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A B S T R A C T   

Introduction: Numerous studies have shown associations between daily concentrations of fine particles (e.g., 
particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ul-
trafine particles (UFP; particles with an aerodynamic diameter of 10–100 nm) remains conflicting. Therefore, we 
aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for 
Leipzig, Dresden, and Augsburg, Germany. 
Material and methods: We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 
2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10–800 nm), and black carbon 
(BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We 
assessed immediate (lag 0–1), delayed (lag 2–4, lag 5–7), and cumulative (lag 0–7) effects by applying station- 
specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical 
method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate in-
terdependencies between pollutants and examined possible effect modification by age, sex, and season. 
Results: UFP showed a delayed (lag 2–4) increase in respiratory hospital admissions of 0.69% [95% confidence 
interval (CI): − 0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger 
particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100–800 
nm), generally showed stronger effects (respiratory hospital admissions & lag 2–4: 1.55% [95% CI: 0.86%; 
2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas 
NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. More-
over, higher risks have been observed for children. 
Conclusions: We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across 
different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using 
harmonized UFP measurements to draw definite conclusions on the health effects of UFP.   

1. Introduction 

Over the last decades, numerous epidemiological studies have 
investigated the effects of ambient air pollution on adverse health ef-
fects. Especially gaseous pollutants such as nitrogen dioxide (NO2) or 
ozone (O3), and particulate matter (PM) have been associated with 
mortality (Chen and Hoek 2020; Orellano et al., 2020) and morbidity 
(Atkinson et al., 2014; Brunekreef et al., 2021). Since the 1990s, the 

smallest size fraction of ambient particulate air pollution, the ultrafine 
particles (UFP), have been hypothesized to differ in risk from larger 
particle size fractions (HEI Review Panel on Ultrafine Particles, 2013; 
Stone et al., 2017). However, only a few epidemiological studies have 
investigated the effects of UFP on cause-specific hospital admissions. 

UFP have been conventionally classified as particles with an aero-
dynamic diameter ≤100 nm (=0.1 µm) and originate in urban air mainly 
from motor traffic exhaust, several nucleation processes, and 
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combustion in general (Morawska et al., 2008; Vu et al., 2015). They can 
be emitted directly as primary particles by combustion processes in, e.g., 
engines or formed as secondary particles by photochemical processes 
and condensation of gaseous precursors such as cooling exhaust gases 
(Morawska et al., 2008; Vu et al., 2015). Due to their small particle size, 
UFP have different physical characteristics than fine PM (PM with an 
aerodynamic diameter of ≤2.5 µm; PM2.5). For example, they highly 
contribute to the particle number concentration but only marginally to 
total particle mass and exhibit a greater spatial variation than fine PM 
(HEI Review Panel on Ultrafine Particles 2013; Stone et al., 2017). 
Furthermore, UFP can reach the smallest regions of the respiratory tract, 
the alveoli. They have a high deposition efficiency and a slower respi-
ratory tract clearance than larger particles (HEI Review Panel on Ul-
trafine Particles, 2013; Stone et al., 2017). Toxicological studies 
reported a high surface reactivity and large surface area per unit mass, 
enabling UFP to absorb chemical substances more easily; thus, UFP 
might be more hazardous than PM (Kwon et al., 2020). 

To date, regulatory air quality monitoring focuses on PM2.5 or PM10 
(PM with an aerodynamic diameter of ≤10 µm) and some gaseous pol-
lutants (e.g., NO2 and O3) and does not include separate monitoring of 
UFP. Scientific and legislative challenges result from the complexity of 
involved processes, the more elaborate and costly measurement tech-
niques, and the lack of standardized measurements (Cassee et al., 2019). 
Furthermore, no legal monitoring obligation (due to the lack of limit 
values for UFP) could prompt continuous measurements of UFP at 
network monitoring stations (Cassee et al., 2019). As a result, UFP are 
measured only at a few measurement stations over a longer time. 

Although the overall evidence is still conflicting and insufficient, 
there is evidence that suggests an effect of UFP or total particle number 
concentrations (PNC) on cause-specific mortality (HEI Review Panel on 
Ultrafine Particles, 2013; Ohlwein et al., 2019) and morbidity (HEI 
Review Panel on Ultrafine Particles, 2013; Samoli et al., 2020; Stone 
et al., 2017). Moreover, two recent systematic reviews on hospital ad-
missions identified children as a susceptible subgroup. In particular, 
children with respiratory diseases might be more vulnerable to the ef-
fects of UFP exposure, and asthma exacerbation may play an important 
role (da Costa e Oliveira et al., 2019; Li et al., 2019). However, so far, 
only three larger multi-city epidemiological studies have investigated 
the effects of UFP on hospital admissions. Lanzinger and colleagues 
found the highest associations with respiratory hospital admissions for a 
6-day average in UFP concentration (Lanzinger et al., 2016). Samoli and 
colleagues reported no association between UFP and respiratory hospi-
tal admissions, although suggestive effects were seen among younger 
people (0–14 years) (Samoli et al., 2020). Similar results were reported 
by Lin and colleagues for modeled UFP concentrations associated with 
cardiovascular hospital admissions in New York State, USA (Lin et al., 
2022). 

A recent study analyzed the adverse health effects of UFP in terms of 
cause-specific mortality in three German cities between 2010 and 2017 
that reported a delayed increased risk of respiratory mortality following 
UFP exposure (Schwarz et al., 2023). 

Here, we investigated the association of daily ambient UFP concen-
trations and PNC with cause-specific hospital admissions, using data 
from the same project including multiple monitoring stations per city. In 
addition, we assessed the effects of particle size sub-fractions within the 
range of 10–800 nm. Further, we performed two-pollutant models to 
examine whether UFP and PNC showed effects independent of other 
pollutants. We also assessed whether age, sex, and season modified the 
effects of UFP and PNC on hospital admissions. 

2. Material and methods 

2.1. Hospital admission data 

We retrieved daily counts of hospital admissions for the study period 
January 1, 2010, to December 31, 2017, for the three German cities 

Dresden, Leipzig, and Augsburg from official statistics. Only the primary 
diagnosis at hospital discharge was considered. The following five hos-
pital admission endpoints were included according to the International 
Statistical Classification of Diseases and Related Health Problems, 10th 
revision (ICD-10 codes): cardiovascular diseases (I00-I99), heart dis-
eases (I00-I52), cerebrovascular diseases (I60-I69), respiratory diseases 
(J00-J99), and lower respiratory tract infections (LRTI; J12-J18 & J20- 
J22). The raw data set was accessed via a workstation for visiting sci-
entists at the Research Data Centre (RDC) of the Federal Statistical Office 
and Statistical Offices of the Federal States ([Hospital Statistics (EVAS 
23131)], survey years [2010–2017], DOI: 10.21242/ 
23131.2010.00.02.1.1.0 to 10.21242/23131.2017.00.02.1.1.0, own 
claculations). We selected only individuals who lived in the cities of 
Dresden, Leipzig, or Augsburg and were admitted to a hospital in the 
respective state of Saxony or Bavaria. Linkage was based on the hospi-
tal’s state and the patient’s official residency codes. Due to German data 
protection regulations, information on the hospital location is only 
available at the state rather than at the city levels. We assumed that 
people living in one city are also likely to be hospitalized in the same 
city/region, especially since we included only ordinary (no outpatient 
cases) and acute (no planned cases) hospital admissions. As a result, the 
final case numbers of each city represent the people living in one city 
that were hospitalized in the same city/region. We excluded cases hos-
pitalized before the study period or with coded hospital admissions for 
which the underlying cause was unknown. In addition, the final data set 
also comprised information on biological sex (female, male) and age (six 
age categories: 0–17 years, 18–44 years, 45–64 years, 65–74 years, 
75–84 years, and 85+ years). Finally, we retrieved population data for 
the three cities from official statistical yearbooks. 

