity. 
While some proposals operate on daily country-level  data14, others are designed to provide local  predictions15. 
From a methodological point of view, most of these approaches are influenced by either epidemiology, time series 
analysis, regression models, machine or deep learning. However, we argue that the most promising approaches 
combine ideas from seemingly distant research areas such that new types of data can be used. Thereby, one can 
bypass the restrictions of simpler models and improve the forecasting performance while also benefiting from 
the merits of each respective idea. In addition, allowing for the inclusion of novel data modalities in some of the 
more traditional approaches may further improve models. This was highlighted in previous  works16 that included 
non-standard data sources, e.g., aggregated contact patterns obtained from mobile phones or behavioral data, 
into the analysis to help in understanding and fighting COVID-19.

Hybrid modeling approaches. Examples of these types of hybrid models are scattered throughout the lit-
erature.  In15 combined a mechanistic metapopulation commonly used in epidemiology with clustering and data 
augmentation techniques from machine learning to improve their forecasting performance. For this endeavor, 
additional data sources, such as news reports and internet search activity, were leveraged to inform the global 
epidemic and mobility model, an epidemiological model already successfully applied to the spread of the Zika 
 virus17. In another notable  application18, enriched a relatively simple metapopulation model with mobility flows 
to numerous points of interest. Subsequently, this model was used to predict the effect of reopening after a 
specific type of lock-down through counterfactual analysis. With the help of  Facebook19, utilized mobility and 
aggregated friendship networks to discover how these networks drove the infection rates on the local level of 
federal districts in Germany. In this context, another route to accommodate such network data is through graph 
neural networks (GNNs). These techniques build on the intuitive idea of message passing between  nodes20 and 
have recently attracted a lot of attention in the deep learning  community21. Among the wide range of use cases 
of GNNs are node classification as well as  forecasting21,22.

Applications of graph neural networks to COVID‑19 data. In an early example of such  works23, 
constructed a graph whose edges encode mobility data for a given time point collected from Facebook. Their 
approach exploited a long short-term memory architecture to aggregate latent district features obtained from 
several graph convolutional layers and transfer learning to account for the asynchronous nature of outbreaks 
across borders. In a comparable  proposal24, employed a GNN to encode spatial neighborhoods and a recurrent 
neural network (RNN) to aggregate information in the temporal domain. Through a novel loss function, they 
simultaneously penalized the squared error of the predicted infected and recovered cases as well as the long-
term error governed by the transmission and recovery rates within traditional Susceptible–Infectious–Recov-
ered models. Contrasting these  approaches25, proposed a RNN to derive latent features for each location, hence 
they constructed a graph whose edge weights were given by a self-attention layer. Instead of using a  RNN26, 
constructed a spatio-temporal graph by creating an augmented spatial graph that included all observed instances 
of the observed network side-by-side and enabled temporal dependencies by connecting each location with the 
corresponding node in previous days.

Contribution. Against this background, we propose a novel fusion approach that directly combines dyadic 
mobility and connectedness data derived from the online platform Facebook with structural and spatial infor-
mation of Germany’s cities and districts. In contrast  to19, the network learns each district’s embedding in an 
end-to-end fashion, thus there is no need for a separate pre-processing step. With this, we heed recent calls such 
 as16,27 highlighting the need for more flexible and hybrid approaches taking also dyadic sources of information 
into account. From a methodological point of view, we make this possible by combining graph neural networks 
with epidemiological  models28,29 to simultaneously account for network-valued data and tabular data. We fur-
ther provide comparisons, sanity checks as well as uncertainty quantification to investigate the reliability of the 
presented model. When applying the model, we provide forecasts of weekly COVID-19 cases with disease onset 
at the local level of 401 federal districts in Germany as provided by the Robert–Koch Institute.

Data
Concerning the data sources, we distinguish between infection and Facebook data on human mobility and 
connectedness. While the infection data are time series solely utilized in the model’s structured and target com-
ponent, most network data is used directly in the GNN module. To allow for sanity checks and interpretable 
coefficients, the networks are also transformed onto the units where we measured the time series by calculating 
specific structural characteristics from the networks  following19.

Time series of daily COVID‑19 infections. For the analysis, we use current data on the state of the 
pandemic in Germany provided by the Robert–Koch  Institute33. This database constitutes the empirical basis on 
which most non-pharmaceutical interventions in Germany were carried and includes, among other informa-
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tion, the number of people with symptom onset and registered cases of COVID-19 grouped by age, gender, and 
federal district (NUTS-3 level) for each day. Figure 1 depicts the districts and how they are situated in a state. 
Due to the observation that mainly people aged between 15 and 59 years are active users of Facebook, we limit 
the analysis to the corresponding age groups, namely, people with age between 15–35 and 36–59.

As discussed  in34, the central indicator of the infection occurrence is the number of people with disease onset 
on a specific day, accordingly the presented application focuses on this quantity. Due to mild cases of infection 
and inconsistent data collection, the data of disease onset is not known in about 30% of the cases. Therefore, 
missing values are imputed by learning a probabilistic model of the delay between disease onset and registra-
tion date. Eventually, we attain yig (t) , the infection counts of district i and group g during week t, by sampling 
from the estimated distribution of delay times. By doing that, we  follow19 where the procedure is given in more 
detail. The groups g are elements of the Cartesian product of all possible age and gender groups. We denote all 
corresponding features by the vector xig (t).

