
fmicb-13-826364 February 9, 2022 Time: 14:58 # 1

PERSPECTIVE
published: 15 February 2022

doi: 10.3389/fmicb.2022.826364

Edited by:
Brendan J. M. Bohannan,

University of Oregon, United States

Reviewed by:
Isabel Gordo,

Gulbenkian Institute of Science (IGC),
Portugal

*Correspondence:
Arne Weinhold

arne.weinhold@bio.lmu.de

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 30 November 2021
Accepted: 25 January 2022

Published: 15 February 2022

Citation:
Weinhold A (2022) Bowel

Movement: Integrating Host Mobility
and Microbial Transmission Across

Host Taxa.
Front. Microbiol. 13:826364.

doi: 10.3389/fmicb.2022.826364

Bowel Movement: Integrating Host
Mobility and Microbial Transmission
Across Host Taxa
Arne Weinhold*

Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany

The gut microbiota of animals displays a high degree of plasticity with respect to
environmental or dietary adaptations and is shaped by factors like social interactions,
diet diversity or the local environment. But the contribution of these drivers varies
across host taxa and our ability to explain microbiome variability within wild populations
remains limited. Terrestrial animals have divergent mobility ranges and can either crawl,
walk or fly, from a couple of centimeters toward thousands of kilometers. Animal
movement has been little regarded in host microbiota frameworks, though it can directly
influence major drivers of the host microbiota: (1) Aggregation movement can enhance
social transmissions, (2) foraging movement can extend range of diet diversity, and (3)
dispersal movement determines the local environment of a host. Here, I would like to
outline how movement behaviors of different host taxa matter for microbial acquisition
across mammals, birds as well as insects. Host movement can have contrasting
effects and either reduce or enlarge spatial scale. Increased dispersal movement could
dissolve local effects of sampling location, while aggregation could enhance inter-host
transmissions and uniformity among social groups. Host movement can also extend the
boundaries of microbial dispersal limitations and connect habitat patches across plant-
pollinator networks, while the microbiota of wild populations could converge toward a
uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the
implementation of host movement would be a valuable addition to the metacommunity
concept, to comprehend microbial dispersal within and across trophic levels.

Keywords: gut microbiota, movement ecology, microbial dispersal, host movement, migration, environmental
acquisition, community assembly, social microbiome

INTRODUCTION

Microbial associations with animal hosts are ubiquitous and increasingly recognized as important
factor for the understanding of host ecology and evolution (Shapira, 2016; Foster et al., 2017;
Kolodny et al., 2020; Moeller and Sanders, 2020). The gut microbiota of host animals provides
various important roles regarding digestion, provision or nutrients or immune stimulating function
within insects as well as vertebrate clades (Moran et al., 2019; Schmidt and Engel, 2021). There is a
huge interest in advancing our understanding on how host-associations are formed and how much
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inter-host transmission, environmental acquisition or host
genetic factors play a role (Robinson et al., 2019; Mallott and
Amato, 2021). While major focus is clearly on functional aspects
for the host, reliable transmission routes and acquisition fidelity
would sustain microbial associations even in the absence of
mutualistic interactions (Leftwich et al., 2020; Sieber et al.,
2021). For successful colonization and establishment as resident
gut member, microbes must first encounter the host, which
is increasingly more likely when one or both of the partners
is mobile (Obeng et al., 2021). While microbial motility can
be essential for the establishment of symbioses in aquatic and
marine environments (Raina et al., 2019), terrestrial animals
could directly alter the probability of encountering microbes
by relocating themself. Host mobility range and frequency of
movements differ across animal taxa, from highly mobile to more
resident species.

Various studies applied a metacommunity concept for an eco-
evolutionary understanding of host microbiome associations,
including environmental microbes as a regional species pool
(Adair and Douglas, 2017; Carrier and Reitzel, 2017; Miller et al.,
2018). Host movement can extend these theoretical applications
from a static toward a more dynamic acquisition process
(Mihaljevic, 2012). Host aggregations reduces spatial scale and
directly influence probability of inter-host transmissions, while
host foraging movements could extend microbial acquisition
range or increase microbial dispersal across different habitats.

