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Abstract: Background: For the kinetic models used in contrast-based medical imaging, the assign-
ment of the arterial input function named AIF is essential for the estimation of the physiological
parameters of the tissue via solving an optimization problem. Objective: In the current study, we
estimate the AIF relayed on the modified maximum entropy method. The effectiveness of several
numerical methods to determine kinetic parameters and the AIF is evaluated—in situations where
enough information about the AIF is not available. The purpose of this study is to identify an
appropriate method for estimating this function. Materials and Methods: The modified algorithm
is a mixture of the maximum entropy approach with an optimization method, named the teaching-
learning method. In here, we applied this algorithm in a Bayesian framework to estimate the kinetic
parameters when specifying the unique form of the AIF by the maximum entropy method. We
assessed the proficiency of the proposed method for assigning the kinetic parameters in the dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI), when determining AIF with some other
parameter-estimation methods and a standard fixed AIF method. A previously analyzed dataset
consisting of contrast agent concentrations in tissue and plasma was used. Results and Conclusions:
We compared the accuracy of the results for the estimated parameters obtained from the MMEM
with those of the empirical method, maximum likelihood method, moment matching (“method of
moments”), the least-square method, the modified maximum likelihood approach, and our previous
work. Since the current algorithm does not have the problem of starting point in the parameter esti-
mation phase, it could find the best and nearest model to the empirical model of data, and therefore,
the results indicated the Weibull distribution as an appropriate and robust AIF and also illustrated
the power and effectiveness of the proposed method to estimate the kinetic parameters.

Keywords: kinetic model; modified maximum entropy method; arterial input function; optimization
method

1. Introduction

Determining the probability density function of a random variable based on obser-
vations is a major and old issue in statistics. In recent years, various parametric and
non-parametric methods have been introduced for the estimation of the probability density
function for a random variable based on observations, but there is very limited work
reported on the optimization methods. The maximum entropy method (MEM) is one of
the major methods for estimating and determining the probability density with a high
level of accuracy and efficiency and minimum bias. It is applied to gain the unknown
density via resolution of an optimization problem. The principle of maximum entropy, as a
method of statistical inference, is due to Jaynes [1]. His idea is that this principle leads to
the selection of a probability density function that is consistent with our knowledge and
introduces no unwarranted information. Any probability density function satisfying the
constraints that has smaller entropy will contain more information (less uncertainty), and
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thus says something stronger than what we are assuming [1–4]. Entropy maximization or
related concepts has been frequently utilized in the past ten years to analyze large biological
datasets in various fields. These fields range from determining macromolecular interactions
and structures [5–20] to inferring signaling [21–25] and regulatory networks [26–28] and
the coding organization in neural populations [28–43] based on DNA sequence analyzes
(the detection of specific binding sites, for instance) [42–46]. MEM is a powerful vehicle to
reconstruct images based on various datasets. It is also commonly used in radio astronomi-
cal interferometry, which deals routinely with images with high dynamic range and up to a
million pixels [47,48].

In this paper, a concise and basic introduction to entropy maximization and its ap-
plicability for deriving models from biological datasets—especially in kinetic models and
image processing via DCE-MRI—is provided. DCE-MRI is a fast and noninvasive method
for quantitative perfusion analysis in soft tissue, using a contrast agent (CA). It is used
extensively for the analysis of microvascular blood in a variety of clinical usages like detect-
ing, characterizing, and therapeutic monitoring of different diseases [49–54]. In DCE-MRI,
quantitative analysis is often applied on a whole tumor region of interest (ROI) [55], in
which the contrast agent concentration time curve for all voxels in the tumor is used to
estimate a single set of kinetic parameters (like—volume transfer constant between blood
plasma and extracellular extravascular space per minute—and—rate constant between
extracellular extravascular space and blood plasma per minute [56]) for each patient study.

In recent years, several approaches have been proposed to quantify the perfusion
of CA into tissues and to estimate the related parameters of perfusion (indices) from
concentration-time or signal-curves [57–60]. In DCE-MRI, quantification of the perfusion
involves measuring the concentration of the CA in tissue over time. This time curve is then
modeled using kinetic processes, where the kinetic parameters are of clinical interest [55].
The kinetic model of the tissue is explicit as an ordinary-differential equation, dissolved
analytically result in a nonlinear format in the contrast agent concentration [61–69].

One fundamental necessity for the Tofts pharmacokinetic analysis is the knowledge of
the arterial input function (AIF), that is the time curve of CA concentration on the left-side
ventricular blood pool. Although the AIF itself is not clinically relevant, its correct determi-
nation is very important for the correct estimation of kinetic parameters [62,70]. Since the
obtained rate constants are heavily dependent on the AIF [71–75], an accurate and precise
measurement is necessary for their absolute and reliable quantification. Instead, a simpli-
fied method, such as a population averaged AIF can be used. However, (large) variabilities
in cardiac output—between patients and within patients over time—are no longer taken
into account with this method. If this variability in cardiac output can be accounted for by
precise measurement of the AIF, the accuracy and repeatability of the kinetic parameters
should be superior over use of a population averaged AIF. Some researchers have shown
that a population averaged AIF can result in better repeatability [76,77], whereas others
report the opposite [78,79]. It is possible that repeatability depends on the imaged body part
and imaging sequence parameters, but also on the choice of the artery for AIF measurement.

