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Stochastic contracts and subjective
evaluations

Matthias Lang∗,∗∗

Subjective evaluations are widely used, but call for different contracts from classical moral-
hazard settings. Previous literature shows that contracts require payments to third parties. I
show that the (implicit) assumption of deterministic contracts makes payments to third parties
necessary. This article studies incentive contracts with stochastic compensation, like payments in
stock options or uncertain arbitration procedures. These contracts incentivize employees without
the need for payments to third parties. In addition, stochastic contracts can be more efficient and
can make the principal better off compared to deterministic contracts. My results also address
the puzzle about the prevalence of labor contracts with stochastic compensation.

1. Introduction

� This article studies moral hazard if the available performance measures are nonverifiable by
outsiders. The prime examples of such subjective measures of performance are subjective evalua-
tions by supervisors, co-workers, and others. Companies and organizations widely use subjective
evaluations, as verifiable or objective performance measures are often unavailable. For example,
Suvorov and van de Ven (2009) report that “many firms extensively use … subjective, noncon-
tractible performance measures,” and Murphy (1993) writes: “Most often, however, performance
measurement is based on subjective performance ratings.” Porter et al. (2008, p.148), Dessler
(2017), Rajan and Reichelstein (2006), and MacLeod and Parent (1999) confirm this extensive
use of subjective performance measures. Reasons for the use of subjective performance measures
are that they are more difficult for the agent to manipulate and more accurate in measuring the
principal’s objectives than objective measures due to, for example, multitask problems. Indeed,
Gibbons (1998) concludes that “objective performance measures typically cannot … create ideal
incentives.”
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Performance measures’ subjectivity, however, requires careful contracting because pay-
ments depend on reported evaluations instead of actual performance. The contract must provide
incentives to the agent to work while ensuring that the principal has no incentives to misre-
port the subjective evaluations. Previous literature analyzing subjective evaluations shows that
contracts without third-party payments fail to incentivize employees and workers in such set-
tings: “it is impossible to elicit subjective information under the hypothesis that the contract is
budget-balancing” (MacLeod, 2003). Malcomson (1984) and Carmichael (1989) already noticed
that subjective evaluations require third-party payments as budget breakers. See also Deb et al.
(2016) and Bester and Münster (2016).1 MacLeod (2003), Fuchs (2007), Chan and Zheng (2011)
and MacLeod and Tan (2016) provide formal proofs for these claims.

All these models, however, implicitly assume deterministic contracts. I call a contract de-
terministic if payments conditional on all available performance measures are deterministic.2 In
my setting, the available performance measures are the principal’s evaluation and the agent’s self-
assessment. In a deterministic contract, thus, payments depend only on the principal’s evaluation
and the agent’s self-assessment and are not stochastic. The opposite of a deterministic contract
is a stochastic contract, that is, a contract using stochastic compensation for some evaluations
and self-assessments.

I show that focusing on deterministic contracts is restrictive. Stochastic contracts can opti-
mally incentivize employees and workers without any payments to third parties. The intuition is
as follows: Differences in risk preferences between the principal and the agent enable contracts to
implement different utilities for principal and agent without relying on third parties. These differ-
ences in utilities are necessary to provide the agent with credible incentives to exert effort because
these utility differences can incentivize the principal to report subjective evaluations truthfully.

Another advantage of stochastic contracts concerns renegotiations. Third-party payments
give the principal and the agent an obvious incentive to renegotiate the contract. Ex post, af-
ter reporting their evaluations, both the principal and the agent want to avoid paying money
to an outsider—as Hart and Moore (1988) already discussed.3 If they agree how to split the
third-party payments, both are better off ex post. Anticipating these renegotiations, the principal,
however, has incentives to misreport the evaluation and the agent’s incentives to exert effort are
reduced. Stochastic contracts can ensure ex post budget balance. Thus, stochastic contracts can
be renegotiation-proof. With stochastic contracts, either the principal or the agent is unwilling
to renegotiate ex post once the uncertainty is realized. The party who gains in the lottery has
an incentive to avoid renegotiations because renegotiations are a zero-sum game in this case.
Therefore, the lottery ought to be realized as soon as the principal and the agent report their
evaluations—a timing that could be included in the contract by choosing the appropriate timing
of the options or stock grants.4 To sum up, stochastic contracts allow firms and organizations to
use subjective evaluations without reverting to payments to third parties.

Given the possibility of renegotiations, stochastic contracts are more profitable for the prin-
cipal and, hence, more efficient than deterministic contracts. The reason is that stochastic con-
tracts can implement more effort levels than deterministic contracts. Even if renegotiations are
impossible, stochastic contracts are more efficient than deterministic contracts in some settings,

1 “Surplus destruction is necessary in equilibrium” (Deb et al., 2016). “To ensure the principal reports truthfully,
any amount that the principal deducts from the agent’s compensation … must be either destroyed or diverted to a use
that does not benefit the principal” (Chan and Zheng, 2011). Notice that many authors view “money-burning” as a
metaphor for conflict. If there is a positive continuation probability, subjective evaluations can be implemented in an
infinitely repeated game as in Levin (2003). In the infinitely repeated-game setup, conflict replaces money-burning with
the amount of money that may be “burned” being constrained by the continuation value of the relationship.

2 This definition implies that a deterministic contract need not be ex ante deterministic.
3 Maskin (2002) and Maskin and Tirole (1999) use lotteries to avoid renegotiations in hold-up settings.
4 Stochastic contracts do not solve the problem that any moral-hazard contract (including those based on objective

performance measures) provides incentives to both sides to renegotiate the contract after the agent’s effort choice to
insure the agent from the risk included in the performance measure. Hence, the entire literature assumes commitment to
the contract until performance is realized.

C© The RAND Corporation 2023.
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for example, in the model of MacLeod (2003) with imperfect correlation between the principal’s
evaluation and the agent’s self-assessment and bounds on third-party payments. These positive
effects of stochastic contract go together with other benefits of stochastic contracts, including, for
example, better retention (Oyer, 2004), better screening (Oyer and Schaefer, 2005), mitigating
problems of gaming (Ederer et al., 2018), and easing of financing constraints (Core and Guay,
2001).5 My results rely only on subjective evaluations and the assumption that the agent is more
risk averse than the principal. These results thus help to explain why many labor contracts use
stochastic compensation, even if the random events are uninformative about agents’ efforts.6

Next, I discuss the optimal stochastic contracts derived in this article. There are three set-
tings to consider. First, consider an agent who is unable or unwilling to understand the principal’s
objectives. The optimal contract triggers stochastic compensation if the principal reports the
worst evaluation. The agent’s reported self-evaluation does not matter. Stochastic compensation
occurs in equilibrium. An illustrative example is a contract that pays a high wage for all but
the worst evaluation. For the worst evaluation, the agent receives a lower wage and with some
probability a bonus as the contracting parties might be uncertain about the validity of some con-
tractual clauses or how to interpret a poor evaluation. This uncertainty incentivizes the principal
to evaluate the agent’s work appropriately while maintaining the agent’s incentives to work.

Second, consider an agent who is able and willing to understand the principal’s objectives.
Then, the optimal contract triggers stochastic compensation if the principal reports an evalua-
tion that disagrees with the agent’s self-assessment. Stochastic compensation occurs only out of
equilibrium. Third and finally, consider a principal who can observe the agent’s effort. Then, the
optimal contract triggers stochastic compensation if the agent chooses an effort level that differs
from the contractually specified one. Stochastic compensation occurs only out of equilibrium. In
all three cases, the uncertainty incentivizes the principal to evaluate the agent appropriately while
not interfering with the agent’s incentives to work.

There are many reasons to inform and educate agents about the principal’s objectives. In
particular, the literature on multitasking has contributed to our understanding of the need for
these instructions. My article shows that the principal wants to inform agents even in a single-
task model with unidimensional effort. The reason again consists of the incentives for the prin-
cipal to perform the subjective evaluation appropriately. It is easier to provide these incentives
for informed agents whose self-assessment is correlated with the appropriate evaluation by the
principal. In some cases, optimal contracts can avoid all losses due to the subjectivity of the
principal’s evaluations and attain the classical second-best as if the evaluations were an objective
performance measure.

The remainder of the article is organized as follows. Section 2 discusses the related litera-
ture. In Section 3, I introduce stochastic contracts into a model of subjective evaluations. Sec-
tion 4 characterizes optimal (stochastic) contracts in applied models from the literature, discusses
comparative statics and efficiency. In Section 5, I prove that—in general—stochastic contracts
can incentivize employees without payments to third parties and are at least as efficient as de-
terministic contracts. Section 6 contains the concluding remarks. The proofs are relegated to
the Appendix.

2. Related literature

� The literature on stochastic contracts neglected subjective evaluations so far. Instead, the
literature shows that stochastic contracts help screening risk-averse agents. The seminal arti-
cles include Gauthier and Laroque (2014), Strausz (2006), and Arnott and Stiglitz (1988). They
show that stochastic contracts can be optimal depending on the curvature of utilities. This lit-
erature considers moral hazard, for example, Bennardo and Chiappori (2003) or Lang (2017),

5 See also the next section about the related literature.
6 The prevalence of stochastic contracts is sometimes seen as a puzzle for standard economic theory, for example,

by Kedia and Rajgopal (2009).

C© The RAND Corporation 2023.
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and adverse selection, for example, Hellwig (2007) or Stiglitz (1982). Stochastic contracts trade
off losses from increasing risk for risk-averse agents against gains from mitigating incentive-
compatibility constraints. These models require heterogeneous risk aversion and, in particular, a
correlation between types and risk aversion to make stochastic contracts optimal. There are no
gains from stochastic contracts if the agent’s type and risk aversion are common knowledge as in
my setting.

Alternatively, Rasmusen (1987) studies team production with objective performance mea-
sures. He shows that budget-balancing contracts require stochastic contracts to incentivize agents
and mitigate free-riding problems. For a single agent, there are no free-riding problems and,
hence, no reasons to use stochastic contracts. Adopting a different approach, Oyer (2004) ar-
gues that stochastic contracts increase employee retention by adjusting wages to varying outside
options. Finally, Maskin (2002) and Maskin and Tirole (1999) consider hold-up settings with
incomplete contracts. They show that stochastic contracts allow to avoid incomplete contracts
and to deal with renegotiations. My article is the first to scrutinize stochastic contracts for sub-
jective evaluations.

I also relate to the extensive literature on subjective performance measures. Usually that
literature assumes that evaluations are observable and occur in long-term relationships. These
assumptions imply relational or implicit contracts, for example, in Li and Matouschek (2013),
Goldluecke and Kranz (2013), Maestri (2012), Levin (2003), Compte (1998), Kandori and Mat-
sushima (1998), Baker et al. (1994), MacLeod and Malcomson (1989), Bull (1987), and Shapiro
and Stiglitz (1984). In these dynamic settings, subjective performance measures gain some cred-
ibility due to reputation effects created by the continuation values for both contracting parties.
Hence, firms can use subjective performance measures to incentivize their employees.7 See also
Malcomson (2012) and MacLeod (2007) for recent surveys.

MacLeod (2003) was the first to implement subjective performance measures in a static
setting. Section 4 builds on and discusses his model in detail. MacLeod and Tan (2016) extend
the model by considering malfeasance and more general timings and information structures. Deb
et al. (2016) consider multiple agents working for the principal. Letina et al. (2020) add external
reviewers. Lang (2019) studies optimal communication of subjective evaluations. Bester and
Dahm (2018) apply subjective evaluations to markets for credence goods. Fuchs (2007) considers
subjective performance measures in a finitely repeated principal-agent model. He shows that
it is optimal for the principal to announce a subjective evaluation only once at the end of the
interaction and not in each period similarly to ideas in Ohlendorf and Schmitz (2012). This
reporting pattern ensures that the agent does not learn whether a good performance has already
occurred. Then, the same final incentives can be used repeatedly. These results imply that my
results are also valid in finitely repeated moral hazard settings.

3. Subjective evaluations and stochastic contracts

� Consider a risk-neutral principal (she) employing a risk-averse agent (he). The principal
proposes a contract to the agent in a take-it-or-leave-it offer. The contract specifies payments
depending on reports as described later. If the agent accepts the principal’s offer and signs the
proposed contract, the agent exerts effort e ∈ E ⊆ R. The agent’s effort is unobservable by the
principal. Then, the principal privately learns her subjective measure of performance t ∈ T ⊆ R.
The agent also receives a signal s ∈ S ⊆ R about his performance: his self-assessment. The
two signals follow a joint distribution F (t, s|e) depending on the agent’s effort e. Notice that
the agent’s self-assessment might well be uninformative. The subjectivity of both performance
measures implies that both signals are unverifiable.

After learning these subjective performance measures, principal and agent both report their
evaluations: The principal evaluates the agent by reporting her evaluation t̄ ∈ T . The agent evalu-

7 For multiple agents, tournaments also provide credible incentives. See, for example, Carmichael (1983); Mal-
comson (1986); Rajan and Reichelstein (2006, 2009).

C© The RAND Corporation 2023.

 17562171, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12432 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



108 / THE RAND JOURNAL OF ECONOMICS

FIGURE 1

TIMING OF THE MODEL

Period 5 matters only for robustness: Optimal contracts in my article do not change if renegotiations are impossible. In
addition, it does not matter whether principal and agent report simultaneously in period 4 or whether sequentially the
principal reports before the agent.

ates himself by reporting his self-assessment s̄ ∈ S . The contract specifies wages wt̄s̄, that depend
on the reports t̄ and s̄, as random variables and the timing of these random variables. Thus, the
agent receives a payment equal to the realization of wt̄s̄. In addition, the contract can specify third-
party payments yt̄s̄ ≥ 0 by the principal. In period 5, the principal can renegotiate the contract by
proposing new payments ŷ and ŵ.8 If the agent accepts the principal’s proposal, the principal
makes these new payments ŷ and ŵ in period 6. If the agent rejects the principal’s proposal, in
period 6, the principal makes the payments specified in the initial contract: yt̄s̄ and the realization
of wt̄s̄. The principal has no commitment other than the contract. Figure 1 summarizes the timing.

