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Classical hardness of approximation (HA) is the phenomenon that, assuming P ̸= NP, one can easily compute an ϵ -
approximation to the solution of a discrete computational problem for ϵ > ϵ0 > 0, but for ϵ < ϵ0 – where ϵ0 is the
approximation threshold – it becomes intractable. Recently, a similar yet more general phenomenon has been documented in
AI: Generalised hardness of approximation (GHA). This phenomenon includes the following occurrence: For any approxi-
mation threshold ϵ1 > 0, there are AI problems for which provably there exist stable neural networks (NNs) that solve the
problem, but no algorithm can compute any NN that approximates the AI problem to ϵ1-accuracy. Moreover, this issue is
independent of the P vs NP question and thus is a rather different mathematical phenomenon than HA. GHA implies that
the universal approximation theorem for NNs only provides a partial understanding of the power of NNs in AI. Thus, a
classification theory describing which NNs can be computed by algorithms to particular accuracies is needed to fill this gap.
We initiate such a theory by showing the correspondence between the functions that can be computed to ϵ-accuracy by an
algorithm and those functions that can be approximated by NNs which can be computed to ϵ̂-accuracy by an algorithm. In
particular, the approximation thresholds ϵ and ϵ̂ cannot differ by more than a factor of 12. This means that computing function
approximations through NNs will be optimal – in the sense of best approximation accuracy achievable by an algorithm – up
to a small constant, compared to any other computational technique.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Deep learning (DL) with neural networks has risen to the state-of-the-art method in a wide range of applications from image
classification [1], voice control [2], malware detection [3], to inverse problems [4–6]. Due to the immense success, these
methods have reached our everyday life. However, at the same time, we are well aware of the limits of current AI technology,
where inherent instabilities, AI generated hallucinations, unpredictable as well as biased behaviour of DL algorithms etc. are
often observed, yet not well understood – and remedies are scarce. These issues are concerning, given the wide use of modern
DL. Therefore, it is not surprising that after a long time of studying the wonders of DL, the studies of their limitations have
gained more interest in the research community:

“2021 was the year in which the wonders of artificial intelligence stopped being a story [...] Many of this year’s
top articles grappled with the limits of deep learning (today’s dominant strand of AI) and spotlighted researchers
seeking new paths.”

– ’2021’s Top Stories of AI’, in IEEE Spectrum (Dec. -2021).

The instabilities, hallucinations, and unpredictable behaviour of AI methods, which can be observed in practice [7–12], are
paradoxical and a real puzzle. Indeed, the universal approximation theorem [13] – that tell us that all continuous functions
can be approximated arbitrarily well with a neural network – and its cousins [14–16] make it clear that the problem does not
lie in the approximation power of neural networks (NNs). Nevertheless, instability and untrustworthiness of AI systems seem
hard to cure. Recently, the difficulty of computing stable and accurate NNs have been studied in connection with a newly
discovered phenomenon in computation: generalised hardness of approximation (GHA). This phenomenon shows how one
can prove the existence of stable and accurate NNs, yet they can only be computed to a certain approximation threshold.
Moreover, despite the existence of a stable optimal NN, any attempts of computing it below the approximation threshold will
yield an unstable NN.