2.2. Environmental data 

We obtained data from six fixed monitoring stations located in 
Augsburg, Dresden, and Leipzig: four urban background stations 
(Augsburg-Hochschule [AFH]; Dresden-Winckelmannstr. [DDW]; 
Leipzig-West [LWE]; Leipzig-TROPOS [LTR]), and two traffic-related 
stations (Dresden-Nord [DDN]; Leipzig-Mitte [LMI]). Supplementary 
Table 1 provides more information on the included measurement sta-
tions. We assumed that the exposure concentrations at the background 
stations represented the respective city populations, whereas the traffic- 
related stations better captured the effects of peak concentrations. All six 
locations contributed to the German Ultrafine Aerosol Network (GUAN) 
(Birmili et al., 2016), which included air pollutants not routinely 
monitored, such as black carbon (BC) or particle number concentrations 
in different size ranges (Birmili et al., 2015; Birmili et al., 2016; Sun 
et al., 2019). Each individual set of station-specific air pollution data 
was then assigned to the respective hospital admission data for the 
corresponding city. Using distance metrics or other exposure assignment 
methods was not possible because the relevant data (e.g., patient 
address data) were unavailable due to data protection regulations. A 
map of all GUAN stations, their station type, and further information on 
the network and the selected stations are provided in the supplement 
(Supplementary Fig. 1). In brief, monitoring stations met the following 
three criteria: i) an exposure profile representative for the urban popu-
lation, ii) a sufficient number of cases in the cities, and iii) high 
comparability and standardization of the monitoring devices. 

Number concentrations of UFP and PNC (10–800 nm) were consid-
ered exposures of primary interest. On an exploratory basis, we also 
analyzed size-fractioned particle number concentrations in the 
following ranges: 10–20 nm, 20–30 nm, 30–50 nm, 50–70 nm, and 
70–100 nm and defined nucleation mode (10–30 nm; NuMP), Aitken 
mode (30–100 nm; AiMP), and accumulation mode particles (100–800 
nm; AcMP). Black carbon (BC), nitrogen dioxide (NO2), and fine parti-
cles (PM2.5) were treated as exposures of secondary interest. 

The setup of the monitoring devices has been described in detail 
elsewhere (Birmili et al., 2015; Birmili et al., 2016; Schwarz et al., 2023; 
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Sun et al., 2019). An overview of device characteristics at the stations 
can be found in Supplementary Table 2. In brief, particle size distribu-
tion (PSD) data was measured by a mobility particle size spectrometer 
(MPSS, TROPOS-design [manufacturer]) in the size range of 3–800 nm, 
with different configurations at the monitoring stations. Additional in-
formation, such as quality assurance and calibration procedures, has 
been published elsewhere (Pfeifer et al., 2014; Schladitz et al., 2014; 
Wiedensohler et al., 2012; Wiedensohler et al., 2018). BC mass con-
centrations were measured using multiangle absorption photometers 
(MAAP, Model 5012, Thermo Scientific) for the Saxon stations and an 
aethalometer (Type 8100, Thermo Fisher Scientific Inc.) for Augsburg. 
Further information on BC measurements can be found elsewhere (Bir-
mili et al., 2015; Birmili et al., 2016) and in Supplementary Table 2. 
High-volume samplers (HVS, model DHA-80, DIGITEL Elektronik AG) 
measured PM2.5 mass concentrations at the Saxon stations, and tapered 
element oscillating microbalances (TEOM, model 1400a incl. FDMS 
8500, Rupprecht & Patashnick Co., and TEOM model 1405, Thermo 
Fisher Scientific Inc.) were used at the Augsburg site. In Augsburg, both 
TEOMs were equipped with a Filter Dynamics Measurement System 
(FDMS model 8500b, Thermo Fisher Scientific Inc.) to correct for losses 
of some volatile fractions of PM. Additional information on PM2.5 and 
NO2 measurements is available online at the German Environmental 
Agency website (https://www.env-it.de/stationen/public/open.do). 

When applicable, hourly and daily averages were calculated for all 
air pollutants and measured meteorological variables (e.g., temperature, 
relative humidity, and barometric pressure) at each station if 75% of the 
data was available. In the main analysis, the imputation of missing data 
was not performed. Based on the daily averages, we calculated lagged 
exposure concentrations for the same day of the event (lag 0) and up to 
seven days before the event (lag 7). In addition, multi-day averages were 
calculated representing immediate (lag 0–1), delayed (lag 2–4, lag 5–7), 
and cumulative effects (lag 0–7). At the LTR station, only PSD and BC 
were available; consequently, this station was excluded from the NO2 
and PM2.5 analyses. In addition, data on meteorology were extracted 
from another urban background station, LWE, showing high correlations 
between the two stations. NO2 was not measured at the Augsburg station 
(AFH). Therefore, we selected NO2 data from another urban background 
station (A-LfU: Augsburg - Bavarian State Office for the Environment) 
with comparable station characteristics and high correlations. 

2.3. Statistical analysis 

We calculated descriptive statistics for air pollutants and meteoro-
logical variables and counts of hospital admissions. Spearman correla-
tion coefficients were used to assess temporal variations, with values 
≥0.7 considered high correlations. 

We used a two-stage modeling approach of site-specific risk esti-
mates in the first stage and pooled estimates in the second stage to 
examine the association between air pollutants and cause-specific hos-
pital admissions. 

In the first stage, we calculated confounder-adjusted Poisson 
regression models that allow for overdispersion. A priori, we set up a 
general confounder model and included a log offset for annual popula-
tion numbers for each station. Based on the previous UFIREG project 
(UFIREG Project 2014) and current literature, we included the following 
confounders in each site-specific model: time trend, day of the week, 
public holidays, vacation periods, relative humidity, and air tempera-
ture. For air temperature, we adjusted for high and low temperatures 
separately, according to Stafoggia et al. (2013). Briefly, this method 
allows for modeling different lag structures of heat and cold (Stafoggia 
et al., 2013). We used cubic regression splines with four degrees of 
freedom (DF) per year for the time trend and three DF for meteorological 
variables to account for non-linear confounding and temporal/seasonal 
variations. We focused primarily on immediate (lag 0–1), delayed (lag 
2–4, lag 5–7), and cumulative (lag 0–7) effects and investigated single- 
lag models secondarily. We decided to use this modeling approach over 

distributed lag models (DLM), as multiple missing exposure data and 
low hospital admission counts could influence the statistical power. 

In the second stage, we pooled the site-specific estimates using a 
novel random-effects meta-analytical method for environmental 
research (Sera et al., 2019; Sera and Gasparrini, 2022). This method 
accounted for different nested hierarchical structures of the data (e.g., 
geographical variation between cities and stations within a city). We 
included a random term for city and station and used restricted 
maximum likelihood (REML) estimation. Furthermore, we included the 
same analysis with fixed-effects models as an additional analysis. We 
examined potential heterogeneity among the station-specific estimates 
by calculating the I2 statistic and the corresponding p-value. We 
considered I2 > 50% and p-value <0.05 as substantial heterogeneity. 