Further, we are given data on the population sizes of each group g and district i from the German Federal 
Statistical Office, denoted by popig , based on which we compute the population density denig . In this setting, one 
can assume that not the count but rate of infections in a specific district and group carries vital information. 
Hence, the target we model is the corresponding rate defined by ỹig (t) = yig (t)

popig
.

Facebook data on human mobility and connectedness. To quantify the social and mobility patterns 
on the regional level, we use data on friendship ties, colocation probabilities, and district-specific data on the 
proportion of people staying put provided by  Facebook35. These spatial data sets were made available through 
the Data for Good  program10 and used in several other publications, such  as19,36. More details on the data set 
and information how it can be accessed is given in the Appendix. Facebook collected all data from individual 
mobile phone location traces of Facebook users aged over 18 that opted in the Location History feature on the 
mobile Facebook application. To preserve users’ privacy, these individual traces were aggregated using differen-
tial privacy for each of the n = 401 federal  districts35. Thus the resolution of the mobility data is the same as for 
the infection data. Most data are measured on the dyadic level between federal districts, hence perceiving the 
data as spatial networks comes naturally. The nodes in these networks are, therefore, these districts. We enrich 
the given network data with spatial networks encoding neighboring districts and distances in kilometers, that 
are respectively denoted by xN ∈ {0, 1}n×n and xD ∈ R

n×n
>0  . Consecutively, each type of provided information is 

described in detail.

States
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Figure 1.  Map of all German federal districts color-coded according to the state they are allocated. The thick 
black lines indicate borders between federal states, while the thinner grey borders separate federal districts, 
which is the spatial unit on which the infection data are available. The map was created using the software  R30 
with packages  sf31 and  ggplot232.
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Co‑location networks. The first type of network data that we incorporate in the forecast are co-location maps, 
which indicate the probability of two random people from two districts to meet one another during a given 
 week37. For each week t, we have a co-location matrix xC(t) ∈ R

n×n
>0  , where the i, j-th entry xCij (t) gives us the 

probability of an arbitrary person from district i meeting another person from district j. To also incorporate 
such network-valued data in the structured part of the suggested framework, we transform it to tabular data. In 
particular, we  follow19 and use the Gini index to measure the concentration of meeting patterns of districts. For 
district i ∈ {1, ..., n} in week t this index is defined as:

Higher values of Eq. (1) for a specific district i in week t translate to a restricted meeting pattern within a district, 
while lower values suggest rather diffused social behavior. We additionally perform a weekly standardization 
of xGi (t):

where µ̂G
t = 1

n

∑n
j=1 x

G
j (t) and σ̂t,gini =

√

1
n−1

∑n
j=1

(

xGj (t)− µ̂G
t

)2
.

Social connectedness network. Secondly, we quantify social connections between the districts via Facebook 
friendships. Utilizing information from a snapshot of all Facebook connections within Germany of April 2020, 
we derive the Social Connectedness Index as first introduced  by38. This pairwise time-constant index relates 
to the relative friendship strength between two districts and is stored in a weighted network xS ∈ R

n×n
>0  . For 

i, j ∈ {1, . . . , n} the entries of xS are given by:

Via multidimensional  scaling39, we can obtain two-dimensional district-specific embeddings from xS , which we 
denote by xSi  and incorporate in the structured component.

Staying put. Besides, we incorporate the weekly percentage of people staying put as a measure for lockdown 
compliance among Facebook users. We derive the corresponding weekly district-specific measure xSPi (t) by 
averaging daily measures provided by Facebook. In this context, an individual is defined as staying put on a 
specific day, when it is only observed in one 0.6km× 0.6km square throughout the respective  day40. Similar to 
Eq. (2), we standardize the covariate values for each week and denote the result for district i in week t by x̃SPi (t) .

Methodological background
To incorporate modeling techniques from statistics and epidemiology in a graph neural network, we use struc-
tured additive predictors that represent smooth additive effects of input features and can be represented in a 
neural network. For the smooth effects, we impose regularization terms to achieve smoothness.

Distributional regression. Distributional regression is a modeling approach to define a parametric distri-
bution D through its distributional parameters which in turn are modeled using p given input features x ∈ R

p

41. In contrast to other regression approaches that, e.g., only relate the mean of an outcome variable to certain 
features, distributional regression also accounts for the uncertainty of the data distribution, known as aleatoric 
 uncertainty42. Given a parametric distributional assumption D(θ1, . . . , θK ) , the model learns the distributional 
parameters θ = (θ1, . . . , θK )

⊤ by means of feature effects. In structured additive distributional  regression43, each 
distributional parameter is estimated using an additive predictor ηk(xk) . In this context, ηk : Rpk → R is an 
additive transformation of a pre-specified set of features xk ∈ R

pk , 1 ≤ pk ≤ p . This additive predictor is finally 
transformed to match the domain of the respective parameter by a monotonic and differentiable transformation 
function hk:

Note that the K parameters relating to D now depend on the features.
Moreover, structured additive distributional regression models allow for a great variety of feature effects in 

the additive predictor that are naturally  interpretable44. Examples include linear, non-linear, or random effects 
of one or more features. The latter two effect types can be represented via basis functions (such as regression 
splines, polynomial bases or B-splines). Further examples and details can be found, e.g.,  in45. Due to the additiv-
ity of effects in ηk , the influence of single features can often be directly related to the mean or the variance of the 
modeled distribution, making the model inherently interpretable.

