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Abstract

We develop an assignment model of automation. Each of a continuum of tasks of variable

complexity is assigned to either capital or one of a continuum of labor skills. We characterize

conditions for interior automation, whereby tasks of intermediate complexity are assigned to capital.

Interior automation arises when the most skilled workers have a comparative advantage in the most

complex tasks relative to capital, and because the wages of the least skilled workers are sufficiently

low relative to their productivity and the effective cost of capital in low-complexity tasks. Minimum

wages and other sources of higher wages at the bottom make interior automation less likely. Starting

with interior automation, a reduction in the cost of capital (or an increase in capital productivity)

causes employment and wage polarization. Specifically, further automation pushes workers into

tasks at the lower and upper ends of the task distribution. It also monotonically increases the skill

premium above a skill threshold and reduces the skill premium below this threshold. Moreover,

automation tends to reduce the real wage of workers with comparative advantage profiles close

to that of capital. We show that large enough increases in capital productivity ultimately induce

a transition to low-skill automation and qualitatively alter the effects of automation—thereafter

inducing monotone increases in skill premia rather than wage polarization.
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1 Introduction

Automation technologies, including specialized software tools, computerized production equipment,

and industrial robots, have been spreading rapidly throughout the industrialized world. For exam-

ple, the share of information processing equipment and software in overall investment in the US

has increased from 3.5% to over 23% between 1950 and 2020 (BEA, 2021a), while the number of

industrial robots per thousand workers has risen from 0.38 in 1993 to about 1.8 in 2017 (BEA,

2021b; IFR, 2018). There is now growing evidence that these technologies have not just automated

a range of tasks previously performed by workers and impacted the wage structure,1 but also have

led to polarization of employment and wages—meaning that the negative effects have concentrated

on employment and wages in the middle of the wage distribution.2 This pattern is intimately linked

to the fact that many of the tasks that have been automated used to be performed by middle-skill

workers.

There is no widespread agreement on why automation has been associated with polarization,

however. One explanation, suggested by Autor (2014, 2015), is related to “Polanyi’s paradox”,

as captured by Michael Polanyi’s statement that “we can know more than we can tell” (Polanyi,

1966). Put simply, many of the manual and abstract tasks embed rich tacit knowledge, making

them non-routine. Because routine tasks are technologically easier to automate and are performed

by middle-skill workers located in the middle of the wage distribution, new automation technologies

have displaced labor from the middle-skill occupations and have had their most negative effects on

middle-pay worker groups.

In this paper, we provide an alternative, complementary explanation: automation has focused

on middle-skill tasks, because these are the most profitable ones to automate. Specifically, low-skill

tasks can be performed at lower labor expenses, reducing the cost advantage of machines relative

to humans.

To develop this point, we build an assignment model, combining elements from the seminal

contributions by Tinbergen (1956), Sattinger (1975), and Teulings (1995, 2005), together with the

model of tasks and automation in Acemoglu and Restrepo (2022). Workers are distinguished by a

single-dimensional skill index, which is distributed over an interval normalized to [0, 1] and tasks

1On the spread of automation technologies over the last 80 years, see Autor (2015), Ford (2015), Acemoglu and

Restrepo (2020), Graetz and Michaels (2018) and Acemoglu and Johnson (2023).
2The seminal contribution on the inequality and polarization effects of automation is Autor, Levy and Murnane

(2003). For a recent study of the effects of automation technologies on US wage inequality, see Acemoglu and Restrepo

(2022). The polarizing effects of automation are also documented in Goos, Manning and Salomons (2009), Acemoglu

and Autor (2011), and Autor and Dorn (2013).
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are also distributed over the unit interval. For notational simplicity, we refer to higher-index tasks

as more “complex” tasks.3 Following the assignment literature, we assume that high-type workers

have a comparative advantage in more complex tasks. Without automation, as in that literature,

our model generates a monotone assignment pattern, with higher-skill workers performing more

complex tasks. The distinguishing feature of our framework is that some tasks can be assigned to

capital.

Under the assumption that capital does not have a comparative advantage for the most complex

task and some regularity restrictions on capital productivity, we prove that the equilibrium will

take one of two forms: (1) interior automation, where capital performs a set of intermediate tasks;

or (2) low-skill automation, where capital takes over all tasks below a certain threshold.4

Interior automation is the configuration that leads to polarization, and we provide conditions

under which automation is indeed interior. These conditions depend on the comparative advantage

of low-skill workers relative to capital, the cost of capital, and labor supplies of different types of

workers, which together determine the equilibrium wage distribution with and without automation.