GHA is close in spirit to the long tradition of studying the limitations of computations that have been a core part of modern
computer science, and the theory of hardness of approximation (HA) has been a mainstay in this program. HA [17, 18] is
the phenomenon that computing an ϵ-approximation to a discrete computational problem can be in P (solvable in polynomial
time) for ϵ > ϵ0 but the problem becomes NP-hard when ϵ < ϵ0, where ϵ0 is the approximation threshold. In particular,
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assuming P̸=NP we have the following phase transition:
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The phenomenon is a well established part of foundations and has been the subject of several Gödel and Nevanlinna Prizes.
HA is almost exclusively associated with combinatorial computational problems, however – as was discovered in [19] and
subsequently in [20, 21] and [22] – a generalised form of this phenomenon, namely GHA, can happen in other areas of
the computational sciences regardless of the P vs NP question. GHA can be explained as follows: Given an ϵ > 0, the
ϵ-approximate computational problem is the problem of computing an approximation that is no more than ϵ away from the
true solution – in some appropriate predefined metric. Suppose that we have a computational problem and two classes of
approximate computational problems S1 and S2 with S1 ∩ S2 = ∅ and ϵ1 ≥ ϵ2 > 0. We say that the computational problem
has an (S1, S2)-phase transition at (ϵ1, ϵ2) if we have the following: The approximate computational problem is in S1 for
ϵ > ϵ1, and the approximate computational problem is in S2 for ϵ < ϵ2. If ϵ1 = ϵ2, we say that the phase transition is sharp
and call ϵ1 the approximation threshold. Schematically, the concept of generalised hardness of approximation with a sharp
phase transition can be visualised as follows:
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Recent works demonstrate how GHA happens in AI [20–22], in particular in DL in inverse problems and image classification.
In particular, one can prove the existence of stable NNs for the task, yet there is a phase transition, and the NNs can only be
computed to a specific approximation threshold. Hence, the universal approximation theorem gives an overly optimistic view
of what deep learning can achieve, and thus we are left with the following crucial question:

Since there are neural networks which can be proven to exist – yet no algorithm can compute them to ϵ accuracy –
for which problems can neural network approximations be computed, and to which accuracy?

We address this fundamental question and focus on the possibilities of neural networks and the potential of deep learning
methods within the constraint that they must be computable to sufficient accuracy by a computer. The framework extends
expressivity and approximation theory to include the algorithm to construct those approximations. The main theorem that
we present in Theorem 4.1 – here in a simplified and reader-friendly way without mathematical technicalities – relates the
computability of the function class to the approximation with neural networks that can be computed with algorithms.

Theorem 1.1 (Reader friendly light version of Theorem 4.1) Let ϵ > 0. A family of functions F ⊂
{
f | f : [0, 1]d1 → Rd2

}

can be approximated in the ∥ · ∥∞ norm with neural networks – that can be computed by an algorithm from point samples of
the functions in F – to 12ϵ accuracy, if the functions in F are ϵ-computable from point samples, see Definition 2.3 (i.e. the
functions can be computed to a precision ϵ – in the ∥ · ∥∞ norm – by an algorithm taking point samples of the functions as
input).

This means that computing function approximations through NNs will be optimal – in the sense of best approximation
accuracy achievable by an algorithm – up to a small constant compared to any other computational technique. The small
constant we obtain is 12. However, this is an upper bound, and it may very well be the case that this can be improved.

2 Theoretical preliminaries and generalised hardness of approximation

We take the word ’compute’ literally, and thus the following quote explains the situation succinctly:

“But real number computations and algorithms, which work only in exact arithmetic can offer only limited under-
standing. Models that process approximate inputs and that permit round-off computations are called for.”

— S. Smale (from the list of mathematical problems for the 21st century [23])

Indeed, since e.g.
√· and exp(·) do not have exact representations, inaccurate data input is a daily encounter. The relevance of

such a model is further emphasised by the fact that even a rational number such as 1/3 is stored approximately in base-2 when
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using floating-point arithmetic, a situation faced by most software. This model allows inaccurate input of arbitrary precision.
We call it the extended model, see for example [24]. This extended model yields an extended version of Smale’s 9th problem
from the list of mathematical problems for the 21st century [23]). A very simplified summary of the results in [19] are as
follows.

GHA and the extended Smale’s 9th problem. Consider the task of computing a minimiser of linear programs in the
extended model, and choose any ℓp-norm to measure the error. Then, for any integer K > 2, there exists a class of feasible
inputs Ω such that, simultaneously, we have the following.

(i) No algorithm, even randomised, can produce K correct digits of the true solution for all inputs in Ω.

(ii) There does exist an algorithm that provides K − 1 correct digits for all inputs in Ω. However, any such algorithm will
need an arbitrarily long time to achieve this.

