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Generalized Bayes I – Learning Rate

Problem: Bad misspecification

Pθ̃ is the closest distribution in
the model M to the true P ∗

in KL-divergence. When the
model is not convex, the pos-
terior predictive distribution P
might be a mixture of bad distri-
butions in the model that ends
up outside M. We get:

• Bad square-risk behaviour
• Good log-risk behaviour

P ∗

Pθ̃

P̄

M

This discrepancy implies that the posterior is not concentrated.

Extreme example: Model yi = f(xi)+ϵi, ϵi
iid∼ N(0, 1

4 ), Fourier basis,

and a simple model misspecification: yi = 0 + ϵi, ϵi
iid∼ N(0, 1

4 ),

xi
iid∼ U(−1, 1), but then set half of the data to (0, 0).
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Solution: Generalized (Safe-) Bayes with learning rate η [5]

π(θ | x, η) := ℓθ(x)
ηπ(θ)∫

Θ
ℓθ(x)ηπ(θ)dθ

, (1)

with ℓθ(x) the likelihood and π(θ) the prior in case of parametric
models and log loss.

• learn optimal η∗ with the Safe-Bayesian algorithm [3]
• posterior concentrates on Pθ̃ with fast rates and mild condition

(η̄ -central condition) if η taken small enough, e.g. for GLMs [4]

Generalized Bayes II – Credal Sets

Credal Sets

In the IP literature, “generalized Bayes” typically refers to defin-
ing a set of priors

Π ⊆ {π(θ) | π(·) a probability measure on (Θ, σ(Θ))} (2)

with σ(·) an appropriate (σ-)algebra and Θ a (compact) parameter
space. Inference then basically consists of updating Π to a set of
poteriors.

Reformulation of Generalized Bayes I

Consider the numerator in the Bayes rule with learning rate η
(equation 1). Note that ℓθ(x)ηπ(θ) = ℓθ(x)

[
π(θ) ℓθ(x)

η−1
]
. This

allows us to specify a set of priors given some base prior π(θ) as
follows

Ππ(θ) =
{
πν(θ) | π̃(θ) = π(θ) · ℓθ(x)η−1, η ∈ (0, 1)

}
(3)

with normalization by πν(θ) = π̃(θ)/Cν , Cν =
∫
Θ
π̃(θ)dθ.

Bayes Theorem for Unbounded Priors [2]

Unnormalized versions of the prior functions in Ππ(θ) can be
charaterized by a point-wise upper and a (trivial) point-wise
lower bound, namely π(θ) · ℓθ(x)−1 and π(θ)

–> Sets of priors with these characteristics satisfy the require-
ments for Bayes theorem for unbounded priors [2, page 238]

–> So a posterior credal set exists, see [1, chapter 2.3]

Thus, we can identify the posteriors with learning rates η
(equation 1) with a posterior credal set.
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Generalized Bayes I Through the Lens of Generalized Bayes II

Why does the learning rate allow concentration of the posterior under model
misspecification?

• Assume the Safe-Bayesian algorithm finds the optimal η∗

• Consider our unnormalized prior for η∗, i.e. π̃(θ)∗ = π(θ) · ℓθ(x)η
∗−1

• π̃(θ)∗ gives a counterfactual Bayesian explanation of Safe-Bayesian
learning: If we had specified the prior proportional to π̃(θ), we would have
achieved concentration under model misspecification with regular Bayesian
learning.

• In this way, it conveys information on which parts of Θ are relevant to
the non-concentration under misspecification.

Can this interpretation improve the Safe-Bayesian algorithm?
The Safe-Bayesian algorithm iterates both over a grid of η’s, and over
each datapoint, i.e. the posterior has to be computed for each combi-
nation of η and each datapoint anew. Can we use our representation
of the learning rates by a credal set somehow to speed up the search
for the optimal η∗?