Intuitively, when equilibrium wages (without automation) are sufficiently low for low-skill workers,

tasks in the bottom of the complexity distribution are very cheap and this reduces the profitability

of performing them by capital. When this is the case, we also show that additional automation

leads to both wage and employment polarization. In our model, therefore, polarization is closely

linked to the fact that wages are already very low at the bottom.

In addition to establishing the existence of a unique competitive equilibrium and characterizing

the conditions under which capital takes over tasks from the middle of the skill distribution, we

provide a series of comparative static results for marginal (local) and large (global) changes in

automation.

Our first result, clarifies the conditions under which automation is interior. In the baseline

model, interior automation requires that wages at the bottom be sufficiently low relative to the

productivity of low-skill workers and the effective cost of capital.5 To further clarify the role of

wages at the bottom, we consider a simple extension in which there is a minimum wage. In this

3We show that more realistic configurations, where manual tasks that require skills that machines and algorithms

do not currently fully possess can be incorporated into our model and can still be mapped into our single-dimensional

tasks distribution.
4A third possibility is no automation, which is not interesting given our focus here and will be ruled out by

assuming that capital productivity is sufficiently high to make some automation profitable in equilibrium.
5This is the sense in which our explanation is complementary to Autor’s (2014, 2015) account—when low-skill

workers are relatively more productive at low-complexity tasks, this equivalently induces interior automation in our

model.

2



case, interior automation requires that the minimum wage is not too high—otherwise, low-skill

labor is too expensive and this induces low-skill automation. We also complement this result by

showing that a reduction in the supply of skills at the bottom raises low-skill wages and makes a

transition to low-skill automation more likely.

Our second result is that, as already mentioned above, a further expansion of interior

automation—for example, driven by a decline in the price of capital goods—creates employment and

wage polarization. Employment polarization here simply means that human workers are squeezed

into smaller sets of tasks at the bottom and the top. Wage polarization takes a more specific

form: relative wage changes increase as a function of the distance between the task that a skill

type performs and the boundaries of the set of automated tasks. As a result, we prove that skill

premia increase among worker types performing more complex tasks than those that are automated

and decrease among worker types performing less complex tasks than the automated ones. Put

differently, interior automation hurts (relatively) workers that are closer to the set of automated

tasks. This is intuitive in view of the fact that workers closer to this set used to have a stronger

comparative advantage for tasks that are now automated.

Third, we characterize the effects of automation on the level of real wages for different types of

workers. As in Acemoglu and Restrepo (2022), whether the real wage of a given skill group declines

depends on competing displacement and productivity effects, though we are able to provide more

explicit conditions. One noteworthy result in this context is that the larger is the initial set of tasks

that are automated, the more likely are the real wages of all skill types to increase. Moreover, we

show that the productivity gains from automation are convex in the price of capital goods. This

implies that, as capital good prices (including costs of algorithmic automation) decline further,

the productivity effect strengthens, ultimately eliminating negative wage effects. These results,

together, imply that the most negative consequences of displacement on workers will be at the

early stages of the automation process.6

We present one more noteworthy result on wages, related to what we call “Wiener’s conjecture”,

after Norbert Wiener’s (1950) pioneering study of automation. Wiener claimed, “the automatic

machine is the precise economic equivalent of slave labor. Any labor which competes with slave

must accept the economic consequences of slave labor.” This conjecture does not seem to have been

6In fact, because production in our model exhibits constant returns to scale and the cost of capital is constant,

average wages always increase following automation, and this structure is also important for the result that when

sufficiently many tasks are automated, the effects on all wages are positive. The consequences of automation on

wages become more negative when the price of capital is increasing in the stock of capital, or when we depart from

constant returns to scale or competitive markets. See Moll, Rachel and Restrepo (2022) and Acemoglu and Restrepo

(2023).
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fully borne out by economic models or the data. On the theory side, Zeira (1998) and Acemoglu

and Restrepo (2018a) show that real wages will increase in the long run following automation. On

the empirical side, although the real wages of low-education groups have declined over the last forty

years, automation was also rapid in the 1950s and 1960s and during these decades wages for almost

all demographic groups increased robustly. Our analysis suggests that Wiener’s conjecture needs

to be refined: different workers have different skills, and even if automated machines are like slave

labor, they do not perfectly compete against all kinds of labor. Building on this intuition, we show

that automation always reduces the real wages of worker types whose productivity schedule over

tasks is sufficiently close to capital’s productivity schedule (if such worker types exist, but they

may not).