However, in many imaging applications, e.g., for patients with breast cancer, it is
not possible to directly measure the AIF from imaging, as no large vessel is in the field
of view. Thus, assumed AIFs from the literature are often used, e.g., bi-exponential
functions with parameters derived by [80] or [81] or a mix of the two Gaussian with
an exponential [61–69,76].

We have previously developed a method for estimating the AIF and the kinetic
parameters in DCE-MRI [82]. This method was developed in response to a need in the
medical imaging community for the objective comparison of estimations made using
different statistical methods, for example, the Bayesian method and MLE. The main problem
of our previous algorithm was the dependence of Newton’s method on the starting point,
which was a uniform random number.

The previous algorithm was the maximum entropy method in combination with
Newton’s method in order to estimate the AIF using the CA time curve data in plasma,
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also called “blind estimation” of the AIF and the maximum a posterior approach (MAP) to
determine the kinetic parameters [82]. In this paper, we propose an improved algorithm
for blind AIF estimation using a mixture of the maximum entropy method (MEM) and
teaching-learning based optimization in the step of λ’s estimation for assessing observer
performance in the classification tasks using available information. This circumvents issues
with the random start points in the previous algorithm. This approach works on the effect
of the influence of a teacher on students. Like other nature-inspired algorithms, TLBO is
also a population-based method and uses a population of solutions to proceed to the global
solution. The population is considered as a group of learners or a class of learners. The
process of TLBO has two parts: the first part consists of the ‘Teacher Phase’ and the second
part consists of the ‘Learner Phase’. ‘Teacher Phase’ means learning from the teacher, and
‘Learner Phase’ means learning by the interaction between learners [83,84]. The proposed
algorithm is, therefore, more robust. It finally proposed the Weibull distribution in between
all other selective models as a model for the AIF via MEM approach. We performed
extensive studies using empirical data to better understand the performance of our method.
In addition, a comparison was conducted among four other different estimation methods
in DCE-MRI dataset, and the new recommended method results were compared with the
previous work [55,82].

The rest of this paper is structured as follows: Section 2 describes the basic structure
of the proposed method for DCE-MRI analysis: the proposed modified maximum entropy
method (MMEM), TLBO algorithm, and MAP. Section 3 includes alternative approaches for
estimating of the parameters. Section 4 gives an example to show the step-by-step analysis
of the dataset. Section 5 contains the application of a complete DCE-MRI study using the
proposed method and their evaluations. Section 6 concludes the aim of the present work.

Data Description

As an example data set, we use a previously analyzed breast cancer data set [55].
The data were provided by the Paul Strickland Scanner Center at Mount Vernon Hospital
in Northwood, UK. Pre-treatment DCE-MRI scans of twelve patients were available. In
each case, 46 images were recorded every 11.9 s after administration of the contrast agent
Gadolinium-DTPA. For the calculation of T1 values, we used a two-point measurement
with calibration curves as described in [85,86]. In DCE-MRI, T1 is the relaxation time, also
known as the spin-lattice relaxation time. In addition, it is a measure of how quickly the net
magnetization vector recovers and its ground state or it is the time constant for regrowth of
longitudinal magnetization. The T1 values are computed as a ratio of a T1-weighted fast
low-angle shot (FLASH) image and a proton-density-weighted FLASH image.

To measure contrast agent concentration Ct(t), the signal intensity is converted to
T1 relaxation time values using T1-weighted images, proton density weighted images
and data from calibration phantoms with known T1 relaxation times [87]. The Gd-DTPA
concentration can then be computed via Ct(t) = 1

r1

[
1

T1(t)
− 1

T10

]
, where T10 is the T1 value

without contrast, computed as mean value of the first four images, and r1 = 4.24l/s/mmol
is the longitudinal relativity of protons in vivo due to Gd-DTPA. The imaging parameters
of the T1-weighted FLASH images were TR = 11 ms, TE = 4.7 ms, α = 35, the parameters
of the proton density-weighted image were TR = 350 ms, TE = 4.7 ms, α = 6. Field of
view was the same for all scans, 260× 260× 8 mm per slice, so voxel dimensions are
1.016× 1.0168 mm. A scan includes three sequential slices of 256× 256 voxels and one slice
placed in the contralateral breast as control, which we do not use for our analysis. A dose
of D = 0.1 mmol per kg body weight of Gd-DTPA was injected after the fourth scan via a
power injector with 4 mL/s with a 20 mL saline flush also at 4 mL/s.

Figure 1 shows the empirical model of data for two patients ~Ctis−1, ~Ctis−2 and ~Cp based
on the time t using Kernel distribution which actually finds an empirical density function
of the sample data (See: Using “KernelDistribution” Objects and “ksdensity” in Matlab).
In statistics, kernel density estimation is a non-parametric way to estimate the probability
density function of a random variable and it is a smoothing function that determines the
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shape of the curve used to generate the pdf, and a bandwidth value that controls the
smoothness of the resulting density curve [88]. This is the primary model of data Cp(t)
changing the inverse problem to forward. It is not clear the sample data belongs to which
family of distributions, it is the main issue in here we try solving here by the maximum
entropy method.
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Figure 1. Empirical PDF of the Contrast Agent in Plasma (Cp(t)) named Empirical AIF and in Tissue
(Ctis(t)) for two patients

2. Theory & Methods

In this study, we estimated different probability density functions for AIF using
our proposed algorithm. The accurate estimated model of AIF is the cornstone of the
present work, because its correct determination is very important for the correct estimation
of kinetic parameters. In the previous study [83], we have estimated the Gamma and
Exponential distributions using the maximum entropy method and Newton’s approach.
Both models were acceptable approximated AIF in comparison to the literature models.