We performed further exploratory analyses only for the combination 
of air pollutants, lag structures, and hospital admission endpoints, 
showing the most adverse effect estimates in the main models. First, we 
obtained separate results for urban background and traffic-related sites 
to explore if the underlying exposure profiles showed different patterns. 
Second, we conducted two-pollutant models if the Spearman correlation 
coefficient between the two pollutants was less than 0.7. We included 
the second pollutant also as a linear term in the model and followed the 
general modeling strategy. Third, we examined possible effect modifi-
cations by age, sex, and season. Therefore, age- (0–17 years, 18–64 
years, 65+ years) and sex-stratified (female, male) data was analyzed 
according to the main model. We included an interaction term to 
analyze the differences between warm (April-September) and cold pe-
riods (October-March). Finally, based on the literature, we used a fixed 
increment in air pollution concentration. This alternative standardiza-
tion method facilitates comparison with the results of other epidemio-
logical studies. We used 10,000 particles/cm3 for all particle number 
concentrations (e.g., UFP or AiMP), 10 µg/m3 for PM2.5 and NO2, and 1 
µg/m3 for BC mass concentrations. 

2.4. Sensitivity analyses 

We performed several sensitivity analyses to test the robustness of 
our main models.  

I. We used 3 or 6 DF per year for time trend instead of 4 DF per year.  
II. We increased the DF for air temperature and relative humidity 

terms to 5 DF (instead of 3 DF).  
III. We replaced air temperature and relative humidity by apparent 

temperature (O’Neill et al., 2003; Wolf et al., 2009).  
IV. We included barometric pressure as an additional variable in the 

main model.  
V. We considered potential changes in hospital admissions due to 

influenza epidemics by including an influenza variable as an 
additional linear term for each city in the main model. In Ger-
many, data on influenza epidemics data are publicly available at 
the Robert Koch Institute’s database “SurvStat@RKI 2.0” 
(https://survstat.rki.de/default.aspx).  

VI. For respiratory diseases (J00-J99), we excluded the following 
three ICD-10 codes because it could be assumed that these di-
agnoses involved planned hospital admissions:  
a. J32: Chronic sinusitis  
b. J34: Other diseases of the nose and paranasal sinuses  
c. J35: Chronic diseases of the palatine tonsils and pharyngeal 

tonsil  
VII. We excluded the lower size fraction of 10–20 nm and created an 

alternate definition for UFP (20–100 nm) and PNC (20–800 nm). 
This was driven by potential measurement uncertainty in the 
lower range of PSD published by Wiedensohler et al. (2012).  

VIII. We calculated city-specific exposure averages according to an 
adapted APHEA approach published by Berglind et al. (Berglind 
et al., 2009). Briefly, this method also included the imputation of 
missing values following a standardized procedure. 
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IX. Finally, we checked the exposure–response functions to investi-
gate any deviations from linearity. Therefore, we replaced the 
linear term for the pollutant with a cubic regression spline with 
three DF, visually assessed the different slopes and compared the 
model output with a likelihood-ratio test. 

To better compare the relative health effects of different air pollut-
ants, we presented the results as percent change per interquartile range 
(IQR) increase in the respective pollutant along with the corresponding 
95% confidence interval (CI). We provide a detailed description in the 
supplement together with fixed increment standardized main results. 
Results with a p-value less than 0.05 were considered statistically sig-
nificant. All analyses and data management were performed using 
RStudio version 1.3.1335/1.4.1106 with R version 3.6.1/4.0.3 (The R 
Foundation for Statistical Computing, Vienna, Austria) and the R 
packages mgcv and ggplot2. The R package mixmeta was used for the 
second-stage analysis. 

3. Results 

3.1. Description of hospital admission data and air pollutants 

The description of cause-specific hospital admissions and population 
numbers per city is presented in Table 1. Average daily cases ranged 
from 40.5 cases per day for cardiovascular hospital admissions for 
Leipzig to 3.2 cases per day for cerebrovascular hospital admissions for 
Augsburg. Table 2 describes the 24-hour-mean concentrations of air 
pollutants and meteorological variables; an extended version can be 
found in the supplement (Supplementary Table 3). The highest median 
UFP concentrations were measured at the traffic-related stations LMI 
and DDN with 10,123 particles/cm3 and 8,637 particles/cm3, respec-
tively. The concentrations at the urban background stations ranged from 
4,520 particles/cm3 for LWE to 5,655 particles/cm3 at AFH (Table 2). A 
similar pattern, but with higher concentrations, was observed for PNC. 

Compared to the routinely monitored air pollutants NO2 and PM2.5, the 
particle number concentrations and BC exhibited a higher percentage of 
missing values. 

UFP and PNC were highly correlated (correlation coefficients be-
tween 0.96 and 0.98) but showed mostly weak to moderate correlations 
with the other pollutants and meteorological variables (Supplementary 
Table 4). In addition, UFP and PNC were moderately correlated between 
stations, with a clear pattern observed indicating higher correlations 
between stations for larger particle size fractions and PM2.5 (Supple-
mentary Table 5). Compared to UFP, higher correlations between PNC 
and BC, NO2, and PM2.5 were observed. 

3.2. Air pollution and cause-specific hospital admissions 

Fig. 1 (and Supplementary Table 6) displays the results of the pooled 
main models. UFP or PNC did not show a clear pattern across different 
exposure windows and hospital admission endpoints. However, results 
suggested a slight increase in cardiovascular hospital admissions and 
hospital admissions for heart diseases on the same day or one day after 
UFP exposure (lag 0–1). An interquartile range increase of 3,420 parti-
cles/cm3 in UFP concentration resulted in a 0.43% [95% CI: − 0.25%; 
1.12%] higher risk of cardiovascular hospital admissions (I2 = 30.60%, 
p = 0.206). The effects of UFP on respiratory hospital admissions 
showed a delayed pattern with a 0.69% [95% CI: − 0.28%; 1.67%] 
increased risk per 3,220 particles/cm3 2 to 4 days after exposure (I2 =

25.10%, p = 0.246). Comparable results were observed for PNC. For 
cerebrovascular hospital admissions and LRTI hospital admissions, 
mostly null results were seen. 

We observed clearer association patterns for size-fractioned expo-
sures (Fig. 2 and Supplementary Table 7). Results indicated increases in 
cardiovascular hospital admissions, hospital admissions for heart dis-
eases, and respiratory hospital admissions in association with delayed 
and cumulative exposures to particles in the Aitken mode size ranges 
(NC 50–70 nm and NC 70–100 nm). In addition, we observed immedi-
ate, delayed, and cumulative pattern effects of particles in the accu-
mulation mode (e.g., lag 0–7: cardiovascular hospital admissions: 1.20% 
[95% CI: 0.66%; 1.73%]; hospital admissions for heart diseases: 1.13% 
[95% CI: 0.54%; 1.72%]). For respiratory hospital admissions, an in-
crease in risk was observed for larger size fractions 2 to 4 days after 
exposure (e.g., AcMP 1.55% [95% CI: 0.86%; 2.25%]), but size fractions 
in the ultrafine range also indicated higher risks (e.g., NC 70–100 nm 
1.37% [95% CI: − 0.24%; 3.00%]). For cerebrovascular hospital ad-
missions, results indicated immediate and cumulative patterns for 
accumulation mode particles, whereas for LRTI hospital admissions, 
mostly null results were seen. 

When we used fixed-effects instead of random-effects models, the 
direction and effect sizes did not change substantially (see Supplemen-
tary Figs. 2 and 3 and Supplementary Tables 8 and 9). However, 
considerably more associations reached statistical significance indi-
cating that our main analysis using random-effects models can be 
considered rather conservative in terms of model interpretation and that 
accounting for hierarchical structures in the data by random structures 
(differences within and between cities) may be useful when pooling the 
station-specific effects of UFPs. It is important to note that substantial 
heterogeneity was observed mainly for cerebrovascular hospital ad-
missions, cardiovascular hospital admissions and particles in the 
nucleation mode, or respiratory hospital admissions and particle size 
fractions in the Aitken mode (Supplementary Tables 8 and 9). 