Finally, we use the model to study global—as opposed to local—effects of automation, which

result when there are large declines in costs of capital goods. We show that as long as these changes

keep us in the region of interior automation, their effects are qualitatively the same as those of local

changes. Ultimately, however, automation expands from the interior of the set of tasks to take over

all low-skill tasks. When this happens, the pattern of polarization reverses. While an expansion in

interior automation hurts workers in the middle of the skill distribution the most (and lowest-skill

workers are to some degree sheltered), a switch from interior to low-skill automation has its most

adverse effects on lowest-skill workers. Hence, our model predicts that as automation proceeds, its

inequality implications may become worse, not just quantitatively but also qualitatively.7

Our paper is related to several contributions in both the assignment and automation literatures.

In the assignment literature, early contributions include Tinbergen (1956), Rosen (1974), Heckman

and Sedlacek (1985), and Sattinger (1975, 1993). Our model more closely builds on Teulings (1995,

2005), Teulings and Gautier (2004), Costinot and Vogel (2010), and Stokey (2018). The major

difference between all of these papers and our work is the presence of capital that can perform some

of the tasks, thus allowing for an analysis of automation. From a technical point of view, all existing

analyses within this area assume a strong form of comparative advantage (log supermodularity),

which turns the problem into one of monotone assignment. Our analysis of automation relaxes

overall supermodularity (though, for simplicity, we maintain log supermodularity between worker

and job types).

In the automation literature, we build on earlier models where capital displaces workers in some

of the tasks they used to perform. This literature and task-based models started with Zeira’s (1998)

7On the other hand, if in this process capital productivity in already-automated tasks continues to increase, this

makes negative wage level effects less likely.
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seminal work and Autor, Levy and Murnane’s (2003) pioneering empirical study of the polarization

and inequality effects of automation. Zeira’s model includes only one type of labor and does not

focus on inequality implications of automation. Many subsequent works, including Acemoglu and

Zilibotti (2001), Acemoglu and Restrepo (2018a,b), Berg, Buffie and Zanna (2018), Jackson and

Kanik (2020), Jaimovich et al. (2021) and Hemous and Olsen (2022) allow only two types of workers,

making it impossible to study wage polarization. Acemoglu and Autor (2011) study an economy

with three types of workers and establish polarization when automation affects the middle group,

but this structure does not allow a comprehensive analysis of the implications of different stages

of automation on employment and wage patterns. Two notable exceptions are Feng and Graetz

(2020) and Loebbing (2022), both of which study task-based models with a continuum of labor

types, though under more restrictive assumptions. In particular, Feng and Graetz (2020) impose

that automation is always interior, while Loebbing (2022) focuses on the case in which automation

is always low-skill. This contrasts with our focus which is to understand when automation is interior

and the conditions under which there is a transition to low-skill automation. Additionally, these

papers do not contain our main comparative static results.

Acemoglu and Restrepo (2022) develop a general framework with multiple industries and mul-

tiple worker types to study the inequality effects of automation. In addition to providing empiri-

cal estimates of the effects of automation on US wage inequality, Acemoglu and Restrepo (2022)

present a theoretical analysis of the implications of automation. Because their study lacks the

specific structure imposed here (with one-dimensional heterogeneity both on the worker and job

complexity side and comparative advantage between workers and tasks), it does not contain results

on which tasks automation will take over. Rather, they provide equations that specify how wages

of different groups will be affected as a function of the total set of tasks that are automated and

“ripple effects”, which capture how different skill groups compete over marginal tasks. These ripple

effects cannot be explicitly characterized given their assumptions and are studied empirically. Our

analysis here enables us to characterize the full equilibrium implications of changes in the prices

of capital goods—including how the set of automated tasks expands and how substitution between

different types of workers takes place.

The rest of the paper is organized as follows. Section 2 presents our baseline environment and

defines a competitive equilibrium. Section 3 first establishes existence and uniqueness of equilibrium

and some basic characterization results, and then studies the conditions under which automation

is interior. Section 4 presents our main comparative static results for small changes in the cost

of capital goods, thus deriving the employment and wage polarization implications of automation.
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Section 5 considers global changes in automation technology and their equilibrium consequences.