Here, the modified algorithm examines different moments constraints in MEM to
build the best probability model fit to data. In addition, Besides TLBO, the various parame-
ter estimation methods then suggest the estimated parameters which help to find more
appropriate AIF. Kinetic parameters are estimated in the next step via MAP.

2.1. Kinetic Model

The kinetic process in the tissue can be modeled using an ordinary-differential equa-
tion, dissolved analytically resulting in a nonlinear model for the contrast agent con-
centration ([61], [62], and [63]), [64–69]. In this study, we adopted the commonly used
pharmacokinetic model [90] that assumes the CA resides in and exchanges between two
compartments in the tissue: the vascular space and EES.

Considering the kinetic properties of the contrast agent (CA) in the tissue of interest
(Ctis) using DCE-MRI, we apply the differential equation system as follows:

dCtis(t)
dt

= K1Cp(t)− K2Ctis(t), (1)

Figure 1. Empirical PDF of the contrast agent in plasma (Cp(t)) named empirical AIF and in tissue
(Ctis(t)) for two patients.

2. Theory and Methods

In this study, we estimated different probability density functions for AIF using our
proposed algorithm. The accurate estimated model of AIF is the cornerstone of the present
work, because its correct determination is very important for the correct estimation of kinetic
parameters. In the previous study [82], we have estimated the gamma and exponential
distributions using the maximum entropy method and Newton’s approach. Both models
were acceptable approximated AIF in comparison to the literature models.

Here, the modified algorithm examines different moments constraints in MEM to
build the best probability model fit to data. In addition, besides TLBO, the various param-
eter estimation methods then suggest the estimated parameters which help to find more
appropriate AIF. Kinetic parameters are estimated in the next step via MAP.

2.1. Kinetic Model

The kinetic process in the tissue can be modeled using an ordinary-differential equa-
tion, dissolved analytically resulting in a nonlinear model for the contrast agent concentra-
tion [61–69]. In this study, we adopted the commonly used pharmacokinetic model [89]
that assumes the CA resides in and exchanges between two compartments in the tissue:
the vascular space and EES.

Considering the kinetic properties of the contrast agent (CA) in the tissue of interest
(Ctis) using DCE-MRI, we apply the differential equation system as follows:

dCtis(t)
dt

= K1Cp(t)− K2Ctis(t), (1)

in which Cp(t) is the CA concentrations in the vascular blood pool, that is, the arterial
input function AIF. Both K1 and K2 are the rate constants of the CA exchanges between
extravascular-extracellular space (EES) and plasma. Subject to Cp(0) = 0, Equation (1) can
be solved with the following result

Ctis(t) = K1

∫ t

0
Cp(u)e−K2(t−u)du. (2)

This equation has been used to analyze MR data in a number of studies [81]. Murase [90]
proposed a different way to solve Equation (1) using discretization:
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Ctis(t) = K1

∫ t

0
Cp(u)du− K2

∫ t

0
Ctis(u)du, (3)

This can be written in matrix form as follows:

~C = ~A× ~K, (4)

where matrix An×2: ~A = {A(1), . . . , A(n)}′ for each row of I = 1, 2, . . . , n :

A(I) = (
∫ tI

0 Cp(u)du, −
∫ tI

0 Ctis(u)du), (5)

~K =

(
K1
K2

)
(6)

and

~C =


Ctis(t1)
Ctis(t2)
...
Ctis(tn)

. (7)

From the mathematical view, when Ctis(ti) and Cp(ti) are measured, it is possible to use
conventional linear least-squares (LLSQ) method to determine ~K and the trapezoidal
rule for the elements of ~A. Unfortunately, this method measures approximate values for
the kinetic parameters. A great number of image processing problems can be presented
as inverse problems. In here the linear system of equations which are obtained after
the discretization of the integral equations which arises in various tomographic image
restoration and reconstruction concerns are considered: Therefore, we write Equation (2)
as follows:

ytis(ti) = A(i)~K + εi εi∼N(0, σ2) (8)

where ytis(ti) is the observed tissue concentration at time ti and the measurement uncer-
tainty (noise) which is assumed to be additive, centered, white, Gaussian and independent
of K [91].

For that, the estimation procedure of the analysis here includes Bayesian methods,
which its advantage is to overcome the integration process involved in estimating the
model parameters. Therefore, Bayesian methods can provide exact estimates of the model
parameters, not approximating them. In Bayesian statistics, parameters are viewed as
random variables. Each parameter involved in a Bayesian model has a distribution attached
to it in order to express the uncertainty about its true value. The distribution is named the
prior distribution. They represent the prior knowledge about the parameter of interest,
which is often obtained from historical data (data-based priors) [92,93].