While insects have (beside vertically transmitted obligate
endosymbionts) relatively simple and species poor gut
microbiotas (Colman et al., 2012; Engel and Moran, 2013;
Jones et al., 2013), most mammals are known for a highly diverse
and host taxon specific gut microbiota, that often fits to the
phylogenetic distance of the host (the so called “phylosymbiosis”
pattern) (Groussin et al., 2017; Groussin et al., 2020; Kohl,
2020). Though this is believed to be the result of an adaptive
evolution of mammalian clades for dietary specialization, such
a framework does not fit well to the microbiota of birds or bats,
which show high inter individual dissimilarity and little influence
of host phylogeny (Davenport et al., 2017; Lutz et al., 2019;
Song et al., 2020).

With this manuscript I would like to highlight the role of
host “movement” and mobility range as a neglected parameter
explaining patterns in the microbiota of mammals, birds and
insects and the potential transfer across host taxa.

HOW HOST MOVEMENT INCREASES
MICROBIAL DISPERSAL

By moving from one into another place animal hosts can vector
microbes over a broad distance and increase their geographic
distribution and dispersal rates. At the same time, a host can
acquire different microbes from the new location, so that both
effects of microbial acquisition and dispersal are often combined
and hard to disentangle (Figure 1A). The vinegar fly Drosophila
melanogaster is highly attracted by microbial volatiles and use this
to find suitable oviposition sites within decaying and rotting fruits
(Becher et al., 2012; Markow, 2015; Qiao et al., 2019). The highly

FIGURE 1 | Host movement promotes microbial acquisition and dispersal.
(A) Host movement influences microbial acquisition range of a host and
promotes microbial dispersal across larger distances. (B) Host movement and
mobility range influence major drivers of host microbiota. Host aggregation
movement promotes social interactions and microbial transmission among
hosts. Foraging movement range determines diet diversity of a host. Dispersal
movement, nomadism or migration relocate a host into another location from
where environmental microbes can be acquired.

mobile adults can disperse and vector microbes that accelerate
the decaying process and support the development of the low-
mobile larvae, which is a substantial aspect in the ecology of
drosophilid and tephritid fruit flies (Wertheim et al., 2005; Wong
et al., 2015; Pais et al., 2018). Under axenic conditions, adult
flies respond with a restless behavior and increased locomotion
activity (Schretter et al., 2018).

In pollination ecology, the high mobility and movement range
of flying insects is a key factor to understand the dispersal abilities
of the floral microbiota (Vannette and Fukami, 2017; Morris
et al., 2019; Vannette, 2020). Pollinator foraging include repeated
visitations of flowers by several different insects species, so that
flowers can serve as hubs for microbial exchange within plant
pollinator networks (Francis et al., 2021; Keller et al., 2021;
Zemenick et al., 2021). Microbes can even directly influence
pollinator behavior and preferences, altering floral visitation and
nectar removal rates (Schaeffer et al., 2017; Rering et al., 2020;
Jacquemyn et al., 2021). Similar, the distribution of multiple
pollinator species drives parasite prevalence dynamics over the
course of a season (Graystock et al., 2020). Like the common
drone fly (Eristalis tenax), which promotes the dispersal of a
hymenopteran gut parasite by contaminations of flower tissue
with copious defecations (Figueroa et al., 2019; Davis et al., 2021).