Section 6 concludes, while the Appendix includes several of the proofs omitted from the text.

2 Model

In this section, we introduce the basic economic environment, describe some of our assumptions

and their motivation, and also define a competitive equilibrium.

2.1 Environment

We consider a static economy with a unique final good, Y , produced from a continuum of workers

with skills s ∈ [0, 1] and a continuum of tasks x ∈ [0, 1]. The production of the final good is given

as a constant elasticity of substitution (CES) aggregate of tasks:

Y =

[∫ 1

0
(AxYx)

λ−1

λ dx

] λ
λ−1

, (1)

where Yx is the amount of task x, Ax > 0 (assumed twice continuously differentiable) is a technology

parameter relevant for task x, and λ > 0 is the elasticity of substitution.

All labor types are inelastically supplied, with a density function of l : [0, 1] → R++ (which

specifies the total endowment of each type of labor) and we assume that this density is continuous

and has no mass points. We also assume that capital is produced out of final good with marginal

cost 1/q. We identify increases in q with greater capital productivity or equivalently lower prices

of capital goods.

The task production functions are given by

Yx =

∫ 1

0
ψs,xLs,xds+ ψk,xKx, (2)

for all x ∈ [0, 1], where ψs,x > 0 and ψk,x > 0 denote the productivities of different factors in task

x, and Ls,x and Kx are, respectively, the amounts of labor of type s and capital allocated to the

production of task x. We assume that the factor productivities ψs,x and ψk,x are twice continuously

differentiable. Labor market clearing requires
∫ 1

0
Ls,xdx = ls for all s ∈ [0, 1] (3)

and net output (or equivalently, consumption), which is also equivalent to total factor productivity

(TFP) in this economy, is

C = Y −
1

q
K,

where K =
∫ 1
0 Kxdx is the aggregate capital stock.

6



2.2 Competitive Equilibrium

An allocation in this economy is given by a collection of density functions, L = {Ls}
1
s=0, where

Ls : [0, 1] → R+ for each s ∈ [0, 1], and a capital allocation K : [0, 1] → R+. The density

functions allocate labor supply of each type of labor to tasks, and the capital allocation function

determines how much capital will be allocated to each task. This definition already incorporates

nonnegativity constraints for all factors in all tasks. We describe an allocation with the shorthand

{L,K}. Additionally, for all s ∈ [0, 1], we define the set Xs : {x |Ls,x > 0} as the set of tasks

performed by labor type s in this allocation and Xk = {x |Kx > 0}. We also use the terminology

that tasks in the set Xk are automated.

We additionally designate two price functions: first, a wage function w : [0, 1] → R+, which

determines the wage level, ws, for each type of labor s ∈ [0, 1]; and second, a task price function

p : [0, 1] → R+, which determines the price px of each task x ∈ [0, 1].

A (competitive) equilibrium is defined as an allocation {L,K} that maximizes consumption

subject to labor market clearing (3), and wage and price functions, w and p, where wages are given

by marginal products of the relevant labor types, i.e.,

ws = pxψs,x for all x ∈ Xs

ws ≥ pxψs,x for all x ∈ [0, 1],
(4)

and task prices are given by the marginal products of tasks in final good production, i.e.,

px =

(
Y

Yx

) 1

λ

A
λ−1

λ
x for all x ∈ [0, 1]. (5)

As a consequence of consumption maximization, the cost of capital must be equal to the marginal

product of capital, i.e.,
1

q
= pxψk,x ∀x ∈ Xk

1

q
≥ pxψk,x ∀x ∈ [0, 1].

(6)

2.3 Assumptions and Motivation

We now describe some of the assumptions we will use in the next section.

Since the economy exhibits constant returns to scale and can produce output from final goods,

in principle its output may be unbounded. Our first assumption ensures that the cost of capital is

not so low as to generate infinite output.
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Assumption 1 (Bounded output)

1

q
>

1

q∞
=

(∫ 1

0
Aλ−1
x ψλ−1

k,x dx

) 1

λ−1

.