Utilities are as follows: The principal’s (unverifiable) profits are B(e, t, s) − w if she pays
a wage w. The agent’s preferences are represented by utilities U (w, e) : R × E �→ R ∪ {−∞}
if he earns a wage w and exerts effort e. The agent’s utilities are increasing and concave in
the wage w if U > −∞. His utilities are decreasing and convex in effort e. Utilities are twice
continuously differentiable if U > −∞. If the agent rejects the principal’s contract offer, he
receives a reservation utility ū and the principal earns zero profits. For technical reasons, I assume
that there is a smallest effort level: inf E ∈ E. For later reference, L denotes the space of simple
lotteries with finitely many realizations.

For the applications in the next section and to characterize optimal contracts, I use the fol-
lowing assumptions which are unnecessary for my general results in Section 5.

Assumption 1. The agent exerts effort e ∈ E = [0, 1). The principal’s measure of performance is
t ∈ T = {1, 2, . . . , n} with n > 2. The agent’s self-assessment is s ∈ S = {0} ∪ T .

Assumption 2. The distribution F (t, s|e) is such that the principal observes performance t with
probability γt (e) depending on the agent’s effort e. The probabilities γt (e) are positive for all t ∈
T and e ∈ [0, 1) and have a derivative ∂γt (e)/∂e denoted by γ ′

t (e). The ratio γ ′
t (e)/γt (e) increases

in t and the distribution is weakly convex in effort e.9 The agent observes a self-assessment s = t
with probability p ∈ [0, 1] and a self-assessment s = 0 with probability 1 − p.

Assumption 3. The agent’s preferences are U (w, e) = u(w) − d(e). Assume the limit
lime→1 d(e) = ∞ and that there is an a ≥ −∞ so that limw→a u(w) = −∞.

8 It does not matter who makes the renegotiation offer. My results remain valid if the agent can propose new
payments instead. Moreover, optimal contracts remain unchanged if renegotiations are impossible.

9 The linear specification with γt (e) = eγ H
t + (1 − e)γ L

t and two probability measures γ H
t and γ L

t in MacLeod
(2003) is a special case of such a distribution.

C© The RAND Corporation 2023.
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Next, I discuss my framework and compare it with the literature.

� Interpretation and discussion of the setting. My framework captures many models in
the literature as special cases, for example, MacLeod (2003), Bester and Münster (2016), as well
as the one-period case of Chan and Zheng (2011) and Fuchs (2007) and the stage games in Li
and Matouschek (2013), Maestri (2012), Levin (2003) and Baker et al. (1994).10

According to the revelation principle, it is without loss of generality to restrict attention
to contracts in which payments depend only on reports t̄ and s̄. Stochastic compensation with
random variables wt̄s̄ captures stochastic contracts in a general way. The random variables might
mirror court proceedings or stock options. Payments could be lotteries or the principal could
discard certain messages with some probability by “turning a blind eye,” as in Herweg et al.
(2010). Within the class of these contracts, I often refer to the subset of deterministic contracts.
A contract is deterministic if wages are deterministic for any combination of reports, that is, the
random variables wt̄s̄ are constant or, with a slight abuse of notation, wt̄s̄ ∈ R for all reports t̄ ∈ T
and s̄ ∈ S . Renegotiations in period 5 do not matter for optimal contracts in the next sections.
The purpose of this assumption is to show the robustness of the stochastic contracts considered.

Assumption 1 specifies the domains of the agent’s effort and the evaluations. Assumption 2
ensures that the distribution γt (e) of the agent’s performance t satisfies the monotone likelihood
ratio property and that higher signals t indicate greater effort by the agent. The probability p
might capture the agent’s ability or willingness to understand the principal’s objectives. This
setting captures any degree of correlation between the principal’s evaluation and the agent’s self-
assessment with perfect correlation for p = 1 and no correlation for p = 0. Chan and Zheng
(2011), Maestri (2012), and Bester and Münster (2016) consider a different correlation structure
between binary assessments. Claim A1 in Appendix A shows that optimal contracts remain qual-
itatively unchanged for this alternative specification.11 Assumption 3 ensures that preferences
have a tractable functional form and imposes some Inada conditions. Assumptions 1, 2, and
3 build on the moral-hazard environment with subjective performance measures introduced in
MacLeod (2003). As there are many degrees of freedom in setting up more applied environments,
using existing models from the literature strengthens my findings and provides better compara-
bility.

4. Stochastic contracts: applications

� Before characterizing optimal contracts, I write down the optimization and calculate two
benchmarks: deterministic contracts without payments to third parties and optimal complete con-
tracts for objective performance measures. The revelation principle by Myerson (1982) and the
renegotiation-proofness principle by Laffont and Tirole (1990) imply that focusing on truth-
telling and renegotiation-proof contracts is without loss of generality. It is helpful to define ex-
pected payments by the principal w̃ts = E(wts) + yts and the agent’s certainty equivalent c̃ts of the
stochastic compensation wts defined by u(c̃ts) = E(u(wts)). Grossman and Hart (1983) prove that
the model can be solved in two steps. First, for every level of effort e, an optimal contract and its
expected costs C(e) for the principal are computed. The second step determines the optimal ef-
fort level e by solving maxe∈E E[B(e, t, s)|e] − C(e). Focusing on the first step, Program A below
summarizes the principal’s problem if Assumptions 1 and 2 are satisfied and the optimal values
can be implemented by a renegotiation-proof contract: the principal minimizes expected wages.
The participation constraint (PC) ensures that the agent accepts the principal’s contract offer. The
incentive compatibility (IC) guarantees that the specified effort is optimal for the agent. In ad-
dition, feasible contracts must satisfy three novel conditions. Constraints (TTP) and (TTA) make
truth-telling optimal for the principal and the agent with respect to their subjective performance

10 I assume a risk-averse agent. Some references assume agents to be risk neutral, in particular, to simplify the
exposition in dynamic settings.

11 Indeed, the quantitative changes are due to their binary effort choice and binary evaluations.

C© The RAND Corporation 2023.
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measures. Finally, constraint (RA) captures the fact that the agent is more risk averse than the
principal.

C(e) = min
{w̃ts,c̃ts}t,s∈T

∑
t∈T

(pw̃tt + (1 − p)w̃t0)γt (e) (A)

subject to
∑
t∈T

(pU (c̃tt, e) + (1 − p)U (c̃t0, e))γt (e) ≥ ū, (PC)

e ∈ arg max
ẽ

∑
t∈T

(pU (c̃tt, e) + (1 − p)U (c̃t0, e))γt (ẽ) (IC)

pw̃tt + (1 − p)w̃t0 ≤ pw̃t̄t + (1 − p)w̃t̄0 ∀t, t̄ ∈ T , (TTP)

∑
t∈T

U (c̃t0, e)γt (e) ≥
∑
t∈T

U (c̃ts̄, e)γt (e) and c̃tt ≥ c̃ts̄ ∀t ∈ T ,∀s̄ ∈ S, (TTA)

w̃ts ≥ c̃ts ∀t ∈ T ,∀s ∈ S. (RA)

I begin by confirming the observation in the literature that deterministic contracts require pay-
ments to third parties to incentivize the agent to exert any meaningful effort.12

Lemma 1. Deterministic contracts without payments to third parties, that is, yt̄s̄ = 0 and wt̄s̄ =
w̃t̄s̄ = c̃t̄ s̄ for all t̄ ∈ T and s̄ ∈ S , cannot implement meaningful effort, e > min E.

Intuitively, contracts for subjective performance measures need three kinds of incentives.
First, the contract must incentivize the agent to exert effort. Second, the contract must incentivize
the principal to evaluate the agent appropriately. Third, the contract must incentivize the agent to
monitor the principal’s evaluation if possible. Deterministic contracts without payments to third
parties cannot provide these three incentives simultaneously and the agent exerts no effort. In par-
ticular, the principal has an incentive to evaluate the agent negatively to save wage payments. The
only disciplining effect is the possibility that the agent could flag this misreporting and impose a
contractual penalty on the principal if the contract allows for this. This penalty could incentivize
the principal to evaluate the agent appropriately. Without third parties, the agent receives these
payments. Hence, these payments make it optimal for the agent to pretend that even appropriate
evaluations by the principal are biased. Therefore, it is impossible to incentivize the principal
to evaluate the agent appropriately whenever wages vary in the principal’s reports. Appropriate
evaluations are only possible for a fixed-wage contract wts = w ∈ R because evaluations have no
consequences in such a contract. Such a contract, however, cannot incentivize the agent. Thus,
the agent exerts no effort, e = min E.

Formally, consider the subgame once performance is realized. In this subgame, principal and
agent report their evaluations. This subgame is a constant-sum game. Therefore, it is impossible
for the agent’s wages to vary in the principal’s message. Consequently, Bester and Münster (2016)
conclude that “money burning is required” to establish incentives for subjective performance
measures. Thus, the literature uses payments to third parties to incentivize agents with subjective
performance measures. Yet, these payments are unappealing for many reasons, and there are some
claims in the literature that it is unclear how common payments to third parties are in reality.

As a benchmark, consider a classical moral-hazard setting, in which performance measures
are verifiable and contractible. Then, constraints (TTP) and (TTA) are irrelevant. Optimal con-
tracts are deterministic with no payments to third parties. Thus, the contract is renegotiation

12 See the references in the introduction and, in particular, MacLeod (2003), Fuchs (2007), Chan and Zheng (2011),
and MacLeod and Tan (2016).

C© The RAND Corporation 2023.
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proof and constraint (RA) binds. Optimal contracts minimize the principal’s expected payments
subject to the agent’s PC and IC. The textbook solution to this problem is the optimal complete
contract.

Lemma 2. Given Assumptions 1–3 and implementable effort e > 0, the optimal complete con-
tract is wts = c∗

t ∈ R and yts = 0 for all t ∈ T and s ∈ S . The values c∗
t are defined by

1

u′(c∗
t )

= μ0 + μ1

γ ′
t (e)

γt (e)
∀t ∈ T (1)

with the Lagrange multiplier μ0 of the PC and the Lagrange multiplier μ1 of the IC. Better
performances yield higher wages, that is, wages c∗

t strictly increase in performance t.

The monotone likelihood ratio property implies increasing wages. If limw→∞ u(w) = ∞, any
effort e ∈ [0, 1) is implementable. For later reference, I denote the principal’s expected costs of
such a complete contract as Cc(e). I follow the convention that Cc(e) = ∞ for nonimplementable
effort e.

This article, however, focuses on subjective performance measures that are nonverifiable.
Therefore, the additional constraints (TTP) and (TTA) do matter. To understand their relevance,
suppose that the principal and the agent were to agree to the optimal complete contract deter-
mined by Eq. (1). Analyzing the problem backwards, the agent’s message does not matter as
wts = c∗

t does not depend on his message s. The principal wants to minimize her wage payments.
Therefore, she always reports the worst evaluation t = 1 because c∗

t increases in the evaluation
t and, thus, c∗

1 = mint c∗
t . Hence, the agent anticipates a wage of c∗

1 independently of her per-
formance. Thus, she optimally chooses effort e = min E. Consequently, in the optimum these
additional constraints are binding.

Optimal contracts depend on whether the principal can observe the agent’s effort and on
whether the agent is able and willing to understand the principal’s objectives, that is, whether the
agent’s self-assessment is informative. After characterizing optimal contracts, I discuss efficiency
and comparative statics of optimal contracts in risk aversion and in correlation p.

� Uninformative self-assessments. If the agent is unable or unwilling to understand the
principal’s objectives, his self-assessments are uninformative, p = 0. This setting corresponds to
Chan and Zheng (2011, one-period case),13 Fuchs (2007, one-period case),14 MacLeod (2003,
No correlation), and Section IV in Levin (2003, stage game).15 Then, nobody, particularly not
the agent, can cross-check the principal’s subjective evaluation of the agent’s work. Hence, the
principal’s expected payments must be independent of her evaluation. Nonetheless, the principal
can incentivize the agent even in that case as I show next. To incentivize the agent to exert
effort, his expected utilities must depend on the evaluation by the principal. Therefore, stochastic
payments must be used in equilibrium to avoid payments to third parties.

Proposition 1. If the agent’s self-assessment is uninformative (p = 0) and effort e > 0 is imple-
mentable, the following contract is optimal given Assumptions 1–3: yts = 0 and

wts =
{

ω∗ if t > 1

� if t = 1

13 They assume T = {1, 2}, no renegotiations, binary effort, and a correlated self-assessment for the agent which
the contract does not directly use. Optimal contracts do not change qualitatively though. In their Section 5, they study
contracts that directly use the correlated self-assessment. Even then, optimal contracts do not change qualitatively. See
Claim A1 in Appendix A.

14 He considers T = {1, 2}, no renegotiations, and binary effort. Optimal contracts do not change qualitatively.
Indeed the quantitative changes are due to their binary effort choice and binary evaluations.

15 He studies continuous evaluations t and no renegotiations. Optimal contracts do not change qualitatively.
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with a lottery � ∈ L, a wage ω∗ ∈ R, and a certainty equivalent b < ω∗ defined by

u(ω∗) = ū + d(e) − γ1(e)

γ ′
1 (e)

d ′(e) and u(b) = ū + d(e) + 1 − γ1(e)

γ ′
1 (e)

d ′(e).

The lottery � has a mean ω∗, a certainty equivalent b, and is realized at the end of period 4.

A simple implementation of such a contract is: If the agent receives any evaluation except
the worst one, the principal pays the agent a wage ω∗. If the agent receives the worst evaluation,
the principal pays the agent a lower wage and with some probability a bonus. The principal’s
expected payments are ω∗, whereas the agent’s certainty equivalent equals b.

