
Received: 6 July 2021 Accepted: 22 April 2023

DOI: 10.1111/poms.14021

O R I G I N A L A R T I C L E

Addressing distributional shifts in operations management: The
case of order fulfillment in customized production

Julian Senoner1 Bernhard Kratzwald1 Milan Kuzmanovic1 Torbjørn H. Netland1

Stefan Feuerriegel2

1ETH Zurich, Department of Management,
Technology and Economics, Zurich, Switzerland

2LMU Munich, Institute of Artificial Intelligence
(AI) in Management, Munich, Germany

Correspondence
Julian Senoner, ETH Zurich.
Department of Management, Technology, and
Economics. 8092 Zurich, Switzerland.
Email: jsenoner@ethz.ch

Handling Editor: Panos Kouvelis

Funding information
Norges Forskningsråd, Grant/Award Number:
309810

Abstract
To meet order fulfillment targets, manufacturers seek to optimize production sched-
ules. Machine learning can support this objective by predicting throughput times on
production lines given order specifications. However, this is challenging when manu-
facturers produce customized products because customization often leads to changes in
the probability distribution of operational data—so-called distributional shifts. Distri-
butional shifts can harm the performance of predictive models when deployed to future
customer orders with new specifications. The literature provides limited advice on how
such distributional shifts can be addressed in operations management. Here, we propose
a data-driven approach based on adversarial learning, which allows us to account for
distributional shifts in manufacturing settings with high degrees of product customiza-
tion. We empirically validate our proposed approach using real-world data from a job
shop production that supplies large metal components to an oil platform construction
yard. Across an extensive series of numerical experiments, we find that our adversar-
ial learning approach outperforms common baselines. Overall, this paper shows how
production managers can improve their decision making under distributional shifts.
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1 INTRODUCTION

Order fulfillment is a crucial performance indicator in manu-
facturing (Song et al., 1999). Achieving on-time delivery can
be particularly difficult when manufacturers produce highly
customized products (Cohen et al., 2003). For these man-
ufacturers, incoming customer orders can involve multiple
nonstandard production tasks that must be planned effec-
tively. This is challenging because order throughput times
vary across customer specifications. Completing production
orders too early causes unnecessary inventory costs and
increases the risk of rework in case of engineering changes,
whereas delays diminish service levels and can lead to sub-
stantial economic losses (Cohen et al., 2003). Therefore,
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reducing deviations from order delivery due dates is impor-
tant for maintaining a good cost performance. Motivated by
this objective, manufacturers continuously seek to improve
their planning accuracy.

Machine learning can support manufacturers in achieving
high planning accuracy. Specifically, machine learning can
improve managerial decision making by utilizing historical
observations to predict throughput times given order spec-
ifications (cf. Grabenstetter & Usher, 2014). This enables
production managers to optimize their production plans and
reduce costs by mitigating deviations from order delivery due
dates. However, implementing machine learning in manufac-
turing settings with high degrees of product customization is
challenging because orders may involve unique specifications
and high variety (e.g., producing customized components for
one-of-a-kind oil platforms). Due to heterogeneity between
different customer orders, such settings typically generate
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operational data for which probability distributions of dif-
ferent customer orders are highly dissimilar. In the machine
learning literature, this is commonly referred to as distri-
butional shifts. Consequently, the standard assumption of
identically distributed samples in predictive analytics (Hastie
et al., 2009) is violated, and the prediction performance
may deteriorate.

Scholars have argued that distributional shifts are a
key challenge of successfully applying predictive analyt-
ics in management (Simester et al., 2020). While there is
increasing traction of predictive analytics in operations man-
agement (OM) (e.g., Baardman et al., 2018; Bastani et al.,
2022; Mišić & Perakis, 2020; Olsen & Tomlin, 2020), there
is, however, scarce advice on how distributional shifts can
be addressed. Existing approaches to address distributional
shifts make use of model retraining (Cui et al., 2018) or
transfer learning via fine-tuning (Bastani, 2021; Kouw &
Loog, 2018; McNamara & Balcan, 2017; Pan & Yang, 2010).
These methods are effective in make-to-stock manufactur-
ing (e.g., fast-moving consumer goods) characterized by low
variety and high volumes. Yet, they are likely to fall short
in manufacturing settings characterized by high variety and
low volumes. Both model retraining and transfer learning via
fine-tuning require labeled data for both historical and forth-
coming orders, yet labels for the latter are not available when
dealing with new orders. As such, tailored approaches for
customized production are needed.

To meet order fulfillment targets in customized production,
we develop a data-driven approach to predict order through-
put times and then perform job shop scheduling. Key to our
approach is that we predict when the order will be finished
and, then, use this information to optimize scheduling deci-
sions. Due to the operational heterogeneity in customized
production, making predictions of throughput times is chal-
lenging as there are distributional shifts between different
customer orders, which violate the standard assumption of
machine learning and which can reduce prediction perfor-
mance. In our approach, we account for distributional shifts
between different customer orders through the use of adver-
sarial learning. Adversarial learning (Goodfellow et al., 2014)
is a recent innovation in artificial intelligence to make infer-
ences under two opposing—thus adversarial—objectives. In
our case, we leverage adversarial learning to combine the fol-
lowing two objectives: (1) to predict throughput times with
the best possible performance and, simultaneously, (2) to
minimize the distance of the neural network representations
of the operational data between the historical and the forth-
coming order setting. Importantly, the latter accounts for the
new specifications of the forthcoming order setting (with-
out knowing the ground-truth labels) and, as a result, yields
better predictions of throughput times and better scheduling
decisions for future orders.

We evaluate the effectiveness of our proposed approach
in a series of numerical experiments using real-world indus-
trial data from Aker Solutions (from here on Aker), a leading

engineering company in the energy sector. We focus on a
job shop production that supplies large metal components
for the construction of oil platforms. In this case, compo-
nents produced for different customer order settings (i.e.,
new oil platforms) involve many idiosyncratic specifications.
We find a substantial distributional shift between order set-
tings; that is, the conditions under which the components are
produced are highly dissimilar. Especially when starting to
produce components with new specifications, it is challeng-
ing for naïve predictions using machine learning to provide
accurate estimates of throughput times. This is addressed
in our approach based on adversarial learning as it explic-
itly accounts for the distributional shifts between different
order settings. We then compare our proposed approach for
job shop scheduling against several data-driven baselines.
Across an extensive series of numerical experiments, we find
that our approach outperforms the baselines and can offer
considerable cost savings.

This paper makes three main contributions. First, we pro-
vide empirical evidence of how predictive analytics can
improve order fulfillment in customized production. Second,
we contribute to the practice and literature on predictive
analytics in OM (e.g., Bastani et al., 2022; Mišić & Per-
akis, 2020; Olsen & Tomlin, 2020). Here, we address the
problem of distributional shifts, which is particularly per-
tinent in settings subject to extensive heterogeneity. Third,
we tailor adversarial learning to an OM context and study
its operational value for job shop scheduling. Altogether,
our work has direct managerial implications: Manufactur-
ers need to identify and cater for distributional shifts in
customized production. Simply deploying predictive ana-
lytics without addressing distributional shifts may result in
subpar decisions.

This paper is structured as follows. Section 2 motivates
the challenges of predictive analytics in customized produc-
tion under distributional shifts, yet revealing a scarcity of
methods for addressing distributional shifts in OM. Section 3
introduces our empirical setting at Aker. Section 4 proposes
our model for job shop scheduling, which uses adversarial
learning to predict throughput times while addressing distri-
butional shifts. Section 5 evaluates our approach in a series of
numerical experiments under different operational contexts.
We report various robustness checks in Section 6. Based on
our results, Section 7 discusses the implications for making
robust inferences under distributional shifts in OM.

2 RELATED WORK

This paper is motivated by the practical problem of mak-
ing robust inferences under distributional shifts and, for this
purpose, draws upon statistical learning theory. We see four
streams of research as particularly relevant to this work:
(1) predictive analytics in OM, (2) job shop scheduling,
(3) distributional shifts, and (4) adversarial learning.
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2.1 Predictive analytics in OM

Predictive analytics can support managers in making deci-
sions by modeling uncertain operational outcomes (Choi
et al., 2018; Cohen, 2018; Feuerriegel et al., 2022). Recent
methodological advances, accompanied by the increasing
availability of data, have accelerated the adoption of pre-
dictive analytics in OM (Bastani et al., 2022; Jakubik &
Feuerriegel, 2022; Mišić & Perakis, 2020; Olsen & Tomlin,
2020). In the following, we provide an overview of predictive
analytics in OM. For a detailed review of the literature, see
Mišić & Perakis (2020) and Bastani et al. (2022).

There are many promising demonstrations of predictive
analytics in OM, such as sales and demand forecasting
(Baardman et al., 2018; Carbonneau et al., 2008; Cui et al.,
2018; Ferreira et al., 2016; Lau et al., 2018), revenue man-
agement (Bernstein et al., 2019; Chen et al., 2022; Feldman
et al., 2021), location selection problems (Glaeser et al., 2019;
Huang et al., 2019), last mile delivery (Liu et al., 2020), prod-
uct recall decisions (Mukherjee & Sinha, 2018), inventory
management (Bertsimas & Kallus, 2019), procurement under
demand uncertainty (Ban et al., 2019), and the estimation of
the remaining useful life of products (Mazhar et al., 2007).