2.2. Maximum a Posterior Approach

Image reconstruction belongs to the class of ill-posed inverse problems of mathemat-
ical physics [94]. In 1967, the physicist V. Turchin suggested using the Bayesian method
of maximum a posteriori (MAP) for solving inverse ill-posed problems with stochastic
data, naming this approach ‘statistical regularization’ [95]. Bayesian maximum a posteriori
(MAP) approaches can be used to solve ill-posed problems as they arise in image reconstruc-
tion [96,96,97]. The solution of MAP obviously depends on the priori models. The main
challenge of the Bayesian method is how to determine the a priori probability distribution
of the studied image and specify its parameters using its data. In here, we assume a form
of a priori information named entropy-based prior, which relies on the principle of entropy.
Such approaches have been successfully used in the fields of plasma-tomography, X-ray,
radio, and gamma-astronomy [93,96–98]. To estimate the kinetic parameters, we consider
the general form of Equation (8) in the following as proposed by [92,93]. Estimating the
positive-vector x (the pixel-intensities in an object) subject to a vector of measurement y
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(e.g., a degraded-image or the projections of an object) and a linear-transformation A which
relates both vectors by

y = Ax + b, (9)

where b is uncorrelated noise with normal distribution, and zero-mean. We consider only
approximate information about the variance of the noise Σ2 and general information about
the object.

To estimate the unknown vector ~x, we use a Bayesian approach. Given the probability
density functions (pdf) f (x) and f (y|x) and f (y) we obtain the pdf of the conditional
distribution of x subject to y using the Bayesian formula [99]:

f (x|y) = f (y|x) · f (x)
f (y)

. (10)

The MAP estimator x̂ maximizes the posterior pdf f (x|y) obtained by Bayes formula. In the
Equation (10), f (y) is independent of x, f (y|x) relates to the noise probability distribution
and finally, f (x) is a prior distribution on x.

If we are not able to directly determine f (x) and f (y|x), we can apply the maximum
entropy method. For the MEM, knowledge of some constraints on f (x) can be used.
Among all probability distributions satisfying these constraints, we select the one which
has maximum entropy [92,92,93], see Section 2.3. To determine f (y|x), the noise pdf,
we have

f (y|x) ≈ exp[−T(x)],

T(x) = [y− Ax]t[y− Ax]/σ2.

A possible way to select a priori-distribution, f (x), is to apply the MEM where the
general model is in the form of the exponential family. The advantage of applying MEM for
finding a priori is, that this method is the most objective, and maximally uncommitted [99].

2.3. Maximum Entropy Method

The maximum entropy principle allows one to determine the least biased probability
distribution function when the information available is limited by some macroscopic
constraints [100]. The MEM determines the randomness of the primary data by the concept
of information entropy. It is the mathematical expectation of the uncertainty associated
with an outcome in terms of its occurrence probability. It is suggested that the most
likely probability distribution should be the one that maximizes the information entropy.
Maximizing Shannon’s entropy is the basic idea of MEM [4]:

h(X) = −
∫

f (x)log f (x)dx, (11)

subject to known constraint, typically moment constraints

E(φk(x)) =
∫

φk(x) f (x)dx = µk. (12)

Here φ0(x) = 1, and φk(x), k = 0, . . . , N are N + 1 known-functions. These could be, for
example, xn,log(x), x log(x) or trigonometric or geometric functions. The idea is to assign
the appropriate known-function relating the ME distribution to the exponential family via
the mentioned constraints [2,3,101]. Using the method of Lagrange multipliers method,
where the objective function is Shannon’s entropy Equation (11), J( f ) is as follows:

J( f ) = −
∫

f (x)log f (x)dx + λ0

∫
f (x)dx +

N

∑
k=1

λk

∫
f (x)φk(x)dx. (13)

For obtaining f (x), we differentiate J subject to f (x):
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∆J( f )
∆ f (x)

= −log f (x)− 1 + λ0 +
N

∑
k=1

λkφk(x) = 0. (14)

Adopting Taylor’s theorem (based on using a Taylor series approximation), the re-
quired expected values µ1, . . . , µm can be obtained numerically from the data set [101].
Applying an optimization method with Shannon’s entropy as the objective function, and
setting Equation (14) equal to zero, the general form of ME distribution will be [4]:

f (x) = e−∑N
k=0 λkφk(x), x ∈ S, (15)

where λk can be selected such that, f (x) in Equation (15) satisfies the known constraints in
Equation (12). The parameters λ = [λ0, . . . , λN ] are determined to fit an appropriate class
of the ME distributions. To determine the N + 1 unknown-parameters, the set of N + 1
nonlinear equations are solved as follows (1 ≤ k ≤ m):

Gk(λ) =
∫

φk(x)e−∑k λkφk(x)dx = µk. (16)

2.4. Teaching-Learning Based Optimization

To solve Equation (13) we suppose a population base algorithm named teaching-
learning based optimization (TLBO), which resolves the problem of random starting points.
Instead, it can measure the mean of all possible parameter estimations in order to fit a
better model to data. The idea of this algorithm is to assume the relationships between a
teacher and all learners in a classroom [83]. It considers the same probability for learners
to get information from others. TLBO has two steps to find the best solutions, which
named teaching and, learning. The most important features of this algorithm is the easy
implementation, and rapid convergence [102].