Semi‑structured deep distributional regression. A recent trend is the combination of neural networks with sta-
tistical regression models in various ways. The authors  of46, for instance, propose a wide-and-deep neural net-
work that fuses a deep multi-layer perceptron with a generalized linear model. Combinations with other model 
classes, such as mixture  models47 or transformation  models48, have also been proposed. In this work, we make 

(1)xGi (t) =
∑

m,n�=i |xCim(t)− xCin(t)|
2(n− 1)

∑

j �=i x
C
ij (t)

∈ [0, 1].

(2)x̃Gi (t) =
xGi (t)− µ̂G

t

σ̂G
t

,

(3)xSij =
#{Friendship Ties between users in district i and j}

#{Users in districti}#{Users in district j} .

(4)θk(xk) = hk
(

ηk(xk)
)

.
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use of semi‑structured deep distributional regression (SDDR,49). SDDR combines neural networks and struc-
tured additive distributional regression by embedding the statistical regression model in the neural network and 
ensures the identifiability of the regression model part. SDDR is a natural extension of distributional regression 
by extending the additive predictor ηk of each distributional parameter with its structured effects to latent fea-
tures, so-called unstructured effects, that are learned by one or more deep neural networks (DNN). An orthogo-
nalisation cell is used to disentangle the structured model parts from the unstructured parts and to ensure the 
identifiability of the structured model effects.

Graph neural networks. Graphs are a mathematical description of the entities and their relationships 
in a given domain and naturally arise in a variety of seemingly distant fields, for instance,  biology50, political 
 science51, and  economics52. However, due to their non-euclidean structure, it is not straightforward to apply 
traditional machine learning methods to problems involving graphs, as these methods operate on vectors in 
R
n for some n ∈ N22. Several methods have been introduced to embed graphs into low-dimensional Euclidean 

spaces, allowing to use the resulting vector representations for prediction tasks with traditional machine learn-
ing algorithms such as node classification and missing link  prediction21. Inspired by the success of convolutional 
neural networks, comparable approaches formulated convolutions for graphs via the spectral domain relying on 
the convolution  theorem53. Later versions of convolutional operators were adapted to the vertex domain through 
a message-passing  framework20. Within this framework, each node is updated with the information on the 
feature vectors of its neighbors and the edges connected to  them21. Following this work, more advanced neigh-
borhood aggregation  methods54, scalable  inference55 and domain-specific  applications20 have been introduced. 
In general, a graph neural network performs R rounds of message passing, after which all nodes’ latent features 
are combined to obtain a unified representation for the whole  graph56, or individual  nodes57. The latter type of 
representations is used to derive node-specific predictions.

Formally, a graph is a tuple 〈V ,E〉 consisting of a set of vertices V and a set of edges E ⊆ V × V  . The edge 
connecting nodes v and w is denoted as evw and can be associated with an edge-specific feature vector uvw ∈ R

de . 
Similarly, all nodes v ∈ V  can be associated with feature vectors urv ∈ R

dvr  that are transformed in r successive 
rounds, 1 ≤ r ≤ R . The initial feature vectors u1v are given by vertex-specific information, such as the Gini index 
and percentage staying put defined in the previous section depending on the specific application. Following the 
notation  in20, in each message-passing round r the features of the neighbors N(v) ⊆ V  of v ∈ V  and of the con-
necting edges are aggregated into a message mr

v ∈ R
dmr  through a message function Mr:

Note that edge features are considered to be constants in this framework. Next, an update function Ur combines 
urv and mr

v to obtain the updated latent features ur+1
v :

Taken together Eqs. (5) and (6) define a message passing round that propagates information one hop further than 
the previous round. For instance, one of the very first graph neural networks, namely the graph convolutional 
 network57, proposed the following functions:

where di = 1+
∑

j∈N(v) uji . In this case, edges are, however, only associated with scalar weights rather than 
feature vectors. We can apply multiple message passing rounds successively to diffuse information across the 
complete network. After R message passing rounds, a multilayer perceptron may be used to transform the node 
features into more abstract representations. Such feature vectors are called node embeddings and indicated with uv.

Ethics. The authors confirm that all experiments were  performed in accordance with relevant guidelines and 
regulations.

Combining network‑valued and spatio‑temporal disease data
The general framework of the hybrid modeling approach to forecast weekly district-wise COVID-19 cases based 
on structured and unstructured data sources is depicted in Fig. 2 and fuses the interpretability of distributional 
regression with a GNN architecture to flexibly learn all district’s latent representation from the network data.

