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ABSTRACT

We introduce the R package soundChangeR: an
implementation of a computational, agent-based
model of sound change. This model rests
upon ideas from exemplar theory about how
the memorisation of traces of speech can result
in phonetic imitation, perceptual learning, and
eventually phonetic and phonological change. In
theoretical views of the exemplar-based relation
between speech production and perception, it has so
far remained unclear whether some stored exemplars
may contribute more to a listener-turned-speaker’s
future production than others. Using the cognitively-
inspired architecture of soundChangeR we show
that it makes a difference whether the agents
preferably memorise typical and/or unambiguous
exemplars. Memorising only exemplars that are
typical members of their phonological class can
reinforce phonetic biases, whereas memorising
only unambiguous exemplars creates a repulsion
between phonological classes. We argue that
using such computational models can lead to new
theoretical insights and we encourage readers to try
soundChangeR on their own data.
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1. INTRODUCTION

Decades of research have established that sound
changes are rooted in phonetic variation [1] and
propagated through interactions between individuals
[2, 3]. However, the exact interplay between the
intra- and extralinguistic factors that may contribute
to sound change at any stage of the process remains
poorly understood. This is because it is impossible
to know beforehand whether a sound change is
going to take place, so as soon as the change is
underway, it is too late to capture the circumstances
which may have triggered it. Computational agent-
based models (ABMs) offer an artificial world and
a controlled environment which can be used to
explore the cognitive, social, and linguistic factors

that might play a role in the emergence and spread
of a specific change that has already been observed
empirically e.g. by means of apparent-time data.

The ABM presented in this paper, called
soundChangeR, aims to link theories about the
origin and spread of sound change by means of a
cognitively-inspired architecture. More specifically,
soundChangeR rests upon ideas from exemplar
and usage-based models of language [4, 5, 6]
about how the memorisation of traces of speech
(exemplars) can result in phonetic imitation [7],
perceptual learning [8], and, eventually, sound
change. Therefore, and in line with other
computational models of sound change [9, 10, 11,
12], agents in soundChangeR are the computational
analogue of human speaker-listeners, i.e. they are
equipped with mechanisms in order to produce and
perceive exemplars of speech sounds as well as
a memory that connects the two processes. In
contrast to other ABMs of sound change, however,
soundChangeR is publicly available and can be
used on real speech production data to test whether
the model predicts any acoustic or phonological
changes. Section 2 explains the details of the
agents’ production-perception feedback loop and
briefly mentions how the R package soundChangeR
can be installed and used.

Exemplar-based approaches have been
particularly useful in explaining phonetic shifts,
such as /u/-fronting in many English varieties
[13], the Northern Cities Shift [10], or the New
Zealand English short front vowel shift [14]. These
kinds of sound changes are hypothesised to result
from updates of memorised acoustic distributions
caused by consistent exposure to biased variants.
However, exemplar models often remain quite
vague about the relation between speech perception
and speech production despite its significance
in sound changes. That is, are there memorised
exemplars that affect future productions more
than others? For instance, do typicality and/or
ambiguity in the association between exemplars
and phonological classes increase the likelihood
of updating learned acoustic distributions and,
consequently, of shifting future productions? The



exemplar-based architecture of soundChangeR
allows us to computationally test these assumptions
about the probabilistic selection of exemplars and
its relation to phonetic shifts. Three simulations on
artificial data will be presented to show that it makes
a difference whether agents preferably memorise
typical and/or unambiguous exemplars.

2. METHOD

2.1. Model Architecture

In soundChangeR, each agent is typically initialised
with the speech production data from a real
human speaker. This data should consist of
relevant acoustic parameters for the sound(s) under
investigation as well as the word type in which
the sound was produced (e.g. formant values
for the vowel in food). Together, the acoustic
values and the lexical entry form an exemplar
which is stored in the agent’s memory. Before
the first interaction, and then regularly throughout
the simulation, each agent derives sub-phonemic
classes from the stored exemplars by means of
two unsupervised machine learning algorithms.
The ABM follows exemplar theory’s bottom-
up approach to phonological knowledge: that
is, sub-phonemes (SPs) in soundChangeR are
abstractions over clouds of stored exemplars that
can be re-computed when new exemplars have been
memorised [15]. The resulting classes are agent-
specific and can encode both classical phonological
[16] as well as sub- or quasi-phonemic knowledge
[17, 18].

In an interaction, a pair of agents is chosen
either randomly or based on their agent group.
These groups can be defined by the user and
contain any sociolinguistic information about the
speakers that may play a role in the sound change
(e.g. age, gender, or regional origin). The agent-
speaker randomly chooses a word type from its
lexicon, estimates a (Gaussian) distribution based
on all memorised exemplars associated with that
word type, and samples a new exemplar from that
distribution. This word-based sampling procedure
ensures that possible coarticulatory effects (e.g. that
the vowel in soup is more fronted than that in food)
are also present in the newly produced exemplar
which, together with the corresponding word type,
is transmitted to the agent-listener.