It considered the population as a group of students and their related subjects are the
design variables of the problem. In TLBO, the different presented courses for students
are supposed to be different variables and their scores are like the objective function. It
is very important for teachers to share their knowledge between students to improve the
class’s level of knowledge, then it can cause achieving acceptable scores by students based
on their talents. The teacher is assumed to be the most informed person in the classroom,
which distributes her/his knowledge to the students. For that, the teacher will be the best
solution (the best person in the population) among all. There is a fact that the student’s
level of knowledge highly depends on the teacher’s quality of the teaching, and the quality
of the others in the class. Therefore, the two main steps of learning for the students are
implemented After the creation of the initial population and calculation of the objective
value for each individual as follows:

2.4.1. Teacher Phase

In this step, the teacher tries to improve the mean scores of the students subject to
her/his situation. The random procedure here is to produce a new solution instead of the
old one:

Xnew,D = Xold,D + r(Xteacher,D − TF MD) (17)

where, D shows the number of courses, Xold,D (a vector 1× D) is the old solution, when
there is no contribution between the students to improve their knowledge, and it includes
the results of each specific course, a random number r is in [0, 1], Xteacher,D is the best
solution of the whole population, Tf is a teaching factor changes from 1 to 2 randomly
with the same probability, and MD is a vector ( 1× D) involving the mean values of the
classroom results for each specific course. The new solution Xnew,D is accepted if it is better
than the old one [102].
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2.4.2. Learner Phase

To improve the knowledge of each student when randomly cooperating with other
students, Equation (18) is implemented to all of them, so that, one can achieve the new
information in the situation when the other learner has more knowledge than her/him.

Xnew,i = Xold,i + ri(Xj − Xk) (18)

where i = 1, 2 is the total number of solutions, Xold,i when there is no cooperation with
other students, ri is a random number in the range [0, 1], and Xj and Xk are two learners
randomly chosen with j 6= k and in which Xj presents a better objective value than Xk . The
solution Xnew,i is accepted if it is better than the old solution Xold,i.

2.5. Implementation

We have implemented the code for the proposed method in MATLAB. These are the
main steps of the algorithm:

(1) Determining φk(x) and their numerical expectations using dataset via Taylor’s theo-
rem [4],

(2) Using TLBO (or an alternative optimization method, see below) to determine the
unknown function with the Shannon’s entropy as target function. The general form is
given in Equation (15), ( fCtis(t) and fCp(t)),

(3) Applying the proposed method to find λk in which f (x) (Equation (15)) matches the
constraints in (Equation (12)), ( f̂Ctis(t) and f̂Cp(t)),

(4) Estimating the kinetic parameters ~K, we replace f̂Ctis(t) and f̂Cp(t) in Equation (8) and
resolve them via MAP,

(5) Using the Kullback–Leibler divergence DK−L( f ||g) to check the accuracy of the esti-
mated AIF, f̂Cp(t) in comparison with the empirical distribution of dataset g(Cp),

DK−L( f̂ ||g) =
∫

s
f̂Cp(t)log

f̂Cp(t)
g(Cp)

dt. (19)

(6) With the predicted values x̂1, . . . , x̂m and the observed values x1, . . . , xm:

RMSE =
[ 1

m

m

∑
i=1

(xi − x̂i)
2
]1/2

, (20)

χ2 =
∑m

i=1(xi − x̂i)
2

m− n
, (21)

R2 = 1− ∑N
i=1(xi − x̂i)

2

∑N
i=1(xi − x̄)2

, (22)

3. Alternative Parameter Estimation
3.1. Weibull Distribution

The Weibull distribution is widely used in reliability and life data analysis due to its
versatility. It is also established a close approximation to the probability laws of various
natural-phenomena. The pdf of the Weibull distribution has two parameters:

f (x) =
k
ck xk−1e−(

x
c )

k
, (23)

where k is the shape and c is the scale parameter [103,104].
Using the Weibull model, we can also use different approaches to determine the

parameters k and c:
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3.2. Methods of Moments

The method of moments (MM) calculates the first and second moments to estimate
shape and scale parameters. The algorithm relies on the mean, variance of the gamma-
function of (1 + 1/k) [105]. The sample mean and standard error are

x̄ = cΓ(1 + 1/k), σ = c(Γ(1 + 1/k)− Γ2(1 + 1/k))
1/2

, (24)

where Γ(x) =
∫ ∞

0 tx−1e−tdt is the gamma function.

3.3. Empirical Measurement Method

The empirical measurement method is a special case of MM [105–107]:

k = (
σ

x̄
)−1.086,c =

x̄
Γ(1 + 1

k )
, (25)

where σ is the sample standard deviation.

3.4. Maximum Likelihood Method

For the maximum likelihood estimator (MLE), an iterative algorithm can be used.
With n the number of non-zero data points, the shape and scale parameters (k, c) are by
iteratively solving

k =
(∑n

i=1 xk
i ln(xi)

∑n
i=1 xk

i
− ∑n

i=1 ln(xi)

n

)−1
,

and

c = (
1
n

n

∑
i=1

xk
i )

1/k,

3.5. Modified Maximum Likelihood Method

When the data is available in the form of the frequency distribution, we can apply the
modified maximum likelihood method (MMLE).

k = (
∑n

i=1 xi
k ln(xi)P(xi)

∑n
i=1 xi

kP(xi)
− ∑n

i=1 ln(xi)P(xi)

P(x ≥ 0)
)−1, c = (

1
P(x ≥ 0)

n

∑
i=1

xi
kP(xi))

1/k, (26)

where P(xi) represents the frequency of data xi, n the number non-zero data points, and
P(x ≥ 0) the probability of the random variable equal or exceeding zero. In Equation (26),
k can be resolved iteratively, then c can be solved explicitly [108,109].