The optimal contract only considers whether the agent receives the worst possible evaluation
by the principal. Otherwise, evaluations do not matter. In particular, the agent’s self-assessment
and her reports are irrelevant. This contract reminds of solutions in moral hazard settings with
risk-neutral agents and limited liability. Notice that the agent is risk averse here. Hence, it is the
subjectivity of evaluations that drives this result. If the agent receives the worst evaluation, the
principal’s payments are stochastic like in an arbitration or court procedure. The agent values the
stochastic payments for the worst evaluation t = 1 as if he receives a risk-free wage b. Nonethe-
less, the principal expects payments of ω∗ > b. Optimal contracts use lotteries in equilibrium
to provide the agent with incentives to exert effort and to ensure that truth-telling is optimal
for the principal and the agent. Notice that the subjectivity of her evaluation hurts the principal
because the wage costs in this contract are above Cc(e). Optimal stochastic contracts, however,
imply higher efficiency than optimal deterministic contracts, as we discuss below at the end of
Section 4.

In some cases, the principal can implement the optimal contract by an asset transfer. Con-
sider a project with random payoffs ρ(t ). The principal offers the agent to work on this project
or provides financing for this project with the following contract: After evaluating the project,
the principal has the option to buy the project from the agent at a price π = ω∗.16 If the principal
does not buy the project, the agent is left with the project. For such a contract to fit with my set-
ting, I set the principal’s benefits B(e, 1, s) = 0 and B(e, t, s) = ρ(t ) for t > 1. For the contract
to provide correct incentives, the agent’s certainty equivalent of ρ(1) has to equal b and

E[ρ(1)] ≤ ω∗ ≤ E[ρ(t )] for all t > 1.

This asset transfer provides the correct incentives analogously to the contract in Proposition 1
above. In particular, if t > 1, the principal buys the project as the project’s value is above the
contractually fixed price: π ≤ E[ρ(t )] for all t > 1. If t = 1, the principal does not buy the project
as the project’s value is below the price: π ≥ E[ρ(1)]. Hence, the agent anticipates receiving
π = ω∗ for subjective evaluations t > 1 and a certainty equivalent of b for t = 1. Therefore,
Proposition 1 ensures that this contract in combination with the asset transfer incentivizes the
agent—dealing in an elegant way with the issue of renegotiations. Next, turn to informative self-
assessments by the agent.

� Informative self-assessments. If the agent is able and willing to understand the princi-
pal’s objectives, his self-assessments are informative, p > 0. Then, the setting corresponds, for
example, to MacLeod (2003, Perfect/Imperfect Correlation) and the stage game in Section II.C
of Baker et al. (1994).17

16 For the use of such option contracts, see also Bester and Krähmer (2017) and Bester and Krähmer (2012).
17 They consider p = 1, no renegotiations, and T = {1, 2}. Optimal contracts do not change qualitatively, though.

Indeed the quantitative changes are due to their binary evaluations.
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Proposition 2. If the agent’s self-assessment is informative (p > 0) and effort e > 0 is imple-
mentable, the following contract is optimal given Assumptions 1–3: yts = 0 and

wts =
{

c∗
t if s = 0 or t = s

�t otherwise

with the optimal complete contract c∗
t defined in equation (1) and lotteries �t ∈ L that have a

mean c∗
n/p, a certainty equivalent c∗

t , and are realized at the end of period 4.

Optimal contracts use the agent’s self-assessment to cross-check the principal’s evaluation of
his work. Therefore, the principal evaluates the agent correctly. In equilibrium, the agent reports
either s̄ = 0 or s̄ = t. Hence, the equilibrium wages in the optimal contract resemble the wages in
the optimal complete contract discussed above. The agent’s informative self-assessment ensures
that there are no losses due to the subjectivity of the evaluations. This self-assessment allows
the contract to employ the agent to monitor the principal in evaluating him appropriately. As
the principal designs the contract, the principal monitors herself in this way. This monitoring
serves as a commitment device for the principal to evaluate the agent appropriately and thus to
make the incentives, that were specified in the contract, credible. The contract in Proposition 2
makes truth-telling optimal for the agent by ensuring that his expected utilities do not depend
on his self-assessment. The lotteries guarantee that the expected wages, however, depend on the
agent’s self-assessment. In particular, conflicts between the principal’s evaluation and the agent’s
self-assessment increase the expected payments by the principal. Therefore, it is optimal for the
principal to report her subjective evaluation of the agent truthfully.

Notice that optimal contracts include stochastic compensation for all evaluations—no mat-
ter whether the principal’s evaluation is good or bad. Stochastic payments occur whenever the
principal’s evaluation conflicts with the agent’s self-assessment. These conflicts occur only out of
equilibrium and might explain why arbitration or court procedures exist but are infrequently used
following good evaluations. A simple way to implement optimal contracts is: A contract speci-
fies n bonus levels (c∗

t )n
t=1 calculated in Proposition 2. The principal discretionarily proposes one

of these bonus levels. If the agent agrees, the principal pays the proposed bonus. If the agent
disagrees, there is an arbitration process with a random outcome.

In some cases, the principal can implement the optimal contract by an asset transfer. Con-
sider a project with random payoffs ρ(t ) as before. The principal offers the agent to work on this
project or provides financing for this project with the following contract: After evaluating the
project, the principal proposes a price from the set of contractually fixed prices (πt )n

t=1 = (c∗
t )n

t=1

calculated in Proposition 2. If the agent agrees to the proposed price, the principal buys the
project from the agent at that price.18 If the agent disagrees with the proposed price, the agent
is left with the project. For such a contract to fit with my setting, I set the principal’s benefits to
B(e, t, s) = ρ(t ). For the contract to provide correct incentives, the agent’s certainty equivalent
of ρ(t ) has to equal c∗

t and

E[ρ(t )] ≥ (c∗
t − (1 − p)c∗

1 )/p for all t ∈ T . (2)

This asset transfer provides the correct incentives analogously to the contract in Proposition 2
above. In equilibrium, the principal buys the project at price πt because any other price proposal
πt ′ yields lower profits as with probability p the agent’s self-assessment reveals the principal’s
deviation and the agent rejects the principal’s offer:

E[ρ(t )] − πt ≥ p · 0 + (1 − p)(E[ρ(t )] − πt ′ ) for all t ′ < t by Inequality (2).

The agent agrees to a proposed price πt if her self-assessment is 0 �= s ≤ t̄ or s = 0 as he is
indifferent between the price πt and the certainty equivalent of c∗

t of the project. Hence, the

18 See Footnote 16 for such option contracts in the literature.
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agent anticipates receiving πt for subjective evaluation t. Therefore, Proposition 2 ensures that
this contract in combination with the asset transfer optimally incentivizes the agent to exert the
specified effort. Finally, I consider observable effort.

� Observable effort. Some articles, for example, Letina et al. (2020, without observers)
and the stage games in Li and Matouschek (2013), MacLeod and Malcomson (1989), and Bull
(1987), study observable effort. To accommodate observable effort, I adjust Assumptions 1 and 2
so that the principal observes the agent’s (nonverifiable) effort, that is, t = e.

Assumption 1a. The agent exerts effort e ∈ E = [0, 1). The principal’s measure of performance
is t ∈ T = E.

Assumption 2a. The distribution F (t, s|e) is such that the principal observes performance t=e
with probability 1.

Proposition 3. If supw u(w) > ū + d(ê), the following contract implements effort ê at first-best
costs given Assumptions 1a, 2a, and 3: yts = 0 and

wts =
{

u−1(ū + d(ê)) if t = ê

� otherwise.

The lottery � ∈ L has a mean u−1(ū + d(ê)), satisfies Eu(�) ≤ ū + d(0), and is realized at the
end of period 4.

It is well known that verifiable effort allows the principal to attain the first best. As effort is
naturally observable for the agent, he can perfectly check the principal’s evaluation. Therefore,
there are no losses due to the subjectivity of evaluations in contrast to Proposition 1. The agent
can monitor the principal to evaluate him appropriately. Even if the agent were to forget his effort
choice and receive no or a fully uninformative self-assessment, however, it would be possible to
attain the first best here. The lotteries allow the principal to be indifferent between her reports so
that truthful reporting is optimal for her. Notice that optimal contracts include stochastic com-
pensation only out of equilibrium but potentially for any evaluation—regardless of whether the
principal’s evaluation is good or bad. Stochastic payments occur whenever the principal’s eval-
uation indicates a conflict, that is, the principal reports the agent choosing not the effort level
specified by the contract. These conflicts occur only out of equilibrium.

In some cases, the principal can implement the optimal contract by an asset transfer. Con-
sider a project with random payoffs ρ(t ) as before. The principal offers the agent to work
on this project or provides financing for this project with the following contract: After eval-
uating the project, the principal has the option to buy the project from the agent at a price
π = u−1(ū + d(ê)). If the principal does not buy the project, the agent is left with the project.
For such a contract to fit with my setting, I set the principal’s benefits B(e, t, s) = ρ(t ). For
the contract to provide correct incentives, E[ρ(ê)] = u−1(ū + d(ê)), E[ρ(t )] increases in t and
Eu(ρ(t )) ≤ ū + d(0) for t ≤ ê. The asset transfer provides the correct incentives analogously
to the contract in Proposition 3 above. In particular, if e ≥ ê, the principal buys the project as
the project’s value is above the contractually fixed price: E[ρ(e)] ≥ π . If e < ê, the principal
does not buy the project as the project’s value is below the price: E[ρ(e)] < π . Hence, the agent
anticipates receiving the price π for effort e ≥ ê and retaining the project with expected utility
below ū + d(0) for effort e < ê. Therefore, this contract in combination with the asset transfer
optimally incentives the agent to exert effort ê.

In summary, Propositions 1, 2, and 3 characterize optimal contracts for subjective evalua-
tions. These optimal contracts provide agents with economically meaningful incentives without
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payments to third parties. Thus, it is possible and optimal to avoid third-party payments by using
stochastic contracts. The next section studies the efficiency of stochastic contracts in detail.

� Efficiency of stochastic contracts. Before comparing the efficiency of stochastic and de-
terministic contracts, let me clarify the usual notion of efficiency in moral-hazard settings. Ex
ante efficiency considers the sum of the principal’s and the agent’s ex ante expected utilities for
a given effort e. By standard arguments, optimal contracts satisfy the agent’s PC with equality.
Therefore, the agent’s ex ante expected utilities equal his reservation utility u. Thus, a contract
increases ex ante efficiency if and only if the contract increases the principal’s ex ante expected
profits, that is, the ex ante expected costs C(e) decrease. Remember that I call a contract deter-
ministic if wt̄s̄ = c̃t̄ s̄ for all reported evaluations t̄ ∈ T and s̄ ∈ S . I show later in Section 5 that—in
general—optimal stochastic contracts are at least as efficient as deterministic contracts. Here, I
begin by comparing stochastic contracts to deterministic contracts without third-party payments.
In all three settings considered above, stochastic contracts increase efficiency.

Lemma 3. Assume effort e > 0, Assumptions 1–3 or 1a, 2a, and 3, and that third-party payments
are impossible, that is, yt̄s̄ = 0 for all reports t̄ ∈ T and s̄ ∈ S . Stochastic contracts increase effi-
ciency compared to deterministic contracts.

The reason is that without third-party payments deterministic contracts cannot incentivize
agents whereas stochastic contracts can incentivize agents as discussed above. The next bench-
mark is the most interesting one. I compare stochastic contracts without third-party payments to
deterministic contracts with third-party payments. In all three settings considered above, stochas-
tic contracts increase efficiency.

Proposition 4. Suppose effort e > 0 and Assumptions 1–3 or 1a, 2a, and 3. Stochastic contracts
increase efficiency compared to deterministic contracts with third-party payments.

The reason is that any third-party payments imply successful renegotiations.19 Therefore,
third-party payments cannot incentivize truthful reporting of the evaluations. Stochastic con-
tracts can incentivize truthful reporting and effort provision by the agent as these contracts are
renegotiation proof according to Propositions 1, 2, and 3. Given the importance of renegotiations
for this argument, I finally turn to a comparison without renegotiations.

Thus, suppose renegotiations are impossible. I compare stochastic contracts to deterministic
contracts with bounded third-party payments. This upper bound might be due to credibility or
renegotiation issues. In repeated games, this upper bound could correspond to the continuation
value of the relationship. See also Proposition 8 in MacLeod (2003) for a static model with
bounded third-party payments. If third-party payments are sufficiently bounded, it is intuitive that
stochastic contracts increase efficiency in all three settings considered above. Yet what happens
for higher bounds? It turns out that stochastic contracts can increase efficiency for any bound if
we focus on self-assessments with small p > 0.

Proposition 5. Assume that renegotiations are impossible, third-party payments are bounded,
effort e > 0, and Assumptions 1–3. Stochastic contracts increase efficiency compared to deter-
ministic contracts for any bounds on third-party payments and sufficiently small p > 0.

Intuitively, for p sufficiently small, most of the time the agent cannot cross-check the prin-
cipal’s evaluation. Hence, the principal anticipates any deviations from truth-telling to be de-
tected with small probabilities. Therefore, only very large third-party payments can incentivize
the principal to report her evaluation correctly. Any bound on third-party payments makes this

19 Renegotiations allow the contracting parties to avoid paying money to an outsider.
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impossible, and thus, the principal has to adjust the deterministic contract making it less effi-
cient than the optimal stochastic contract. Before turning to the general model in Section 5, I
discuss comparative statics of optimal contracts in risk aversion and in correlation, in the next
two sections.

� Comparative statics in risk aversion. To study comparative statics in risk aversion, I
consider utilities where the disutility of effort is measured in monetary terms. This alternative
assumption regarding utilities is as follows:

Assumption 3a. The agent’s preferences are U (w, e) = − exp(−k(w − d(e))) with a k > 0. As-
sume that the limit lime→1 d(e) = ∞. The agent’s reservation utility is ū = − exp(−kw̄) with
some w̄ ∈ R. Finally, assume that the distribution γt (e) is log-convex.

Under Assumption 3, any change in risk preferences would imply a change in the disutility
of effort. Therefore, it is impossible to derive meaningful comparative statics in risk aversion un-
der Assumption 3. Assumption 3a solves this problem because it allows to change the agent’s risk
aversion without changing the agent’s disutility of effort. Appendix B contains optimal contracts
for Assumption 3a replacing Assumption 3.