In manufacturing operations, Senoner et al. (2022) adapted
predictive analytics to improve process quality. However,
despite their relevance, applications of predictive analytics
and decision making are still scarce in manufacturing. OM
scholars have therefore argued that more attention in this
“under-researched” area is needed (Feng & Shanthikumar,
2018). This particularly holds true for manufacturing set-
tings, where products are manufactured with high variety and
in low volumes. These characteristics make it particularly
challenging to apply conventional prediction methods due to
distributional shifts. Here, our paper contributes to the OM
literature by tailoring predictive analytics for manufacturing
settings with high degrees of product customization.

Applying predictive analytics to data-scarce settings (e.g.,
new products) is a known challenge in OM. Kesavan and
Kushwaha (2020) compare analytics and expert decision
making in a field experiment, finding that giving discretionary
power to experts is beneficial in growth-stage products.
Instead of experts, practitioners can also revert to social
media (Cui et al., 2018) or other proxies (Bastani, 2021).
However, our work is different in that there are no such
data available for forthcoming orders in customized pro-
duction. As a remedy, we develop a data-driven approach
based on adversarial learning and later demonstrate its
operational value.

2.2 Job shop scheduling

Job shop scheduling problems consider a multitude of arriv-
ing production orders that compete for processing time on
common resources (Adams et al., 1988; Wein & Chevalier,
1992). These orders are typically associated with an arrival
date t, a due date d, and a stochastic throughput time y.

The difference between d and t defines the planned leadtime
y(plan). The problem is to schedule the individual production
orders by optimizing against a time-dependent objective. A
common objective is to minimize the total cost of (1) earli-
ness, that is, completing production orders too early (before
d) and (2) tardiness, that is, completing production orders
too late (after d) (e.g., Atan et al., 2016; Bagchi et al., 1994;
Federgruen & Mosheiov, 1996; Seidmann & Smith, 1981). A
simple form of the total cost function C is given by

C(y, y(plan)) = 𝜁(early)[y(plan) − y]+ + 𝜁(tardy)[y − y(plan)]+,

(1)

where [⋅]+ returns the positive part of an expression and
where the convex functions 𝜁(early)(⋅) and 𝜁(tardy)(⋅) measure
the costs of earliness and tardiness per time unit (Seidmann
& Smith, 1981). As can be seen in Equation (1), the plan-
ning accuracy in a job shop production strongly depends on
accurate time estimates for throughput times.

The throughput time y is typically estimated based on his-
torical observations. Recent approaches have also included
covariate information for the estimation of throughput times
(Grabenstetter & Usher, 2014). The common assumption is
that data from previous customer orders are sampled from the
same probability distribution as the data from forthcoming
customer orders. This rarely holds in manufacturing settings
with high degrees of product customization. Customization
often leads to changes in the distribution of operational data,
which makes it particularly challenging to provide accu-
rate throughput time estimates. This paper seeks to predict
throughput times while accounting for distributional shifts in
the operational data due to product customization.

2.3 Distributional shifts

Predictive analytics deals with the problem of inference; that
is, analyzing patterns and making predictions from observa-
tional data (Ghahramani, 2015; Hastie et al., 2009). Formally,
one infers an outcome y ∈ Y based on an input x ∈ X from a
predictive model f (Jordan & Mitchell, 2015). As formalized
in statistical learning theory, the performance of a predictive
model depends on its ability to generalize well on out-of-
sample observations. The core assumption is that both past
and future observations are independently drawn from the
same probability distribution over X × Y . If this assumption
is violated (i.e., ℙ(X,Y) ≠ ℙ(X′,Y′) between in-sample and
out-of-sample observations), the performance of predictive
models is likely to deteriorate for future observations. This
is the case if a predictive model is deployed on data that stem
from a different probability distribution than the training data.
In the literature, this is referred to as distributional shift (or
domain shift; Kouw & Loog, 2018).

Distributional shifts have been extensively studied for the
specific requirements in computer vision and computational
linguistics. These studies mostly draw upon common data
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sets for benchmarking (e.g., handwritten digits) but do not
involve operational data. Recently, there have been some
technical contributions focusing on learning under distribu-
tional shifts (e.g., Ganin et al., 2016; Shen et al., 2018;
Tzeng et al., 2017; Wang et al., 2019). These methods can
be subsumed under the term “domain adaptation” or “domain
adaptive learning.” The objective of domain adaptive learning
is to perform an end-to-end prediction task while simultane-
ously considering distributional shifts between two different
domains (e.g., predicting product reviews for books based on
product reviews written for movies). While domain adaptive
learning has shown great potential with image and text data,
its operational value in OM practice has not yet been studied.

There are approaches for handling distributional shifts
but with a clearly different objective (Kouw & Loog, 2018;
McNamara & Balcan, 2017; Pan & Yang, 2010). First, there
is model retraining (Cui et al., 2018). Here, a model is (con-
tinuously) updated using data (x, y) with features and labels
from the new operational setting, so that it adapts to the
distributional shift in operational data. As in online learn-
ing, the latter requires continuous access to labels, which
makes it suitable for make-to-stock manufacturing (e.g., fast-
moving consumer goods). In contrast, such labels are not
available for forthcoming orders in customized production
because of which this approach is not applicable to our work.
Second, there is transfer learning via fine-tuning (Kouw &
Loog, 2018; McNamara & Balcan, 2017). Here, inferences
are made between different predictive tasks (e.g., changing y
from fault risk to cost) or between different populations. To
this end, data from the new predictive task or new popula-
tion are used to update the model weights. This is effective
for operational settings with proxy data (Bastani, 2021). Yet,
such data are typically unavailable for forthcoming orders in
customized production. In sum, the above methods require
labeled data from the deployment setting; therefore, none of
these methods fulfill the objective of this work.

Distributional shifts represent a key hurdle for applying
predictive analytics. Yet, despite its relevance, there is a
scarcity of research on its practical implications (Simester
et al., 2020). To the best of our knowledge, there is no
research that suggests how to effectively mitigate distribu-
tional shifts in manufacturing. However, distributional shifts
appear in all real-world operations and can lead to poor
decision making. Motivated by the general trend in manufac-
turing toward increased product customization (Choi et al.,
2021; Feng & Shanthikumar, 2018; Olsen & Tomlin, 2020),
this paper addresses distributional shifts in operational data
through the use of adversarial learning.

2.4 Adversarial learning

The term “adversarial learning” refers to a general technique
in predictive analytics whereby a neural network is supposed
to learn two adversarial objectives (Goodfellow et al., 2014).
For example, it allows one to train a neural network that has
good prediction performance and where the representation of

the neural network simultaneously fulfills another constraint.
Mathematically, the two adversarial objectives can be viewed
as a two-player minimax game. Yet, implementing adversar-
ial learning in practice is challenging. On the one hand, an
appropriate optimization technique must be chosen to ensure
convergence with state-of-the-art solvers (e.g., stochastic gra-
dient descent), and, on the other hand, optimization of the two
objectives must take place in the latent space of the neural
network parameters.

Adversarial learning has first been introduced as part of
generative adversarial networks (GANs; Goodfellow et al.,
2014). GANs generate synthetic data (e.g., artificially cre-
ated images) that are indistinguishable from samples drawn
from a real data distribution (e.g., distribution of real images).
In order to achieve this, two separate two neural networks
are used: a generator G that generates a new synthetic sam-
ple and a discriminator D that estimates if a sample stems
from the original distribution (i.e., sampled as in the training
data) or from the model distribution (i.e., sampled from the
generator). Both networks are then trained jointly with adver-
sarial objectives: The discriminator is trained to distinguish
the two distributions, while the generator model is trained
to fool the discriminator. This results in a two-player mini-
max game with an optimal solution in which the generator
distribution is equal to the data distribution.

Adversarial learning has also shown success in domain
adaptive learning for image and text data (Ganin et al., 2016;
Shen et al., 2018; Tzeng et al., 2017). Here, adversarial learn-
ing is applied to map features from different domains into a
common latent space, so that the training procedure becomes
an end-to-end prediction task. This is usually realized by
training one neural network to achieve the best possible pre-
diction performance, while a second adversarial network is
trained to keep the feature distributions from both domains
close. This idea is based on the theoretical findings of Ben-
David et al. (2010, 2007), which suggest that, for good
feature representations in cross-domain transfer, a discrimi-
nator should not be able to distinguish from which domain an
observation originated.

In this paper, we tailor domain adversarial learning to
OM decision making; that is, we address distributional shifts
between different orders in customized production to improve
job shop scheduling.

3 EMPIRICAL SETUP AT AKER

3.1 Job shop production at Aker

Our empirical application is carried out at Aker, headquar-
tered in Lysaker, Norway. Aker is a leading engineering
company in the energy sector, with an annual turnover of
approximately USD 3.4 billion in 2021. The company cov-
ers the entire value chain, including fabrication engineering,
purchasing, manufacturing, and delivery. We focus on a job
shop production involving customer orders for large metal
components that are supplied for the construction of oil
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F I G U R E 1 Empirical context at Aker. [Color figure can be viewed at wileyonlinelibrary.com]

platforms. Due to strong dependencies, delays in individual
production orders can lead to substantial economic losses.
Therefore, Aker puts great emphasis on order fulfillment in
its component production sites.