Our second assumption follows the assignment literature (e.g., Teulings, 1995, 2005, Costinot

and Vogel, 2010) and imposes absolute advantage (higher skills are more productive in all tasks)

and comparative advantage (the productivity advantage of higher skilled workers increases more

than proportionately with the task index). We impose this assumption both to simplify the analysis

and also to maximize the similarity of our benchmark environment to the previous literature, which

will clarify that all of the new results here are driven by the automation margin.

Assumption 2 (Absolute and comparative advantage) For all s > s′, we have

1. ψs,x ≥ ψs′,x for all x ( absolute advantage).

2. ψs,x/ψs,x′ > ψs′,x/ψs′,x′ for all x > x′ ( comparative advantage).

Comparative advantage ensures that, without capital, the equilibrium will assign higher skilled

workers to higher-indexed tasks. Absolute advantage guarantees that, regardless of the levels of

labor supply, higher-indexed workers will have higher wages, thus justifying our terminology of

referring to higher levels of the skill index as “more skilled”.

We next present a motivating example that provides a simple illustration of the comparative

advantage aspect. This example has the additional advantage that it shows how multidimensional

skills can be mapped into our setup with a one-dimensional skill index.

Example 1: Suppose that each task x ∈ [0, 1] involves a combination of abstract and manual

activities. Specifically, the productivity of a worker with skill level s ∈ [0, 1] in task x will be

a function of this worker’s abstract and manual skills, denoted by the vector (as,ms):

ψs,x = axsm
1−x
s .

In the context of this example, a sufficient condition for comparative advantage is for workers’

skill endowments (as,ms) to satisfy

as
ms

>
as′

ms′
for all s > s′.

To see this, let

Λ = log
ψ(x, s)

ψ(x, s′)
= log

axsm
1−x
s

axs′m
1−x
s′

,
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and by assumption, we have ∂Λ/∂x = [log as − logms] − [log as′ − logms′ ] > 0. A sufficient

condition for absolute advantage, on the other hand, is for as to be strictly increasing and

ms to be non-decreasing in s.

Motivated by this pattern of comparative advantage, we will also refer to higher-index tasks as

more complex tasks, as in Teulings (1995, 2005).

The other key dimension of our model concerns the productivity of capital relative to different

labor types. Crucially, here, we do not assume overall supermodularity. However, it is convenient

to put sufficient structure on the comparative advantage of capital to have a simple characterization

of the set of tasks, Xk, that are assigned to capital. The next assumption achieves this.

Assumption 3 (Comparative advantage of capital)

1. For all s ∈ [0, 1], ψk,x/ψs,x is quasi-concave in x.

2. Moreover, the most skilled workers have comparative advantage relative to capital in the most

complex relative to the least complex tasks:

ψ1,1

ψk,1
>

ψ1,0

ψk,0
. (7)

Intuitively, the first part of this assumption rules out situations in which the direction of com-

parative advantage for capital changes more than once for any given level of skill. Put differently,

Assumption 3 allows some skill types to have a comparative advantage in lower-index tasks relative

to capital and then again in higher-index tasks after a certain threshold. But it rules out more than

one such switch. As we will see in Proposition 2, this is necessary and sufficient to ensure that the

set Xk of tasks assigned to capital is convex.

The second part of the assumption imposes that there are some sufficiently complex tasks in

which some type of labor still has a comparative advantage relative to capital. We next illustrate

these conditions with the environment considered in Example 1.

Example 1 (continued) The first part of Assumption 3 is ensured in this example when ψk,x is

log concave in x. Since the productivity of each labor type is log linear in x, log concavity of

capital productivity implies quasi-concavity of all relative productivity schedules ψk,x/ψs,x.

The second part of the assumption, in turn, is equivalent to

a1
ψk,1

>
m1

ψk,0
.

In other words, the highest-skill workers’ abstract skills are more productive relative to capital

in the most abstract tasks than their manual skills are in the most manual-intensive tasks.
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3 Characterization of Equilibrium and Interior Automation

In this section, we establish existence and uniqueness of a competitive equilibrium and study the

conditions under which tasks from the middle of the skill distribution will be automated.

3.1 Existence and Uniqueness

Proposition 1 (Existence and uniqueness) Suppose Assumption 1 holds. Then, a competitive

equilibrium always exists and is essentially unique in the sense that wage and price functions are

uniquely determined. If in addition Assumptions 2 and 3 hold, the competitive equilibrium is unique.