I begin with the optimal complete contract for verifiable performance measures as a bench-
mark. Optimal contracts are deterministic with no payments to third parties:

wts = c∗CARA
t = d(e) + 1

k
ln

(
exp(kw̄) + μ1k

(
γ ′

t (e)

γt (e)
+ kd ′(e)

))
∀t ∈ T , s ∈ S

with the Lagrange multiplier μ1 of the incentive compatibility.20 For vanishing risk aversion,
k → 0, any frictions disappear and the first best is attainable. For very high risk aversion, k → ∞,
only trivial effort e = 0 is implementable. Beyond that, comparative statics of optimal contracts
in risk aversion are ambiguous in this benchmark. Grossman and Hart (1983) summarized: “Very
little can be said.”

Turning to subjective evaluations, I begin with uninformative self-assessments, p = 0.
Proposition B1 in Appendix B confirms that, similar to Proposition 1, the following contract
is optimal:

wts =
{

ω∗CARA if t > 1

� if t = 1.

The lottery � ∈ L has mean ω∗CARA and a certainty equivalent of bCARA. Thus, the optimal con-
tract offers a deterministic wage whenever the principal does not report the worst evaluation.
For the worst evaluation, payments are stochastic ensuring that the principal does not gain by
reporting this worst evaluation, although the agent’s certainty equivalent is lower than his wage
for better evaluations. In equilibrium, the principal reports all evaluations truthfully.

Proposition 6. Suppose kd ′(e) < |γ ′
1 (e)/γ1(e)|, Assumptions 1, 2, and 3a, and that the agent’s

self-assessment is uninformative, that is, p = 0. The wage

ω∗CARA = w̄ + d(e) − 1

k
ln

(
1 + γ1(e)

γ ′
1 (e)

kd ′(e)

)
−−→
k→0

w̄ + d(e) − γ1(e)

γ ′
1 (e)

d ′(e)

increases in the agent’s risk aversion k. Similarly, the certainty equivalent

bCARA = w̄ + d(e) − 1

k
ln

(
1 − 1 − γ1(e)

γ ′
1 (e)

kd ′(e)

)
−−→
k→0

w̄ + d(e) + 1 − γ1(e)

γ ′
1 (e)

d ′(e)

20 Lemma B1 in Appendix B provides the formal result.
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increases in risk aversion k. For vanishing risk aversion, k → 0, the difference ω∗CARA − bCARA

converges to −d ′(e)/γ ′
1 (e).

The optimal contract does not pin down a unique lottery �, but there are infinitely many lot-
teries that satisfy the requirements on the mean and the certainty equivalent. Therefore, general
comparative statics of the lottery � are impossible. For vanishing risk aversion, k → 0, however,
the riskiness of the lottery must diverge to infinity to generate a positive risk premium for an (al-
most) risk-neutral agent. In addition, I study two common and simple classes of lotteries below:
the normal and the binary distribution. I begin with normally distributed lotteries. Then

�1 ∼ N
(

ω∗CARA, 2
ω∗CARA − bCARA

k

)

captures the stochastic payments in the contract.21 Next, I turn to binary lotteries. Consider �2

as a lottery that pays ω∗CARA + z and ω∗CARA − z with a probability of half each. Then,

z = 1

k
ln
(

exp(k(ω∗CARA − bCARA)) +
√

exp(2k(ω∗CARA − bCARA)) − 1
)

or, equivalently, cosh(kz) = exp(k(ω∗CARA − bCARA)) yields the required certainty equivalent for
the agent. Both examples show that the comparative statics of the variance in the agent’s risk
aversion are ambiguous.

Next, I study informative self-assessments, p > 0. Proposition B2 in Appendix B confirms
that, similar to Proposition 2, the following contract is optimal:

wts =
{

c∗CARA
t if s = 0 or t = s

�t otherwise

with the optimal complete contract c∗CARA
t defined above. The lotteries �t have a mean of c∗CARA

n /p
and a certainty equivalent of c∗CARA

t . Thus, the optimal contract guarantees deterministic equilib-
rium wages because the agent truthfully reports her self-assessment s ∈ {t, 0} in equilibrium.
These equilibrium wages coincide with the benchmark wages. Therefore, subjective evaluations
do not imply any losses for the principal in the case of informative self-assessments, p > 0. Out
of equilibrium, the principal or the agent could misreport. Such reports imply stochastic pay-
ments out of equilibrium. These lotteries ensure that the principal does not gain by misreporting
the subjective evaluation although the agent’s certainty equivalent remains unchanged.

Proposition 7. Suppose kd ′(e) < |γ ′
1 (e)/γ1(e)|, Assumptions 1, 2, and 3a, and that the agent’s

self-assessment is (partially) informative, that is, p > 0. For vanishing risk aversion, k → 0,
equilibrium wages converge to

wts −−→
k→0

w̄ + d(e) + γ ′
t (e)

γt (e)

d ′(e)∑n
t̂=1

(γ ′
t̂

(e))2

γt̂ (e)

for s ∈ {0, t} and t ∈ T , and expected out-of-equilibrium payments converge to

E(wts) −−→
k→0

1

p
(w̄ + d(e)) + γ ′

n(e)

γn(e)

d ′(e)

p
∑n

t̂=1

(γ ′
t̂

(e))2

γt̂ (e)

for s �= 0, t and t ∈ T .

21 The variance of this lottery usually decreases in risk aversion, in particular, for low-risk aversion:
limk→0

∂Var(�1 )
∂k

< 0. It is easy, however, to construct examples in which the variance of this lottery �1 increases in
risk aversion because the difference ω∗CARA − bCARA also depends on the agent’s risk aversion. Consider, for example,
d ′(e) = k = 1, γ1(e) = 1/2, and γ ′

1 (e) = −0.55.
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To study the comparative statics of the stochastic out-of-equilibrium wages again I turn to
the two classes of lotteries introduced above. For normally distributed lotteries,

�1
t ∼ N

(
c∗CARA

n /p, 2
c∗CARA

n /p − c∗CARA
t

k

)
captures the stochastic payments out of equilibrium. The variance of this lottery decreases in risk
aversion for sufficiently small risk aversion:

lim
k→0

∂Var(�1
t )

∂k
< 0

for all t. Returning to binary lotteries with outcomes c∗CARA
n /p − zt and c∗CARA

n /p + zt , the values zt

defined by

cosh(kzt ) = exp(k(c∗CARA
n /p − c∗CARA

t ))

yield the required certainty equivalent for the agent. This value z decreases in the agent’s risk
aversion k for sufficiently small risk aversion.

Finally, I scrutinize observable effort. Proposition B3 in Appendix B confirms that, similar
to Proposition 3, the following contract is optimal:

wts =
{

w̄ + d(e) if t = e

� otherwise.

The lottery � has a mean w̄ + d(e) and a risk premium of at least d(e) − d(0). Thus, the optimal
contract offers a deterministic wage that is paid whenever the principal reports the contractually
specified effort. In equilibrium, the agent always chooses this effort, and the principal reports
truthfully so that equilibrium wages are deterministic.

Proposition 8. Suppose Assumptions 1a, 2a, and 3a are satisfied. Equilibrium wages wes do not
depend on the agent’s risk aversion. The off-equilibrium payments � depend on the agent’s risk
aversion. In particular, the riskiness of the lottery decreases in the agent’s risk aversion k as the
risk premium is constant.

To study the comparative statics of the stochastic payments out of equilibrium, again turn to
the two classes of lotteries introduced above. For normally distributed lotteries, the lotteries

�1 ∼ N (w̄ + d(e), σ 2)

with σ 2 ≥ 2(d(e) − d(0))/k capture the stochastic payments in the contract. The lower bound on
the variance of this lottery is decreasing and convex in the agent’s risk aversion.

Returning to binary lotteries with outcomes w̄ + d(e) − z and w̄ + d(e) + z, the following
equation defines a lower bound on the value z

cosh(kz) = exp(k(d(e) − d(0))).

That bound decreases in k and has a limit of limk→0 ∂z/∂k = −∞ for small risk aversion.

� Comparative statics in correlation. Before turning to a more general setting in the next
section, I study comparative statics of optimal contracts in correlation between the principal’s and
the agent’s evaluation. For observable effort and in the benchmark for verifiable performance, the
agent’s self-assessment does not matter. Therefore, optimal contracts in these two cases do not
depend on the amount of correlation between the principal’s and the agent’s evaluation. Thus, I
focus on subjective evaluations with unobservable effort here. I scrutinize what happens if the
agent’s self-assessment becomes more informative about the principal’s evaluation.

Proposition 9. Given Assumptions 1–3, the more informative the agent’s self-assessment is,

C© The RAND Corporation 2023.
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• the lower the principal’s expected costs of the contract are.
• the more wage levels optimal contracts distinguish.

Beginning with uninformative self-assessments, the optimal contract specifies just two util-
ity levels for the agent according to Proposition 1. This is less efficient than the objective bench-
mark which is fully differentiated. For higher correlation, optimal contracts are as efficient as the
second-best benchmark according to Proposition 2. Therefore, the principal’s expected costs of
the contract decrease in correlation. Positive correlation between the principal’s and the agent’s
evaluation allows the agent to cross-check the principal’s reported evaluation. Therefore, optimal
contracts can avoid any frictions arising from the subjectivity of the evaluations. Thus, incentiviz-
ing the agent to exert effort becomes cheaper for the principal. Remember that one interpretation
of the correlation p is how much the agent is able and willing to understand the principal’s ob-
jectives. It seems plausible that the principal can sometimes increase the informativeness of the
agent’s self-assessment by informing and educating agents about her objectives. Thus, we can
interpret this result as an incentive for the principal to inform and educate agents about her ob-
jectives.

Next, going from a contract (p = 0) with two different utility levels for the agent to a con-
tract (p > 0) that is fully differentiated and has a different wage for each evaluation means that
optimal contracts have more wage levels the higher the correlation. With uninformative self-
assessments, the agent cannot cross-check the principal’s reported evaluation, and thus, the ex-
pected wage payments for the principal have to be constant for all evaluations. Optimal contracts
pay a lower wage in terms of the agent’s certainty equivalent only for the worst reported evalua-
tion. With informative self-assessments, equilibrium wages are the same for the principal and the
agent. Therefore, the basic trade-off of moral hazard between insurance and incentives ensures
that optimally each evaluation has its own wage level. Thus, the number of different wage levels
increases from two to n (full differentiation).

Focusing on informative self-assessments, Proposition 2 immediately shows that expected
out-of-equilibrium wages and the riskiness of out-of-equilibrium wages are decreasing in the cor-
relation between the principal’s and the agent’s evaluation. The higher the correlation, the more
likely it is that the agent observed the principal’s evaluation and hence, the more likely that any
misreporting by the principal triggers out-of-equilibrium payments. Thus, it is possible to reduce
expected out-of-equilibrium payments without affecting the incentives of the principal to report
the evaluation correctly. Equilibrium wages do not depend on the correlation for informative
self-assessments. Thus, observational data can identify the change from no correlation to some
correlation but not a further increase in correlation.

A natural follow-up question concerns the generality of my results about stochastic con-
tracts. The next section studies the abstract setting without the additional assumptions and shows
that stochastic contracts in general can provide appropriate incentives.

5. Stochastic contracts: the general case

� This section considers the general moral-hazard setting with subjective performance eval-
uations without Assumptions 1–3. This general setting captures many models in the literature as
special cases, as discussed above. As shown above in Lemma 1, deterministic contracts require
payments to third parties to incentivize the agent to exert any meaningful effort. In contrast,
stochastic contracts do not need payments to third parties. Such contracts can incentivize agents
at least as well as deterministic contracts with third-party payments.

Theorem 1. Suppose that a deterministic contract W ′ incentivizes the agent to exert effort e.
Then, there is a (stochastic) contract W (without payments to third parties) that incentivizes the
agent to exert effort e. The statement remains valid if renegotiations are impossible.

C© The RAND Corporation 2023.
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Intuitively, Theorem 1 constructs a contract W that uses lotteries as stochastic compensa-
tion. The principal’s utilities of such a lottery are E(wt̄s̄), whereas the agent’s utilities are Eu(wt̄s̄).
The principal’s and the agent’s certainty equivalences of a given lottery wt̄s̄ differ because the
agent is more risk averse than the principal. This difference in risk preferences guarantees that
the principal’s certainty equivalent of these wages is higher than the agent’s certainty equivalent.
Therefore, it is possible to impose a penalty on the principal and reduce her utilities while not
increasing the agent’s utilities. This possibility allows the contract to provide all three incentives
that I discuss following Lemma 1: the agent to exert effort, the principal to evaluate the agent
appropriately, and the agent to monitor the principal’s evaluation.

Formally, the subgame (beginning in period 4) once performance is realized, in which the
principal and the agent report their evaluations, is no longer a constant-sum game and the agent’s
utilities can vary with the principal’s reported evaluation. Hence, it is possible to provide all three
incentives simultaneously. Consequently, stochastic contracts can provide agents with economi-
cally meaningful incentives without payments to third parties. The next corollary establishes that
stochastic contracts outperform deterministic contracts with third-party payments because they
are more profitable for the principal.

Corollary 1. Optimal stochastic contracts are at least as profitable for the principal as deter-
ministic contracts. Sometimes stochastic contracts strictly increase the principal’s profits. The
statement remains valid if renegotiations are impossible.

6. Conclusion

� This article studies incentive contracts based on subjective evaluations. Many firms use
subjective evaluations. Frequently, subjective evaluations are more difficult for the agent to ma-
nipulate and more accurate in measuring the principal’s objectives than objective performance
measures. Classical contracts fail to incentivize employees based on subjective evaluations be-
cause they neglect credibility issues. In addition to incentivizing employees to exert effort, con-
tracts must guarantee that supervisors report their evaluations truthfully. Therefore, subjective
evaluations require novel contracts.