Neural network formulation. Distributional assumption. The considered time window stretches over a 
low-infection phase during which 20–30% of the districts reported no cases. This phase is preceded and followed 
by two infection waves, respectively from March–April and October–November 2020, during which more than 
1,200 cases per week were observed. Hence, we try to build a model that can adequately predict high numbers 
as well as zero observations, which are common during low-infection seasons, especially if one looks at granular 
age groups and spatial units. This is achieved by assuming that the cases follow a mixture distribution of a point 
mass distribution at zero and an arbitrary count distribution with mixture weight π ∈ [0, 1] . Here, we regard any 
probability distribution defined over non-negative integers as a count distribution, e.g., the negative binomial, 

(5)mr
v =

∑

w∈N(v)

Mr(u
r
v , u

r
w , uvw)

(6)ur+1
v = Ur(u

r
v ,m

r
v)

(7)MGCN
r (urv , u

r
w , uvw) =

uvw√
dv · dw

· urw + uvv

|N(v)| · dv
· urv

(8)UGCN
r (urv ,m

r
v) = � ·mr

v ,
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Poisson, and generalized Hermite  distribution58. The resulting zero‑inflated distribution D is primarily charac-
terized by the mean of the count component � and the zero-inflation probability π . Any additional parameters 
relating to other traits of the count distribution, e.g., the scale parameter of the negative binomial distribution, 
are denoted by χ . The probability mass function of D evaluated at y is given by:

where fC is the density of the chosen count distribution C and I denotes the indicator function. By incorporating 
the point mass distribution, the model can capture excess rates of zero observations and π may be interpreted 
as the percentage of excess-zero  observation59.

In our modeling approach for COVID-19 cases yig (t) we relate structured data as well as network data to 
the parameters � and π of the zero-inflated distribution, which yields the following distributional and structural 
assumption:

with chosen zero-inflated distribution D . For the structural component in Eq. (10), the two feature-dependent 
distributional parameters are described through the additive predictors η1,ig (t) and η2,ig (t) . We transform these 
predictors via fixed transformation functions h1, h2 to guarantee correct domains of the respective modeled 
parameter, e.g., a sigmoid function for the probability πig (t).

Additive predictors. Inspired by  SDDR49, additive effects of tabular features on the parameters characterizing 
the zero-inflated distribution are estimated using a single-neuron hidden layer. As proposed in various statistical 
COVID-19 modeling  approaches19,60, these structured effects are learned with an appropriate regularization to 
enforce smoothness of non-linear effects. This penalization can be seen as a trade-off between complexity and 
 interpretability61.

The additive predictors η1,ig (t) and η2,ig (t) can be defined in terms of both unstructured and structured fea-
tures (left and right bottom input in Fig. 2). In the structured model part, we use the complete suite of district-
specific features as arbitrary additive effects, detailed in the next section. In the following, we make this clear 
by using z ig (t) , which are the input features xig (t) but transformed using some basis function evaluation. We 
denote the corresponding feature weights by ϑ str = (ϑ str

1
⊤
,ϑ str

2
⊤
)⊤ corresponding to η1 and η2 , respectively. The 

unstructured part of the network computes each district’s embedding (node) by exploiting time-constant district 

(9)fD(y|�,π ,χ) = πI(y = 0)+ (1− π)fC(y|�,χ),

(10)
yig (t) ∼ D(�ig (t),πig (t),χ),

�ig (t) = h1
(

η1,ig (t)
)

, πig (t) = h2(η2,ig (t)),

Graph
Neural 
Network

Network Data Structured Data

Basis Evaluation

C

Head Zero-Inflation Head Distribution Mean

Zero-Inflated
Count Loss

Offset

C

Figure 2.  Network architecture of the proposed model. The mobility data is fed into a GNN on the bottom left 
to learn latent features ui . On the bottom right side, the structured data is transformed using basis evaluation. 
Using the orthogonalization the learned effects ui are projected onto the orthogonal complement of selected 
parts of the basis evaluated structured features. Both parts are combined using a concatenation and fed into 
both a network head that learns the zero-inflation as well as a network head to learn the distribution’s mean. 
After adding an offset to the mean, both parts are finally combined in a distributional layer that learns the zero-
inflated count distribution based on the corresponding log-likelihood
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population attributes and edge attributes. For the application, these attributes encode geographic connectedness 
between districts and social connectedness. Here, the message passing framework enables the embeddings to 
contain first, second, and higher-order information about the spread of the disease among all districts. Finally, 
either additive predictor is augmented with the embeddings ui for district i learned from the GNN in order to 
incorporate the network data in the distributional framework.

Orthogonalization. Identifiability is crucial to the analysis at hand since some feature information is shared 
between the structured effects and unstructured effects. For instance, the social connectedness index xS is 
exploited in the structured part via the MDS-embeddings but also in the graph neural network as an edge attrib-
ute. If these two model parts are not adequately disentangled, it is unclear what part of the model is accounting 
for which information in the shared features. Therefore, the latent GNN representations ui are orthogonalized 
with respect to z ig (t) yielding ũi = ui ⊗ z ig (t) , i.e., ui is projected on the orthogonal complement of the column 
space spanned by z ig (t) . The additive predictors will thus use ũi instead of ui  (see49 for further details). In the final 
step, structured and unstructured effects are combined as a sum of linear orthogonalized embedding effects and 
the structured predictors, i.e., ηk,ig = xig (t)ϑ

str
k + ũkϑ

unstr
k  , k ∈ {1, 2}.

Different exposures per district. As each district is subject to a different exposure of COVID-19, the primary 
goal is to model the rates of infections rather than the raw observed counts. In order to do so, the mean of the 
counting distribution in Eq. (10) is corrected for the differing population sizes by adding a constant offset term 
to the concatenated linear predictor, i.e., by adding log(popig ) to η1,ig (t) . For additional information on this pro-
cedure in the realm of zero inflated models, we refer  to62.