In our numerical experiments, we use data from the two
most recent order settings: “Johan Castberg Floating Produc-
tion Vessel” (setting ) and “Johan Sverdrup Riser Platform
Modification” (setting ). Setting  involves the production
of topside modules for a floating production vessel. Setting 

involves the production of components for the modification
of an offshore oil platform. As can be observed in Figure 1,
the two settings for which Aker supplies components differ
radically. Both settings contain complex piping networks that
consist of thousands of interconnected metal spools. Each of
these spools corresponds to an individual production order
that can have distinctive specifications in terms of material
requirements, size, and shape. To avoid costly delays at the
construction yard of the customer, it is crucial that the spools
are available on time.

The order due dates of all spools are recorded in a cen-
tralized enterprise resource planning (ERP) system. The
production management at Aker reviews the spools for which
the engineering specifications and raw materials have arrived,
that is, the backlog. This provides the basis for deciding
which spools should be started next. Tardiness in the spool
production (i.e., the actual finish date exceeds the order due
date) can cause substantial disruptions in the value chain. In
contrast, spools that finish too early result in excess inventory
that must be managed in a limited outdoor space (recall, the
spools are large, bulky, and heavy) and may lead to rework
in the event of engineering change orders. For Aker, the
cost of carrying excess inventory is substantial. By accurately
estimating the throughput times of orders in the backlog, pro-
duction managers can optimize their scheduling decisions to
improve the on-time delivery performance (see Figure 2).

To meet order fulfillment targets, Aker follows a two-
staged, predict-then-optimize approach: In the first stage,
Aker estimates the throughput times for customer orders,
and, in the second stage, production managers solve a job
shop scheduling problem to reduce costs from early and
tardy production orders (see Section 2.2 for an overview on
job shop scheduling). However, because each order setting
(i.e., construction of oil platform) served by Aker is unique,
there is substantial heterogeneity between different customer

orders and thus distributional shifts in the operational data.
Therefore, a naïve application of machine learning to predict
throughput times may lead to a suboptimal prediction perfor-
mance and eventually suboptimal scheduling decisions. This
motivates our data-driven approach to address distributional
shifts between order settings with adversarial learning.

3.2 Empirical task

The task is to solve a job shop scheduling problem that opti-
mizes decision making such that the cost of deviations from
the order due dates is minimized. Specifically, we aim to
schedule orders for setting  (“Johan Sverdrup Riser Plat-
form Modification”) while making use of historical data from
setting  (“Johan Castberg Floating Production Vessel”).

Aker provided us with operational data from the two
order settings. The data for setting  comprise the produc-
tion details of n = 5830 spools that were produced between
January 2019 and September 2019. The data for setting 

comprise the production details of m = 3866 spools that were
produced between September 2019 and April 2020. Notably,
there is no chronological overlap between the operational
data from setting  and setting  (see Figure 3).

For job shop scheduling, we consider all information avail-
able to Aker at the time of scheduling the orders for the
forthcoming setting ; that is, we use historical data from
setting  to schedule the orders belonging to setting .
Hence, for both settings, we have access to spool-specific fea-
tures. We denote these features by {(xi )}n

i=1 and {(xi )}m
i=1,

respectively. For the historical setting , we additionally
have information on the actual order throughput times that
were observed in the past. We refer to them as “labels” and
denote them by {(yi )}n

i=1. In contrast, for setting , we do
not have such labels with information on order throughput
times, because this is the forthcoming order setting for which
we predict throughput times and schedule individual orders.
In the following, we make use of the order throughput times
for setting  but only for the purpose of evaluation.

The observed throughput times from setting  and set-
ting  are shown in Figure 4, suggesting considerable
differences. The average throughput time in setting 

amounts to 32.0 days, whereas the average throughput time in
setting  amounts to 35.2 days. A Welch’s t-test confirms
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F I G U R E 2 Example timelines for earliness and tardiness in spool production.

F I G U R E 3 Spool production timelines of order settings  and . [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Distributions of throughput times for setting  and setting . [Color figure can be viewed at wileyonlinelibrary.com]

that the differences in throughput times are statistically sig-
nificant (p < 0.001). Recall again that the throughput times
from setting  are unknown at the time of prediction (i.e.,
when starting to produce spools for setting ) and are only
used for evaluation.

The data from both order settings contain d = 20 spool-
specific features, which we use to predict the throughput
times (Table 1). The features include detailed information
about the spool-specific timelines, material specifications,
and required processing steps. Note that Aker computes the
features daily with the available information before and until
the time point when the prediction is made. Because of that,
a look-ahead bias is prevented.

All features are potentially subject to distributional shifts
between the two order settings. For example, one setting may
require spools with particularly fine tolerances that were not
needed in previous settings. There may also be distributional
shifts when the interrelations between features change. This

can, for example, be the case if one order setting requires
long and thin spools while the other requires short and thick
spools.

3.3 Exploratory analysis of distributional
shifts

We now explore the distributional shifts between the spool-
specific features of setting  and setting . Because our
operational data comprise d = 20 features, we focus on the
following multivariate methods for assessing the distribu-
tional shifts: (1) t-distributed stochastic neighbor embedding
(t-SNE) and (2) adversarial validation. The results are
summarized below.

First, we apply t-SNE (van der Maaten & Hinton, 2008)
to investigate (dis-)similarities in the feature distributions.
The t-SNE method is a nonlinear dimensionality reduction
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TA B L E 1 List of features.

Feature Description Feature Description

x1 Material multiplication factor x11 Demolition multiplication factor

x2 Insulation thickness around the spool x12 Min. design temperature of the fluid/gas in the spool

x3 Length of the spool x13 Test pressure of the fluid/gas in the spool during testing

x4 Dry weight of the spool x14 Operational pressure of the gas/fluid in the spool

x5 Summed length of all welds of the spool x15 Max. operational temperature of the fluid/gas in the spool

x6 Number of welds x16 Max. design temperature of the fluid/gas in the spool

x7 Average weld diameter x17 Number of different materials needed to produce the spool

x8 Average weld thickness x18 Number of different tasks to produce the spool

x9 Planned length of the job x19 Max. average historical delay of the material deliveries for the spool

x10 Planned sum of workline hours x20 Revision multiplication factor

F I G U R E 5 Two-dimensional representation of the spool-specific feature spaces based on t-distributed stochastic neighbor embedding (t-SNE). [Color
figure can be viewed at wileyonlinelibrary.com]

technique that is specifically designed for visualizing high-
dimensional data. The idea behind the t-SNE method is to
convert the similarities between data points into joint prob-
abilities and to minimize the Kullback–Leibler divergence
between the joint probabilities of a low-dimensional embed-
ding and the original feature space (van der Maaten & Hinton,
2008). This yields a low-dimensional representation that can
be visualized.

We utilize t-SNE to assess whether the spool-specific fea-
tures of setting  and setting  are distributed similarly.
Figure 5 shows the feature representations for both settings
in a two-dimensional space. Note that the axes do not have
a specific meaning but only give an intuition about how
the spool observations are distributed in the original feature
space (i.e., d = 20). It can be observed that the feature rep-
resentations form largely disjunct clusters with little overlap
between the two settings. This provides strong evidence that
the operational specifications of setting  and setting  are
substantially different.

Second, we are interested in which features are particularly
important in explaining the distributional shifts between both
order settings. To achieve this, we draw upon adversarial
validation (Pan et al., 2020). In adversarial validation, one
trains a classifier that discriminates between features origi-
nating from setting  and setting . More formally, we learn
a binary classifier to distinguish whether a feature x is drawn
from X or X . The labels are given by binary indicators that
suggest the setting from which x was sampled. Provided there
is no distributional shift between the two settings, a classifier
should not be able to discriminate between features; that is,
it should not perform better than a random guess. This would
correspond to an area under the receiver operating character-
istic curve (ROC-AUC) close or equal to 0.5. In the event of
a distributional shift, the ROC-AUC would be significantly
above 0.5. In this case, an analysis of feature importance can
help to identify which features explain distributional shifts.

We implement adversarial validation via gradient boost-
ing with decision trees (Ke et al., 2017). We run the analysis
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F I G U R E 6 Features associated with the largest distributional shift.

over 100 different training and validation splits and consis-
tently arrive at an out-of-sample ROC-AUC of 1.0. In other
words, the classifier can perfectly discriminate between fea-
tures originating from setting  and setting , thereby adding
further evidence of distributional shifts. We then compute
the average feature importance based on the mean absolute
feature attribution (Lundberg et al., 2020). This allows us to
identify the features that are the most important in explaining
distributional shifts. The top five features associated with the
largest distributional shift are listed in Figure 6. The results
suggest that a large portion of the distributional shifts can
be explained by differences in the production conditions and
material specifications (i.e., minimum design temperature,
required insulation thickness, test pressure, …).

Overall, our exploratory analysis confirms that there are
substantial distributional shifts between the two order set-
tings. This can have a substantial effect on predictive models
when training on data from setting  and predicting the
operational outcomes (throughput times) for setting . As
we show in the following, the straightforward use of pre-
dictive analytics can harm prediction performance and thus
scheduling decisions.

4 MODEL DEVELOPMENT1

In this section, we introduce our data-driven approach based
on adversarial learning and job shop scheduling to support
manufacturing operations in highly customized production.
We first give a problem description (Section 4.1) and connect
it with the concept of distributional shifts (Section 4.2). Then,
we adapt adversarial learning to address the distributional
shifts in our decision problem (Section 4.3).