The literature on these novel contracts has implicitly assumed deterministic contracts. This
restriction to deterministic contracts implies that contracts require payments to third parties. Oth-
erwise, it is impossible to provide incentives to the agent. I show that stochastic contracts can
optimally incentivize employees without the need for third-party payments. Hence, contracts are
budget balanced. Stochastic compensation, like stock options or shares, ensures that contracts
provide incentives both for truthful reporting of evaluations and—at the same time—for the
agent to exert effort. This stochastic compensation is costly for the risk-neutral principal but pro-
vides less utility for the risk-averse agent. Stochastic contracts can even increase the principal’s
profits by making deviations from truth-telling unprofitable and, thus, ensuring the credibility
of the agent’s incentives. In these cases, the principal strictly prefers to use stochastic contracts.
An additional major benefit of stochastic contracts is that they are ex post efficient and, thus,
renegotiation proof.

To follow the literature (see the references above), I assume a risk-neutral principal.
Nonetheless, my optimal contracts do not require this assumption. All that is required is that the
principal is less risk averse than the agent. This assumption is very common. In addition, there is
a strong economic intuition for the principal being less risk averse because she can usually diver-
sify her risks. This is not the case for the agent in most labor contracts because employees find
it difficult to diversify or insure their labor income. Thus, the assumption of risk-neutral agents
is mainly made in dynamic settings to abstract from the implications of consumption smoothing
for optimal contracts.

Optimal contracts use stochastic compensation. One might wonder how flexible firms are
in designing stochastic compensation. Firms are very flexible in designing stock option plans by

C© The RAND Corporation 2023.
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using, for example, different exercise prices, vesting periods, and conditions. Therefore, compa-
nies can construct the required lotteries from stock options. Common financial products, such
as exchange-traded options, are available for this purpose, and no specialized intermediaries are
necessary. Alternatively, firms can use restricted stock units. As firms can issue restricted stock
units themselves, this might be a reason why restricted stock units as a form of compensation
recently became popular in the United States.

Other examples of stochastic payments are uncertain arbitration procedures and legal un-
certainty about which contractual clauses are valid. The contracting parties might be unsure how
a disagreement is to be interpreted and what wages are appropriate. Finally, stochastic payments
could involve conflicts, like working to rule, strikes, or walkouts. Compensation in stock options,
restricted stock units, or shares is well documented, whereas other forms of stochastic payments
have received less attention in the literature but appear no less important: “Stock option grants to
nonexecutive employees have become an important component of compensation policy in recent
decades,” as Hochberg and Lindsey (2010) summarize the empirical evidence on stock options
as a form of stochastic compensation.22 The emphasis here is on equity-based compensation for
rank-and-file employees because there might be additional reasons to use such a compensation
for executives. Rank-and-file employees individually have little, if any, effect on stock prices,
so that equity-based compensation offers no informational benefit. In addition, firms grant rel-
atively small amounts of options or stocks to rank-and-file employees compared with the total
number of a firm’s stocks. Therefore, the employee gains only a very small share of any value
added. Hence, equity-based compensation does not seem optimal for incentivizing rank-and-file
employees. Nevertheless, the use of equity-based compensation for rank-and-file employees is
widespread and growing: “The use of equity-based compensation for employees below the ex-
ecutive rank has been growing rapidly during the last decade” (Bergman and Jenter, 2007). In
frameworks with objective evaluations, this usage is hard to explain. Stochastic compensation
seems to contradict basic intuitions derived from moral-hazard models: “the prevalence of broad
based option plans remains a puzzle for standard economic theory” (Kedia and Rajgopal, 2009).
My article provides a simple rationale for the use of stochastic contracts.

Appendix A: Proofs

Section 4 assumes a particular structure of correlation between the principal’s evaluation and the agent’s self-
assessment which is common in the literature. Some articles consider a more general correlation but for binary signals
only, for example Section 5 in Chan and Zheng (2011, one-period case), Bester and Münster (2016), and the stage
game in Maestri (2012).23 The next claim shows that even with this more general correlation, optimal contracts remain
qualitatively unchanged from Proposition 1.

Claim A1. Given Assumptions 1–3, in the setting of Proposition 5 of Chan and Zheng (2011, one-period case), optimal
contracts remain qualitatively unchanged compared with my Proposition 1.

Proof. In the setting of Section 5 with T=1 Chan and Zheng (2011), evaluations and self-assessments are T = S =
{1, 2}. They consider a joint distribution allowing for correlation between both assessments. Effort is binary, e ∈ {0, 1},
so that Chan and Zheng (2011) focus on incentivizing effort e = 1. They assume c(0) = 0, c(1) = c > 0, as well as
γ2(1) > γ2(0) and Prob(t = 2|e = 1, s = 2) > max{Prob(t =2|e =1, s = 1), Prob(t =2|e = 0, s = 2), Prob(t =2|e =
0, s = 1)}. For the one-period case considered here, without loss of generality assume a discount factor of one. Finally,
their Proposition 5 assumes Prob(t = 2|e =1, s =1) ≥ γ2(0).

22 Core and Guay (2001) confirm these claims: “The corporate use of stock option plans for nonexecutive employ-
ees is widespread.” See also Babenko and Sen (2016), who report that in their sample of 663 large US firms in the years
1996 to 2011, an average rank-and-file employee was granted about 780 stock options each year with a Black-Scholes
fair value of $6981. Call et al. (2016), Kim and Ouimet (2014), Kedia and Rajgopal (2009), and Oyer and Schaefer
(2005) perform additional empirical analyses of broad-based compensation with stocks and stock options.

23 Bester and Münster (2016) and Maestri (2012) consider continuous effort, however.
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Proposition 5 in Chan and Zheng (2011) shows for T=1 that an optimal contract implies utilities of

u(c̃22 ) = u(c̃21 ) = ū + c + γ1(1)

γ1(0) − γ1(1)
c and u(c̃12 ) = u(c̃11 ) = ū + c − 1 − γ1(1)

γ1(0) − γ1(1)
c.

As γ2(1) > γ2(0) implies γ1(0) > γ1(1), it is easy to see that c̃22 > c̃11. Adjusting the values ω∗ and b in the contract of
Proposition 1 accordingly yields the optimal stochastic contract:

wts =
{

c̃22 if t > 1

� if t = 1

The lottery � has a mean c̃22, a certainty equivalent c̃11, and is realized at the end of period 4. Therefore, the alternative
correlation does not change optimal contracts qualitatively. For the same reasons as in Proposition 1, the contract is
renegotiation proof. �

Proof of Lemma 1. The setting of MacLeod (2003) is a special case of my general setting. Nevertheless, the proof of
MacLeod (2003) carries over and remains valid. Suppose third-party payments are impossible and yts = 0 for all t ∈ T
and all s ∈ S. “After making their subjective evaluations, the principal and agent play a constant-sum game when making
their reports. From the min-max theorem such a game has a unique value and hence the agent’s compensation cannot
depend upon [the principal’s evaluation] t” (MacLeod, 2003). �

Proof of Lemma 2. Regarding the agent’s incentive compatibility (IC), the first-order approach is valid here because
the distribution induced by γt (e) is convex. According to Grossman and Hart (1983), Rogerson (1985), and Kirkegaard
(2017), the convexity of the distribution function condition together with the convexity of d(·) and the monotone likeli-
hood ratio property (MLRP) guarantees that the first-order approach is valid. Hence, I can rewrite the agent’s incentive
compatibility (IC) as ∑

t∈T
γ ′

t (e)(pu(c̃tt ) + (1 − p)u(c̃t0 )) = d ′(e).

Consider Program A without the constraints (TTP) and (TTA) for truth-telling. It is straightforward that the solution
to this relaxed problem is w̃ts = c̃ts = c̃t0 = c∗

t with a certainty equivalent c∗
t for all t, s ∈ T if a solution exists. Neglect-

ing the agent’s incentive compatibility (IC), the solution to this relaxed problem is c∗
t = u−1(ū + d(e)) for all t ∈ T if

effort e is implementable. Therefore, the agent’s incentive compatibility is binding because the solution to the relaxed
problem violates the agent’s incentive compatibility. Consequently, the Lagrange multiplier μ1 of the agent’s incentive
compatibility is positive in equation (1).

Optimization with respect to c∗
t with the Lagrange multipliers of the participation constraint μ0 and the incentive

compatibility μ1 determines the optimal complete contract as

γt (e) − μ0u′(c∗
t )γt (e) − μ1u′(c∗

t )γ ′
t (e) = 0,

1

u′(c∗
t )

= μ0 + μ1
γ ′

t (e)

γt (e).
(A1)

Again, we see that the Lagrange multiplier μ1 is positive: If μ1 = 0, then equation (A1) implies that wages c∗
t are constant

in t, violating the incentive compatibility (IC). Hence, μ1 > 0. The right-hand side of equation (A1) increases in t ∈ T
due to the monotone likelihood ratio property. Therefore, the strict concavity of u(·) implies that the solution c∗

t is unique
and that c∗

t increases in t ∈ T . Given that effort e is implementable, this concludes the proof.
I conclude the proof by some remarks on implementability. To implement no effort, e = 0, set c∗

t = u−1(ū + d(0))
for all t ∈ T . This wage c∗

t is well defined if and only if effort e = 0 is implementable. The limit limw→∞ u(w) = ∞ or
ū sufficiently low ensures that the wage c∗

t is well defined and hence, that effort e = 0 is implementable. Positive effort
e > 0 is implementable for limw→∞ u(w) = ∞ if the constraint set is nonempty (Page, 1987). To implement positive
effort, e > 0, consider the contract

ct =
{

c1 if t ∈ Tg

c2 otherwise

with the set Tg = {t ∈ T |γ ′
t (e) ≥ 0} and c1 as well as c2 determined below. The contract satisfies the agent’s incentive

compatibility (IC) if

d ′(e) =
∑
t∈Tg

u(c1 )γ ′
t (e) +

∑
t∈(T \Tg )

u(c2 )γ ′
t (e) = (u(c1 ) − u(c2 ))

∑
t∈Tg

γ ′
t (e) (A2)

because
∑

t∈T γt (e) = 1 ⇒ ∑
t∈T γ ′

t (e) = 0 and, hence,∑
t∈Tg

γ ′
t (e) = −

∑
t∈(T \Tg )

γ ′
t (e).

C© The RAND Corporation 2023.
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The assumption limw→a u(w) = −∞ implies that it is always possible to satisfy the incentive compatibility by setting c2

sufficiently close to a as defined in Assumption 3. According to the definition of the set Tg and the monotone likelihood
ratio property, the sum

∑
t∈T γ ′

t (e) in equation (A2) is positive. Therefore, equation (A2) uniquely determines u(c1 ) −
u(c2 ). Moreover, d ′ > 0 implies c1 > c2. The contract satisfies the PC if

d(e) + ū = u(c1 )
∑
t∈Tg

γt (e) + u(c2 )
∑

t∈(T \Tg )

γt (e) = u(c2 ) + (u(c1 ) − u(c2 ))
∑
t∈Tg

γt (e)

because
∑

t∈T γt (e) = 1 and, hence, ∑
t∈Tg

γt (e) = 1 −
∑

t∈(T \Tg )

γt (e).

Plugging in the above solution for u(c1 ) − u(c2 ) uniquely determines u(c2 ). The values for u(c1 ) and u(c2 ) are feasible if
limw→∞ u(w) = ∞. Therefore, the constraint set is nonempty. The above contract also proves that the costs of an optimal
contract are lower than max{c1, c2} < ∞ for implementable effort e.

By the standard arguments, it is not optimal to use third-party payments or stochastic compensation. Hence, the
contract is renegotiation proof. �

Proof of Proposition 1. With uninformative self-assessments, the principal’s truth-telling constraint (TTP) implies w̃t0 =
w̃t̄0 for all t, t̄ ∈ T . Expected wages must be constant in the principal’s message because the contract cannot detect any
deviations from truth-telling by the principal. Thus, define ω = w̃t0 for a t ∈ T . In addition, the agent’s truth-telling
constraint (TTA) implies ∑

t∈T
u(c̃t0 )γt (e) ≥

∑
t∈T

u(c̃ts̄ )γt (e)

for all s̄ ∈ T . As the values c̃ts for all t, s ∈ T matter only off the equilibrium path, without loss of generality, we can
set c̃ts = c̃t0 for all t, s ∈ T to satisfy the agent’s truth-telling constraint (TTA). Adjusting Program A accordingly yields
Program B′:

min
ω,c̃t0

ω (B′)

subject to
∑
t∈T

u(c̃t0 )γt (e) − d(e) ≥ ū, (PC)

∑
t∈T

γ ′
t (e)u(c̃t0 ) = d ′(e) (IC)

ω ≥ c̃t0 ∀t ∈ T . (A3)

The next steps calculate the optimal ω and c̃t0. Define ν0, ν1 and βt to be the Lagrange multipliers of the PC, IC,
and constraint (A3) in Program B′, respectively. If c̃t0 = ω for all t ∈ T , the contract violates the agent’s IC. Therefore,
there is an evaluation t∗ ∈ T with stochastic payments, that is, ω > c̃t∗0. Then, the complementary slackness condition
yields βt∗ = 0. Optimization of the Lagrangian with respect to c̃t∗0 results in

−ν0u′(c̃t∗0 )γt∗ (e) − ν1u′(c̃t∗0 )γ ′
t∗ (e) = 0.

Hence,

ν0 + ν1
γ ′

t∗ (e)

γt∗ (e)
= 0. (A4)

The monotone likelihood ratio property ensures that γ ′
t (e)

γt (e)
strictly increases in t ∈ T . In addition, ν1 must be positive

because the solution to Program B without the agent’s incentive compatibility (IC) is ω = c̃t0 = u−1(ū + d(e)) for all
t ∈ T , and this solution violates constraint (IC). Therefore, equation (A4) can hold for at most one t∗ ∈ T . Hence,
c̃t0 = ω and βt ≥ 0 for all t ∈ T \ {t∗}.

Assume to the contrary t∗ �= 1. This assumption implies t∗ > 1. Optimization of the Lagrangian with respect to c̃10

results in −ν0u′(c̃10 )γ1(e) − ν1u′(c̃10 )γ ′
1 (e) + β1 = 0. Hence,

ν0 + ν1
γ ′

1 (e)

γ1(e)
= 1

u′(c̃10 )

β1

γ1(e)
.