HOW HOST MOVEMENT SHAPES THE
HOST MICROBIOTA

A mobile host is not only a spreader, but also a receiver
of microbes. Host animals can occupy various environmental
niches, so that they can be associated with a diverse set of
microbes (Carrier and Reitzel, 2017). The ecology and behavior
of the host is an important aspect for host-microbial associations
and their movement range would influence probabilities for
microbial acquisition from different habitats or during social
interaction (Ezenwa et al., 2012; Archie and Tung, 2015; Miller
et al., 2018). Animals perform different kinds of movements,
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like non-directional “station-keeping movements” when foraging
for food in a restricted area, or “dispersal movement” and
“nomadism” as an erratic translocation across different habitats,
until “migration” as a highly directional long-distance form of
movement (Schlägel et al., 2020). All these movement behaviors
could be drivers of the host microbiota, as they allow “social”
interactions of a host with conspecifics, influence foraging range
and “diet” diversity and determine if a host stays within a single
“local” environment or frequently moves across diverse habitats
(Figure 1B). Predictions for the outcome could be divergent and
case specific, as host mobility could enhance similarities among
social group structures within geographic isolated populations.
While for other hosts, a high dispersal rate and foraging range
could blur local influences and result in high dissimilarities
among individuals from a single habitat. Thus, the application of
a unified framework for all animal hosts would be challenging, as
the influence of stochastic and deterministic factors change with
the ecological context of the host and its mobility range (Sieber
et al., 2019; Mallott and Amato, 2021).

How Host Movement Defines the
Microbial Acquisition Range
Animals with limited movement abilities depend largely on
the regional pool of microbes in their vicinity, which could
enhance the correlation of host microbiota with sampling
location (Figure 2A, pale yellow). This category includes mainly
very small animals or insect larvae. A prominent member
would be probably Caenorhabditis elegans, which is literally
dwelling in microbial rich habitats as it can be found in nature
on decomposing plant material and rotting fruits (Frézal and
Félix, 2015). C. elegans is mainly relocated by vectoring animals
and its gut microbiota composition is largely determined by
the local substrate conditions, which can be distinct from
that under laboratory conditions (Zhang et al., 2017). Even
larger insect larvae (i.e., caterpillars) are mainly influenced
by the foliar microbiota of their local environment, when

FIGURE 2 | Host movement and mobility ranges across different host taxa.
(A) Animals have diverse mobility ranges which could influence the probability
for microbial acquisition and dispersal. Small animals or insect larvae (pale
yellow) have limited movement abilities, while walking animals (yellow) can
move into different environments and interact with other hosts. Flying animals
(orange) can extend their foraging range to larger areas, while migrating
species (red) can perform long-distance movements. (B) Potential extension
of the microbial acquisition range across trophic levels. Insectivorous animals
(i.e., bats or shrews) could acquire microbes from their prey (i.e., nocturnal
moth) so that their microbiota would resemble more that of flying or migrating
species.

remaining on a single host plant. Caterpillars are not known to
depend on microbial associations nor enrichment of host-specific
microbiota and interindividual variability can be explained by
different host plants or collection sites (Hammer et al., 2019;
Jones et al., 2019; Mason et al., 2020).

The second category contains animals that can perform
terrestrial locomotion or “walking” (Figure 2A, yellow). This
includes most mammals (including humans), flightless birds or
ground-dwelling insects. Such movement abilities increase the
mobility range and enable selective foraging for host-specific
diets or allows social interactions, which would both increase
microbiota similarity among conspecifics. In the wood mouse
(Apodemus sylvaticus), the tracking of individual movement
patterns revealed, that social connectivity and encounters with
conspecifics explains microbiota similarity better than spatial
distances or genetic relatedness (Raulo et al., 2021). In humans
and primates, social group structures or “co-housing” within
a shared living environment have a stronger influence on
microbiome similarity among individuals than host-genetic
factors or kinship (Tung et al., 2015; Rothschild et al., 2018;
Brito et al., 2019; Robinson et al., 2019). Over larger geographic
distances dispersal limitations and prey preferences explain
gut microbiota dissimilarities among carnivorous mammals in
allopatric populations (Moeller et al., 2017). While at a smaller
geographic distance (< 25 km), the microbiota of wild mammals
does not cluster by location, but mainly by host species identity
and dietary preference (Knowles et al., 2019). Movement allows
a selective foraging for specific diets within the same habitat,
so that herbivorous rodents (mice and voles) are dominated by
Bacteroidetes and Firmicutes, while their sympatric insectivorous
neighbors (shrews) show increased abundances of Proteobacteria
(Knowles et al., 2019).