Single-lag and station-specific results for respiratory and cardiovas-
cular hospital admissions can be found in Supplementary Fig. 4 and 
Supplementary Table 10. The results generally showed higher risks at 
lag 2 or lag 3 for respiratory hospital admissions. For cardiovascular 
hospital admissions, patterns can be seen for smaller particle sizes at 
immediate lags (e.g., lag 0), but also for delayed lags (e.g., lag 2 or lag 6) 
and larger size fractions (Supplementary Fig. 4). In addition, the results 
were mainly influenced by the Leipzig stations (Supplementary 

Table 1 
Description of the population living in one city that was hospitalized in the same 
city/area. N = 2922 days.  

Variable  Leipzig Dresden Augsburg 

Mean population 2010–2017  542,918 534,382 279,159  

Total counts of cardiovascular 
disease HA.  

118,265 97,508 59,230 

Total counts of heart disease HA.  81,323 68,711 40,582 
Total counts of cerebrovascular 

disease HA.  
14,955 14,121 9,434 

Total counts of respiratory disease 
HA.  

51,383 45,271 38,396 

Total counts of LRTI HA.  17,801 14,489 13,467  

Mean daily cardiovascular disease 
HA. (SD)  

40.5 
(16.7) 

33.4 
(12.4) 

20.3 (8.7) 

Mean daily heart disease HA. (SD)  27.8 
(11.2) 

23.5 (8.9) 13.9 (6.3) 

Mean daily cerebrovascular disease 
HA. (SD)  

5.1 (2.6) 4.8 (2.4) 3.2 (2.0) 

Mean daily respiratory disease HA. 
(SD)  

17.6 (7.8) 15.5 (6.6) 13.1 (7.0) 

Mean daily LRTI HA. (SD)  6.1 (3.4) 5.0 (3.0) 4.6 (2.9) 

N: Number of days with valid data; HA: Hospital admission; SD: Standard de-
viation; LRTI: Lower respiratory tract infections; Population data based on 
official statistical yearbook of the cities, own calculations; Cardiovascular dis-
ease: ICD-10: I00-I99; Heart disease: ICD-10: I00-I52; Cerebrovascular disease: 
ICD-10: I60-J69; Respiratory disease: ICD-10: J00-J99; LRTI disease: ICD-10: 
J12-J18 & J20-J22; Source: Research Data Centre of the Federal Statistical Of-
fice and Statistical Offices of the Federal States ([Hospital Statistics (EVAS 
23131)], survey years [2010–2017], DOI: 10.21242/23131.2010.00.02.1.1.0 to 
10.21242/23131.2017.00.02.1.1.0, own claculations). 
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Table 2 
Basic descriptive statistics of air pollution and environmental data per measurement station.  

Variable Ndays Min. Max. Mean SD Median IQR 

UFP (10–100 nm, n/cm3)        
LMI 2,279 2,212 35,987 10,747 4,172 10,123 5,156 
LWE 1,787 931 21,681 5,126 2,619 4,520 3,003 
LTR 2,668 798 32,917 5,469 2,881 4,839 3,154 
DDN 2,287 2,100 24,781 9,128 3,436 8,637 4,366 
DDW 2,211 705 22,526 5,341 2,754 4,791 3,156 
AFH 2,392 953 49,075 6,366 3,621 5,655 3,514  

PNC (10–800 nm, n/cm3)        
LMI 2,279 2,632 38,180 12,590 4,692 11,922 5,866 
LWE 1,787 1,288 23,362 6,265 2,886 5,748 3,482 
LTR 2,668 1,054 34,927 6,703 3,231 6,054 3,686 
DDN 2,287 2,450 30,684 10,912 3,924 10,292 4,975 
DDW 2,211 941 24,714 6,714 3,184 6,186 3,902 
AFH 2,392 1,214 51,597 7,668 4,113 6,909 4,017  

BC (µg/m3)        
LMI 2,499 0.4 10.9 2.3 1.2 2.0 1.3 
LWE 2,067 0.1 10.1 1.0 0.9 0.8 0.8 
LTR 2,807 0.0 12.6 1.0 1.0 0.7 0.8 
DDN 2,693 0.3 11.5 1.8 1.0 1.5 1.1 
DDW 2,057 0.1 7.4 0.9 0.7 0.7 0.8 
AFH 2,644 0.5 10.5 1.7 1.0 1.4 1.0  

NO2 (µg/m3)        
LMI 2,886 11.0 100.0 44.0 12.7 43.0 17.0 
LWE 2,896 3.0 66.0 17.6 8.9 16.0 11.0 
LTR* 0 – – –  –  
DDN 2,874 9.0 77.0 34.2 10.4 33.0 14.0 
DDW 2,890 3.0 72.0 20.2 9.5 18.0 12.0 
AFH 2,212 2.5 84.0 19.8 10.2 17.7 12.3  

PM2.5 (µg/m3)        
LMI 2,891 2.2 120.8 17.5 13.0 13.6 12.2 
LWE 2,885 1.0 111.2 13.5 12.0 9.6 10.5 
LTR* 0 – – –  –  
DDN 2,900 1.9 137.8 16.2 12.6 12.3 11.6 
DDW 2,892 0.5 136.4 15.1 12.9 10.9 12.3 
AFH 2,922 1.1 98.7 13.0 10.3 10.2 10.3  

Air temperature (◦C)        
LMI 2,911 − 14.0 32.1 11.7 8.0 11.4 12.1 
LWE 2,919 − 15.0 29.2 9.9 7.7 9.7 11.7 
LTR* 0 – – –  –  
DDN 2,915 − 14.2 31.8 11.4 8.1 11.3 12.5 
DDW 2,922 − 13.4 31.0 11.6 8.0 11.6 12.4 
AFH 2,803 − 13.4 28.9 9.9 7.9 9.9 12.3  

Relative humidity (%)        
LMI 2,909 34.5 98.5 70.9 12.6 71.8 19.6 
LWE 2,905 37.5 100.0 74.2 12.2 75.3 18.6 
LTR* 0 – – – – –  
DDN 2,915 37.5 100.0 70.6 11.4 70.9 16.8 
DDW 2,922 36.0 97.2 70.8 11.4 71.8 17.3 
AFH 2,803 39.6 100.0 77.8 12.7 79.2 20.3  

Barometric pressure (hPa)        
LMI 2911 975.0 1040.0 1015.8 8.1 1016.0 10.0 
LWE 2919 975.0 1041.0 1016.1 8.3 1016.0 10.0 
LTR* 0 – – – – – – 
DDN 2915 976.0 1042.0 1016.2 8.2 1016.0 10.0 
DDW 2922 976.0 1041.0 1016.0 8.0 1016.0 10.0 
AFH 2803 923.9 984.5 961.0 7.4 961.4 9.0 

Ndays: Number of days with valid data; Min.: Minimum; Max.: Maximum; SD: Standard deviation; IQR: Interquartile range; UFP: Particle number concentration of 
particles in the ultrafine range (10–100 nm); LMI: Leipzig-Mitte; LWE: Leipzig-West; LTR: Leipzig-TROPOS; DDN: Dresden-Nord; DDW: Dresden-Winckelmannstr.; 
AFH: Augsburg-Hochschule; PNC: Total particle number concentration (10–800 nm); BC: Black carbon; NO2: Nitrogen dioxide; PM2.5: Particulate matter with an 
aerodynamic diameter ≤ 2.5 µm; ◦C: Degree Celsius; hPa: hectopascal. *: No data available. 
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Table 10). Furthermore, an exploratory comparison of risks between 
urban background and traffic-related stations indicated comparable re-
sults, although the results indicated slightly higher associations at the 
traffic-related stations (Supplementary Figure 5 and Supplementary 
Table 11). 