Equation (A4), ν1 > 0, t∗ > 1, and the monotone likelihood ratio property imply that the left-hand side of the last equa-
tion is negative. The right-hand side is nonnegative because constraint (A3) is binding for t = 1 and β1 ≥ 0. This contra-
diction proves that t∗ = 1.
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Plugging these results into the PC and the IC yields:

u(ω∗ )(1 − γ1(e)) + u(c̃∗
10 )γ1(e) − d(e) = ū,

(u(c̃∗
10 ) − u(ω∗ ))γ ′

1 (e) = d ′(e),

because 1 = ∑
t∈T γt (e) ⇒ 0 = ∑

t∈T γ ′
t (e) = γ ′

1 (e) +∑
t∈T \{1} γ

′
t (e). Solving the first equation for u(c̃∗

10 ) gives u(c̃∗
10 ) =

[ū + d(e) − u(ω∗ )(1 − γ1(e))]/γ1(e). Inserting this value for u(c̃∗
10 ) into the second equation yields (ū + d(e) −

u(ω∗ ))γ ′
1 (e) = γ1(e)d ′(e) and finally results in

u(ω∗ ) = ū + d(e) − γ1(e)

γ ′
1 (e)

d ′(e) and u(c̃∗
10 ) = ū + d(e) + 1 − γ1(e)

γ ′
1 (e)

d ′(e).

These values of ω∗ and c̃∗
10 allow to characterize the optimal contract. For this purpose, define b = c̃∗

10 and consider a
lottery � ∈ L with a certainty equivalent b, that is, Eu(�) = u(b), and E(�) = ω∗ that is realized at the end of period
4. Strict concavity of u and the assumption limw→a u(w) = −∞ ensure existence of such a lottery �. Now consider the
contract stated in Proposition 1. The contract implements c̃ts = w̃ts = ω∗ for all t > 1 and all s ∈ S as well as c̃1s = b =
c̃∗

10 for all s ∈ S. Hence, the contract in Proposition 1 implies ω = ω∗ and

u(c̃t0 ) =
{

u(ω∗ ) if t > 1

u(b) = u(c̃∗
10 ) if t = 1.

The definition of c̃∗
t0 ensures that the contract satisfies the agent’s PC and IC. The agent’s truth-telling constraint (TTA) is

satisfied because his utilities are independent of his message. The principal’s truth-telling constraint (TTP) is also satisfied
because expected wages are independent of her message. The contract also satisfies constraint (RA). Consequently, the
contract in Proposition 1 is feasible. The contract is also optimal because ω∗ and c̄∗

1 are optimal in Program B.
It remains to show that the contract is renegotiation proof and that the contract uses no third-party payments. Any

third-party payments yts > 0 are not renegotiation proof, as the principal could propose to skip the third-party payment
(ŷts = 0) and pay half of it to the agent (ŵts = wts + yts/2). The agent would be happy to accept any such proposal which
makes the principal better off. Therefore, third-party payments are not renegotiation proof.

The lottery � in Proposition 1 is realized at the end of period 4. Denote this realization by O(�). Hence, when
renegotiations occur in period 5, renegotiations are a zero-sum game. Any proposal that the agent accepts (i.e., any wage
above O(�)) makes the principal worse off. The agent rejects any proposal that makes the principal better off (i.e., any
wage below O(�)). Hence, the contract is renegotiation proof. �

Proof of Proposition 2. The proof proceeds in two steps. The first step constructs lotteries that satisfy the conditions in
the proposition. The second step proves optimality of the contract stated in the proposition.

First, I show how to construct the lotteries �t . Consider, for example, a lottery �t ∈ L that pays c∗
n/p + zt and

c∗
n/p − zt with equal probabilities and that is realized at the end of period 4. This lottery yields an expectation of c∗

n/p.
Choosing zt ∈ R appropriately ensures Eu(�t ) = u(c∗

t ) because c∗
n/p ≥ c∗

n ≥ c∗
t for all t ∈ T . Strict concavity of u and

the assumption limw→a u(w) = −∞ guarantee that there is a unique and bounded zt for all t ∈ T . This construction
establishes existence of the lotteries �t .

Second, consider optimality. On the equilibrium path, the contract in Proposition 2 makes the principal pay a
wage of c∗

t to the agent. Lemma 2 shows that the optimal complete contract c∗
t satisfies the agent’s PC and IC. Hence,

the agent accepts the contract in Proposition 2 and exerts effort e. Independently of the agent’s message s, his utility
is u(c∗

t ) = Eu(�t ). Therefore, truth-telling is optimal for the agent and his truth-telling constraint (TTA) is satisfied.
Suppose the agent reports his self-assessment s truthfully. If the principal evaluates the agent correctly, she pays c∗

t . If the
principal deviates to an evaluation t̄ �= t, she expects to pay

pw̃t̄t + (1 − p)w̃t̄0 = pc∗
n/p + (1 − p)c∗

t̄ = c∗
n + (1 − p)c∗

t̄ > c∗
n = max

r∈T
c∗

r ≥ c∗
t .

Therefore, truth-telling is optimal for the principal and her truth-telling constraint (TTP) is satisfied. Constraint (RA) is
trivially satisfied.

In summary, the contract implements equilibrium payments of c∗
t . Remember that the optimal complete contract

c∗
t is a solution to a relaxed problem without the truth-telling constraints (TTP) and (TTA). Consequently, the contract in

Proposition 2 optimally incentivizes the agent based on subjective evaluations.
It remains to show that the contract is renegotiation proof and that the contract uses no third-party payments. Any

third-party payments yts > 0 are not renegotiation proof, as the principal could propose to skip the third-party payment
(ŷts = 0) and pay half of it to the agent (ŵts = wts + yts/2). The agent would be happy to accept any such proposal which
makes the principal better off. Therefore, third-party payments are not renegotiation proof.

The lotteries �t in Proposition 2 are realized at the end of period 4. Denote this realization by O(�t ). Hence, when
renegotiations occur in period 5, renegotiations are a zero-sum game. Any proposal that the agent accepts (i.e., any wage
above O(�t )) makes the principal worse off. The agent rejects any proposal that makes the principal better off (i.e., any
wage below O(�t )). Hence, the contract is renegotiation proof. �

C© The RAND Corporation 2023.
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Proof of Proposition 3. First, construct a lottery � ∈ L with the specified properties. The lottery pays u−1(ū + d(e)) + z
and u−1(ū + d(e)) − z with equal probabilities and is realized at the end of period 4. This lottery yields an expectation
of u−1(ū + d(e)). Choosing z ∈ R appropriately ensures Eu(�) = ū + d(0). Strict concavity of u and the assumption
limw→a u(w) = −∞ guarantee that there is a unique and bounded z. This construction establishes existence of the lot-
tery �.

Second, consider incentives. In period 4, the principal’s expected payoffs do not depend on her report. Therefore,
reporting t = e is optimal for the principal. If the agent’s chooses effort e, her utilities in the contract are ū + d(e) −
d(e) = ū. Hence, she accepts the contract and her participation constraint (PC) is satisfied. If the agent chooses any other
report or effort, her expected utilities are at most ū + d(0) − d(0) ≤ ū. Therefore, the agent optimally chooses effort e
and reports s = e.

The contract implements any effort e ∈ [0, 1) at first-best costs. It remains to show that the contract is renegotiation
proof and that the contract uses no third-party payments. Any third-party payments yts > 0 are not renegotiation proof, as
the principal could propose to skip the third-party payment (ŷts = 0) and pay half of it to the agent (ŵts = wts + yts/2). The
agent would be happy to accept any such proposal which makes the principal better off. Therefore, third-party payments
are not renegotiation proof.

The lottery � in Proposition 3 is realized at the end of period 4. Denote this realization by O(�). Hence, when
renegotiations occur in period 5, renegotiations are a zero-sum game. Any proposal that the agent accepts (i.e., any wage
above O(�)) makes the principal worse off. The agent rejects any proposal that makes the principal better off (i.e., any
wage below O(�)). Hence, the contract is renegotiation proof. �

Proof of Lemma 3. Lemma 1 proves that deterministic contracts without third-party payments cannot incentivize agents.
This remains true if renegotiations are impossible. Propositions 1, 2, and 3 establish that stochastic contracts can incen-
tivize agents if effort e is implementable. Hence, if effort e is not implementable with the optimal stochastic contract,
stochastic contracts weakly increase efficiency. If effort e is implementable with the optimal stochastic contract, stochastic
contracts strictly increase efficiency. Notice that Lemma 3 is valid no matter whether renegotiations are possible or not.

Considering the second step of Grossman and Hart (1983), the sum of utilities increases if∫
T ,S B(e, t, s)dF (t, s|e) >

∫
T ,S B(0, t, s)dF (t, s|0) for some implementable e. �

Proof of Proposition 4. Third-party payments are not renegotiation proof. Given any positive third-party payment yts > 0,
the principal could propose to skip the third-party payment (ŷts = 0) and pay half of it to the agent (ŵts = wts + yts/2).
The agent would be happy to accept any such proposal which makes the principal better off. The renegotiation-proofness
principle by Laffont and Tirole (1990) implies that it is without loss of generality to focus on renegotiation-proof con-
tracts, that is, deterministic contracts without third-party payments. Hence, deterministic contracts cannot incentivize
agents according to Lemma 1. Propositions 1, 2, and 3 establish that stochastic contracts can incentivize agents if effort
e is implementable. Hence, if effort e is not implementable with the optimal stochastic contract, stochastic contracts
weakly increase efficiency. If effort e is implementable with the optimal stochastic contract, stochastic contracts strictly
increase efficiency.

Considering the second step of Grossman and Hart (1983), the sum of utilities increases if∫
T ,S B(e, t, s)dF (t, s|e) >

∫
T ,S B(0, t, s)dF (t, s|0) for some implementable e. �

Proof of Proposition 5. Propositions 1, 2, and 3 are also valid if renegotiations are impossible. These results prove that
stochastic contracts can incentivize agents in an optimal way. Proposition 2 shows that stochastic contracts can achieve
expected wage costs of Cc(e) (as defined following Lemma 2) for any degree of correlation and p > 0. Now, suppose that
contracts are deterministic. To describe optimal contracts in this case, I denote the bound on the third-party payments as
S. If S < ω∗ − b, with the values ω∗ and b defined in Proposition 1, deterministic contracts cannot implement effort e. If
(ω∗ − b)/p > S ≥ ω∗ − b, the optimal deterministic contract is

w̃ts = ω∗ and c̃ts =
{

b if t = 1

ω∗ otherwise
(A5)

To show optimality, I re-interpret the value w̃ts as the deterministic wage payment by the principal. Then, the agent earns
a wage c̃ts, whereas the amount w̃ts − c̃ts is paid to third parties. Thus, Proposition 1 implies that contract (A5) is optimal.

If S ≥ (ω∗ − b)/p, the optimal contract is

w̃ts

⎧⎪⎨
⎪⎩

= c̃tt if t = s

∈ [c̃tt , c̃tt + S] if s = 0

= c̃tt + S otherwise.

In addition, there is a t̄ ∈ T such that

c̃ts

{
= c̃ns′ if t > t̄

< c̃(t+1)s′ otherwise

C© The RAND Corporation 2023.
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for all t ∈ T and all s, s′ ∈ S according to Proposition 8 in MacLeod (2003). Moreover, t̄ < n − 1 if S < (c∗
n − c∗

1 )/p.
If S ≥ (c∗

n − c∗
1 )/p, the optimal deterministic contract has t̄ = n − 1, w̃t0 = c̃tt and in equilibrium implements wage pay-

ments c∗
t for the agent at the same costs Cc(e) as the optimal complete contract. Therefore, all deterministic contracts

are more expensive than Cc(e) if S < (c∗
n − c∗

1 )/p. If the correlation p is sufficiently small, S < (c∗
n − c∗

1 )/p for any fi-
nite bound S. Consequently, stochastic contracts are strictly more efficient and more profitable for the principal if the
alignment p between the agent’s self-assessment and the principal’s evaluation is sufficiently small and effort e is im-
plementable with the optimal stochastic contract. Hence, if effort e is not implementable with the optimal stochastic
contract, deterministic contracts cannot implement effort e and stochastic contracts weakly increase efficiency. If effort e
is implementable with the optimal stochastic contract, stochastic contracts strictly increase efficiency. �

Proof of Proposition 6. The condition kd ′(e) < |γ ′
1 (e)/γ1(e)| ensures that effort e is implementable according to Propo-

sition B1 in Appendix B. Higher risk aversion k increases the certainty equivalent b in the contract in Proposition B1:

∂b

∂k
= 1

k2
ln

(
1 − 1 − γ1(e)

γ ′
1 (e)

kd ′(e)

)
− 1

k

1

1 − 1−γ1 (e)
γ ′

1 (e)
kd ′(e)

1 − γ1(e)

γ ′
1 (e)

d ′(e)

= 1

k2
ln

(
1 − 1 − γ1(e)

γ ′
1 (e)

kd ′(e)

)
− 1

k

1
γ ′

1 (e)

1−γ1 (e)
− kd ′(e)

d ′(e) > 0

because the MLRP ensures γ ′
1 (e) < 0 so that γ ′

1 (e)

1−γ1 (e)
< 0 and 1−γ1 (e)

γ ′
1 (e)

< 0 and the logarithm is positive. In addition, the

last fraction being negative guarantees that the second term is also positive.
Higher risk aversion k increases the wage ω∗CARA:

∂ω∗CARA

∂k
= 1

k2
ln

(
1 + γ1(e)

γ ′
1 (e)

kd ′(e)

)
− 1

k

1

1 + γ1 (e)
γ ′

1 (e)
kd ′(e)

γ1(e)

γ ′
1 (e)

d ′(e) > 0

because the negative γ ′
1 (e) ensures that the logarithm ln(1 + γ1 (e)

γ ′
1 (e)

kd ′(e)) is decreasing and concave in k and equals zero

for k = 0. Thus, Taylor’s theorem yields ln(1 + γ1 (e)
γ ′

1 (e)
kd ′(e)) > k

∂ ln(1+ γ1 (e)

γ ′
1 (e)

kd ′ (e))

∂k
. Therefore, the derivative is positive.