(iii) The problem of producing K − 2 correct digits for all inputs in Ω is in P, i.e., can be solved in polynomial time in the
number of variables n.

The above result was the first to document the GHA phenomenon in optimisation, where the above statements using integers
K, K − 1, K − 2 can be viewed as ‘quantised’ phase transition thresholds. Recently, the GHA phenomenon has also been
documented in AI [20–22].

The extended model is widespread [24–28]. However, the analysis often becomes technical compared to simpler models
relying on exact input. The concept of computability of functions – in the extended model – from point samples is at the
heart of modern AI. In particular, we want to compute approximations from point samples for a family of functions F . The
reasons are twofold. First, we want to have an algorithm not only for a single function f but for an entire family of functions
F . Second, the information that can be used to compute the approximation in supervised learning is only point samples of
the function f ∈ F . The algorithm can choose the accuracy of the point samples. These are only up to a certain accuracy
as computers cannot process infinite strings representing the number. This kind of information is modelled with recursive
oracles.

Definition 2.1 (Point Oracle) An oracle is a recursive mapping ψx : N → Q related to a value x ∈ R which outputs an
approximation ψx(n) to x with an accuracy of 2−n.

The concept of an oracle allows us to give an algorithm information with arbitrary but finite precision. This relates to the
fact that for some values, there does not exist a finite representation in the dyadic system. Hence, a computer that can only
deal with finite inputs will never get this without inaccuracies. However, it is still essential that the algorithm can choose this
accuracy.

Definition 2.2 (Sampling oracle) Let f : [0, 1]d1 → Rd2 . The sampling oracle ψf to f is a recursive mapping that takes as
input a tuple (l, k) which determines the number of samples N = (2l)d1 and the accuracy of each evaluation point, i.e. 2−k.
For the output we order the elements on the even grid with width 2−l by πl. Such that ψf : N × N 7→ N ×Qd2 gives for the
samples Xl,d1

=
{
xi = πl(i), i = 1, . . . , (2l)d1

}
a finite precision of each of the evaluation f(xi) in Qd2 with a maximal error

of 2−k. The first component of the input and the output specifies which element of the sampling set is used. The second input
of the input specifies the accuracy 2−k, and the second part of the output is the approximation to the output at the sampling
location specified by the first component.

The location of the sampling points is chosen on the dyadic grid because this allows a wide spread of the points and
therefore a better error evaluation if we have information about the modulus of variation. Moreover, the sampling points have
with this choice a finite dyadic representation and do not add extra error terms for the numerical analysis. Nevertheless, also
other locations are possible to consider, and the choice of the location can give insight to the question at hand. We can now
extend the definition of computability to computability from point samples, where we define explicitly where the information
is taken from.

Definition 2.3 Let ϵ > 0. A class of functions F with f : [0, 1]d1 7→ Rd2 is ϵ-computable from point samples if there
exists an algorithm ΓF which takes as input

1. a sampling oracle ψf : N× N → N×Qd for f ∈ F

2. a point oracle ψx : N → Qd1 for the position x ∈ Rd1 , where the function is evaluated,

and has the following properties: For any ψf : and ψx : the algorithm ΓF outputs an approximation y to f(x) such that
∥y − f(x)∥∞ < ϵ. If this holds for all ϵ > 0 we call F ∞-computable from point samples.

The definition is differs from classical theory in the following points: First, we consider a family of functions and not only
a single function. This is because, for a single function, we could design a unique algorithm. However, as we do not know
the functions, we are interested in a priori this would give us an advantage that is not existent in practice. The algorithm
is supposed to work for all functions in the family. This is, for example, the case with the setting of neural networks. The
optimisation problem and the set of possible neural networks, even though restricted to particular architectures for applications,
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4 of 6 Section 25: Computational and mathematical methods in data science

should work for all functions we are using it for and not only for one specific problem. Second, the information from which
the function is computed is specified explicitly, and no other information can be used. This is closely related to the previous
point. The function should not only be computable in general, but also from the information we have at hand in practice. Here,
also the number of necessary samples is of high interest. For the approximation with neural networks we need to have insights
about how fast the functions are changing between two point locations. This can be measured with the modulus of variation.
We use this measure instead of the modulus of continuity to allow for small jumps of the function.