The task in speech perception is to decide
whether or not to memorise the exemplar (but not
recognising or categorising that exemplar). That
is, we make explicit assumptions about which
exemplars are more likely to impact the agent-

listener’s internal acoustic distributions and thus,
their speech production in future interactions. The
decision to memorise a perceived exemplar can be
based on two criteria [9] pertaining to the sub-
phoneme, SP, that is associated with the word type
transmitted by the agent-speaker. The absolute
criterion determines whether the Mahalanobis
distance between the exemplar and the centroid
of SP is below a threshold defined by the user.
The reasoning behind this criterion is that atypical
exemplars should not influence the listener-turned-
speaker’s future productions [19, 20].

The relative criterion determines whether the
exemplar’s posterior probability conditioned on SP
is higher than the posterior probabilities conditioned
on all other sub-phonemes in the agent-listener’s
memory. That is, only exemplars that are
discriminable [9] (i.e. cannot be confused for a
member of another sub-phoneme) are memorised.
Since this criterion penalises acoustic ambiguity, it
creates a repulsion between sub-phonemic classes,
following the idea that phonological contrasts are
usually maintained [21, 22]. However, given
that sub-phonemes are regularly updated during a
simulation, this repulsion does not preclude sub-
phonemic classes from merging [23].

The two memorisation criteria can also be
combined, i.e. the perceived exemplar is only
memorised if it passes both criteria. Finally,
if the agent-listener has memorised the perceived
exemplar, it forgets (i.e. deletes) a random exemplar
of the same word type. The process of forgetting
exemplars ensures that the memory size does not
grow to such an extent that newly memorised
exemplars have no impact.

Simulations are run until there is no more
observable acoustic change across the population.
An analysis can then be undertaken of whether there
is any evidence of change either in the acoustic
makeup of the simulated sounds (in the case of a
phonetic shift like e.g. /u/-fronting) or in how words
are mapped to sub-phonemic classes (in the case of
e.g. a split or a merger).

2.2. Usage

The R package soundChangeR can be downloaded
from GitHub (see installation instructions: https:
//github.com/IPS-LMU/soundChangeR) and comes
with full documentation in the form of help pages
for all functions and a detailed vignette. The
core function is run_simulation() which takes a
number of arguments by means of which the user
can adapt the simulation parameters. Importantly,
users can submit their own speech production data



in any simple table format (e.g. .txt, .csv).
The dataset minimally needs to contain speaker
IDs (each speaker is going to be represented by
one agent), numeric-continuous acoustic features
of the sounds under investigation, and the word
types in which the sounds were uttered. An
example of a dataset that meets these requirements
is u_fronting which is available to the user once
soundChangeR is loaded in R. It contains DCT-
parametrised F2 values for the vowels /i, u, ju/
produced by 22 Standard Southern British English
speakers [13].

2.3. Testing the Effects of Exemplar Selection

Three simulations were run with soundChangeR in
order to demonstrate how the application of the
memorisation criteria (absolute only, relative only,
or both) can result both in phonetic shifts and
stability [12]. Figure 1 shows the artificial dataset
that was generated for this purpose. It consists of
two agents, A and B, both of which are initialised
with 50 exemplars each of 10 word types in a
two-dimensional acoustic space. For agent A, sub-
phoneme 1 (SP1, solid ellipse) is elongated and
overlaps with sub-phoneme 2 (SP2, dashed ellipse)
at one end along its main axis. Agent A’s SP2, in
turn, is similar to agent B’s SP2. For agent B, both
sub-phonemic classes are are compact and nearly
spherical.

Agent A Agent B

−10 −5 0 5 −10 −5 0 5

−5

0

Feature 1

Fe
at

ur
e 

2

Sub−Phoneme SP1 SP2

Figure 1: State of agent A’s and B’s
representations of sub-phonemic classes SP1
(solid) and SP2 (dashed) in the acoustic space
before the simulation. The dots represent stored
exemplars.

The data was designed to mirror a state of a sound
change at which one group of speakers (represented
by agent B) has already adopted a new variant of
a sound (SP1) while another group (represented
by agent A) is affected by a phonetic bias that
skews that sound in the direction of the change.
These configurations can often be observed both in
apparent-time data and across regional varieties of
which one has undergone a sound change faster than
another.

The two agents shown in Figure 1 interacted with
each other following the architecture described in
2.1, while applying either the absolute, the relative,
or both memorisation criteria in perception, until
there were no more relevant acoustic changes.