4.1 Problem description

We consider a job shop production, where production orders
are scheduled such that the expected costs of earliness (i.e.,
completing the order too early) and tardiness (i.e., completing
the order too late) are minimized. We assume that each order
i = 1, … ,m has a due date di and a stochastic throughput time

yi. The actual throughput time yi is unknown a priori and
must thus be predicted from historical observations. We fur-
ther assume that the to-be-completed production orders come
from a forthcoming setting (called setting ) and we have
access to labeled data from a historical setting (called set-
ting ). Due to customized production, settings  and  are
different. Formally, setting  involves n individual produc-
tion orders, where every order i is described by order-specific
features xi ∈ ℝd. Without loss of generality,  can also be a
set of multiple historical order settings. Further, let each indi-
vidual order be associated with an observed order throughput
time yi ∈ ℝ. The planned and forthcoming setting  com-
prises m to-be-completed orders for which we would like
to predict future throughput times. When starting to produce
for order setting , we have access to order-specific features
xi ∈ ℝd but not to the throughput times yi ∈ ℝ because they
lie ahead of time.

To optimize the job shop production, manufacturers typ-
ically follow a predict-then-optimize approach: In the first
stage, the throughput times for customer orders are predicted,
and, in the second stage, a job shop scheduling problem
is solved in order to optimize scheduling decisions. We
formalize this in the following.

Stage 1. In the first stage, we estimate a predictive model
f : X → Y to predict the throughput times ŷi for orders
i = 1, … ,m from the forthcoming setting . Here, we can
make use of order-specific features xi that characterize the
individual production orders (e.g., material specifications,
process configurations, timeline information). The predicted
throughput times for setting  are given by ŷ = f (x).

The input for estimating the predictive model f is as
follows. For the historical setting , we have access to order-
specific features {(xi )}n

i=1 and the ground-truth throughput

times {(yi )}n
i=1. For the forthcoming setting , we only have

access to the order-specific features {(xi )}m
i=1 but not the

throughput times as these lie ahead of time. That is, we have
a labeled data set sampled from setting  and an unlabeled
data set sampled from the marginal distribution of setting 

over X. Hence, the input is given by

{(
xi , y



i

)}n

i=1
∼iid ()n and

{(
xi

)}m

i=1
∼iid (X)

m
.

(2)
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To estimate f , we aim at minimizing the expected error
𝜖 between the predicted throughput times and observed
throughput times for setting . This yields the following
objective:

min
f
𝜖(f ) = min

f
𝔼(x,y)∼

[
(y, ŷ)

]

given data
{(

xi , y


i

)}n

i=1
and

{(
xi

)}m

i=1
,

(3)

where  denotes a convex loss function.2 Here, Equation (3)
is important: We aim at minimizing the expected error for
setting  while having access to order-specific features for
both setting  and setting  but only observed outcomes for
setting . We later adapt adversarial learning to make such
predictions of throughput times while accounting for the het-
erogeneity between the order-specific features of setting 

and setting  (see Section 4.3). In contrast to that, off-the-
shelf machine learning would only minimize the expected
error for setting  without considering the distributional shift
between the order-specific features of setting  and setting .

Stage 2. In the second stage, the scheduling task for the
forthcoming setting  is formalized as an integer linear pro-
gramming problem that determines a production sequence
of the m to-be-completed production orders given T avail-
able time slots. Formally, let ŷi denote the estimated order
throughput time and di the due date of a given production
order i. The per time unit costs of earliness and tardiness are
given by c(early), c(tardy) ∈ ℝ≥0, respectively. Further, let Kt
define the total number of production orders (i.e., capacity)
that can be processed at time t. Then, the optimal production
sequence can be solved via

min
zit∈{0,1}

T∑
t=1

m∑
i=1

zit [c(early) max {0, (di − t) − ŷi}

+ c(tardy) max {0, ŷi − (di − t)}] (4a)

s.t. 𝜓(z, ŷ, t) ≤ Kt, for t = 1, … ,T , (4b)

T∑
t=1

zit = 1, for i = 1, … ,m, (4c)

where the binary decision variable zit determines whether
production order i should be started at time t and where the
function 𝜓(z, ŷ, t) counts the number of production orders
that are produced in parallel. Here, the first constraint
ensures that the available capacity is not exceeded, while the
second constraint ensures that all production orders are
fulfilled. We solve the optimization problem using the
branch-and-cut implementation for mixed-integer problems
from the GNU Linear Programming Kit (GLPK). Impor-
tantly, the scheduling task makes use of the throughput
times ŷi, which are not given ex ante but—analogous to OM
practice—must be predicted a priori before scheduling.

The above problem is formulated as a predict-then-
optimize approach due to three important practical benefits:
(1) It follows the current practice in order fulfillment. For
example, a predict-then-optimize approach is consistent with
decision making at our case company Aker and other man-
ufacturing firms. (2) It offers great flexibility with regard to
the chosen machine learning model. In particular, it allows
manufacturers to use existing machine learning tools from
their company. (3) It allows manufacturers to incorporate
expert knowledge. For example, manufacturers can assess
the accuracy of the predictions before proceeding to the
scheduling stage.

Crucial to the above approach are accurate predictions of
throughput times in the first stage. The reason is that incorrect
predictions will lead to suboptimal production schedules and
therefore additional costs. This can be formally seen in Equa-
tion (4a), where inaccurate predictions of throughput times
ŷi negatively affect the overall production schedule. Hence,
by accurately predicting throughput times (stage 1), manu-
facturers can find optimal scheduling sequences (stage 2),
such that the cumulative costs of earliness and tardiness
are minimized. However, predicting throughput times is par-
ticularly challenging when manufacturers produce highly
customized products with nonstandard specifications (Cohen
et al., 2003). Such customized products are characterized
by large between-order heterogeneity and thus data samples
that are not identically distributed, which, in turn, violates a
standard assumption of machine learning (cf. Hastie et al.,
2009). Hence, off-the-shelf machine learning models (e.g.,
standard deep neural networks) may give poor predictions
of throughput times. The reason is that different specifica-
tions in customized production introduce distributional shifts
between different customer order settings. This motivates
an approach that accurately predicts order throughput times
while accounting for distributional shifts between different
order settings.

4.2 Distributional shifts between order
settings

We now connect the heterogeneity among order settings
to the concept of distributional shifts and thereby motivate
the use of adversarial learning to give better predictions
in stage 1. Recall that we consider different order settings
where we denote the historical order setting by  (in our
empirical context, 5830 component orders for a floating
production vessel) and the forthcoming order setting by  (in
our empirical context, 3866 component orders for an offshore
oil platform). Here, we specifically focus on manufacturing
settings with high degrees of product customization. In this
particular context, forthcoming orders from new customers
can involve entirely new specifications for which there are no
historical observations. Varying specifications typically lead
to between-order heterogeneity. Formally, the between-order
heterogeneity is expressed by a distribution over X × Y that
changes between model estimation (setting ) and model
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deployment (setting ). This is stated in the following
definition of a distributional shift.

Definition 4.1 (Distributional shift). A distributional shift is
a change in the joint probability distribution between the data
from setting  that is used for model estimation and the data
from setting  that is used during model deployment, that is,

ℙ(X,Y) ≠ ℙ(X,Y). (5)

Building upon the concept of distributional shifts, we now
explain why a naïve application of off-the-shelf machine
learning does not solve our task, and thereby we motivate
the use of adversarial learning. In particular, we consider a
specific case of distributional shift where the difference in
the joint distribution ℙ(X,Y) between setting  and setting
 results from a difference in the marginal distribution of X
(i.e., ℙ(X)), whereas the conditional distribution of Y given X
(i.e., ℙ(Y ∣ X)) remains unchanged between the two settings.
Formally, we address a distributional shift of the type

ℙ(X,Y) = ℙ(Y ∣ X)ℙ(X) ≠ ℙ(Y ∣ X)ℙ(X) = ℙ(X,Y),

(6)

where ℙ(Y ∣ X) = ℙ(Y ∣ X) = ℙ(Y ∣ X), but ℙ(X) ≠
ℙ(X). This form of distributional shift is known in the lit-
erature as covariate shift (Kouw & Loog, 2018). In fact,
distributional shifts in the form of covariate shifts are com-
mon at Aker and across OM practice. The latter essentially
states that the specifications change between orders (i.e.,
ℙ(X) ≠ ℙ(X)). For example, at Aker, one setting may
require thin and long spools while the other may require thick
and short spools. The former essentially states that the pro-
cess behind manufacturing products is comparable; that is,
orders with identical specifications have the same through-
put times regardless of whether they belong to setting  or
 (i.e., ℙ(Y ∣ X) = ℙ(Y ∣ X)). For example, at Aker, thin
(and long) spools will take the same time for production inde-
pendent of whether the thin (and long) spool is later used in a
floating production vessel or an offshore oil platform.

In a naïve application of machine learning, one would sim-
ply estimate f only based on (x, y). This has two key
disadvantages (which later present two salient differences to
our proposed approach). First, predictive models from off-
the-shelf machine learning ignore the operational data from
the forthcoming order, that is, x. However, such opera-
tional data characterizing forthcoming production orders are
already available at the time of scheduling and could be
used to improve the predictions and therefore the schedul-
ing decisions. Second, predictive models from off-the-shelf
machine learning optimize against minf 𝔼(x,y)∼[(y, ŷ)] and
not minf 𝔼(x,y)∼[(y, ŷ)]. That is, off-the-shelf machine
learning optimizes the prediction performance for data
coming from the historical probability distribution of data
from setting  and not that of the forthcoming setting .
However, under a distributional shift ℙ(X,Y) ≠ ℙ(X,Y),

both probability distributions are different; therefore, the opti-
mization will not solve our objective from Equation (3).
The reason is that off-the-shelf machine learning makes the
assumption of i.i.d. sampling (cf. Hastie et al., 2009) and thus
that the distribution over X × Y remains unchanged between
model estimation (setting ) and model deployment (set-
ting ). This assumption does not hold in our manufacturing
setting with high degrees of product customization. As a
result, the performance of such off-the-shelf predictive mod-
els will deteriorate when deployed to a forthcoming setting 

and will lead to suboptimal scheduling decisions.