Definition 2.4 (Modulus of variation) Let f : Rd1 → Rd2 . The modulus of variation of f is given by the function
ωf : R+ → R+ defined by

ωf (h) := sup{∥f(x)− f(y)∥∞ : x, y ∈ Rd1 , ∥x− y∥2 ≤ h}.

Remark 2.5 The term modulus of variation is more general than the concept of modulus of continuity, as we do not assume
that ω(h) → 0 for h → 0. In contrast, for a desired distance ϵ > 0 in the output we will search for sufficiently small h > 0
such that ωf (h) ≤ ϵ. Therefore, there might also be cases where for some h0 > 0 no difference can be observed for smaller
h < h0.

There is a key link between function families that are ϵ-computable from point samples and modulus of variation, as the
following theorem establishes.

Theorem 2.6 Let ϵ = 2−n > 0 with n ∈ N. If a family of functions F is ϵ-computable from point samples and single-
valued, every function f ∈ F has the modulus of variation ωf bounded by 2−n+2.

3 Neural networks and approximations

For a straightforward discussion of NNs, it is sensible to separate the affine mappings, which are often denoted as weights and
the realisation of the network as presented in [29]. We work with feedforward neural networks with ReLU activation.

Definition 3.1 ( [29]) Let d, L ∈ N. A neural network A with input dimension d andL layers is a sequence of matrix-vector
tuples

A = ((A1, b1), (A2, b2), . . . , (AL, bL)),

where D0 = d and D1, . . . , DL ∈ N, and where each Al is an Dl × Dl−1 matrix, and bl ∈ RNl . If A is a neural network
as above, and if σ : R → R is arbitrary, then we define the associated realization of A with activation function σ as the map
Ψ = Rσ(A) : Rd → RDL such that Ψ(z) = Rσ(A)(z) = zL, where zL results from the following scheme:

z0 := z,

zl := σ(Alzl−1 + bl), for l = 1, . . . , L− 1,

zL := ALzL−1 + bL,

where σ acts component-wise, that is, σ(y) = (σ(y1), . . . , σ(yd)) for y = (y1, . . . , yd) ∈ Rd. Here the activation function or
non-linearity is most often the rectified linear unit (ReLU) function, i.e. σ(z) = max {0, z}.

With this definition it is possible to define the algorithm ΓW that gives the architectures and weights of a network and
such represents the network representation. An important property for the analysis of the networks is their Lipschitz constant.
The Lipschitz constant can be bounded for a feedforward network with ReLU activation. In [30] the analysis of the Lipschitz
constant is studied. The authors derive the upper bound as follows.

Lemma 3.2 ( [30]) For a general neural network Ψ in one dimension we have that the Lipschitz constant LΨ is bounded
by

∏L
i=1 |AΨ,i|.

The computation of LΨ is NP-hard, and this bound is in general not sharp. A detailed discussion of this problem can be
found in [30]. We now come to the main definition of this section which describes, when family of functions can be recursively
approximated with neural networks.

Definition 3.3 Let ϵ > 0. A family of functions F is ϵ-neural network-computable if there exists an algorithm ΓW which,
for any f ∈ F takes ψf as input and outputs a feed forward neural network Ψf with ReLU activation function (this is in form
of a string describing the architecture and weights), such that for all x ∈ [0, 1]d1 we have that ∥f(x)−Ψf (x)∥ ≤ ϵ.

The definition implies with the bound for the Lipschitz constant that for a constant c > 1 there exist k0 ∈ N such that for
all k ≥ k, all x ∈ [0, 1]d1 with any oracle ψx we get that ∥f(x)−Ψf (ψx(k))∥ ≤ cϵ.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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4 The main theorem – Are NNs optimal for computing function approximations?

In the main theorem, we relate the ϵ-computability from point samples from Definition 2.3 to the existence of a neural network
approximation.