Proposed COVID‑19 model specification. Distributional regression. On the basis of Eq. (10), the pro-
posed COVID-19 model is set up as follows: let D define a zero-inflated Poisson (ZIP) distribution, which is repa-
rameterized in terms of only one additive predictor ηig (t) = η1,ig (t) as this proved to guarantee numerical stabil-
ity. Therefore, define πig (t) ≡ exp

{

− exp
{

χ + log(�ig (t))
}}

 and the distribution’s rate as �ig (t) = exp{ηig (t)}.
Another option for modeling counts is to use a negative binomial (NB) distribution as, e.g., done  in63. The NB 

distribution is often chosen over the Poisson distribution due to its greater flexibility, particularly by allowing to 
account for overdispersion. We will compare the NB distribution against the ZIP approach by reparameterizing 
the NB distribution in terms of its mean, similarly to the ZIP’s parameterization.

Graph neural network. Among all possible variants of the general message passing framework described above, 
we opt for the proposition  of64. As a result, we can make use of multivariate edge attributes and efficiently handle 
relatively large graphs. The message function in Eq. (5) defined by:

which uses Hr linear maps �r
h ∈ R

dmr × R
dvr , 1 ≤ h ≤ Hr to transform the neighbors’ features and Hr radial basis 

function (RBF) kernels wr
h : Rdvr → R, 1 ≤ h ≤ Hr to weight the linear maps:

The node update function of Eq. (6), on the other hand, becomes:

with trainable parameters �r
0,�

r
h,µ

r
h , σ

r
h, b

r , 1 ≤ h ≤ Hr , 1 ≤ r ≤ R.
Because travel is possible from any district to any other district, e.g., via train or car, we use a fully connected 

graph as input to the GNN and embed information about social connectedness in the edge attributes. We use 
two message passing rounds, i.e., R = 2 , with the first graph convolutional layer using H1 = 8 affine maps with 
output dimensionality dv2 = 256 , followed by a the second layer that further reduces this number to dv3 = 128 
latent components with H2 = 4 . Next, four fully-connected layers successively reduce the dimensionality of the 
node embeddings to 16 components. All layers use batch  normalization65 followed by leaky ReLU  activation66. To 
reduce the chance of overfitting,  dropout67 with probability 0.25 is used after the two graph convolutions. Table 1 
further summarizes the use of all available features in the model using their transformation and incorporation 
in the structured additive as well as GNN model part.

Uncertainty quantification. A crucial tool to investigate the model’s reliability is to assess its uncertainty. 
While the proposed approach explicitly models the uncertainty in the given data distribution (aleatoric uncer-
tainty), the epistemic uncertainty of parts of the model can be derived through its connection to statistical 
models.

Epistemic uncertainty. Standard regression model theory allows to derive the epistemic uncertainty of the pro-
posed model, i.e., the uncertainty of model’s weights. When regarding the GNN part of the model as a fixed 
offset o and fixing the amount of smoothness defined by ξ , it follows

(11)Mr(u
r
v , u

r
w , uvw) =

1

Hr · |N(v)|

Hr
∑

h=1

wr
h(uvw) ·�r

hu
r
w ,

(12)wr
h(uvw) = exp

{

−1

2
(uvw − µr

h)
⊤diag(σ r

h
2
)−1(uvw − µr

h)

}

.

(13)Ur(u
r
v ,m

r
v) = mr

v +�r
0u

r
v + br
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where Î
str

 is the Hessian of the negative log-likelihood at the estimated network parameters ϑ̂44 . We note that 
especially the conditioning on o (the GNN) neglects some additional variance in the parameter estimates but 
still allows us to get a feeling for the network’s uncertainty.

Deep  ensembles68 are a simple method that provides reliable uncertainty estimates, and are used to account 
for the epistemic uncertainty of the GNN. In this context, the epistemic uncertainty is estimated by comput-
ing the standard error of the predictions of an ensemble of models, each trained from scratch with a different 
random initialization.

Aleatoric uncertainty. In addition to epistemic uncertainty, one can account for aleatoric uncertainty by mod-
eling all distributional parameters of the zero-inflated count distribution explicitly. For example, in the case of 
the ZIP distribution, the distribution’s variance can be derived from its parameters as follows:

In particular, this allows us to make a probabilistic forecast for all weeks, districts, and each cohort (age, gender). 
After having observed the forecasted values, we can assess how well the model performed and how well it pre-
dicted uncertainty of the data distribution when only trained with historic data up to a certain week.

Network training. Learning the parameters of the proposed model is achieved by minimizing the negative 
log-likelihood derived from the distributional assumption in Eq. (10). The combined weights ϑ ∈ R

p1+p2+τ+pχ 
of the whole network subsume p1 weights for the first additive predictor η1 , p2 effects for the second additive 
predictor η2 , τ effects for the GNN and pχ weights for additional distributional parameters. For readability, we 
omit in the following the indices i and g as well as the time-dependency of the two distributional parameters, yet 
make the dependency on learned weights explicit. Stemming from Eq. (9), the joint likelihood ℓ(ϑ) is derived by 
summing up the contribution of each individual observation, that is given by

Under conditional independence, feature weights can be learned by minimizing the sum of negative log-like-
lihood contributions for all observations. To avoid overfitting and help estimate smooth additive effects in the 
structured part of the neural network, a quadratic penalty term J(ϑ) =

∑2
j=1 ϑ

str
j

⊤
Pjϑ

str
j  is used. Thereby, weights 

in the network ϑ j ∈ R
pj that correspond to smooth structured effects are regularized. Penalization is controlled 

by individual complexity parameters that are incorporated in the penalty matrices Pj ∈ R
pj×pj , j = 1, . . . , 2 . 