For both BC and PM2.5, we found the most consistent associations 
with cause-specific hospital admissions for cardiovascular and cere-
brovascular hospital admissions in association with immediate (lag 0–1) 
exposures, and for cardiovascular hospital admissions and hospital ad-
missions for heart diseases for delayed (lag 5–7) and cumulative (lag 
0–7) exposures. For example, an increase of 0.77 µg/m3 in BC (lag 0–7) 
was associated with a 0.78% [95% CI: 0.29%; 1.27%] higher risk of 
cardiovascular hospital admissions (Fig. 1 and Supplementary Table 6). 
All four PM2.5 average lags were associated with respiratory hospital 
admissions (e.g., lag 2–4: 1.16% [95% CI: 0.33%; 1.99%]), showing 
consistent results with the association patterns for the larger particle size 
fractions. NO2 was not associated with any cause-specific hospital ad-
missions, except for respiratory hospital admissions at lag 2–4, where an 
increase of 11.00 µg/m3 was associated with a 1.29% [95% CI: 0.07%; 
2.52%] higher risk (Fig. 1 and Supplementary Table 6). 

3.3. Two-pollutant models and effect modification 

We examined two-pollutant models and effect modification analyses 
for the combination of UFP exposure, average lag concentration, and 
hospital admission endpoint, for which the most consistent and stron-
gest results were found in the main analysis. Fig. 3 and Supplementary 
Table 12 provide an overview of the results. The UFP effects on respi-
ratory hospital admissions (lag 2–4) remained relatively stable and un-
changed after additional adjustments for BC or PM2.5. In particular, for 

PM2.5, the smaller confidence intervals suggested independent, although 
insignificant, results. Further adjustment for NO2 resulted in lower effect 
estimates and null effects. However, high correlations between UFP and 
NO2 at station Leipzig-Mitte (LMI) restricted us from including this 
station in the pooled analysis. 

There were no substantial differences in risks between women and 
men. For respiratory hospital admissions, higher risks were indicated for 
the younger age groups. Although not significant, children and adoles-
cents had the largest point estimates for UFP exposure (age 0–17: 2.54% 
[95% CI: − 0.47%; 5.63%] vs. age 65+: − 0.19% [95% CI: − 1.11%; 
0.75]). An increase in the UFP concentration by 3,220 particles/cm3 

resulted in a 1.47% [95% CI: 0.25%; 2.70%] higher risk for respiratory 
hospital admissions in the cold season (Oct.-Mar.) (vs. Apr.-Sep.: 
− 0.54% [95% CI: − 1.55%; 0.48%]; Fig. 3 and Supplementary 
Table 12). In general, PNC showed comparable results for the two- 
pollutant and effect modification analyses. An alternative standardiza-
tion with fixed-unit increments can be found in Supplementary Table 13 
and 14, and Supplementary Figs. 6 and 8. 

3.4. Sensitivity analysis 

The results of the sensitivity analysis can be found in Fig. 4 and in the 
supplement and are presented again for the combination of UFP expo-
sure, hospital admission endpoint, and average lag concentration with 
the most consistent and strongest results in the main analysis. Adjusting 
the model parameters did not substantially change the results, although 
setting the degrees of freedom for the long-term trend to three led to 
higher and significant results (Fig. 4). Similarly, we observed no changes 
when additionally adjusting for influenza, barometric pressure, or 
apparent temperature in the main model. The exclusion of three ICD-10 

Fig. 1. Percent changes in the relative risk and 95% confidence interval per interquartile range (IQR: difference between the 75th and 25th percentile; corresponds to 
the spread of the middle 50% of the data) increases in air pollutants for cardiovascular disease- (left), heart disease- (second from left), cerebrovascular disease- 
(middle), respiratory disease- (second from right), and lower respiratory tract infection hospital admission (right). Standardization by IQR facilitates comparison 
between different pollutants. The x-axis and the shape show the type of pollutant. The y-axis represents the percent change of risk per interquartile range increase in 
air pollution concentration (left side) per average lag concentration of air pollutants (right side). All estimates represent the pooled analysis of the measurement 
stations using multi-level random-effects models, adjusted for main model covariates. 
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codes (potentially representing planned hospital admissions) yielded 
similar results. When an alternate definition for UFP or PNC was used 
(setting the lower cut-off values from 10 nm to 20 nm), the results 
changed only marginally from 0.69% [95% CI: − 0.28%; 1.67%] (UFP 
10–100 nm) to 0.90% [95% CI: − 0.68%, 2.50%] (UFP 20–100 nm; 
Supplementary Table 15). Nevertheless, there was significant hetero-
geneity between the stations, particularly for lag 2–4 and respiratory 
hospital admissions (Supplementary Table 15). City-specific average 
concentrations generally resulted in smaller effect sizes and wider con-
fidence intervals, although most results were comparable, especially for 
the larger particle size fractions and PM2.5 (Supplementary Figure 9). 
Visual inspection of the exposure–response function showed no major 
deviations from linearity, although a likelihood-ratio test indicated 
significant differences between the linear and nonlinear models for the 
stations LWE and AFH (Supplementary Figure 10). 

4. Discussion 

This time-series analysis found no clear association between UFP or 
PNC and five cause-specific hospital admission endpoints. However, the 
results suggested delayed patterns for respiratory hospital admissions 2 
to 4 days after exposure. Size-fractioned analyses showed more pro-
nounced delayed and cumulative effects of Aitken mode and accumu-
lation mode particles on cardiovascular hospital admissions, hospital 
admissions for heart disease, and respiratory hospital admissions, and 
the most consistent results for the larger particles PM2.5. At the same 
time, more immediate patterns were found for smaller fractions. The 
results indicated higher risks for children and adolescents compared to 
the elderly, and higher risks in the cold season compared to the warm 
season, whereas the risk was comparable for men and women. Further 

adjustment for PM2.5 and BC did not change the results for respiratory 
hospital admissions; adjustment for NO2 led to null results. 

To date, there is still limited evidence on UFP or PNC effects on 
hospital admissions, and only two multi-center studies have investigated 
this research question. A study conducted in five northern and southern 
European cities (Samoli et al., 2016a) reported no clear association 
between UFP exposure and respiratory hospital admissions. However, 
higher delayed risks were found for pooled single lags 3, 5, and 6, 
although significant heterogeneity was observed (e.g., lag 3 and respi-
ratory HA: 0.43% [95% CI: − 0.94%; 1.83%]) (Samoli et al., 2016a). In 
addition, point estimates increased when cities with no measured 
accumulation mode particles were excluded, although they remained 
insignificant (Samoli et al., 2016a). This observation is consistent with 
our findings of stronger effects for larger particle size fractions, espe-
cially for accumulation mode particles. Despite some methodological 
differences between our study and the study by Samoli and colleagues 
(e.g., different statistical methods, lag periods, or study area), we found 
comparable results that overall suggest patterns of delayed UFP effects 
on respiratory hospital admissions. In addition, both analyses suggest 
that the strongest effects are seen in children. Another multi-city study 
in five central and eastern European countries (Lanzinger et al., 2016) 
found a higher risk of respiratory hospital admissions, most strongly for 
a 6-day average UFP exposure. An increase of 2,750 particles/cm3 was 
associated with a 3.40% [95% CI: − 1.70%; 8.80%] increase in the risk of 
respiratory hospital admissions. Effects were generally higher for PNC, 
and no clear association was observed for cardiovascular hospital ad-
missions (Lanzinger et al., 2016). Two stations of the study by Lanzinger 
et al. were also part of our study (AFH and DDW). We saw comparable 
results, although with smaller effect sizes but higher precision (narrower 
confidence intervals), probably due to the longer time series. However, 

Fig. 2. Percent changes in the relative risk and 95% confidence interval per interquartile range (IQR: difference between the 75th and 25th percentile; corresponds to 
the spread of the middle 50% of the data) increases in air pollutants for cardiovascular disease- (left), heart disease- (second from left), cerebrovascular disease- 
(middle), respiratory disease- (second from right), and lower respiratory tract infection hospital admission (right). Standardization by IQR facilitates comparison 
between different pollutants. The x-axis and the shape show the type of pollutant. The y-axis represents the percent change of risk per interquartile range increase in 
air pollution concentration (left side) per average lag concentration of air pollutants (right side). All estimates represent the pooled analysis of the measurement 
stations using multi-level random-effects models, adjusted for main model covariates. 
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compared to our analysis, this study used 20 nm as lower cut-off value 
for defining UFP exposure, different exposure lags, and stations. We 
cannot exclude that the particle chemical composition changed maybe 
being partially responsible for the differences in effect estimates. 