Theorem 4.1 Let ϵ > 0. A family of single-valued functions F ⊂
{
f | f : [0, 1]d1 → Rd2

}
is ϵ-computable from point

samples if it is ϵ − 2−b neural network-computable for some b ∈ N. Moreover, a family of single-valued functions F is
12ϵ-neural network-computable if it is ϵ-computable from point samples. Furthermore, suppose that ω : R+ → R+ with
minx ω(x) ≤ ϵ and let Fω = {f ∈ F |ωf (x) ≤ ω(x) for all x ∈ R+}. Then we can bound the number of sufficient point
samples (function evaluations) needed for ϵ-computability of elements in Fω by N = Ñd1 where ω(d1/21 /Ñ) ≤ ϵ and the
sufficient accuracy of the point samples is ϵ/(2Ñ1/2).

4.1 Implications, future work and connection to previous work

The main theorem states that computing function approximations through NNs will be optimal – in the sense of best approx-
imation accuracy achievable by an algorithm – up to a small constant, compared to any other computational technique. The
small constant we obtain is 12, and this leads to fundamental open problems:

• Computing function approximations through NNs – Is it truly optimal? Theorem 4.1 suggests that computing function
approximations through NNs is optimal up to a small constant. However, is is truly optimal in the sense that this constant
is equal to 1?

• Determining the phase transitions in GHA in AI. Theorem 4.1 demonstrates how NNs can be used to provide upper
bounds on phase transitions in GHA in AI. In HA in computer science there is a rich tradition on determining the correct
phase transitions – typically by matching upper and lower bounds. A similar theory is needed for GHA.

• Sampling complexity. We have seen from Theorem 4.1 that the number of sufficient samples is very large and suffers
the curse of dimensionality. This means that if ω is not logarithmic, we might need an exponentially growing number
of samples in relation to the desired accuracy. Hence, the number of sufficient samples for a stable approximation may
be impossible in certain applications. This relates back to the point of choosing a sensible function class. Theorem 4.1
directly shows that a class of functions with a smaller Lipschitz constant would be easier to be approximated. Alter-
natively, there might also be other descriptions of function classes that reduce the number of sufficient samples – for
example compositional functions, which allow reducing the inherent dimension [29].

Our results are connected to many areas and recent developments.

• Generalised hardness of approximation. The first discovery of the generalised hardness of approximation phenomenon
was done by A. Bastounis et al. in [19]. Following this framework, the results [20] by M. Colbrook, V. Antun et al.
demonstrated how generalised hardness of approximation happens in deep learning when NNs can be proven to exist
and solve optimisation problems, yet there are phase transition depending on the accuracy and also the amount of data
available, see also [21].

• The mathematics of the Solvability Complexity Index (SCI) hierarchy. Our work is part of the greater program on the
mathematics behind the SCI hierarchy. The SCI framework was introduced in [31] and continued in the work by J. Ben-
Artzi et al. [32], in the work by M. Colbrook et al. [33] as well as in the work by O. Nevanlinna [34, 35] and co-authors.
The SCI hierarchy is directly related to S. Smale’s [36] program on the foundations of computational mathematics and
the early work by C. McMullen [37].

• Instability in AI. Our results are intimately linked to the instability phenomenon in AI methods – which is widespread
[7–12] – and our results add theoretical understandings to this vast research program. There are particular links to the
work by B. Adcock et al. [38] and V. Antun et al. [11]. See also recent developments by D. Higham, I. Tyukin et al. [39].

• Existence vs computability of NNs. There is a substantial literature on existence results of NNs [16,29,40], see for example
the review papers by A. Pinkus [15] and the work by R. DeVore, B. Hanin, and G. Petrova [14] and the references therein.
However, as established in [20] by M. Colbrook, V. Antun et al., only a small subset of the NNs than can be proven to
exist can be computed by algorithms. However, following the framework of A. Chambolle and T. Pock [41], the results
in [20] demonstrate how – under specific assumptions – stable and accurate NNs can be computed.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.
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