These matrices, in turn, are block-diagonal matrices that are derived by the chosen basis functions in the struc-
tured model  part44. We do not additionally penalize the count parameter χ nor the GNN model part other than 
using the orthogonalization. In practice, we observe that training the network can be stabilized when choosing 
 RMSprop69 as the optimizer.

(14)ϑ str | y, ξ , o ∼ N (ϑ̂ , (Î
str + P)−1),

(15)(1− πig (t)) · (�2ig (t)+ �ig (t)χ)− (1− πig (t)) · �ig (t)2.

(16)ℓ(ϑ; y) = log

(

π(ϑ)I(y = 0)+ (1− π)fC(y|�(ϑ),χ)
)

.

Table 1.  Features and their incorporation into the structured and GNN part of the proposed model. For each 
feature, the second column indicates the basis function evaluation used in the structured part, which is applied 
to the the feature itself or a transformation of it given in brackets. If no transformation is given, the identity is 
used. Bivariate thin plate (TP) regression splines are used to model bivariate effects. The  logp1 transformation 
is given by logp1 (y) = log(y + 1) . The third column indicates the incorporation of each feature in the GNN 
part, either as a node or edge feature. To also account for the group-specific nature of each distributional 
parameter, gender and age effects are added using g as a dummy variable

Feature Defintion

Structured Part GNN

Basis Evaluation (Transformation) Node Edge

ỹig (t − 1) Previous infections TP-Spline ( logp1 (·))
x̃Gi (t) Co-location Gini index Bivariate Spline with t

xS SCI network �

xSi MDS SCI-coordinates Bivariate Spline

xD Distance network �

xN Neighborhood network �

x̃SPi (t) Staying-put Bivariate Spline with t

popig Population Offset ( log(·)) �

denig Density �

g Gender/age group Dummy Variables
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Results
Apart from the primary goal to provide one-week forecasts, one can investigate the approach’s behavior through-
out the pandemic. Therefore, we apply an expanding window approach, where we use a certain amount of data 
from past weeks, validate the model on the current week, and forecast the upcoming week. We do this for dif-
ferent time points, starting with training until calendar week 30 of 2020, validation on week 31, and testing on 
week 32. In 3-week-steps, we expand the time window while adapting the validation and test week. In Fig. 3, we 
sketch a visual representation of this scheme.

Model comparisons. We compare the approach of this paper against four other algorithms and different 
model specifications of the proposed framework. As a baseline model, we use the mean of a sliding window 
approach applied to the given training data set (MEAN). The prediction on the test set then corresponds to the 
mean of the last week in the training data for each of the four subgroups (age, gender). As a statistical regression 
baseline we use a generalized additive model (GAM) inspired  by19, modeling the mean of a negative binomial 
distribution using various smooth predictors as well as tensor-product splines. We further apply gradient boost-
ing trees as a state-of-the-art machine learning baseline. Due to its computational efficiency, scalability and 
predictive performance, we chose  XGBoost70 in the benchmark study. Finally, we compare the proposed neural 
network architecture against a vanilla deep neural network (DNN), a multi-layer perceptron with a maximum 
amount of 4 hidden layers with ReLU or tanh activation function, dropout layers in between and a final single 
output unit with linear activation. To enable a meaningful comparison, we corrected all benchmark model out-
puts for the differing exposures by incorporating an offset in same way explained previously. Similar to classical 
statistical models, this allows the model to learn the actual rate of infections. In all cases, we optimize the model 
using the Poisson log-likelihood (count loss). We furthermore tune the DNN and XGBoost model using Bayes-
ian  optimization71 with 300 initial sampled values for the set of tuning parameters and ten further epochs, each 
with 30 sampled values. Finally, we investigate the performance of a simple GNN, i.e., not in combination with 
distributional additive regression, optimized on the root mean squared error (RMSE).

Forecasting performance. Table 2 shows the forecast performances of all approaches in the benchmark 
study. Out of the benchmark models, the GAM is the best performing models returning consistently smaller 
RMSE values than XGBoost and the DNN, with one exception in week 41. The rolling mean (MEAN) performs 

10
Calender Week

32 4438 4135 47

Fold 1

Train TestValidation

Fold 3

Fold 4

Fold 5

Fold 6

Fold 2

Figure 3.  Evaluation Scheme based on an expanding window approach over the available historical weekly data

Table 2.  Root mean squared error values for different methods (rows) and folds (columns) Bold numbers 
denote the best result in each fold across all models