The third movement category includes all “flying” animals
(Figure 2A, orange), which contains most birds, bats as well
as several flying insects. Active flight enlarges the range for
microbial acquisition further and might dissolve signatures of
local habitat boundaries. Characteristic for birds and bats is the
low correlation of their microbiota with host phylogeny and
a minor influences of sampling locality or habitat type (Hird
et al., 2015; Lutz et al., 2019; San Juan et al., 2020; Bodawatta
et al., 2021). Studies that have combined individual flight
behavior of birds with host microbiota analysis are extremely
rare, but for the barn owl (Tyto alba) the medium foraging range
indicated a positive correlation with microbial diversity (Corl
et al., 2020). Also insects showed typically high dissimilarities
among individuals, low biogeographic patterns and only a weak
influence of host phylogeny (Colman et al., 2012; Jones et al.,
2013; Yun et al., 2014; Bahrndorff et al., 2017; Wang et al.,
2020). But flying insects do not necessarily cover larger absolute
geographic distances than terrestrial animals, but mobility per
se with a high frequency of movements within a smaller
range could expose a host to heterogeneous microenvironments.
This is particularly important for microbe–plant–pollinator
interactions, since the dispersal of nectar microbes is directly
linked to the foraging behavior of pollinators (Cullen et al., 2021;
Francis et al., 2021). Wild bee species vary in their foraging ranges
from a few hundred meters to several kilometers, while nocturnal
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moth can easily exceed movement ranges to several hundred
kilometers (Greenleaf et al., 2007; Satterfield et al., 2020).

The fourth movement category (Figure 2A, red) includes
species that “migrate,” which differs from the previous movement
categories, as it is a seasonal directional movement over larger
geographic distance. Migration has been primarily investigated
in birds and butterflies regarding the long-distance dispersal of
parasites or as a strategy to avoid pathogen infections (Altizer
et al., 2011; Bartel et al., 2011; Boulinier et al., 2016; Viana
et al., 2016). But a few studies have investigated if host migration
influences gut microbial diversity. While migrating passerine
birds showed a change of their microbiota following a dietary
shift (Lewis et al., 2017; Skeen et al., 2021), other studies pointed
mainly at physiological adaptations and little environmental
acquisition of microbes (Risely et al., 2017, 2018; Wu et al.,
2018; Turjeman et al., 2020). The influence of migration on the
microbiota of birds seems rather marginal and could be mainly
attributed to dietary shifts between geographic distant locations.
With insects, the influence of migration is less clear. Though,
insect migration is often associated with the spectacular mass
migration events of the monarch butterfly (Danaus plexippus)
or the painted lady (Vanessa cardui), migration abilities are
not uncommon for other butterflies or nocturnal moth, but
remain often unnoticed as they fly in lower numbers or at night
(Chowdhury et al., 2021). But even seasonal mass migration
events are easily overlooked, when insects are small and fly at
high altitudes like the marmalade hoverfly (Episyrphus balteatus)
(Hu et al., 2016; Wotton et al., 2019; Satterfield et al., 2020).
But to what extent insect migration would influence microbiota
acquisition or dispersal has not been fully elucidated yet.