Next, consider the difference ω∗CARA − b. There is a γ̄ ∈ (0, 1/2) so that higher risk aversion k decreases this
difference for γ1(e) < γ̄ and increases this difference for γ1(e) > γ̄ . The threshold γ̄ for γ1(e) is determined by (2γ̄ −
1)γ ′

1 (e) = 2γ̄ kd ′(e)(1 − γ̄ ) and depends on the risk aversion k. The reason is the following:

∂ω∗CARA − b

∂k

= − 1

k2
ln

(
1 − kd ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

)
+ 1

1 − kd ′ (e)
γ ′

1 (e)+γ1 (e)kd ′ (e)

−γ ′
1 (e)d ′(e)

k(γ ′
1 (e) + γ1(e)kd ′(e))2

= − 1

k2
ln

(
1 − kd ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

)
+ 1

k

1

γ ′
1 (e) − (1 − γ1(e))kd ′(e)

−γ ′
1 (e)d ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

because Taylor’s theorem yields

− ln

(
1 − kd ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

)
+ k

∂ ln
(

1 − kd ′ (e)
γ ′

1 (e)+γ1 (e)kd ′ (e)

)
∂k

{
< 0 for γ1(e) < γ̄ ,

>0 for γ1(e) > γ̄

as the logarithm ln(1 − kd ′ (e)
γ ′

1 (e)+γ1 (e)kd ′ (e)
) equals zero for k = 0, kd ′(e) < |γ ′

1 (e)/γ1(e)| and

∂ ln
(

1 − kd ′ (e)
γ ′

1 (e)+γ1 (e)kd ′ (e)

)
∂k

= −1

γ ′
1 (e) − (1 − γ1(e))kd ′(e)

γ ′
1 (e)d ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

> 0,

∂2 ln
(

1 − kd ′ (e)
γ ′

1 (e)+γ1 (e)kd ′ (e)

)
∂k2

= (2γ1(e) − 1)γ ′
1 (e) + 2γ1(e)kd ′(e)(γ1(e) − 1)

(γ ′
1 (e) − (1 − γ1(e))kd ′(e))2

d ′(e)2γ ′
1 (e)

(γ ′
1 (e) + γ1(e)kd ′(e))2

,

so that the logarithm is increasing and concave in k for γ1(e) < γ̄ and the logarithm is increasing and convex in k for
γ1(e) > γ̄ .

Finally, consider the limit to risk neutrality, k → 0. L’Hospital’s rule yields b → w̄ + d(e) + 1 − γ1(e)

γ ′
1 (e)

d ′(e),

ω∗CARA − b → −d ′(e)/γ ′
1 (e), and ω∗CARA → w̄ + d(e) − γ1(e)

γ ′
1 (e)

d ′(e).

For CARA utilities and a normal distribution, the risk premium equals the variance times k/2. Rearranging yields
the necessary variance of the lottery. The CARA utilities of a binary lottery with probabilities half each are equal to
cosh(·). Plugging in the definition of the cosh yields the term for the value z. �

C© The RAND Corporation 2023.
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Proof of Proposition 7. The condition kd ′(e) < |γ ′
1 (e)/γ1(e)| ensures that effort e is implementable according to Propo-

sition B1 in Appendix B for uninformative self-assessments. With informative self-assessments, the principal has more
flexibility and can implement more effort levels. Therefore, the condition kd ′(e) < |γ ′

1 (e)/γ1(e)| ensures that effort e is
implementable also for informative self-assessments.

Proposition B2 in Appendix B shows that the equilibrium wages equal the optimal complete contract c∗CARA
t as

calculated in Lemma B1 in Appendix B:

c∗CARA
t = d(e) + 1

k
ln

(
exp(kw̄) + μ1k

(
γ ′

t (e)

γt (e)
+ kd ′(e)

))
.

Taking the derivative with respect to the agent’s risk aversion k yields

∂μ1
∂k

k( γ ′
t (e)

γt (e)
+ kd ′(e)) + μ1( γ ′

t (e)
γt (e)

+ 2kd ′(e)) + w̄ exp(kw̄)

k
(

exp(kw̄) + μ1k
(

γ ′
t (e)

γt (e)
+ kd ′(e)

)) − 1

k2
ln

(
exp(kw̄) + μ1k

(
γ ′

t (e)

γt (e)
+ kd ′(e)

))
.

For the limit to risk neutrality, k → 0, apply L’Hospital’s rule. Hence,

wts −−→
k→0

d(e) + ∂ ln

(
exp(kw̄) + μ1k

(
γ ′

t (e)

γt (e)
+ kd ′(e)

))
/∂k

∣∣∣∣
k=0

for s ∈ {0, t} and all t ∈ T . For bounded μ1, this derivative equals w̄ + μ1
γ ′

t (e)

γt (e)
. Calculating the agent’s expected utility,

it is straightforward to see that the agent’s PC is satisfied for any μ1 in the limit as
∑

t γ
′

t (e) = 0. Turn to the agent’s
incentive compatibility in the limit. Plugging in the limit wages yields:

∑
t

γ ′
t (e)(w̄ + μ1

γ ′
t (e)

γt (e)
) = d ′(e).

Solving for the limit μ1, we get μ1 → d ′(e)/(
∑

t
(γ ′

t (e))2

γt (e)
)) confirming the assumption of bounded μ1. Therefore,

wts −−→
k→0

w̄ + d(e) + γ ′
t (e)

γt (e)

d ′(e)∑n
t̂=1

(γ ′
t̂

(e))2

γt̂ (e)

for s ∈ {0, t} and all t ∈ T . Similarly, out-of-equilibrium expected wages converge to

E(wts ) −−→
k→0

1

p
(w̄ + d(e)) + γ ′

n (e)

γn(e)

d ′(e)

p
∑n

t̂=1

(γ ′
t̂

(e))2

γt̂ (e)

for all s �= 0, t and all t ∈ T because E(�t ) = c∗CARA
n /p for all t.

For CARA utilities and a normal distribution, the risk premium equals the variance times k/2. Rearranging yields
the necessary variance of the lottery. As limk→0 c∗CARA

n /p − c∗CARA
t > 0, the risk premium is positive in the limit and the

variance of the lottery has to decrease in the risk aversion for all evaluations t for sufficiently small risk aversion.
The CARA utilities of a binary lottery with probabilities half each are equal to cosh(·). Again the value z decreases

in the risk aversion for all evaluations t for sufficiently small risk aversion. �

Proof of Proposition 8. Begin with the equilibrium wages w̄ + d(e) calculated in Proposition B3 in Appendix B. These
equilibrium wages do not depend on the agent’s risk aversion and are deterministic. The mean and the risk premium of
the off-equilibrium payments � are constant in the agent’s risk aversion. A constant risk premium translates in a riskiness
that decreases in the agent’s risk aversion.

For CARA utilities and a normal distribution, the risk premium equals the variance times k/2. Rearranging yields
a variance of at least 2(d(e) − d(0))/k. That lower bound on the variance is decreasing and convex in the agent’s risk
aversion with the limit limk→0 ∂Var(�1 )/∂k = −∞.

The CARA utilities of a binary lottery with probabilities half each are equal to cosh(·). Again, the value z decreases
in the risk aversion with the limit limk→0 ∂z/∂k = −∞. �

Proof of Proposition 9. For uninformative self-assessments, the optimal contract is less efficient than the objective bench-
mark according to Proposition 1. For higher correlation, optimal contracts are as efficient as the second-best benchmark
according to Proposition 2. Therefore, the principal’s expected costs of the contract decrease in correlation.

For uninformative self-assessments, the optimal contract has two wage levels according to Proposition 1. For higher
correlation, optimal contracts have n wage levels according to Proposition 2.

According to Proposition 2, expected out-of-equilibrium wages equal c∗
n/p and, thus, decrease in the correlation

p. In addition, the risk premium of out-of-equilibrium wages equal c∗
n/p − c∗

t for an evaluation t. This risk premium
decreases in the correlation p. �

C© The RAND Corporation 2023.
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Proof of Theorem 1. Stochastic contracts allow to replicate the outcomes of any deterministic contract with payments to
third parties. The revelation principle ensures that it is without loss of generality to focus on direct mechanisms. In the
space of deterministic contracts, hence, it is without loss of generality to consider contracts with w′

ts paid by the principal
to the agent and y′

ts paid by the principal to third parties. We can replicate any such contract using a stochastic contract
W without payments to third parties. For this purpose, I study three cases. First, consider w′

ts such that U (w′
ts, e) > −∞.

The new contract has

yts = 0 and wts =
{

w′
ts if y′

ts = 0

�ts if y′
ts > 0

with lotteries �ts ∈ L for all t ∈ T and all s ∈ S. The lotteries have a mean w′
ts + y′

ts, a risk premium y′
ts for the agent,

and are realized at the end of period 4. Thus, EU (wts, e) = U (w′
ts, e). Consider, for example, a lottery �ts ∈ L that pays

w′
ts + y′

ts + zts and w′
ts + y′

ts − zts with equal probabilities. This lottery yields an expectation of w′
ts + y′

ts. Choosing zts ≥ 0
appropriately ensures

EU (wts, e) = EU (�ts, e) = U (w′
ts, e)

for all t ∈ T and all s ∈ S. Strict concavity of U in w guarantees that there is a unique and bounded zts for all t ∈ T and
all s ∈ S: for fixed t and s, I define the function

Z (z) = U (w′
ts + y′

ts + z, e)/2 + U (w′
ts + y′

ts − z, e)/2 − U (w′
ts, e).

Obviously, Z (0) = U (w′
ts + y′

ts, e) − U (w′
ts, e) > 0 as U increases in w. Next, I construct z̄ > 0 such that Z (z̄) < 0. I

denote Uw = ∂U/∂w. Notice that for z > y′
ts we have Z (z) =

1

2
U (w′

ts + y′
ts + z, e) + 1

2
U (w′

ts + y′
ts − z, e) − U (w′

ts, e)

concavity of U in w
< U (w′

ts + y′
ts, e) + 1

2
zUw(w′

ts + y′
ts, e)

+ 1

2
(U (w′

ts, e) − U (w′
ts + y′

ts, e) + U (w′
ts + y′

ts − z, e) − U (w′
ts, e)) − U (w′

ts, e)

concavity of U in w
< U (w′

ts + y′
ts, e) + 1

2
zUw(w′

ts + y′
ts, e)

− 1

2
y′

tsUw(w′
ts + y′

ts, e) + 1

2
(y′

ts − z)Uw(w′
ts, e) − U (w′

ts, e)

= U (w′
ts + y′

ts, e) − U (w′
ts, e) − 1

2
(y′

ts − z)(Uw(w′
ts + y′

ts, e) − Uw(w′
ts, e))

= U (w′
ts + y′

ts, e) − U (w′
ts, e) + 1

2
(y′

ts − z)(Uw(w′
ts, e) − Uw(w′

ts + y′
ts, e)).

The last line equals zero for

z = z̄ = y′
ts + 2

U (w′
ts + y′

ts, e) − U (w′
ts, e)

Uw(w′
ts, e) − Uw(w′

ts + y′
ts, e)

.

The value z̄ > y′
ts > 0 is positive because U (w′

ts + y′
ts, e) > U (w′

ts, e) as well as Uw(w′
ts, e) > Uw(w′

ts + y′
ts, e). Therefore,

Z (z̄) < 0. Together, Z (0) > 0, Z (z̄) < 0, and the intermediate value theorem guarantee that there is a z̃ ∈ (0, z̄) such
that Z (z̃) = 0. Hence, an appropriate zts ∈ R+

0 exists for all t ∈ T and all s ∈ S. This construction establishes existence
of lotteries �ts. Unsurprisingly, the lotteries �ts are not uniquely determined. There are many lotteries �ts ∈ L with the
required mean and risk premium.

The second case considers w′
ts and y′

ts such that U (w′
ts + y′

ts, e) = −∞. Then, the new contract has yts = 0 and
wts = w′

ts + y′
ts. The PC ensures that t and s occur only out of equilibrium. Finally, the third case considers w′

ts and y′
ts

such that U (w′
ts, e) = −∞ and U (w′

ts + y′
ts, e) > −∞. Then, the new contract has yts = 0 and wts = �ts with a lottery

�ts ∈ L that has mean w′
ts + y′

ts and some probability for w′
ts occurring. Again, the PC ensures that t and s occur only out

of equilibrium. The second and third cases have to be considered for technical reasons, but seem irrelevant in applications.
To sum up, the new contract W provides the same expected utilities for every combination of reports for the

agent as the deterministic contract W ′ that uses payments to third parties and similarly for the principal. The principal’s
expected costs in the new contract are

E(wts ) = E(w′
ts + y′

ts + �ts ) = w′
ts + y′

ts

which are the same as in the old contract for all t ∈ T and all s ∈ S. Therefore, the reporting strategies of contract W ′

also form an equilibrium in the reporting subgame in contract W . Hence, the agent is willing to participate and receives
the same incentives as in the deterministic contract W ′. Importantly, there are no payments to third-parties in the new
contract W . For the same reasons as in Proposition 1, the contract W is renegotiation proof. Thus, the contract W can

C© The RAND Corporation 2023.
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be implemented if renegotiations are possible as well as if renegotiations are impossible. Consequently, the contract W
incentivizes the agent to exert effort e without payments to third parties. �

Proof of Corollary 1. Following the construction in Theorem 1, for every contract W ′ with payments to third parties
there is a (stochastic) contract W without such payments that yields the same utilities for the principal and the agent for
every combination of reports. Then, it is an equilibrium for the principal to follow her reporting strategy in the previous
contract W ′ also in the new contract W and for the agent to follow the same reporting strategy and to choose the same
level of effort as in the previous contract W ′. The expected costs and benefits for the principal are the same in contract
W as in the previous contract W ′. Consequently, optimal stochastic contracts without third-party payments are at least
as profitable for the principal as deterministic contracts with third-party payments.