Other studies have investigated the effects of UFP in single cities. 
Branis and colleagues reported for Prague, Czech Republic, increasing 
risks of cardiovascular and respiratory hospital admissions for several 
particle sizes fractions (Branǐs et al., 2010). The highest risks were 
observed for an eight-day average of particles in the accumulation 
mode. An increase of 1,000 particles/cm3 was associated with a RR of 
1.33 [95% CI: 1.13; 1.58] and 1.16 [95% CI: 1.05; 1.29], for respiratory 
and cardiovascular hospital admissions, respectively. In addition, effects 
were also present at more immediate lags (lag 0, 1), particularly for 
cardiovascular hospital admissions or Aitken mode particles (Branǐs 
et al., 2010). However, a different exposure assessment, a shorter time 
series of less than one year, and a different region must be considered 
when comparing the results of Branis and colleagues with our results. A 
study conducted in London, UK, found higher but insignificant results 
for PNC, indicating stronger effects on pediatric respiratory hospital 
admissions (Samoli et al., 2016b). For respiratory hospital admissions, 
the authors reported a percent change in RR of 1.86% [95% CI: − 0.28%; 
4.05%] per IQR increase of PNC. Cardiovascular hospital admissions 
also showed positive but insignificant results (Samoli et al., 2016b). 
However, the time series included only the years 2011–2012, and 
different methods make it difficult to compare the results consistently to 
our study. 

Our analysis observed different risk patterns for different particle 
size fractions. Generally, larger particle size fractions showed stronger 

delayed risks, highest for Aitken mode and accumulation mode particles 
(Fig. 2). These results are supported by the consistent results for PM2.5. 
PM2.5 represents the largest particles in our analysis, and although they 
are measured differently (mass concentration, not particle number 
concentration), we were able to validate our results showing the larger 
effects on hospital admissions for the larger particles. In contrast, for 
cardiovascular hospital admissions and hospital admissions for heart 
disease, we also found indications of immediate effects, but for smaller 
particle size fractions. Two studies using size-resolved particle metrics in 
Beijing, China, and Prague, Czech Republic, also found higher risks for 
larger particle size fractions with the strongest associations for accu-
mulation mode particles (Branǐs et al., 2010; Leitte et al., 2011). How-
ever, Branis and colleagues also reported associations between 
nucleation mode particles and respiratory hospital admissions (Branǐs 
et al., 2010), which we did not observe in our study. Nevertheless, 
different size classifications (e.g., NuMP: 14.6–48.7 nm vs. 10–30 nm) 
make it difficult to compare the results consistently, because even small 
changes in cut-off values can have large effects on particle number 
(especially in the lower size range). A short-term study from Beijing, 
China, found significantly higher risks of cardiovascular emergency 
room visits in association with an 11-day moving average for the size 
fraction of 10–30 nm and 30–50 nm but no significant effects for shorter 
exposure lags or larger particle size fractions (Liu et al., 2013). Inter-
estingly, we found significant heterogeneity in the smaller size fractions 
(e.g., cardiovascular hospital admissions and the size fraction of 10–30 
nm; respiratory hospital admissions and the fraction 50–70 nm, Sup-
plementary Table 7), triggered by the Augsburg results (data not 
shown). Using fixed-effects models (that consider less the heterogeneity 

Fig. 3. Percent changes in the relative risk of respiratory hospital admission and 95% confidence intervals per interquartile range increases in ultrafine particles 
(10–100 nm; UFP; top panel) and total particle number concentrations (10–800 nm; PNC; bottom panel) (Lag 2–4). The x-axis shows the results for the main 
(displayed as dot), two-pollutant (displayed as rectangle), and effect modification analysis (displayed as diamond). The y-axis represents the percent change of risk 
per interquartile range (IQR: difference between the 75th and 25th percentile; corresponds to the spread of the middle 50% of the data) increase in air pollution 
concentration. Standardization by IQR facilitates comparison between different pollutants. All estimates represent the pooled analysis of the measurement stations 
using multi-level random-effects models, adjusted for main model covariates. It should be noted that for the two-pollutant models PM2.5 and NO2, the station Leipzig- 
TROPOS was not included in the model (no air pollution data). Additionally, the station Leipzig-Mitte was not included in the NO2 model because Spearman 
correlation coefficients were above 0.7. 
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between the stations) also showed associations for particles in the Aitken 
mode size range (Supplementary Fig. 3 and Supplementary Table 9). 
Unfortunately, we could not validate this issue with data from another 
region and therefore highlight the suggestive character of our findings. 
We can only hypothesize that different prevailing exposure sources 
could cause these differences. This would fit with the wider range of UFP 
particles, and the higher median concentrations observed in Augsburg, 
possibly indicating different sources (Table 2). In the study by Samoli 
and colleagues, source apportionment (via Positive Matrix Factoriza-
tion) was used to identify four best-fit profiles of PSD origin (Samoli 
et al., 2016b). However, no significant associations were found for age- 
segregated cardiovascular or respiratory hospital admissions (Samoli 
et al., 2016b). Nevertheless, a higher risk was reported for traffic-related 
sources and cardiovascular hospital admissions (Lag 1; age 15–64 years) 
and for nucleation or urban background sources (Lag 2; age 0–14 years) 
and respiratory hospital admissions. Traffic-related sources had a dis-
tribution mode of around 30 nm, whereas regional nucleation and urban 
background sources showed modes around 20 nm and 70 nm, respec-
tively (Samoli et al., 2016b). However, our study could only hypothesize 
different sources according to particle size because no source appor-
tionment was conducted. 

Only a few studies reported potential effect modification, primarily 
investigating differences between age categories. Three short-term 
studies (Belleudi et al., 2010; Samoli et al., 2016a; Samoli et al., 
2016b) and two systematic reviews (Ohlwein et al., 2019; Samoli et al., 
2020) reported higher respiratory hospital admissions of different cau-
ses for younger people, especially children. Our results are consistent 
with those findings, indicating the highest risk in the age category 0–17 
years. Children spend more time active and outdoors and are therefore 
more exposed to air pollution (Bateson and Schwartz, 2007). Moreover, 

early-life developmental differences such as an immature immune sys-
tem or different breathing patterns may make children more vulnerable 
than older people (Bateson and Schwartz, 2007). In contrast, Lanzinger 
and colleagues reported a higher risk for older people (Lanzinger et al., 
2016). Higher risks of cause-specific hospital admissions have been re-
ported for the warmer season (Ohlwein et al., 2019; Samoli et al., 2016a; 
Samoli et al., 2020). Our results showed no significant effect modifica-
tion by temperature, although the cold season indicated stronger effects. 
A similar finding was observed by Lanzinger and colleagues (Lanzinger 
et al., 2016). A possible explanation could be differences in the exposure 
mix, a more substantial influence of lower temperatures, or less dilution 
of the air in the atmosphere. In particular, meteorological variables seem 
to play a role in particle formation processes for traffic-generated par-
ticles, and concentrations might be higher in the cold season (Vu et al., 
2015). Finally, we did not find differences between men and women. 
Only one multi-city study investigated modifying effects of sex, 
observing comparable results between men and women (Lanzinger 
et al., 2016), similar to our findings. 