4.3 Proposed adversarial learning
approach for predicting throughput times

4.3.1 Overview

In the following, we address the objective from Equation (3)
through the use of adversarial learning. For this, we integrate
the observed data (x, y) from setting  and the order-
specific features x from setting  into the estimation of the
predictive model f . This is referred to as an unsupervised
domain adaptation problem. To provide a solution approach,
we adapt adversarial learning to account for the different
distributions behind  and . Specifically, we take advan-
tage of Wasserstein distance guided representation learning
(WDGRL; Shen et al., 2018). WDGRL has been previously
used for classification tasks in computer vision and computa-
tional linguistics but not for OM decisions. Using adversarial
learning, we predict the throughput times while addressing
the distributional shift and then solve the scheduling prob-
lem in Equation (4a)–(4c) via integer optimization. Later,
we confirm the effectiveness of adversarial learning over off-
the-shelf machine learning for making job shop scheduling
decisions under distributional shifts.

Formally, our aim is to predict throughput times under dis-
tributional shifts, that is, to achieve a low expected error in
the forthcoming setting , so that the scheduling decisions
can be optimized. Because we have no observed outcomes
for setting , we cannot directly optimize the objective in
Equation (3). Nevertheless, the expected error in unsuper-
vised domain adaptation problems can be bounded as stated
in Remark 4.1 (adapted from Ben-David et al., 2010, 2007;
Kouw & Loog, 2018; Redko et al., 2017). To state the remark,
we first need a definition of the Wasserstein distance.

Definition 4.2 (Wasserstein distance). The Wasserstein-1 (or
Earth-Mover) distance between two probability distributions
 and  is defined as,

W(,) = inf
𝛾∈Π(,)

𝔼(v,w)∼𝛾[‖v − w‖], (7)

where Π(,) is the set of all joint distributions 𝛾(v,w) with
marginals  and .
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Intuitively, the Wasserstein distance denotes the minimal
amount of probability mass that must be transported (e.g.,
minimum expected transportation cost) from one distribution
to the other to make them identical (Arjovsky et al., 2017).

Remark 4.1 Redko et al. (2017); Lemma 1. The prediction
error for setting  (i.e., 𝜖) can be bound by the sum of
the prediction error for setting  (i.e., 𝜖) and the Wasser-
stein distance W(,) between the feature distributions of
settings  and , that is,

𝜖 ≤ 𝜖 + W(,), (8)

under some technical assumptions; see Redko et al. (2017).

The above remark assumes a machine learning classifier
and provides the following theoretical motivation for our
learning approach (see Supporting Information A for a more
detailed discussion of the error bound and the underlying
technical assumptions). First, the upper bound of the pre-
diction error depends on how well we can make predictions
for setting . Second, the upper bound of the prediction
error should increase when the probability distributions of
both settings drift apart. This motivates our adversarial learn-
ing approach where we aim to make inferences under two
adversarial objectives: (1) Our first objective is to estimate
a function with a low prediction error on setting . This
is achieved by minimizing the loss between the actually
observed outcomes and predictions from setting . (2) Our
second objective accounts for the distance term W(,),
whereby we learn latent feature representations of the order-
specific features from both settings that are close to each
other. More formally, we minimize the Wasserstein distance
between the two feature distributions of setting  and set-
ting . As such, we aim for a good prediction performance in
the known setting , but draw upon a representation that also
generalizes well to operational data from the forthcoming set-
ting . The two aforementioned objectives are adversarial to
each other (e.g., a close feature distribution does not imply a
low error on setting  and vice versa). In the following, we
formalize both objectives in a minimax game.

4.3.2 Model specification

Our adversarial learning approach is composed of three
functions as follows (Figure 7). (1) A shared feature extrac-
tor fe : ℝd → ℝl maps order-specific features from the
d-dimensional input space X of both order settings into a
common latent space ℝl. This allows our approach to learn
a shared representation of the latent feature distributions
from both the historical and the forthcoming order setting.
(2) A regressor fr : ℝl → ℝ outputs the prediction, that is,
the throughput time given the latent features. (3) A so-called
critic fc : ℝl → ℝ is used to estimate the Wasserstein distance
between the latent feature distributions. We implement fe,
fr, and fc as parameterized differentiable functions given by

fully connected linear feed-forward neural networks. Upon
deployment, predictions are then made using fr◦fe. That is,
for input xi, we compute the predicted throughput time via
ŷi = fr(fe(xi)).

The functions fe, fr, and fc are used in the two adversar-
ial objectives as follows. The first adversarial objective (reg)
is to minimize expected prediction error for setting  and
thus to learn predictions of the throughput time using data
from the historical setting . It involves fr◦fe, which out-
puts the predictions. Formally, we can calculate the predicted
outcome ŷi via fr(fe(xi)) for any xi sampled from setting .
The second adversarial objective (was) aims to minimize
the Wasserstein distance between settings  and . Hence,
it is based on fc◦fe, so that the distance between the latent
feature distributions of the historical and forthcoming setting
is minimized.

Adversarial objective 1 (reg): Minimizing the expected
prediction error for setting 

The first objective is to achieve a low expected prediction
error for setting . For this, we compute the prediction error
for labeled samples from setting . The loss is given by

reg = 𝔼(x,y)∼ (fr(fe(x)), y). (9)

Adversarial objective 2 (was): Minimizing the Wasser-
stein distance between settings  and 

The second objective is to minimize the Wasserstein dis-
tance between settings  and  in the latent feature space.
Recall that, intuitively, the Wasserstein distance denotes the
minimal amount of probability mass that must be transported
(e.g., minimum expected transportation cost) from one distri-
bution to the other to make them identical (Arjovsky et al.,
2017). That is, we yield

W(,) = inf
𝛾∈Π(,)

𝔼(v,w)∼𝛾[‖v − w‖], (10)

where Π(,) is the set of all joint distributions 𝛾(v,w) with
marginals  and .

However, computing W(,) directly is computationally
infeasible. As a remedy, we make use of the critic function fc :
ℝl → ℝ (Arjovsky et al., 2017) by rewriting Equation (10)
using the Kantorovich–Rubinstein duality, that is,

sup
‖fc‖L≤1

𝔼x∼X

[
fc(fe(x))

]
− 𝔼x∼X

[
fc(fe(x))

]
, (11)

where fc must be 1-Lipschitz. This is achieved by adding a
gradient penalty loss grad (Gulrajani et al., 2017), which
penalizes the norm of the gradient itself. For this, we sample
points x̂ uniformly along straight lines between points sam-
pled from  and . The gradient penalty term can then be
written as

grad = 𝔼x̂∼ℙx̂

[
(‖∇x̂fc(x̂)‖2 − 1)2

]
. (12)

Further details on the gradient penalty loss are provided in
Supporting Information B.
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F I G U R E 7 Model specification based on the feature extractor fe, the regressor fr , and the critic fc. The use of the model depends on whether (a)
parameters should be estimated or (b) predictions should be made upon deployment. [Color figure can be viewed at wileyonlinelibrary.com]

Altogether, the loss to compute the Wasserstein distance is
then given by

was = 𝔼x∼AX

[
fc(fe(x))

]
− 𝔼x∼BX

[
fc(fe(x))

]
− 𝛽grad, (13)

where 𝛽 is a gradient penalty weight. By maximizing the
Wasserstein loss was, we find the supremum in Equa-
tion (11) that estimates the Wasserstein distance W(,)
between the probability distributions of both settings.

4.3.3 Estimation procedure

We now combine the two adversarial objectives given by
the loss functions reg and was into a joint learning objec-
tive. Formally, this joint objective is given by the following
minimax game:

min
fe,fr

{reg + 𝛼 max
fc

was}, (14)

where 𝛼 is a constant that weights the Wasserstein loss. Equa-
tion (14) aims at reducing the expected prediction error on
the historical setting  through reg, while simultaneously
finding the supremum in Equation (11) by maximizing was
over fc. The latter allows us to estimate the Wasserstein dis-
tance between the feature distributions and minimize it along
with reg over fe and fr. Note that the gradient penalty is used
during maximization in order to estimate the Wasserstein dis-
tance, but the Wasserstein distance estimate itself does not
contain the gradient penalty term (as seen in Equation 11).
Hence, the gradient penalty is not used during minimization;
that is, for the min operation in Equation (14), we use the
Wasserstein loss without the gradient penalty term.

In our implementation, we optimize the overall objective
by alternating gradient descent following Shen et al. (2018).
In every step, we first train the critic function to close opti-

mality (according to the max operation in Equation 14), and
then update the feature extractor and regressor by minimiz-
ing the regression loss, as well as the Wasserstein distance
(i.e., the Wasserstein loss without gradient penalty) estimated
by the critic. We further set the weights in the loss function,
that is, 𝛼 from Equation (14) and 𝛽 from Equation (13) to
a default value of 1, so that we give equal weight to each
part of the corresponding loss. We found that, regardless
of the choice, the overall performance remains robust (see
Supporting Information E).