Does ‘Flight’ or the Consumption of
Mobile Insect Prey Shape the Host
Microbiota?
A recent comparative study concludes that a convergent
physiological adaption to “flight” (reduced dependence on
microbes to reduce weight of the digestive system) shapes the
bird as well as the bat microbiota (Song et al., 2020). Particular
Proteobacteria seem somehow associated with “flight,” as they are
commonly found in birds, bats and insects, while most mammals
are dominated by Bacteroidetes and Firmicutes (Brooks et al.,
2016; Song et al., 2020). But there are notable exceptions. In
the analysis of Song et al. (2020) the order of Insectivora
(here mainly shrews of the genus Crocidura spp.) showed the
second highest proportions of Proteobacteria and a less mammal-
specific microbiota than Chiroptera (bats), directly followed by
Pholidota (ant-eating Pangolins). If the observed pattern would
be explained by a physiological adaptation to flight, this raises
the question why terrestrial shrews have the most “bird-like”
microbiota of all mammals.

What is intriguing about this observation is the possibility
that insectivorous mammals might obtain their microbiota
directly from their prey. In such a scenario, the consumption of
insects would expand their microbial acquisition range, which
resembles more that of a flying insect (Figure 2B). A transfer
of microbes across predator-prey networks has been suggested

for insectivorous birds and predatory insects (Tiede et al., 2017;
Suenami et al., 2019; Dion-Phénix et al., 2021). The mammalian
microbiota is strongly influenced by species identity and type
of diet, but an increase of invertebrate prey (i.e., insects)
within the diet correlates with a decrease in bacterial alpha
diversity compared to mammals with a primarily herbivorous
lifestyle (Knowles et al., 2019; Harrison et al., 2021). Tough
“insectivory” includes the consumption of non-flying insects
(i.e., ants or termites) as well as other invertebrates, such a
dietary preference seems to result in a convergent adaptation
in the microbiota of phylogenetically distant mammalian clades
(Pilosa, Cingulata, Tubulidentata, and Carnivora) (Delsuc et al.,
2014). Particular bats might be able to further expand their
microbial acquisition range beyond their own flight range, as
they consume a diverse variety of highly mobile insect species
within the orders Lepidoptera, Diptera, and Coleoptera (Tiede
et al., 2020). The Brazilian free-tailed bat (Tadarida brasiliensis)
preys on high altitude flying insects, which includes several
migrating species, and noctuid moth make on average 77% of
their diet (Krauel et al., 2018). There is clearly more work needed
to clarify to what extend the microbiota of insects influences
the microbiota of insectivorous animals across tropic levels
(Figure 2B), and what patterns would be predicted for the
microbiota of highly mobile hosts.

Interruption of Host Movement Behavior
in Captivity or Laboratory Settings
Captivity and laboratory settings can alter the outcome of
microbiome studies tremendously and should be taken with
caution when implying evolutionary context (Hird, 2017). As
long as the insectivorous bat Mops condylurus preys on flying
insects, they show higher interindividual variability with relative
low alpha diversity in their fecal microbiota, but converge toward
a more uniform community composition with increased alpha
diversity when kept in captivity for 6 weeks (Edenborough et al.,
2020). When brought into captivity, primates tend to shift toward
a more “human-like” microbiota (Nishida and Ochman, 2021),
which was attributed to a reduced diversity of food plants with
lower fiber content compared to the naturally foraged diet of
wild relatives (Clayton et al., 2016). Captivity has a significant
effect on the microbiota of several mammal species (Kohl et al.,
2014; McKenzie et al., 2017), and there is a lot potential to
further explore how restrictions in foraging movement and range
size shape the microbiome. Captivity alters also the microbiota
of migratory as well as terrestrial birds, such as the crane and
the brown kiwi (Xie et al., 2016; San Juan et al., 2021). Any
restriction of animal movement behavior could disrupt natural
host-microbial dispersal routes leading to more “uniform” results
that confound the outcome obtained in laboratory settings or
under captivity conditions.