Until today, it remains controversial whether the adverse health ef-
fects of ultrafine particles occur independently of those of fine particles. 
Although UFP/PNC represents a subfraction of PM2.5, sources and 
temporal-spatial patterns may differ. As a result, high UFP/PNC con-
centrations do not mean high PM2.5 concentrations (and vice versa), 
leading to limited representativeness and almost no relationship be-
tween the two quantities (de Jesus et al., 2019). Our results suggest 
independent UFP effects of other particulate air pollutants (e.g., PM2.5 
and BC) because the effects did not change substantially, and the con-
fidence interval for PM2.5 narrowed slightly. However, the interpreta-
tion of results from two-pollutant models is not intuitive and 
straightforward, especially when air pollutants share similar primary 

Fig. 4. Percent changes in the relative risk of respiratory hospital admissions and 95% confidence interval per interquartile range increases in ultrafine particles 
(10–100 nm; UFP) (Lag 2–4). The x-axis shows the results of the main model (displayed as dot) and different sensitivity analysis (displayed as rectangle). The y-axis 
represents the percent changes of risk per interquartile range (IQR: difference between the 75th and 25th percentile; corresponds to the spread of the middle 50% of 
the data) increase in air pollution concentration. Standardization by IQR facilitates comparison between different pollutants. All estimates represent the pooled 
analysis of the measurement stations using multi-level random-effects models, adjusted for main model covariates. 
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sources and therefore could reflect more general effects of, e.g., 
combustion-related exposure mixtures. However, we did not see high 
correlations between the pollutants that would affect the correct attri-
bution of the observed effects. In addition, although some pollutants 
have similar sources, they could differ in terms of characteristics, such as 
chemical composition. Nevertheless, without further investigation and 
characterization of UFP, we cannot exclude the possibility that our 
findings for UFP are influenced by other factors of air pollution or re-
sidual confounding. Further adjustment for NO2 resulted in null results 
and thus increased uncertainty. This observation would support the 
assumption that UFP may be more closely linked to traffic-related ex-
posures such as NOx or CO (Cassee et al., 2019) and highlights the po-
tential importance of considering traffic-related factors when examining 
the health effects of UFP in populations. Recently, a review concluded 
that NO2 adjustment had the most pronounced effect on UFP effects 
when adjusting for other co-pollutants (Ohlwein et al., 2019). High 
correlations and similar distribution patterns of UFP with other pollut-
ants from the same source may lead to more unstable models and more 
biased effect estimates (e.g., multicollinearity or methodological issues) 
(Ohlwein et al., 2019). In addition, effect transfer could be present in 
multi-pollutant models when measurement error is present, leading to a 
higher attenuation of effects estimates for the pollutant with the higher 
error (Evangelopoulos et al., 2021). Future research could address this 
issue by implementing chemical composition or source-specific analyses 
in large epidemiological contexts with multiple monitoring stations per 
city. In addition, spatiotemporal modeling of UFP could contribute to 
more comprehensive and personalized exposure assessment. However, 
the high spatial variability of UFP and the simultaneous presence of 
multiple pollutants remains a challenge and a target for future research. 
For example, a recent study in the New York State, USA, reported 
delayed adverse effects of modeled UFP concentrations on cardiovas-
cular hospital admissions, although concerns on the model resolution 
accuracy remains (Lin et al., 2022). 

In the analysis by Samoli and colleagues, different effects on pedi-
atric respiratory hospital admissions were observed for urban back-
ground particles (0.51% [95% CI: − 1.39%; 2.45%]) compared with 
traffic sources (-0.20% [95% CI: − 2.38%; 2.03%]) (Samoli et al., 
2016b). On an exploratory basis, our analysis compared risks for two 
different underlying exposure patterns (urban background vs. traffic- 
related). In general, we found mostly comparable results between sta-
tion types, although the analyses with traffic-related stations yielded 
slightly higher risk estimates. However, concentrations at urban back-
ground stations are assumed to better represent a city’s population. In 
addition, to account for peak concentrations in pollutant levels more 
accurately, we included LMI and DDN as two traffic-related stations. 
However, a different local exposure composition could influence the 
estimates between, but also within, a city. For example, nucleation 
events or the formation of new particles can occur in locations with high 
solar irradiation, contributing notably to the PSD. For future research, 
this differentiation between station types may provide additional in-
sights in situations where source apportionment is not possible, but the 
results need to be interpreted cautiously. To date, measurement of PSD 
has usually been conducted at sites where measurement infrastructure is 
already in place (e.g., routine monitoring of PM2.5 or NO2). However, it 
is unclear whether these locations are also adequate to represent the risk 
of spatially variable exposures such as UFP to the population. If future 
research consolidates evidence of adverse UFP effects independent of 
fine PM, current regulatory air quality monitoring standards would no 
longer be adequate. These inherently assume a good representation of 
UFP health effects by monitoring mass concentrations of the larger PM 
fraction (e.g., PM2.5 and PM10). 

Three main potential pathways are hypothesized that, in combina-
tion, could promote adverse health effects of particulate air pollution 
(Rückerl et al., 2011). First, changes in cardiac autonomic tone are 
generally the first and most immediate response to the inhalation of air 
pollution and involve multiple reflex arcs (Perez et al., 2015). These 

alterations are directly triggered by stimulated neuronal reflexes that 
lead to changes in cardiac autonomic regulation (Rückerl et al., 2011). 
Second, after inhalation, UFP can enter the interstitium by transcytosis 
across epithelial cells of the alveoli and eventually enter the circulation, 
where they translocate from the lung throughout the body to distant 
non-pulmonary regions (Oberdörster et al., 2005; Rückerl et al., 2011). 
UFP can absorb toxic chemical compounds more easily because of their 
large surface area per unit mass and surface reactivity (Kwon et al., 
2020). These substances can be transported throughout the body, 
leading to further damage. Third, subclinical systemic responses such as 
the release of pro-oxidative and pro-inflammatory mediators can be 
induced, leading to several inflammatory processes throughout the 
body, promoting endothelial dysfunction, a pro-coagulation state, and 
triggering pro-thrombotic effects (Brook et al., 2010; Rückerl et al., 
2011). 

In general, the epidemiological evidence can only provide rather 
suggestive evidence for cause-specific hospital admissions (except for 
the more consistent findings for children and larger particles such as 
PM2.5). However, clinical relevance is given, as adverse health effects 
may already occur at a subclinical state (e.g., heart rate variability or 
systemic inflammation) and studies have already shown associations 
with UFP (Ohlwein et al., 2019). 

