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Generalized Bayes I — Learning Rate

Generalized Bayes II — Credal Sets

Problem: Bad misspecification Credal Sets

P; is the closest distribution in
the model M to the true P~*
in KL-divergence. When the
model is not convex, the pos-
terior predictive distribution P
might be a mixture of bad distri-
butions in the model that ends
up outside M. We get:

In the IP literature, “generalized Bayes” typically refers to defin-
ing a set of priors

II C {n(0) | n(-) a probability measure on (0,0(0))} (2)

with o(-) an appropriate (o-)algebra and © a (compact) parameter
space. Inference then basically consists of updating II to a set of
poteriors.

e Bad square-risk behaviour
* Good log-risk behaviour

Reformulation of Generalized Bayes I

This discrepancy implies that the posterior is not concentrated. Consider the numerator in the Bayes rule with learning rate 7
) (equation 1). Note that ¢y(x)"m(6) = ly(x) [7‘(‘((9) 69(:1:)77—1]. This
Extreme example: Model y; = f(x;) +¢€;, € rd N(0, %), Fourier basis, allows us to specify a set of priors given some base prior 7(6) as
and a simple model misspecification: y; = 0 + €, ¢; vid N(0, i), follows
iid

x; ~ U(—1,1), but then set half of the data to (0, 0).
ey = {7 (0) | 7(0) = 7(0) - Lo(x)" ", me (0,1)}  (3)

Bayes Theorem for Unbounded Priors [2]

n S WVV\)'\/“ML\J i 'w“l'/g-u\)y :

Unnormalized versions of the prior functions in Il can be
charaterized by a point-wise upper and a (trivial) point-wise
lower bound, namely 7 (0) - £y(x) "' and 7(0)

Posterior predictive:
mean and variance

True re gression function !
o

; Solution: Generalized Bayes } —> Sets of priors with these characteristics satisfy the require-
ments for Bayes theorem for unbounded priors [2, page 238]

Solution: Generalized (Safe-) Bayes with learning rate 7 [5]
—> 50 a posterior credal set exists, see [1, chapter 2.3]

__ to(x)"m(0)
(0] z,n) = [ Lo(z)1m(0)do’ (1) Thus, we can identity the posteriors with learning rates 7
(equation 1) with a posterior credal set.

with /g (x) the likelihood and 7 () the prior in case of parametric
models and log loss.

* learn optimal ™ with the Safe-Bayesian algorithm [3]

* posterior concentrates on P; with fast rates and mild condition
(1 -central condition) if i) taken small enough, e.g. for GLMs [4]

Generalized Bayes I Through the Lens of Generalized Bayes II

Why does the learning rate allow concentration of the posterior under model * In this way, it conveys information on which parts of © are relevant to
misspecification? the non-concentration under misspecification.
* Assume the Safe-Bayesian algorithm finds the optimal n” Can this interpretation improve the Safe-Bayesian algorithm?

o Consider our unnormalized prior for n*, i.e. 7#(8)* = () - £y (z)? ~*  The Safe-Bayesian algorithm iterates both over a grid of n’s, and over

e 7(0)" gives a counterfactual Bayesian explanation of Safe-Bayesian each datapoint, i.e. the posterior has to be computed for each combi-

learning: If we had specified the prior proportional to 7(8), we would have nation of 77 and each datapoint anew. Can we use our representation
achieved concentration under model misspecification with reqular Bayesian —0f the learning rates by a credal set somehow to speed up the search
learning. for the optimal n*?
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