Upon model deployment, we only need the feature extrac-
tor and regressor (see Figure 7) to make predictions. For
order-specific features xi from order setting , we predict
the throughput time via

ŷi = fr
(
fe
(
xi

))
. (15)

Informed by Remark 4.1, this should then also minimize
the prediction error 𝜖 for the forthcoming order setting,
and therefore address Equation (3), that is, the objective of
our prediction task in stage 1. Hence, our adversarial learn-
ing approach should achieve superior predictions in setting
 compared to off-the-shelf machine learning methods that
only focus on minimizing 𝜖 (while ignoring operational data
from setting ). Afterward, we use the predictions to compute
the corresponding optimal scheduling sequence by solving
the integer optimization in Equation (4a)–(4c), that is, the
objective of our scheduling task in stage 2.

4.4 Connecting prediction performance
and scheduling costs

We now provide arguments for why our proposed adversar-
ial learning approach is effective for solving our decision
problem. Previously, in Section 4.2 and Section 4.3, we
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3034 SENONER ET AL.Production and Operations Management

motivated the use of adversarial learning to achieve better
predictions compared to off-the-shelf machine learning in the
presence of distributional shifts. Here, we discuss how the
prediction performance translates to scheduling decisions and
affects the scheduling costs. We first observe that the global
minimum of scheduling cost is achieved for the “oracle” pre-
diction in our decision problem, that is, when the prediction
error 𝜖 is zero. Then, we use this argument to support the
use of our adversarial learning approach that minimizes 𝜖
over off-the-shelf machine learning, which focuses only on
minimizing 𝜖.

When we discuss the scheduling costs in the following,
we refer to the realized costs of earliness and tardiness (see
Section 2.2) that result from a scheduling decision after the
production is finished. For clarity, we provide an explicit
definition below.

Definition 4.3. The realized scheduling cost for a job shop
scheduling problem is defined as

C̄(z) =
T∑

t=1

m∑
i=1

zit [c(early) max {0, (di − t) − yi}

+ c(tardy) max {0, yi − (di − t)}], (16)

where m is the number of production orders, T is the num-
ber of available time slots, zit ∈ {0, 1} are binary decision
variables that determine at which time t the production

order i started (i.e.,
∑T

t=1 zit = 1 for i = 1, … ,m), c(early) and
c(tardy) ∈ ℝ≥0 are per time unit costs of earliness and tar-
diness, di is a given due date of order i, and yi is the
observed/realized throughput time of order i.

The realized scheduling cost depends on a scheduling deci-
sion z = (z11, … , z1T , z21, … , zmT ), which was made at time
t = 0, that is, prior to the beginning of the production pro-
cess, whereas the realized scheduling cost is measured after
the production is finished and actual throughput times are
observed. In stage 2 of our approach, the scheduling deci-
sion z is calculated by solving the optimization problem in
Equation (4a)–(4c) given predictions for throughput times
ŷ = (ŷ1, … , ŷm). Note that the realized scheduling cost func-
tion is of the same form as the cost function that we minimize
in stage 2 of our approach (see Equation 4a). In fact, for
the oracle predictions (ŷoracle) that are equal to the true real-
ized y (i.e., when ŷ = ŷoracle = y), the two cost functions are
equivalent. Since a scheduling decision z is an argument that
minimizes the cost function in Equation (4a), a decision that
is calculated based on the oracle predictions ŷoracle is thereby
a decision that minimizes the realized scheduling costs. In
other words, the global minimum of the realized schedul-
ing cost is achieved for a decision that is calculated based
on the oracle prediction. We formalize this in Lemma C.1 in
Supporting Information C.

Therefore, perfectly accurate predictions of throughput
times (with error 𝜖 equal to zero) allow for optimal schedul-

ing decisions that minimize the realized scheduling costs.
However, the oracle prediction is a theoretical construct that
is generally not available in OM practice. Rather, we have
prediction algorithms with varying errors in prediction. Intu-
itively, the result in Lemma C.1 in the Supporting Information
suggests that, as we diverge from the “oracle” prediction
and increase the prediction error (i.e., as we increase the
MAE), the realized scheduling costs will increase corre-
spondingly. In other words, the less accurate the predictions
are (i.e., the larger the prediction MAE is), the larger the
resulting scheduling costs will be. Hence, this underpins
why our adversarial learning approach leads to superior deci-
sion making compared to off-the-shelf machine learning:
Our approach aims to minimize 𝜖, and therefore optimizes
against the oracle predictions (ŷoracle). In contrast, off-the-
shelf machine learning minimizes 𝜖, and therefore does not
optimize against the oracle predictions under a distributional
shift. To sum up, our approach directly optimizes against the
objective in Equation (3) and thus achieves lower 𝜖, which
then translates into better scheduling decisions and ultimately
cost savings.

5 NUMERICAL EXPERIMENTS

In the following, we conduct a series of numerical exper-
iments based on job shop scheduling to evaluate how
distributional shifts in customized production affect pro-
duction schedules, and therefore to study the operational
value of our proposed adversarial learning approach. Fur-
ther, to better understand the underlying mechanism of our
approach, we further vary the operational setup across the
following dimensions: (1) the magnitude of the distributional
shift, (2) varying production line capacities, (3) varying cost
parameters, (4) different distributions of the error term, and
(5) different nonlinearities in the operational data.

5.1 Experimental setup

In the following, we set up a simulation where we vary the
magnitude of distributional shifts. The simulation is designed
to mimic decision making in practice where the through-
put times must be predicted before solving the job shop
scheduling problem.

We simulate data for the features xi and xi as follows.
We first use the actual features from Aker from settings 

and  to estimate the corresponding means, 𝜇 and 𝜇,
and covariance matrices Σ and Σ, respectively. For the
historical setting , we then sample features from a multi-
variate Gaussian distribution with mean 𝜇 and covariance
matrix Σ. This gives the samples {(xi )}n

i=1 with n = 5830
analogous to the dimension of the historical order setting  at
Aker. For the forthcoming setting , we set up the sampling
such that we can vary the magnitude of the distributional shift
by introducing a mean shift in the direction of the differ-
ence between the means 𝜇 and 𝜇 (i.e., a mean shift from
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setting  toward setting ). For this, we define the differ-
ence vector vdiff = 𝜇 − 𝜇. Then, we sample features from
a multivariate Gaussian distribution with mean 𝜇 + 𝜃 ⋅ vdiff
and covariance matrix Σ, where parameter 𝜃 is used to con-
trol for the magnitude of the distributional shift (i.e., larger
values for 𝜃 introduce larger distributional shifts). For a given
𝜃, this gives the samples {(xi )}m

i=1 with m = 3866 analogous
to the dimensions of the forthcoming order setting  at Aker.

To simulate throughput times, we need a data-generating
function 𝜙 : X → Y , so that we can generate throughput times
conditional on some given features (this is needed since we
have different features depending on the magnitude of the
distributional shift in our simulation). We thus follow stan-
dard practice in machine learning (e.g., Shalit et al., 2017;
Yoon et al., 2018) where so-called semisynthetic data sets are
used for modeling outcomes (in our case: throughput times).
Specifically, we use predictive modeling to capture the data-
generating process 𝜙 for Aker data in order to mimic the
real-world setting at Aker. Here, the underlying choice of the
machine learning model is crucial, because choosing some
models may result in unfair advantages that bias later com-
parisons. For example, choosing a linear model for 𝜙 would
strongly favor a linear model during evaluation. Similarly,
choosing a neural network would favor our method because
the structure of nonlinearities would be modeled in a similar
way. Therefore, we use a nonlinear tree-based method, that is,
a random forest. By using structurally different nonlinearity
to generate the data, we ensure that none of the methods has
an unfair advantage later.3 Formally, the throughput times are
simulated by using the features via y = 𝜙(x) + 𝜂, where 𝜙 is
estimated using Aker data and where 𝜂 is Gaussian noise, that
is, 𝜂 ∼ N(0, 𝜎y), with 𝜎y being the standard deviation estimate
of y. For a given 𝜃, we thus obtain the simulated throughput
times {(yi )}n

i=1, and {(yi )}m
i=1, respectively.

We use the following operational setup: (1) The magni-
tude of the distributional shift is controlled by the parameter
𝜃. In all of our numerical experiments, we report results for
𝜃 = 1, 2, 3, 4 in order to examine how scheduling decisions
are affected by different distributional shifts. (2) The produc-
tion line capacity in our main numerical experiment is set to
Kt = 70. We later also report results for Kt = 50 and thereby
account for settings with smaller capacities such that produc-
tion orders have to compete for production lines. (3) We set
the costs to cearly = ctardy = 1 so that both earliness and tar-
diness are equally costly. We later also account for settings
where overdue deliveries are more costly than finishing early
(i.e., ctardy = 2). (4) We study how the distribution of the error
term 𝜂 in our simulation affects scheduling costs. We thus
change the Gaussian distribution to a uniform distribution

with short tails. Formally, we use 𝜂 ∼ Unif(−
√

12�̂�y

2
,

√
12�̂�y

2
)

where the choice for the minimum and the maximum value
is designed such that the standard deviation of 𝜂 remains
equal to the standard deviation from before. (5) We finally
explore whether our results remain robust for varying nonlin-
earities in the operational data by changing the form of the
data-generating process that we use to simulate the through-

put times. Here, we repeat our numerical experiments where
𝜙 is given by gradient boosting with decision trees.