CONCLUSION AND FUTURE
PERSPECTIVES

A major challenge in the investigation of the microbiota of wild
animals is the lack of a clear framework of what can be expected
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FIGURE 3 | Potential framework how moving hosts (as “floating islands”) influence parameter of microbiota composition. Aggregation movement decreases spatial
scale and promotes social exchange among conspecifics, which could increase correlation by host phylogeny. Dispersal movement could extend dispersal
limitations of microbes but weakens the influence of local landscape parameters or host phylogeny. Foraging movement could connect habitat patches by
distributing microbes across plant-pollinator networks and weakens influences of host phylogeny or the local environment. While a selective foraging for host specific
diets (e.g., mammalian feeding guilds) would increase correlations with host diet and phylogeny (+ and – refers to an increase or decrease in correlation).

when host species identity or geographic location are failing short
to predict the observed variability within wild populations. By
an integration of flight behavior, the study by Song et al. (2020)
marks a transition that elevates from a pure host phylogenetic
perspective toward the integration of host ecology. There is
an exciting potential for future research to combine hypothesis
about animal behavior and movement decisions with the host
microbiota (Davidson et al., 2020; Bo and Kohl, 2021).

In the past, the analysis of host microbiomes has been
mainly performed from a “host-centric” viewpoint, following
the tradition of genetic model systems in the search of a
host-genetic basis that explains microbiome composition. The
inclusion of the “microbes perspective” has challenged this
view and brings community ecological principles and stochastic
processes into host microbiota analysis (Obeng et al., 2021; Sieber
et al., 2021). The host microbiota is not a constant trait, but
shows context dependent plasticity and interindividual variability
in time and space (Carrier and Reitzel, 2017). Especially the
metacommunity concept has become very useful in describing
host-associated microbiota as it provides a framework that
integrates interhost transmission and environmental acquisition
of microbes from an external pool (Miller et al., 2018). As a
reference to island biogeography, hosts are often depicted as
passive “microbial habitats” that become colonized by microbes,
similar as islands become colonized by other macrobiota,
while social connectivity is illustrated by clustering single
host “islands” into “archipelagoes” as used in the analogy
by Sarkar et al. (2020). Though this mainly refers to stable
social group structures, it misses to depict the dynamic and
transient nature of these interactions. Moving hosts would
be more comparable to “floating islands” which constantly
change their spatial distribution relative to each other, actively

connect in social interactions or relocate themselves into different
environments (Figure 3).

Similar as microbial movement (motility) turned out to be
an important aspect of host microbiota associations within
aquatic systems (Raina et al., 2019), host movement (mobility)
could become a vital addition to the metacommunity concept
explaining the acquisition and dispersal of microbes among
terrestrial animals. Movement changes several parameters
that influence microbiome composition and could strength
similarities among conspecifics via selective foraging or social
exchange (Figure 3). Social transmission would become merely
a consequence of aggregation movement, which decreases spatial
scale and enhances the probability of microbial transmission
among conspecifics. But movement could also blur correlations
with host phylogeny and lead to higher dissimilarity among
conspecifics from the same location. The mobility range
and foraging pattern of a host could be a key factor to
fully comprehend the composition and diversity of the host
microbiota. Though a direct tracking of host movement in
the wild is indeed a challenge, the outstanding work by Raulo
et al. (2021) and Skeen et al. (2021) demonstrates the value of
repeated sampling and the integration of movement patterns
as a new dimension into microbiota analysis of birds and
mammals. But even for insects, where a direct tracking of
individuals is less feasible, the investigation of transmission
routes within plant pollinator networks becomes a promising
step to better understand microbial dispersal among different
host taxa and across the animal and plant kingdom (Keller et al.,
2021; Zemenick et al., 2021). Still, a framework for predictions
of microbiota composition of highly mobile flying hosts is
missing, as increasing complexity of interactions makes it difficult
to directly correlate host mobility range with gut microbial
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diversity. Here, more work is needed to further explore if the
same drivers can explain microbiota composition of flying hosts,
resolving the patterns observed from insects, birds and bats.
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