Existence follows from the fact that the competitive equilibrium maximizes net consumption in

this economy, which is a continuous function of the allocation. Essential uniqueness, on the other

hand, is a consequence of the fact that net consumption is a concave function of the allocation.

The reason why the competitive equilibrium is essentially unique, but not fully unique under

Assumption 1, is straightforward to see: some tasks may be produced at the same cost using

different factors, creating indeterminacy of equilibrium allocations. Assumptions 2 and 3 rule out

such indeterminacy: Assumption 2 imposes strict comparative advantage between any two types

of labor and, together with Assumption 3, implies that on any subset of tasks of positive measure,

there can be at most one type of labor with a productivity schedule parallel to capital’s productivity

schedule.8

3.2 Interior Automation

The next proposition confirms that, as mentioned above, the first part of Assumption 3 is enough

to ensure that the set of tasks allocated to capital, Xk, is convex.

Proposition 2 (Convexity of assignment) Suppose Assumptions 1 and 2 hold.

1. The allocation of labor across tasks is monotone, meaning that for any s > s′, if Ls,x > 0,

then Ls′,x′ = 0 for all x′ ≥ x.

2. The set of automated tasks in equilibrium, Xk, is convex for all labor endowment functions

and capital productivity levels if and only if Assumption 3.1 holds. Moreover, if Assumption

3.2 also holds, then the most complex tasks are performed by labor, or in other words, 1 /∈ Xk.
8If a single type of labor has a productivity schedule that is parallel to capital’s productivity schedule on the set

of automated tasks, this does not create any indeterminacy in allocations because a single type of labor has no mass

and is hence irrelevant for an allocation. Formally, an allocation is a collection of densities from an Lp space where

any two densities that are equal almost everywhere are identified and represent the same allocation.
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The first part of this proposition confirms that the monotonicity obtained in assignment models

with log supermodularity continues to hold in our model. The second part implies that we can

focus on a convex set of automated tasks. Moreover, under the second part of Assumption 3, this

set will not include the most complex tasks. These observations leave three feasible configurations

of automation:

1. No automation, where Xk = ∅ (because the cost of capital is too high).

2. Interior automation, where Xk = [x, x] with 0 < x < x < 1, and thus both the most complex

and the least complex tasks are assigned to some labor types.9

3. Low-skill automation, where Xk = [0, x], with 0 < x < 1, and thus all tasks below a certain

threshold of complexity are automated.

We refer to the third configuration as low-skill automation, since capital takes over tasks that

used to be performed by lower-skilled workers (as in the first part of Proposition 2). The first case,

no automation, is not of great interest given the focus of the current paper and we will assume

below that the cost of capital is sufficiently low to ensure some automation.

We next study the conditions under which automation will be interior or low-skill. The least

complex task, x = 0, is cheaper to produce by the least skilled worker type, s = 0, than by capital

if
w0

ψ0,0
<

1/q

ψk,0
. (8)

When inequality (8) is satisfied, we cannot have low-skill automation, and hence from Proposition

2, we must have interior automation. This condition is intuitive. It requires that the effective wage

of the least skilled workers in the least complex task (wage divided by productivity) is less than

the effective cost of capital in that task (cost of capital, 1/q, divided by the productivity of capital

in that task). Whether this condition is satisfied depends on the shape of comparative advantage

schedules ψ, capital productivity q and the labor supply profile l (which jointly determine the

equilibrium wage for the least skilled type, w0). For any given labor supply profile l, the following

assumptions are sufficient to ensure that condition (8) is satisfied. We will study the effects of labor

supply changes on these conditions in Section 5.

9Here the implicit assumption that the boundary tasks x and x are performed by capital is imposed for notational

simplicity and is without loss of any generality.
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Assumption 4 (Comparative advantage of least skilled workers) The least skilled workers

have local comparative advantage relative to capital in the least complex tasks:

∂ logψ0,0

∂x
<

∂ logψk,0
∂x

.

We note that Assumption 4 imposes only local comparative advantage—for a comparison of the

least skilled workers to capital around the least complex tasks. This comparative advantage pattern

does not have to hold globally. For example, even the least skilled workers may have comparative

advantage relative to capital in the most complex tasks.