3. RESULTS

Figure 2 shows the outcomes of the three
simulations. When only the absolute memorisation
criterion was applied (Figure 2a), agent A clearly
adapted SP1 to that of agent B. This is because
the exemplars of SP1 produced by agent B were
very likely to fall within agent A’s solid ellipse,
i.e. they were typical enough to become members
of A’s SP1. Exemplars of SP1 produced by agent
A, on the other hand, were likely to have low
values of both Feature 1 and 2 (see agent A’s solid
ellipse in Figure 1), and thus would have been too
atypical according to the absolute criterion to be
incorporated into agent B’s narrow SP1. Neither
agents’ SP2 shifted acoustically compared to the
baseline depicted in Figure 1, but narrowed over the
course of the simulation.
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Figure 2: State of agent A’s and B’s
representations of sub-phonemic classes in
the acoustic space after the simulation. The dots
represent stored exemplars. (a) Only the absolute
criterion, (b) only the relative criterion, and (c)
both memorisation criteria were applied to decide
whether perceived tokens should be memorised.

When only the relative memorisation criterion



was applied (Figure 2b), both agents ended up
with two non-overlapping sub-phonemic classes. In
this case, the centroid of agent B’s SP1 moved
towards that of agent A’s SP1. This is because
agent B accepted agent A’s exemplars of SP1 which
were likely to fall into an unambiguous part of
the acoustic space, i.e. a part where the acoustic
distribution of SP2 is not in competition with that
of SP1. Agent A, on the other hand, rejected
those exemplars of SP1 produced by agent B that
were located in the part of the acoustic space where
agent A’s SP1 and SP2 overlapped. As in the first
simulation, neither agents’ SP2 changed.

Finally, when both memorisation criteria had to
be passed in order for an exemplar to be memorised
(Figure 2c), agent A’s SP1 shifted more towards
agent B’s SP1 than vice versa, and both the overlap
between the sub-phonemes as well as their variance
were reduced. Thus, this simulation displays
characteristics of the previous two simulations.

4. DISCUSSION

The three simulations presented in section 3 had
visibly diverse outcomes despite starting from the
same input data. The only difference between
the simulations was the criterion applied for the
selective memorisation of perceived exemplars.
Both the absolute and relative criterion can cause
phonetic shifts and stability (i.e. importantly,
soundChangeR does not inevitably predict change),
but both also have side effects.

The absolute criterion can reinforce phonetic
biases that are present in the input data. In
the presented case, agent A’s phonetic bias was
reinforced through interactions with agent B whose
variants of SP1 lay in the direction of the bias.
This mechanism of soundChangeR is based on
the idea that speakers that have already adopted a
new variant of a sound may serve as attractors to
speakers whose variant is skewed in that direction
e.g. because of a phonetic bias [24]. The side effect
of the absolute criterion is a reduction of within-
category variance as acoustic outliers are rejected
(although the severity of this side effect depends on
the Mahalanobis distance threshold set by the user).
Other ABMs of sound change instead opt for explicit
production biases, i.e. a newly produced exemplar
is shifted slightly in the direction of an articulatory
bias before being transmitted to the listener [9, 11,
12]. While this reduces the risk of a return-to-the-
mean effect, the constant application of the bias may
shift the acoustic distributions further than it would
in a real sound change.

The relative criterion results in phonetic shifts
because of the repulsion created by the constant
pressure against ambiguous exemplars. Since SP1
and SP2 partially overlap for both agents in Figure 1,
new exemplars that are located in this area of
the space are indiscriminable for the agents and
therefore not memorised. When applied on its
own, the relative criterion does not prevent even
the furthest outliers from being memorised as long
as they are unambiguous, which can lead to an
expansion of the acoustic-phonetic space beyond
plausible values. However, the third simulation
showed that this side effect of the relative criterion
can be counteracted by the absolute criterion while
still maintaining the contrast between sub-phonemic
classes as desired.

Phonetic stability was achieved for SP2 in all
three simulations. This was because the agents had a
similar representation of this sub-phoneme and thus,
there was no force that could cause acoustic changes
as a result of the interactions. This underlines
the necessity for phonetically heterogeneous input
data: none of the algorithms in soundChangeR
can create the kinds of phonetic biases in speech
production which are hypothesised to lead to change
[25]. The forces that create changes in a simulation
and result from the agents’ production-perception
feedback loop only take effect if the agents have
sufficiently distinct representations of the sounds
under investigation to begin with.

ABMs are a powerful tool for the investigation of
so called complex adaptive systems, i.e. systems in
which individual entities interact with one another
according to some rules and can change as a
response to their environment [6, 26]. Spoken
language is well suited to be modelled as a complex
adaptive system in which microscopic variation
at the level of individual interactions leads to
community level categorical change, as also shown
by the recent upsurge in ABMs designed to answer
specific questions in the field of sound change
[9, 12]. The simulations presented in this paper
showed that the way we handle the probabilistic
selection of exemplars is critical in determining the
direction of a phonetic shift. In general, ABMs
like soundChangeR force us to be explicit about
the assumptions that underlie the theoretical model
to be tested. It is for this reason that we hope
that soundChangeR will be applied to a variety of
speech production data in the future: to gain a better
understanding of the interplay of factors that impact
the emergence and spread of many kinds of sound
changes.
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