Calendar Week

32 35 38 41 44 47

XGBoost 4.926 5.188 7.447 15.327 65.036 74.235

DNN 10.179 12.178 17.897 64.065 108.474 80.901

GAM 4.042 4.738 4.736 21.666 18.556 23.813

MEAN 5.038 3.666 6.196 30.910 20.090 23.159

GNN 5.972 6.785 11.355 49.064 77.162 53.489

Ours (ZIP) 3.931 4.235 4.500 16.588 17.738 15.050

Ours (NB) 4.096 4.094 5.174 28.580 18.098 31.724
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similar well before the second wave in Germany (Week 32 and 35). However, the numbers stagnate during 
Germany’s second lockdown (Week 47), which may be due to an external shock that cannot be accounted for 
by the previous weeks’ rising numbers. The vanilla DNN yields the worst performance, where the bayesian 
optimization found the smallest architecture with only one hidden layer with one unit to be the best option. 
While this result aligns with the good performance of MEAN and GAM, dropout in the DNN between the input 
and hidden layers does apparently not yield enough or the appropriate regularization to prevent the DNN from 
overfitting. The proposed model shows similar performance to the GAM model, which is again in line with 
what we expected, as we orthogonalize the GNN part of the network w.r.t. the whole structured additive part. In 
particular, the proposed model performs notably better for the weeks 41–47 than the GAM, and yields the best 
or second best results compared to all other models on each fold. Although XGBoost is best week 41, its worse 
performance on all other folds does not make it a reasonable choice. The same holds for the NB variation of the 
proposed approach, which overall delivers the second-best performances. Finally, the GNN itself yields reason-
able predictions in the first two weeks but does not perform well for the other weeks.

Model interpretation. To begin, we investigate the partial effects of the Gini coefficient (G) derived from 
the colocation maps and the percentage of people staying put (SP) on the left and right side of Fig. 4, respectively. 
Moreover, a high standardized Gini coefficient translates to meeting behavior that is more dispersed than the 
average of all districts. Hence, a low standardized Gini coefficient (less mobility than average) leads to lower 
infection rates, especially between calendar week 10 and 30. For the percentage of people staying put, the tem-
poral dynamics are somewhat opposite and exhibit small effects in the first weeks and after week 30. Thereby, we 
may conclude that having a higher percentage of people staying put also lowers the infection rates. Further, we 
observe that the incorporated penalty term successfully regularizes the bivariate effect term to be a linear effect 
in the direction of the percentage of people staying put.

Epistemic uncertainty. While an epistemic uncertainty for the structured part of the proposed model can 
be derived theoretically, the models’ uncertainty is estimated through an ensemble for the GNN part as detailed 
in the previous section. More specifically, we focus on two instances of the proposed models that are trained 
with data until calendar week 29 and 43, and evaluate on following weeks 30 and 44. These weeks were chosen 
to showcase the effects of uncertainty during a high and low season of the pandemic.

The epistemic uncertainty is well correlated (Spearman’s ρ = 0.76 ) with the absolute error resulting from 
the mean prediction (Fig. 5 left) and grows approximately linearly with the error. However, the variability of 
the average error is not reliable in the last bin as it only contained four samples. The epistemic uncertainty is 
generally larger for high-incidence weeks such as week 44 when compared to a low-incidence week such as week 
30 (Fig. 5 right). In addition, the ensemble has a very slight tendency to underestimate the number of cases for 
week 44 by 1.26, and to overestimate the cases for week 30 by 0.25. Although statistically significant (one-sided 
t-test, t = 3.24 , p = 0.001 and t = 3.38 , p = 0.0007 , respectively), the resulting differences are practically irrel-
evant, hence suggesting that the ensemble is approximately well-calibrated. In general, this correlation between 
epistemic uncertainty and forecast error provides a reliable diagnostic of the trustworthiness of the proposed 
model’s predictions.

The partial effect of lagged infection rates in Fig. 6 additionally depicts its epistemic uncertainty when the 
GNN weights are fixed. The figure’s narrow shaded areas translate to high certainty of the partial effect from 
the respective feature. Moreover, the partial effect translates to the finding that the higher the infection rate was 
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Figure 4.  Estimated bivariate partial effects of the week and Gini coefficient (G) on the left as well as of the 
week and Percentage Staying Put (SP) on the right. For weeks 10 to 30, low standardized Gini coefficients come 
with low infection rates. Thus, more focused meeting patterns are associated with lower infection rates in that 
time frame. The effect of people staying put is negative at the beginning of the observational period and in the 
end. Hence, a higher percentage of people staying put is related to lower infection rates
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in the previous week, the higher the predictions are in the upcoming week. This result alignes well with prior 
studies, that identified this feature as a principal driver of infection  rates19.

Aleatoric uncertainty. We evaluate the ZIP model’s aleatoric uncertainty by applying the expanding win-
dow training scheme analogous to the previous evaluation. For each prediction, we calculate predictive distribu-
tion intervals using the mean prediction ± 2 times the standard deviation derived from Eq. (15). Figure 7 depicts 
the probabilistic forecasts of the modeled ZIP distribution for different districts in Germany. These districts con-
stitute particularly difficult examples from relatively rural areas and cases in larger cities such as München as well 
as sites that were hardly and severely affected by the pandemic. Figure 7 visualizes the true values as points and 
the predicted mean as a black line. Here, the shaded purple area symbolizes the predictive distribution intervals. 
We observe that most of the points are well within the given prediction interval, thus the distribution captures 
the dispersion in the data quite well. As expected from the Poisson distribution, results indicate that the aleatoric 
uncertainty increases with the rising number of infections. However, some intervals are not able to cover larger 
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Figure 5.  Left: average absolute error incurred by the ensemble for increasing levels of epistemic uncertainty, 
with vertical bars denoting ± one standard error of the estimation. Right: Standard error of the predictions of 
an ensemble of ten networks correlated with the error incurred when using the ensemble’s mean prediction for 
each district, age, and gender cohort during a low-infection phase (week 30) and the second wave of infections 
(week 44)
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fluctuations and steeper increases of infections, such as is the case in München, Gütersloh or Vorpommern‑Rügen. 
While Fig. 7 showcases the predictions for the age group 35–59 and gender male, results for other groups can be 
found in Figs. 8, 9, 10 in the Appendix.