Throughout this paper, we report (1) the MAE for measur-
ing prediction performance and (2) the realized scheduling
cost (as defined in Equation 16) for measuring decision per-
formance. The reason for choosing the MAE is that it allows
us to measure errors in stage 1 using the L1-norm, which
is thus aligned with stage 2. Note that we measure the out-
of-sample performance on setting , that is, how well the
approaches generalize to forthcoming order settings. Further,
we account for variation in our simulation and thus report
results from 10 different runs (i.e., we sample 10 different
data sets using the above procedure). We later report the mean
and the standard deviation.

5.2 Baselines

We compare the following approaches for decision making:

∙ Naïve machine learning. Here, we consider off-the-shelf
machine learning methods that do not account for distribu-
tional shifts. We use two state-of-the-art machine learning
methods for comparison: (1) a regularized linear regres-
sion (i.e., elastic net) as a linear method and (2) a deep
neural network as a state-of-the-art nonlinear method. Both
methods are embedded in our predict-then-optimize frame-
work and thus output scheduling decisions. This allows us
to vary the prediction method in stage 1 of our decision
problem, while the optimization for job shop scheduling
remains identical across all methods. Hence, performance
improvements must be attributed to that a method is better
in addressing the objective for the predictions in stage 1.

∙ Adversarial learning. This is our proposed approach based
on adversarial learning. Here, we use the same predict-
then-optimize framework as for the off-the-shelf machine
learning baselines. The only difference is that, through
the use of adversarial learning, we now account for dis-
tributional shifts between order settings and thus directly
address the objective of stage 1 in Equation (3). For a fair
comparison, we use the same model architecture as for the
deep neural network in our baselines. This is crucial: It
rules out any performance gain due to the larger flexibil-
ity of the model. Instead, any performance gain must be
solely attributed to the better learning objective.

∙ Oracle. We report an oracle that has access to the ground-
truth throughput times without noise. We then use the
ground-truth throughput times when solving the opti-
mization problem in Equation (4a)–(4c). Note that the
ground-truth throughput times are not available in practice.
Instead, the purpose of the oracle is merely to offer a lower
bound on the scheduling costs for comparability.

For all methods, we follow common practice (Hastie et al.,
2009) and implement a rigorous hyperparameter search via 5-
fold cross-validation on the data originating from setting .
Specifically, our hyperparameter search is an exhaustive
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TA B L E 2 Main results for job shop scheduling.

Prediction error (MAE) Scheduling cost

Approach 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4

Linear regression (regularized) 24.3 25.3 28.1 31.5 2989.3 3355.0 3931.0 4453.9

(±2.0) (±1.6) (±1.4) (±2.1) (±204.6) (±250.5) (±237.8) (±270.9)

Deep neural network 23.8 24.4 27.2 31.4 2933.1 3209.4 3870.9 4568.4

(±2.0) (±1.3) (±1.5) (±2.3) (±216.8) (±227.9) (±310.6) (±293.5)

Adversarial learning (ours) 23.5 23.7 24.0 23.8 2782.2 2802.7 2995.2 2954.2

(±1.7) (±1.4) (±2.1) (±1.5) (±182.3) (±183.9) (±177.7) (±176.2)

Oracle (lower bound) 0.0 0.0 0.0 0.0 417.9 503.0 518.4 600.2

— — — — (±58.8) (±77.8) (±73.9) (±74.7)

search where all combinations are tested. Details on the
hyperparameter tuning procedure can be found in Support-
ing Information D. For the deep learning neural networks,
we follow best practice and use a multilayer feed-forward
neural network with rectified linear unit (ReLU) activation
and dropout regularization. We use the same architecture in
our adversarial learning approach. Importantly, we empha-
size that our hyperparameter tuning is fair. That is, both the
deep neural network and our adversarial learning use exactly
the same tuning grid. Hence, the same neural network archi-
tecture configurations are tested (i.e., implying that both have
the same “budget” for tuning as both have similar runtimes).
Hence, since all else is held equal, any improvements must
solely be attributed to the fact that one of the two methods
has a better objective function in stage 1.

For the optimization, we use the branch-and-cut implemen-
tation for mixed-integer problems from the GLPK. All solver
parameters are kept at their default values. Note that the opti-
mization is identical for all of the above approaches. Due to
computational reasons, we limit the optimization to the 100
production orders with the earliest due date.

5.3 Results

5.3.1 Main result with a varying magnitude of
the distributional shift

We now report our main results (Table 2). Our results are
reported as average values over 10 independent simulation
runs (± standard deviation).

We make the following observations: (1) Our adversar-
ial learning approach consistently outperforms off-the-shelf
machine learning baselines for different magnitudes of the
distributional shift in terms of both prediction performance
(MAE) and scheduling cost. We also performed a Welch’s
t-test that compares our approach to the better of the two off-
the-shelf machine learning baselines. For 𝜃 = 2, 3, 4, we find
that the improvements in scheduling costs are statistically
significant at the 0.1%-significance threshold. (2) The per-
formance gains of our adversarial learning approach become

larger when the magnitude of the distributional shift (𝜃) is
also larger. In other words, the performance of off-the-shelf
machine learning quickly deteriorates as the magnitude of
the distributional shift is increased, whereas our adversarial
learning approach offers substantially more robust perfor-
mance. For example, for 𝜃 = 4, our adversarial learning
approach achieves gains in the prediction performance of
more than 24% over the baselines, which results in cost
savings of more than 33%. Hence, we observe that, across dif-
ferent magnitudes of the distributional shift, lower prediction
errors of our adversarial learning lead to better scheduling
decisions, ultimately resulting in lower realized scheduling
costs. In sum, job shop scheduling using our adversarial
learning approach is superior to job shop scheduling using
off-the-shelf machine learning by a considerable margin.

5.3.2 Sensitivity to different capacities and
different costs

We now repeat our numerical experiments from above but
vary the operational setup (see Figure 8). First, we show the
scheduling costs from the above numerical experiment for
comparability (left). Second, we use a smaller production
line capacity (Kt = 50), so that orders have to compete for
production lines (center). Third, we use a different cost ratio
where we account for the setting where overdue deliveries
are more costly than finishing early (right). We thus set cost

of tardiness to ctardy = 2 and thus yield a cost ratio
ctardy

cearly
= 2.

All other parameters are identical to the above numerical
experiments. The new numerical experiments have only an
effect on the scheduling optimization in stage 2 while the pre-
dictions from stage 1 are identical to the previous numerical
experiments. For that reason, we only report the schedul-
ing costs for varying magnitudes of the distributional shift
(𝜃 = 1, 2, 3, 4).

Importantly, the main implications of our main numer-
ical experiment remain unchanged (Figure 8). (1) Our
adversarial learning approach outperforms off-the-shelf
machine learning baselines. (2) The performance gains from
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F I G U R E 8 Scheduling cost for increasing magnitude of distributional shift across different operational settings. [Color figure can be viewed at
wileyonlinelibrary.com]

TA B L E 3 Results for a different distribution of the error term.

Prediction error (MAE) Scheduling cost

Approach 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4

Linear regression (regularized) 25.3 27.6 29.3 33.0 2974.4 3612.1 3983.9 4700.2

(±1.5) (±1.6) (±2.6) (±2.7) (±193.1) (±223.0) (±338.3) (±349.2)

Deep neural network 24.4 26.4 28.2 32.2 2891.2 3429.9 3865.4 4637.2

(±1.5) (±1.9) (±2.9) (±4.0) (±165.7) (±326.0) (±422.1) (±597.1)

Adversarial learning (ours) 24.2 25.4 25.6 25.8 2741.0 3010.8 3020.3 3030.6

(±1.3) (±1.3) (±1.4) (±1.2) (±154.7) (±274.9) (±250.7) (±144.1)

Oracle (lower bound) 0.0 0.0 0.0 0.0 383.4 436.5 476.3 525.7

— — — — (±82.5) (±82.7) (±85.2) (±72.2)

our adversarial learning approach increase when the magni-
tude of the distributional shift is large. We also note that the
overall scheduling costs are larger for the numerical exper-
iments with a lower capacity and a higher cost ratio in line
with our expectations.

5.3.3 Sensitivity to error distributions and
nonlinearities

We now repeat our main numerical experiment but vary how
we generate data in our simulation. In Table 3, we vary the
distribution of the error term 𝜂 in our simulation. We now
switch from a Gaussian (in our main numerical experiment)
to a uniform distribution, which has shorter tails. The results
confirm that our adversarial learning approach outperforms
off-the-shelf machine learning baselines. We find this for
different magnitudes of the distributional shift in terms of

both prediction performance (MAE) and scheduling costs. In
Table 4, we repeat the simulation with a different nonlinearity
in the operational data. Here, we replace 𝜙 with gradi-
ent boosting. As above, our adversarial learning approach
consistently outperforms the off-the-shelf machine learning
baselines for different magnitudes of the distributional shift.
We further performed a Welch’s t-test that compares the
scheduling costs from our approach to the better of the two
off-the-shelf machine learning baselines. For 𝜃 = 2, 3, 4, the
improvements are again statistically significant at common
significance thresholds.

Altogether, the results add to the robustness of our adver-
sarial learning approach and demonstrate its operational
value for job shop scheduling. Using real-world data from
partner company Aker, we find consistent evidence that
our adversarial learning approach leads to superior decision
making compared to off-the-shelf machine learning (i.e., cur-
rent industry standard). It can therefore generate substantial
cost savings.
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3038 SENONER ET AL.Production and Operations Management

TA B L E 4 Results for a different nonlinearity in the operational data.