3.6. Non-Linear Least Squares Method

For the non-linear least squares method (NLSM) the observations are ordered in an
ascendant form, and coupled to the failure probabilities, gained by the estimators. The
Gauss–Newton’s algorithm is used to gain the best-fitted curve of a Weibull model [110].

Based on the individual results by the method of maximum likelihood, modified
maximum likelihood, and least-squares regression, Seguro and Lambert [111] concluded
that maximum likelihood or modified maximum likelihood proposed here provided more
reasonable and accurate values for parameter estimation of Weibull distribution than
least-squares regression. Later it is proven once again by Cook [112].

4. Example of Application

In this section, we show the application of the modified maximum entropy method
(MMEM). Due to the limitation of length, this paper only provides a brief description of
formulas and fitting curves.

An additional challenge is the fact that usually there are an infinite number of statistical
models that are consistent with a given set of global properties measured from data.
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Therefore, one needs an additional criterion to decide which model to use. The benefit of
using the maximum entropy method is to find the simplest model with the lowest bias,
which maximizes the entropy. For the same dataset, there could be many complicated
models to describe data, but finding the best fitted model with a few numbers of constraints,
a few steps of computations, and finally, with the known family of distribution, is the
advantage of choosing this method. For that, the maximum entropy method, searches,
examines and, applies different moment constraints (see Section 2.3) [3], and adopts the
minimum number of them to form an appropriate probability density model for the sample
data. There could be a large difference between the maximum entropy estimated model
with two constraints and three constraints, but for the estimated ME model with four or five
cases, it would not be a big difference in the estimated models. In other words, there is no
guarantee to estimate the better maximum entropy model when adding more constraints.

After examining several known functions [3] and their exceptions (constraints) which
are computed numerically based on Taylor’s theorem from the sample data, the estimated
probability density function of the data fits well to the Weibull distribution (Figure 2). For
data ~Cp(t) ∫

t
fCp(t)dt = 1,∫

t
log(Cp) fCp(t)dt = −0.4465,∫

t
C3

p fCp(t)dt = 1.0930

using the general form of the maximum entropy distribution Equation (15), f̂Cp(t) can be
as follows:

fCp(t) = e−λ0−λ1 log(Cp(t))−λ2C3
p(t),

where the final ME multipliers λ′s and the Weibull parameters are estimated as follows

f̂Cp(t) = exp(−0.7466− 1.4944 log (Cp(t))− 0.1128C3
p(t)) + 0.5. (27)

and based on the ME form of Equation (23)

f (x) = elog( k
ck )+(k−1) log(x)−( x

c )
k
.

in which

λ0 = − log(
k
ck ), (28)

λ1 = −(k− 1), (29)

λ2 = c−k. (30)

Then, according to Equations (27) and (28), the Weibull parameters will be c = 1.8498, k = 3
where the mean of absolute error, DK−L divergence and entropy are 0.0470, 0.0438, and
0.2026, respectively, see Figure 2.

Table 1 lists the mean absolute error (MAE), Kullback–Leibler distance DK−L and the
entropy of different AIF models via MMEM described in Section 2.3 and the empirical one.
In each case, we have applied evaluation methods to check the validity of the estimated
model. The high measurement of entropy shows the superiority of the Weibull probability
density function to fit the data, too. The MMEM can not optimize the different values of k
and c by itself (based on the uniqueness of the maximum entropy distribution [4]), but it can
be applied on a grid on k. However, using MAE, DK−L and entropy, we achieve different
optimal models with the optimal values of their parameters. Additionally, Figure 3 pictures
the fit for the different CDFs.



Entropy 2022, 24, 155 11 of 18

Entropy 2021, 1, 0 11 of 19

in which

λ0 = − log(
k
ck ), (28)

λ1 = −(k− 1), (29)

λ2 = c−k. (30)

Then, according to Eq.(27) and Eq.(28), the Weibull parameters will be c = 1.8498, k = 3
where the mean of absolute error, DK−L divergence and entropy are 0.0470, 0.0438 and
0.2026 respectively, see Fig.2.

Table 1 lists the mean absolute error (MAE), Kullback-Leibler distance DK−L and the
entropy of different AIF models via MMEM described in section 2.3 and the empirical one.
In each case, we have applied evaluation methods to check the validity of the estimated
model. The high measurement of entropy shows the superiority of the Weibull probability
density function to fit the data, too. The MMEM can not optimize the different values of
k and c by itself (based on the uniqueness of the maximum entropy distribution [4]), but
it can be applied on a grid on k. However, using MAE, DK−L and Entropy, we achieve
different optimal models with the optimal values of their parameters. Additionally Fig.3
pictures the fit for the different CDFs.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

t

C
P
(t
)

CP (t)

̂fCP (t)

← AbsoluteDifference

 

 

Weibull Dist.

Cp−Data

Absolute Diff.

Figure 2. Maximum Entropy Probability Density Function of AIF ( f̂Cp (t)) & Empirical AIF

0 1 2 3 4 5 6 7 8 9 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Weibull, k=3

eCDF

Gamma

Weibull, k=2.5

Exp.

Figure 3. Maximum Entropy Distribution of AIF, Empirical CDF of Data & Gamma and Exponential
CDFs

Figure 2. Maximum entropy probability density function of AIF ( f̂Cp (t)) and empirical AIF.