Overall, the intervals derived from the predictive distributions cover on average over 80% of all cases in all 
groups, weeks and districts. This indicates that the estimation of distribution variances for groups and weeks 
works well, but shows also room for improvement for later weeks where the distribution is not perfectly calibrated.

Discussion
Following several experts’ call to account for human mobility in existing statistical and epidemiological models 
of COVID-19, we proposed a multimodal network that fuses existing efforts with graph neural networks. We 
thereby enable the use of a more nuanced collection of data types, including mobility flows and colocation prob-
abilities, in the forecasting setting.

Results. The results indicate a notable improvement over existing approaches, which we achieved by incor-
porating the network data. The provided findings also highlight the need for regularization and showcase how 
common ML approaches can not adequately capture the autoregressive term, which, in turn, proved to be essen-
tial for the forecast. The proposed model’s investigation further reveals that uncertainty can be well captured 
by the model, although further calibration may be vital for its aleatoric uncertainty. We also conclude that the 
proposed model captures measures of social distancing by the German government. Figure 4, e.g., shows that 
an increase in the Gini index (a decrease in mobility) results in lower predicted incidences. Due to the nature 
of the data, we can, however, not draw any causal conclusions as public health policies apply for all residents in 
Germany.

Caveat. We also want to emphasize that despite the convincing results, the given analysis only addresses a 
small subset of processes involved in the spread of COVID-19 and should not be the sole basis for decision-
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Figure 7.  Exemplary prediction intervals for age group 35–59 and gender male (results of other groups can be 
found in the Appendix) and selected districts (facets) in Germany. For the different forecast weeks (x-axis) the 
true number of infections are visualized by points and contrasted with the model’s prediction (black line) and 
the prediction interval (shaded purple area)
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making processes in the future. In particular, forecasting infection rates in the short run does not (need to) 
address reporting or observation biases typically present for such data and requires a solid data basis, which the 
Robert–Koch Institute provides for Germany. Furthermore, working only with mobility data from one source, 
i.e., Facebook, might affect the findings due to an unknown selection bias. To minimize such a bias, we restricted 
the analysis to the younger and mid-aged cohorts.  Furthermore19, investigate the representativeness of the Face-
book data and compare the information with the mobility data from other providers, such as Google and Apple, 
and conclude that the data source adequately represents the spatial distribution of people and is consistent with 
the other data sources.

Future work. In light of the positive results presented in this work, as well as its present limitations, we 
can foresee several research avenues to improve spatio-temporal models further. First, using time-varying, as 
opposed to static networks, either through auto-regressive or recurrent architectures, would enable direct mod-
eling and exploitation of the time dynamics of human mobility.Second, the semi-structured approach of this 
article could be extended to incorporate epidemiological models such as SIR as a third additive predictor. Finally, 
additional data sources could be used, possibly of higher granularity, e.g., daily instead of weekly infection count, 
to provide faster and more accurate insights into the pandemic.

Conclusion
Reliable and interpretable forecasts of disease incidents, especially accounting for human mobility, are a vital tool 
to enable policymakers to manage healthcare resources in the optimal way. We proposed a novel multimodal 
approach that combines network-valued and spatio-temporal disease data in an interpretable manner and pro-
vides the best predictive performance compared to traditional statistical, machine and deep learning methods.

Appendix
Further results
Figures 8, 9, 10 visualize the prediction intervals for the other combinations of age and gender. Plots show little 
difference to Fig. 7 both in terms of actual numbers of cases and in terms of the generated prediction intervals.

Data for good
For this project, we used data provided by Facebook through the Data for Good program. The data is in parts 
openly accessible. From this open-access data, we use the social connectedness index (which can be accessed 
under https:// dataf orgood. faceb ook. com/ dfg/ tools/ social- conne ctedn ess- index# acces sdata and the movement 
range maps (https:// dataf orgood. faceb ook. com/ dfg/ tools/ movem ent- range- maps). Additionally, we employ the 
Co-location networks detailed under https:// dataf orgood. faceb ook. com/ dfg/ tools/ coloc ation- maps. This data 
source is not directly openly available, but can be accessed after signing a data agreement form at https:// dataf 
orgood. faceb ook. com/ dfg/ tools/ coloc ation- maps# acces sdata.

https://dataforgood.facebook.com/dfg/tools/social-connectedness-index#accessdata
https://dataforgood.facebook.com/dfg/tools/movement-range-maps
https://dataforgood.facebook.com/dfg/tools/colocation-maps
https://dataforgood.facebook.com/dfg/tools/colocation-maps#accessdata
https://dataforgood.facebook.com/dfg/tools/colocation-maps#accessdata
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Figure 8.  Prediction intervals for age group 15–34 and gender male and selected districts (facets) in Germany. 
For the different forecast weeks (x-axis) the true number of infections are visualized by points and contrasted 
with the model’s prediction (black line) and the prediction interval (shaded purple area)
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Figure 9.  Prediction intervals for age group 35–59 and gender female and selected districts (facets) in 
Germany. For the different forecast weeks (x-axis) the true number of infections are visualized by points and 
contrasted with the model’s prediction (black line) and the prediction interval (shaded purple area)
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