In addition, Proposition 5 shows that stochastic contracts can increase the principal’s profits. �

Appendix B: Monetary costs of effort

Lemma B1. Given Assumptions 1, 2, and 3a and implementable effort e > 0, the optimal complete contract is

wts = c∗CARA
t = d(e) + 1

k
ln

(
exp(kw̄) + μ1k

(
γ ′

t (e)

γt (e)
+ kd ′(e)

))
∀t ∈ T , s ∈ S (B1)

with the Lagrange multiplier μ1 of the incentive compatibility. Better performances yield higher wages, that is, wages
c∗CARA

t strictly increase in performance t.

Proof of Lemma B1. Regarding the agent’s IC, the first-order approach is valid here because the distribution induced
by γt (e) is log-convex. Fagart and Fluet (2013) show that for Assumption 3a the first-order approach is valid if the
distribution is log-convex, disutilities d(·) are convex, and the MLRP is satisfied. Hence, I can rewrite the agent’s incentive
compatibility as∑

t∈T
γ ′

t (e)(pU (c̃tt , e) + (1 − p)U (c̃t0, e)) +
∑
t∈T

kγt (e)(pU (c̃tt , e) + (1 − p)U (c̃t0, e))d ′(e) = 0

because ∂U (c, e)/∂e = −kd ′(e) exp(−k(c − d(e)) = kU (c, e)d ′(e).
Consider Program A without the constraints (TTP) and (TTA) for truth-telling. It is straightforward that the so-

lution to this problem is w̃ts = c̃ts = c̃t0 = c∗CARA
t with a certainty equivalent c∗CARA

t for all t, s ∈ T if a solution exists.
Neglecting the agent’s incentive compatibility, the solution to this relaxed problem is c∗CARA

t = w̄ + d(e) for all t ∈ T .
Therefore, the agent’s incentive compatibility is binding because the solution to the relaxed problem violates the agent’s
incentive compatibility. Consequently, the Lagrange multiplier μ1 of the agent’s incentive compatibility is positive in
equation (B1).

Optimization with respect to c∗CARA
t with the Lagrange multipliers of the participation constraint μ0 and the incen-

tive compatibility μ1 determines the optimal complete contract:

γt (e) − μ0
∂U (c∗CARA

t , e)

∂c∗CARA
t

γt (e) − μ1
∂U (c∗CARA

t , e)

∂c∗CARA
t

γ ′
t (e) − μ1kγt (e)

∂U (c∗CARA
t , e)

∂c∗CARA
t

d ′(e) = 0,

1
∂U (c∗CARA

t ,e)

∂c∗CARA
t

= 1

k
exp(k(w − d(e)) = μ0 + μ1

γ ′
t (e)

γt (e)
+ μ1kd ′(e) (B2)

The Lagrange multiplier μ1 is positive. The right-hand side of equation (B2) increases in t ∈ T due to the monotone
likelihood ratio property. Therefore, positive monotonicity of the exponential function implies that c∗CARA

t increases in
t ∈ T . Summing up the first line of above equations over t yields:

1 + μ0k
∑
t∈T

U (c∗CARA
t , e)γt (e) + μ1k

(∑
t∈T

U (c∗CARA
t , e)γ ′

t (e) +
∑
t∈T

kγt (e)U (c∗CARA
t , e)d ′(e)

)
= 0

because ∂U (c, e)/∂c = k exp(−k(c − d(e)) = −kU (c, e). The complementary slackness condition ensures that the term
in brackets equals zero as it is equal to the agent’s incentive compatibility (IC). By Proposition 2 in Grossman and Hart
(1983) and Claim 3 in Chade and De Serio (2002), we know that the agent’s PC is binding. Thus, the agent’s expected
utilities equal ū. Therefore, μ0 = −1/kū = exp(kw̄)/k. Plugging this value into equation (B2) and rearranging, yields
equation (B1). Finally, notice that effort e = 0 is always implementable by a wage c∗CARA

t = w̄ + d(0) for all t ∈ T .
By standard arguments, it is not optimal to use third-party payments or stochastic compensation. Hence, the con-

tract is renegotiation proof. �

C© The RAND Corporation 2023.
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Proposition B1. If kd ′(e) < |γ ′
1 (e)/γ1(e)| and the agent’s self-assessment is uninformative, the following contract is

optimal for implementing effort e > 0 given Assumptions 1, 2, and 3a:

wts =
{

ω∗CARA if t > 1

� if t = 1

with a lottery � ∈ L, that is realized at the end of period 4, has a mean ω∗CARA as well as a certainty equivalent bCARA =
w̄ + d(e) − 1

k
ln(1 − 1 − γ1(e)

γ ′
1 (e)

kd ′(e)), and a wage ω∗CARA = bCARA + 1

k
ln(1 − kd ′(e)

γ ′
1 (e) + γ1(e)kd ′(e)

) > bCARA.

Proof of Proposition B1. With uninformative self-assessments, the principal’s truth-telling constraint (TTP) implies
w̃t0 = w̃t̄0 for all t, t̄ ∈ T . Expected wages must be constant in the principal’s message because the contract cannot detect
any deviations from truth-telling by the principal. Thus, define ω = w̃t0 for a t ∈ T . In addition, the agent’s truth-telling
constraint (TTA) implies ∑

t∈T
U (c̃t0, e)γt (e) ≥

∑
t∈T

U (c̃ts̄, e)γt (e)

for all s̄ ∈ T . As the values c̃ts for all t, s ∈ T matter only out of equilibrium, without loss of generality, we can set
c̃ts = c̃t0 for all t, s ∈ T to satisfy the agent’s truth-telling constraint (TTA). Adjusting Program A accordingly yields
Program B’:

min
ω,c̃t0

ω (B′)

subject to
∑
t∈T

U (c̃t0, e)γt (e) ≥ ū, (PC)

∑
t∈T

γ ′
t (e)U (c̃t0, e) + kγt (e)U (c̃t0, e)d ′(e) = 0 (IC)

ω ≥ c̃t0 ∀t ∈ T . (B3)

The next steps calculate the optimal ω and c̃t0. Define ν0, ν1 and βt to be the Lagrange multipliers of the PC, IC, and
constraint (B3) in Program B’, respectively. If c̃t0 = ω for all t ∈ T , the contract violates the agent’s incentive compati-
bility (IC). Therefore there is an evaluation t∗ ∈ T with stochastic payments, that is, ω > c̃t∗0. Then, the complementary
slackness condition yields βt∗ = 0. Optimization of the Lagrangian with respect to c̃t∗0 results in

−ν0
∂U (c̃t∗0, e)

∂ c̃t∗0

γt∗ (e) − ν1
∂U (c̃t∗0, e)

∂ c̃t∗0

γ ′
t∗ (e) − ν1kγt∗ (e)

∂U (c̃t∗0, e)

∂ c̃t∗0

d ′(e) = 0.

Hence,

ν0 + ν1
γ ′

t∗ (e)

γt∗ (e)
+ ν1kd ′(e) = 0. (B4)

The monotone likelihood ratio property ensures that γ ′
t (e)

γt (e)
strictly increases in t ∈ T . In addition, ν1 must be positive

because the solution to Program B’ without the agent’s IC is ω = c̃t0 = w̄ + d(e) for all t ∈ T and this solution violates
constraint (IC). Therefore, equation (B4) can hold for at most one t∗ ∈ T . Hence, c̃t0 = ω and βt ≥ 0 for all t ∈ T \ {t∗}.

Assume to the contrary t∗ �= 1. This assumption implies t∗ > 1. Optimization of the Lagrangian with respect to c̃10

results in

−ν0
∂U (c̃10, e)

∂c10

γ1(e) − ν1
∂U (c̃10, e)

∂ c̃10

γ ′
1 (e) − ν1kγ1(e)

∂U (c̃10, e)

∂ c̃10

d ′(e) + β1 = 0.

Hence,

ν0 + ν1
γ ′

1 (e)

γ1(e)
+ ν1kd ′(e) = 1

∂U (c̃10,e)
∂ c̃10

β1

γ1(e)
.

Equation (B4), ν1 > 0, t∗ > 1 and the monotone likelihood ratio property imply that the left-hand side of the last equa-
tion is negative. The right-hand side is nonnegative because constraint (B3) is binding for t = 1 and β1 ≥ 0. This contra-
diction proves that t∗ = 1.

Plugging these results into the PC and the IC yields:

U (ω∗CARA, e)(1 − γ1(e)) + U (c̃∗CARA
10 , e)γ1(e) = ū,

(U (c̃∗CARA
10 , e) − U (ω∗CARA, e))γ ′

1 (e) + kd ′(e)ū = 0,

C© The RAND Corporation 2023.
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because 1 = ∑
t∈T γt (e) ⇒ 0 = ∑

t∈T γ ′
t (e) = γ ′

1 (e) +∑
t∈T \{1} γ

′
t (e). Solving the first equation for U (c̃∗CARA

10 , e) gives
U (c̃∗CARA

10 , e) = [ū − U (ω∗CARA, e)(1 − γ1(e))]/γ1(e). Inserting this value for U (c̃∗CARA
10 , e) into the second equa-

tion yields (ū − U (ω∗CARA, e))γ ′
1 (e) = −γ1(e)kd ′(e)ū and finally results in U (c̃∗CARA

10 , e) = ū(1 − 1−γ1 (e)
γ ′

1 (e)
kd ′(e)),

ω∗CARA = w̄ + d(e) − 1

k
ln(1 + γ1(e)

γ ′
1 (e)

kd ′(e)) and c̃∗CARA
10 = w̄ + d(e) − 1

k
ln(1 − 1 − γ1(e)

γ ′
1 (e)

kd ′(e)).

These values of ω∗CARA and c̃∗CARA
10 are well-defined for kd ′(e) < −γ ′

1 (e)/γ1(e) and allow to characterize the optimal
contract. Therefore, the condition kd ′(e) < |γ ′

1 (e)/γ1(e)| ensures that effort e is implementable. For this purpose, define
bCARA = c̃∗CARA

10 and consider a lottery � ∈ L with E exp(k(bCARA − �)) = 1 and E(�) = ω∗CARA that is realized at the
end of period 4. Now consider the contract stated in Proposition B1. The contract implements c̃ts = w̃ts = w̃1s = ω∗CARA

for all t > 1 and all s ∈ S as well as c̃1s = bCARA for all s ∈ S. Hence, the contract implies ω = ω∗CARA and

u(c̃t0 ) =
{

u(ω∗CARA ) if t > 1

u(bCARA) = u(c̃∗CARA
10 ) if t = 1.

The definition of c̃∗CARA
t0 ensures that the contract satisfies the agent’s PC and his IC. The agent’s truth-telling constraint

(TTA) is satisfied because his utilities are independent of his message. The principal’s truth-telling constraint (TTP)
is also satisfied because expected wages are independent of her message. The contract also satisfies constraint (RA).
Consequently, the contract in Proposition B1 is feasible. The contract is also optimal because ω∗CARA and c̄∗CARA

1 are
optimal in Program B’. For kd ′(e) ≥ −γ ′

1 (e)/γ1(e), that is, large risk aversion or high disutility of effort, effort e is not
implementable. For the same reasons as in Proposition 1, the contract is renegotiation proof. �

Proposition B2. If the agent’s self-assessment is informative, that is, p > 0, and effort e > 0 is implementable, the
following contract is optimal given Assumptions 1, 2, and 3a:

wts =
{

c∗CARA
t if s = 0 or t = s

�t otherwise

with the optimal complete contract c∗CARA
t defined in Lemma B1 in Appendix B and lotteries �t ∈ L. The lotteries �t

have a certainty equivalent c∗CARA
t and a mean c∗CARA

n /p and are realized at the end of period 4.

Proof of Proposition B2. On the equilibrium path, above contract makes the principal pay a wage of c∗CARA
t to the agent.

Lemma B1 shows that the optimal complete contract c∗CARA
t satisfies the agent’s PC and IC. Hence, the agent accepts the

contract and exerts effort e. Independently of the agent’s message s, his utility is U (c∗CARA
t , e) = EU (�t , e). Therefore,

truth-telling is optimal for the agent and his truth-telling constraint (TTA) is satisfied. Suppose the agent reports his
self-assessment s truthfully. If the principal evaluates the agent correctly, she pays c∗CARA

t . If the principal deviates to an
evaluation t̄ �= t, she expects to pay

pw̃t̄t + (1 − p)w̃t̄0 = pc∗CARA
n /p + (1 − p)c∗CARA

t̄ = c∗CARA
n + (1 − p)c∗CARA

t̄ > c∗CARA
n = max

r∈T
c∗CARA

r .

Therefore, truth-telling is optimal for the principal and her truth-telling constraint (TTP) is satisfied. Constraint (RA) is
trivially satisfied.

In summary, the contract implements equilibrium payments of c∗CARA
t . Remember that the optimal complete con-

tract c∗CARA
t is a solution to a relaxed problem without the truth-telling constraints (TTP) and (TTA). Consequently, the

contract in Proposition B2 optimally incentivizes the agent based on subjective evaluations. For the same reasons as in
Proposition 2, the contract is renegotiation proof. �

Proposition B3. The following contract attains effort e at first-best costs given Assumptions 1a, 2a, and 3a:

wts =
{

w̄ + d(e) if t = e

� otherwise.

with a lottery � ∈ L that has a mean w̄ + d(e) and a certainty equivalent below w̄ + d(0) and that is realized at the end
of period 4.

Proof of Proposition B3. In period 4, the principal’s expected payoffs do not depend on her report. Therefore, report-
ing t = e is optimal for the principal. If the agent’s chooses effort e, her utilities in the contract are − exp(−k(w̄ +
d(e) − d(e))) = ū. Hence, she accepts the contract and her PC is satisfied. If the agent chooses any other effort, her
utilities are at most E(− exp(−k(� − d(0)))) = exp(kd(0))E(− exp(−k�)) ≤ − exp(−kw̄) = ū. Therefore, the agent
optimally chooses effort e.

The contract implements any effort e ∈ [0, 1) at first-best costs. For the same reasons as in Proposition 3, the
contract is renegotiation proof. �

C© The RAND Corporation 2023.
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