Entropy 2021, 1, 0 11 of 19

in which

λ0 = − log(
k
ck ), (28)

λ1 = −(k− 1), (29)

λ2 = c−k. (30)

Then, according to Eq.(27) and Eq.(28), the Weibull parameters will be c = 1.8498, k = 3
where the mean of absolute error, DK−L divergence and entropy are 0.0470, 0.0438 and
0.2026 respectively, see Fig.2.

Table 1 lists the mean absolute error (MAE), Kullback-Leibler distance DK−L and the
entropy of different AIF models via MMEM described in section 2.3 and the empirical one.
In each case, we have applied evaluation methods to check the validity of the estimated
model. The high measurement of entropy shows the superiority of the Weibull probability
density function to fit the data, too. The MMEM can not optimize the different values of
k and c by itself (based on the uniqueness of the maximum entropy distribution [4]), but
it can be applied on a grid on k. However, using MAE, DK−L and Entropy, we achieve
different optimal models with the optimal values of their parameters. Additionally Fig.3
pictures the fit for the different CDFs.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

t

C
P
(t
)

CP (t)

̂fCP (t)

← AbsoluteDifference

 

 

Weibull Dist.

Cp−Data

Absolute Diff.

Figure 2. Maximum Entropy Probability Density Function of AIF ( f̂Cp (t)) & Empirical AIF

0 1 2 3 4 5 6 7 8 9 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Weibull, k=3

eCDF

Gamma

Weibull, k=2.5

Exp.

Figure 3. Maximum Entropy Distribution of AIF, Empirical CDF of Data & Gamma and Exponential
CDFs

Figure 3. Maximum entropy distribution of AIF, empirical CDF of data and gamma and exponen-
tial CDFs.

Table 1. Comparison of the estimated maximum entropy AIFs, and the empirical AIF.

Estimated Distribution MAE DK−L Entropy

Gamma 0.0775 0.0285 0.0303

Exponential 0.0375 0.0363 0.0872

Weibull (k = 3) 0.0470 0.0438 0.2026

Weibull (k = 2.6) 0.0403 0.0389 0.1755

Weibull (k = 2) 0.0471 0.0342 0.1471

Table 2 lists the estimated Weibull parameters via different estimation methods as
mentioned in Section 3. All the estimated models are presented in Figure 4. Table 3 indicates
the evaluation measurements for all the mentioned method in Section 3 to investigate how
the proposed method works. Among all these models, the MMEM has the best fit to
the data.
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Table 2. Weibull parameters via different parameter estimation methods.

Methods K C

EM 1.6469 0.7787

MOM 1.9125 0.7850

MLE 1.8005 0.7890

MMLE 2.0201 0.7758

NLSM 2.7767 0.7518

MMEM 2.6 1.7380

Table 3. Evaluating methods to compare the empirical AIF and the maximum entropy PDFs of AIF.

Methods RMSE Chi-Square R2 Adjust R2

EM 0.286 0.0755 0.631 0.622

MOM 0.255 0.0691 0.670 0.663

MLE 0.278 0.1191 0.570 0.580

MMLE 0.274 0.0771 0.636 0.628

NLSM 0.194 0.2854 0.535 0.525

MMEM 0.0320 7.5687 × 10−4 0.995 0.995
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the correct estimation of the kinetic parameters. The K-L divergence measurements range
from 0.001 to 0.0637 for all patients.

Fig. 6 depicts the estimated k1 values using MMEM/MAP and assumed AIF/ML &
MEM/MAP for all 12 patients. For the MMEM, the k values (Table 4) are more on the same
level between patients – compared to the MEM/MAP – which biologically makes sense.
Still, the AIF is estimated from the data, which makes the estimation of k more realistic
than the estimation using an assumed AIF.
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Figure 4. Modified maximum entropy PDF of AIF, empirical AIF, maximum entropy PDFs combined
with parameter estimation methods.

Based on the results of Tables 1–3 MMEM has achieved a much better fit model to the
data. Actually, Table 2 shows the parameter estimations of the Weibull distribution via
different methods in comparison to those via MMEM to see in which case the estimated
model fits well to the data. In (Table 3), we examined the results via the root mean
square error (RMSE), the goodness of fit (χ2), determination coefficient (R2) and the adjust
determination coefficient (R2) which highlights the MMEM. The proposed MMEM gives the
estimation with the lowest absolute error and DK−L divergence with the highest entropy.

5. Evaluation

To better evaluate the desired method (MMEM), we considered the data of 12 more
patients in total. MMEM and MAP were utilized to estimate the AIF and the kinetic
parameters, and the results were compared accordingly, (Figures 5 and 6). The difference
within empirical AIF and estimated AIF via the MMEM is clear.

Actually, the AIF in the first two minutes is typically estimated higher than the
assumed AIF, whereas there would be negligible difference after about two and a half
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minutes. However, the correct estimation of the AIF at the onset is the most important for
the correct estimation of the kinetic parameters. The K-L divergence measurements range
from 0.001 to 0.0637 for all patients.