Prediction error (MAE) Scheduling cost

Approach 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4 𝜽 = 1 𝜽 = 2 𝜽 = 3 𝜽 = 4

Linear regression (regularized) 23.9 24.6 27.1 30.0 2869.2 3183.2 3726.9 4065.2

(±1.8) (±1.3) (±1.6) (±1.1) (±156.5) (±249.3) (±234.0) (±192.5)

Deep neural network 23.6 24.4 27.3 31.2 2823.9 3134.1 3737.7 4360.7

(±1.9) (±1.5) (±2.0) (±1.7) (±187.7) (±243.2) (±283.0) (±248.8)

Adversarial learning (ours) 23.4 23.5 24.0 24.2 2697.5 2711.6 2815.0 2835.9

(±1.7) (±1.1) (±1.7) (±1.5) (±141.8) (±156.4) (±162.4) (±164.8)

Oracle (lower bound) 0.0 0.0 0.0 0.0 295.4 373.3 362.8 420.8

— — — — (±54.2) (±60.9) (±58.6) (±55.8)

6 ROBUSTNESS CHECKS

6.1 Machine learning baselines for
handling distributional shifts

We consider other baselines from the machine learning liter-
ature (Kouw & Loog, 2018; McNamara & Balcan, 2017; Pan
& Yang, 2010) that can—in principle—also handle distribu-
tional shifts, namely, model retraining and transfer learning
with fine-tuning. However, we emphasize that the aforemen-
tioned baselines focus on a different setup called supervised
domain adaptation (and not unsupervised domain adapta-
tion, as in our decision problem). To this end, baselines
from supervised domain adaptation require access to labels
from setting  and are thus only applicable after the start of
order setting  and not before. This is a crucial difference
to our adversarial learning approach, which is designed for
operational contexts where labels for the forthcoming order
setting  are absent (i.e., our approach has access to order-
specific features xi but not to the corresponding labels yi ).
In particular, for job shop scheduling, using model retrain-
ing and transfer learning would require access to some of
the labels in setting , which means that one can perform
scheduling optimization only after production start and hence
cannot provide an optimal scheduling sequence for all of the
production orders in setting . Therefore, we assume that
the labels of the orders with throughput times that are within
the first month of setting  are known and hence scheduling
optimization is done 1 month after the first spools have been
produced. The results are shown in Supporting Information F,
where we see that these baselines are inferior, despite having
access to more information than our approach.

6.2 Baselines for domain adaptation

As an additional evaluation, we searched the literature for
other domain adaptation baselines (for an overview, see Wang
& Deng, 2018). Here, another state-of-the-art baseline next to
WDGRL is the so-called gradient reversal layer from Ganin
et al. (2016). We find that WDGRL is more stable during
training compared to a network architecture with a gradient

reversal layer. This is consistent with earlier findings from
the machine learning literature (Shen et al., 2018).

6.3 Robustness in other operational
contexts

As an additional robustness check, we consider a different
operational context, that is, a different historical manufactur-
ing project at Aker. Thereby, we show that our approach is
transferable to other order settings. We again consider two
order settings: Johan Sverdrup Living Quarters Rig is used
for training in stage 1 of our approach, and Johan Castberg
Floating Production Vessel is the order setting for which the
job shop scheduling problem is solved. Both order settings
do not have chronological overlap. The rest of the exper-
imental setup is identical to Section 5.1. The results yield
conclusive findings: Job shop scheduling using an adversarial
learning approach is superior over job shop scheduling using
off-the-shelf machine learning by a considerable margin (see
Supporting Information G).

7 IMPLICATIONS

7.1 Methodological implications

To meet order fulfillment targets, manufacturers typically fol-
low a two-staged decision-making process where they first
predict the throughput times of production orders and then
determine an optimal production schedule. However, predict-
ing throughput times in manufacturing settings with high
degrees of product customization is challenging because of
distributional shifts between customer orders. Such distribu-
tional shifts violate the standard assumption of identically
distributed samples in predictive analytics (cf. Hastie et al.,
2009), which can harm the prediction performance and thus
lead to poor scheduling decisions. To account for distri-
butional shifts, we developed a data-driven approach that
combines adversarial learning and job shop scheduling.

In our adversarial learning approach, we make predic-
tions by modeling two adversarial objectives: (1) to predict
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throughput times with the best possible prediction perfor-
mance and (2) to learn a neural network representation that
generalizes well across order settings. Specifically, in the
latter, we minimize the distance of the neural network rep-
resentations of the operational data between the historical
and the forthcoming order, which reduces prediction errors
when applying the model to forthcoming orders with dif-
ferent specifications as the neural network representation
is invariant to order settings. As such, the two adversarial
objectives force predictions to not be biased toward histor-
ical orders but also account for the product specifications of
forthcoming orders. This way, we capture distributional shifts
and consequently improve decision making in scheduling
problems.

While adversarial learning has almost exclusively been
applied in computer vision and computational linguistics, this
paper analyzes its operational value in an OM problem. As
we have shown here, our adversarial learning approach can
be effective for manufacturers that produce products with a
high degree of customization, and, as such, it overcomes the
limitations of existing methods in OM practice. In particular,
our approach is different from conventional transfer learning
(Kouw & Loog, 2018; McNamara & Balcan, 2017), which
requires access to labels of forthcoming orders (i.e., through-
put times from the new customer order setting, yet these
are only available after completion), whereas our approach
circumvents the need for such labels.

7.2 Managerial implications

As the manufacturing industry is trending toward higher
customization (Choi et al., 2021; Feng & Shanthikumar,
2018; Olsen & Tomlin, 2020), decision models that can han-
dle distributional shift gain relevance and importance. For
example, Aker stressed the managerial implications of our
work: Their business is evolving toward more diverse prod-
ucts, higher volumes, and shorter lead times, which increase
the distributional shifts and the relevance of our work for
their operational decision making. Hence, managers foresee
a larger emphasis on addressing distributional shifts in the
future. Yet, issues due to distributional shifts have received
limited attention in OM research and practice. Our research
contributes insights into how distributional shifts can be
detected and provides operations managers with a promising
approach to address them. Motivated by our work, we recom-
mend practitioners to more carefully monitor operational data
for potential distributional shifts (e.g., via adversarial valida-
tion as shown in Section 3.3). For companies, this may serve
as an early warning system to identify distributional shifts and
inform managers when to take action.

Interestingly, our results suggest that using conventional
machine learning—as common in OM practice—has an
important limitation. It relies upon the assumption of iden-
tically distribution samples and hence cannot account for
distributional shifts, which negatively affects prediction
performance as well as scheduling costs. As such, OM

practitioners must be aware that an off-the-shelf application
of popular prediction models, such as deep neural net-
works, could result in poor decision making. This has direct
implications as conventional machine learning models are
increasingly used for off-the-shelf predictions in OM practice
(Bastani et al., 2022).

Our findings are also relevant beyond manufacturing. Dis-
tributional shifts are frequently observed in other areas of
management (Simester et al., 2020). In healthcare opera-
tions, for example, distributional shifts arise when predicting
the mortality risk of rare or new diseases, or when apply-
ing machine learning to patient cohorts that are dissimilar
from those upon training (Hatt et al., 2022). In marketing,
distributional shifts appear when making inferences about
customer behavior in emerging segments. Likewise, distri-
butional shifts may also arise for marginalized populations
(De-Arteaga et al., 2022). Generally, adversarial learning
has the potential to improve managerial decision making in
settings subject to extensive heterogeneity.

7.3 Limitations and opportunities for
further research

Our approach relies upon certain technical assumptions,
which also hold for most unsupervised domain adaptation
algorithms that rely on learning domain-invariant represen-
tations (Kouw & Loog, 2018). First, we have assumed a
specific form of distributional shift, namely, a covariate shift
(Kouw & Loog, 2018), where the distribution of X changes
between the two settings  and , but the conditional distri-
bution of Y given X remains constant. Covariate shifts imply
that the manufacturing processes are comparable across prod-
ucts (i.e., identical specifications lead to the same throughput
time regardless of the underlying setting) and are thus com-
mon in OM practice. Second, another common assumption
in unsupervised domain adaptation is that P(X) has over-
lapping support between different domains. We have not
explicitly made this assumption since the theoretical bounds
that motivate our approach do not rely on overlapping sup-
port (Ben-David et al., 2007; Redko et al., 2017; Shen et al.,
2018). However, many works in unsupervised domain adap-
tation stress the importance of both assumptions to guarantee
successful learning (see Breitholtz et al., 2023; Johansson
et al., 2019). Overlapping support should also hold in OM
practice as it implies that there is some similarity across
orders. Still, decision makers should be careful when using
adversarial learning in cases where these assumptions do
not hold. We call for further research into these limita-
tions and the development of methods that are robust to
them.

7.4 Concluding remarks

In this paper, we showed that distributional shifts impair
decision making in operational settings. As a remedy, we
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proposed a data-driven approach combining adversarial
learning and job shop scheduling where we address dis-
tributional shifts in customized production. Finally, we
demonstrated its operational value using a series of numer-
ical experiments based on a real-world job shop production
at Aker. An important implication of our work for OM is
that both practitioners and researchers need to be aware of
potential risks due to distributional shifts in operational set-
tings and, if these occur, must seek effective ways to address
them.
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