5. Strengths and limitations 

This study represents one of the so far few carefully designed multi- 
city studies implementing a harmonized exposure design over eight 
consecutive years. The GUAN and its operators ensured a high degree of 
standardization to measure PSD data with routine calibration and 
maintenance procedures of all devices. To our knowledge, for the first 
time in a multi-city epidemiological context, we included and compared 
monitoring stations with different exposure settings to better capture 
peak concentrations and thus more adequately represent the exposure 
situation in the cities. We thoroughly adjusted for confounders to rule 
out influences from time trends or meteorological variables, e.g., using 
apparent temperature as an alternative measure of the thermal envi-
ronment does not lead to different results. A large number of sensitivity 
analyses demonstrated the robustness and conservativeness of our main 
results with respect to changes in the model. Several limitations must be 
acknowledged. First, as we performed multiple analyses, we cannot rule 
out that some of our results may have been caused by chance. As seen for 
additional NO2 adjustment or adjustment for time trend with fewer 
degrees of freedom, residual confounding could be present, especially 
when originating from similar sources, as real-world air pollution is a 
complex mixture of different particles and gases. In general, the possi-
bility of residual confounding cannot be ruled out because of the com-
plex nature of UFP and the observational study design itself. Second, we 
did not have source-specific information on different air pollutants and 
could only assume their origin using particle size fractions, different 
particle size modes, or station types. In addition, local exposure com-
positions or influences (e.g., nucleation events or prevailing exposures in 
warm or cold period) may play an important role that will only be 
accurately characterized with further source or composition analyses. 
Therefore, it remains an open question whether the observed health 
effects are due to the particle number concentration per se, and a more 
detailed characterization of the PSD is needed to further investigate this 
issue. Schmid and Stoeger highlighted that surface area might play an 
important biological role, as it represents the area where other mole-
cules can interact with tissues or fluids (Schmid and Stoeger, 2016). 
However, to optimally display the related aerosol exposure risk, multi-
ple dose metrics should be included in analyses (Schmid and Stoeger, 
2016). Third, unlike PM2.5, UFP exhibits a higher spatial and temporal 
variation, which can lead to measurement error or exposure misclassi-
fication and limit the statistical strength of the association, especially 
when monitoring campaigns are adapted from those of larger and, 
therefore, more spatially homogeneous particles (HEI Review Panel on 
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Ultrafine Particles, 2013). This would be even more prominent if only 
one station were used to assess the exposure risk for an entire city. 
However, a study by Cyrys and colleagues (Cyrys et al., 2008) showed 
for Augsburg, Germany, that one carefully selected urban background 
station can adequately characterize the temporal variation in a city. 
However, we included only six stations, which may result in a lack of 
statistical power, e.g., the number of cities may not be sufficient to 
detect health effects for the smallest particles, and we did not statisti-
cally correct for measurement error and its potential impact on the re-
sults (van Smeden et al., 2019). In addition, a more in-depth 
consideration of potential measurement error, especially in multi- 
pollutant models, can help to quantify the health effects and interde-
pendency of different air pollutants more correctly since effect transfer 
could occur leading to an underestimation of the true independent 
health effect for the pollutant with the higher measurement error 
(Evangelopoulos et al., 2021). Fourth, the number of cases in the pop-
ulation for some cause-specific endpoints were rather low (e.g., cere-
brovascular hospital admissions), although no large uncertainty was 
seen in the confidence intervals. In addition, due to data protection 
regulations, the exact location of each hospital admission was not 
available. We therefore had to assume that individuals living in a city 
were likely to be hospitalized in the same city/region, leading to only a 
small degree of uncertainty. Last, only German locations were included, 
which should be considered when comparing the results with other 
studies. For example, meteorological or climatic conditions could have 
an influence on ambient UFP concentrations (e.g., wind speed or pre-
cipitation), calling for further multi-country or multi-city studies. 

6. Conclusion 

In summary, this time series analysis found no clear pattern of as-
sociations for UFP or PNC with cause-specific hospital admissions. 
However, we found clear associations for PM2.5 and suggestive delayed 
effects were seen for respiratory hospital admissions and multi-day av-
erages of 2 to 4 days. In addition, the effects of different particle size 
fractions seemed to be larger for Aitken mode particles and strongest for 
accumulation mode particles, which is in line with the findings for 
PM2.5. Furthermore, children showed the highest risk with respect to 
UFP exposure and higher effects were seen in the cold season. Different 
methodological approaches for exposure and statistical assessment (e.g., 
measurement routines, devices, lag structures, and classification of 
particles) and the overall still scarce evidence contribute to difficulties in 
assessing the overall evidence. Future research would greatly benefit 
from further standardization of methods; first, initial recommendations 
were published by the World Health Organization in 2021 (see “Good 
practice statement – UFP” (World Health Organization, 2021)). 

Funding: 
This work was supported by grants from the Saxon State Office for 

Environment, Agriculture and Geology (LfULG), Dresden, Germany. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgements 

Source for hospital admission data: RDC of the Federal Statistical 
Office and Statistical Offices of the Federal States, Hospital Statistics 
[EVAS 23131], survey years [2010-2017], DOI: 10.21242/ 
23131.2010.00.02.1.1.0 to 10.21242/23131.2017.00.02.1.1.0, own 

calculations. 
The authors thank Karen Meyer (Research Data Centre of the Federal 

Statistical Office and Statistical Offices of the Federal States (FDZ), 
Fürth, Germany) for support with the hospital admission data. We thank 
Maik Merkel (Leibniz Institute for Tropospheric Research (TROPOS), 
Leipzig, Germany) for providing data of Leipzig-TROPOS, and Andrea 
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particle size spectrometers: harmonization of technical standards and data structure 
to facilitate high quality long-term observations of atmospheric particle number size 
distributions. Atmos. Meas. Tech. 5, 657–685. 

Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, M., Merkel, M., 
Müller, T., Pfeifer, S., Schmidt, A., Tuch, T., Velarde, F., Quincey, P., Seeger, S., 
Nowak, A., 2018. Mobility particle size spectrometers: calibration procedures and 
measurement uncertainties. Aerosol Sci. Technol. 52 (2), 146–164. 

Wolf, K., Schneider, A., Breitner, S., von Klot, S., Meisinger, C., Cyrys, J., Hymer, H., 
Wichmann, H.-E., Peters, A., 2009. Air temperature and the occurrence of 
myocardial infarction in Augsburg, Germany. Circulation 120 (9), 735–742. 

World Health Organization, 2021. WHO Global Air Quality Guidelines: Particulate 
Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon 
Monoxide. World Health Organization, Geneva.  

M. Schwarz et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0160-4120(23)00305-7/h0075
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0075
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0075
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0085
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0085
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0090
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0090
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0090
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0090
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0090
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0095
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0095
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0095
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0095
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0095
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0100
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0100
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0100
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0105
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0105
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0105
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0110
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0110
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0110
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0110
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0115
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0115
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0115
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0115
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0120
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0120
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0125
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0125
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0125
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0130
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0130
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0130
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0135
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0135
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0135
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0135
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0140
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0140
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0140
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0145
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0145
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0145
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0145
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0150
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0150
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0150
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0155
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0155
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0155
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0155
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0160
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0160
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0160
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0160
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0165
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0165
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0165
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0165
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0170
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0170
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0170
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0170
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0175
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0175
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0180
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0180
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0180
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0185
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0185
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0190
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0190
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0195
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0195
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0195
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0195
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0195
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0200
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0200
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0200
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0200
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0200
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0205
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0215
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0215
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0215
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0220
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0220
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0220
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0225
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0230
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0230
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0230
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0230
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0235
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0235
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0235
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0240
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0240
http://refhub.elsevier.com/S0160-4120(23)00305-7/h0240

	Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints i ...
	1 Introduction
	2 Material and methods
	2.1 Hospital admission data
	2.2 Environmental data
	2.3 Statistical analysis
	2.4 Sensitivity analyses

	3 Results
	3.1 Description of hospital admission data and air pollutants
	3.2 Air pollution and cause-specific hospital admissions
	3.3 Two-pollutant models and effect modification
	3.4 Sensitivity analysis

	4 Discussion
	5 Strengths and limitations
	6 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