Figure 7 depicts the estimated k1 values using MMEM/MAP and assumed AIF/ML &
MEM/MAP for all 12 patients. For the MMEM, the k values (Table 4) are more on the same
level between patients—compared to the MEM/MAP—which biologically makes sense.
Still, the AIF is estimated from the data, which makes the estimation of k more realistic
than the estimation using an assumed AIF.
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Patient 1 2 3 4 5 6
k1 0.1637 0.1016 0.7175 0.1650 0.5959 1.0477
k2 0.0210 0.3688 0.1073 0.2079 0.1233 0.0072

Patient 7 8 9 10 11 12
k1 0.6309 0.7980 0.1085 0.4327 0.544 1.0225
k2 0.0701 0.3861 0.2377 0.0839 0.235 0.0271

Table 4: Kinetic Parameters Estimation via MMEM/MAP for 12 patients
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6. Discussion & Conclusions

The main purpose of this study is to connected an important problem in statistics
which is to determine the probability density function of a random variable based on
observations to an important problem in image processing which is to determine the
AIF in situations where not enough information about the AIF is available and then
accurate estimation of the kinetic parameters. In recent years, various parametric and
non-parametric methods have been introduced for estimation of the probability density
function for a random variable based on observations, but there is very limited work
reported on the optimization methods.

Therefore, we have introduced a new algorithm which is the combination of MEM/TLBO
named MMEM. The maximum entropy method (MEM) is one of the major and strong
methods for estimating and determining the probability density with a high level of accu-
racy and efficiency and minimum bias. The core idea of this approach is to determine the
statistical models agree with data. In other words, the MEM provides a method to find the
least biased model that is consistent with the data, i.e., the maximally noncommittal with
regard to missing information [1–4].

A number of calculations and comparisons have been conducted for the estimation
of the AIF and the kinetic parameters, respectively (Fig. 5, 6, 7 and Table 1, 2, 3, 4 ). The
results have revealed the characteristics of the empirical PDF of AIF as well as the fact that
the Modified Maximum Entropy approach performs adequately in fitting an appropriate
model by comparing with the Weibull distributions to the AIF with consideration of its
accuracy and applicability.

The aim of this work is not exactly to make decisions on the AIF or Cp, but it is very
important how exactly the accurate kinetic parameters are determined. These parameters
are so significant and are of clinical relevance, for that, clinicians can easily interpret them.
Using the MMEM/MAP guarantees to minimize bias in the estimation of the AIF and the
kinetic parameters

Since the AIF plays an important role in the analysis of DCE-MRI, in cases where the
AIF could not be determined in the image, the literature AIF is a standard technique. The
proposed method in this study gives an alternative way to assess the input function from
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the correct estimation of the kinetic parameters. The K-L divergence measurements range
from 0.001 to 0.0637 for all patients.

Fig. 6 depicts the estimated k1 values using MMEM/MAP and assumed AIF/ML &
MEM/MAP for all 12 patients. For the MMEM, the k values (Table 4) are more on the same
level between patients – compared to the MEM/MAP – which biologically makes sense.
Still, the AIF is estimated from the data, which makes the estimation of k more realistic
than the estimation using an assumed AIF.
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Table 4. Kinetic parameters estimation via MMEM/MAP for 12 patients.

Patient 1 2 3 4 5 6

k1 0.1637 0.1016 0.7175 0.1650 0.5959 1.0477

k2 0.0210 0.3688 0.1073 0.2079 0.1233 0.0072

Patient 7 8 9 10 11 12

k1 0.6309 0.7980 0.1085 0.4327 0.544 1.0225

k2 0.0701 0.3861 0.2377 0.0839 0.235 0.0271

6. Discussion and Conclusions

The main purpose of this study is to connect an important problem in statistics which
is to determine the probability density function of a random variable based on observations
to an important problem in image processing which is to determine the AIF in situations
where not enough information about the AIF is available and then accurate estimation of the
kinetic parameters. In recent years, various parametric and non-parametric methods have
been introduced for estimation of the probability density function for a random variable
based on observations, but there is very limited work reported on the optimization methods.

Therefore, we have introduced a new algorithm which is the combination of MEM/TLBO
named MMEM. The maximum entropy method (MEM) is one of the major and strong
methods for estimating and determining the probability density with a high level of
accuracy and efficiency and minimum bias. The core idea of this approach is to determine
the statistical models agree with data. In other words, the MEM provides a method to find
the least biased model that is consistent with the data, i.e., the maximally noncommittal
with regard to missing information [1–4].

A number of calculations and comparisons have been conducted for the estimation of
the AIF and the kinetic parameters, respectively, (Figures 5–7 and Tables 1–4 ). The results
have revealed the characteristics of the empirical PDF of AIF as well as the fact that the
modified maximum entropy approach performs adequately in fitting an appropriate model
by comparing with the Weibull distributions to the AIF with consideration of its accuracy
and applicability.

The aim of this work is not exactly to make decisions on the AIF or Cp, but it is very
important how exactly the accurate kinetic parameters are determined. These parameters
are so significant and are of clinical relevance, for that, clinicians can easily interpret them.
Using the MMEM/MAP guarantees to minimize bias in the estimation of the AIF and the
kinetic parameters

Since the AIF plays an important role in the analysis of DCE-MRI, in cases where the
AIF could not be determined in the image, the literature AIF is a standard technique. The
proposed method in this study gives an alternative way to assess the input function from
the existing data. We have shown that the proposed method allows a good fit of the data
and a good estimation of the kinetic parameters.

To further evaluate this method, we propose to apply it on terms of energy efficiency
and system complexity.
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