Assumption 5 (Intermediate capital productivity) Initially, q ∈ (q0, qm), where q0 is the

threshold below which capital is not used in equilibrium (and thus Xk = ∅) and qm > q0 is another

threshold.10

Proposition 3 (Interior automation) Suppose Assumptions 1, 2 and 3 hold. If Assumptions

4 and 5 hold as well, automation is interior, i.e., Xk = [x, x] with 0 < x ≤ x < 1. If, on the

other hand, Assumptions 4 and 5 do not hold, automation is low-skill for all q > q0 and there is

no automation for all q ≤ q0.
11

Moreover, if automation is interior, there exists a skill level s̃ ∈ (0, 1) such that all workers with

skill level s < s̃ are employed in tasks x < x and all workers with skill level s > s̃ are employed in

tasks x > x.

Proposition 3 is our first main result and provides a necessary and sufficient condition (under

our other assumptions) for automation to be interior. This condition consists of the local com-

parative advantage condition in Assumption 4 and a restriction on the productivity of capital, as

imposed in Assumption 5. The former condition is necessary and sufficient for automation to be

interior initially, i.e., for a sufficiently (but not prohibitively) low productivity of capital. The latter

condition ensures that the productivity of capital indeed falls into this intermediate range.

Figure 1 shows the assignment of tasks to labor and capital in the case of interior automation.

Tasks in the set Xk = [x, x] are assigned to capital, while the remaining tasks are assigned to the

labor types indicated on the vertical axis.

10We provide a characterization of q0 and qm in Appendix A.3 and discuss the consequences of q ≥ qm in Section

5. Note at this point that qm is only well defined if we impose Assumption 4.
11If only Assumption 4 (but not 5) holds, there are two cases: if q ≤ q0, there is no automation; and if q ≥ qm,

automation is low skill as we will discuss in Section 5. Note also that Assumption 5 cannot be imposed without

Assumption 4 as qm is not well defined without Assumption 4.
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Figure 1: Assignment of tasks to capital and labor. Tasks in the set Xk = [x, x] are assigned to

capital, while the remaining tasks are assigned to the labor types indicated by the graph (Xs, s).

In particular, tasks x < x are assigned to worker types s < s̃, while tasks x > x, are assigned to

labor types s > s̃.

The last part of Proposition 3 is a simple consequence of the comparative advantage across

labor types, but also enables us to think of the distance between a skill group s and s̃ as a measure

of how affected this group is by automation, as we will see in the next section.

Inequality (8) provides further intuition for why automation may affect middle-skill occupations

most. Fixing ψ0,0 and treating the wage of the least skilled worker, w0, parametrically, there are

two ways in which this inequality is satisfied: either 1/(qψk,0) is high or w0 is low. The first captures

the economic forces proposed by Autor (2014, 2015): many of the tasks performed by lower-skill

workers require a combination of tacit knowledge and manual dexterity, making them difficult to

automate. The second is what we have emphasized in the Introduction: wages at the bottom are

too low to make automation economically profitable.

Proposition 3 clarifies that these two explanations are linked, because the wage is endogenous.

However, they are also distinct, and one way of illustrating this is to consider variations in the wage

at the bottom of the distribution, holding the other parameters of the model constant.

The simplest way of doing this is by imposing a minimum wage in the model (the alternative,

via changes in the labor supply function, is explored in Section 5). Here we discuss briefly the

implications of a minimum wage, w. In the presence of a binding minimum wage, the equilibrium

will involve rationing—some worker types may not be hired. This requires an obvious change in

13



the definition of equilibrium, which we omit to save space. It is also straightforward to see that the

set of rationed workers will always be of the form [0, s] (see Teulings, 2000). Except for rationing,

the same equilibrium conditions as in our analysis so far apply. Then we have:

Proposition 4 (Minimum wages and automation) Suppose Assumptions 1, 2, 3, 4 and 5

hold, so that in the competitive equilibrium without the minimum wage, we have interior automation.

Now consider a minimum wage of w > 0, which leads to the rationing of workers with skills in [0, s].

If in addition we have
∂ logψs,0

∂x
≥

∂ logψk,0
∂x

, (9)

then inequality (8) is violated and we transition to low-skill automation.

Intuitively, without the minimum wage, labor performing low-skill tasks is cheap, and this

makes automating these tasks unprofitable, ensuring interior automation. When the minimum

wage is imposed, this leads to the rationing (unemployment) of some low-skill workers, and more

generally makes skills at the bottom more expensive, making the automation of the tasks previ-

ously performed by low-skill workers profitable. It is also useful to observe the role of condition

(9): without this condition, some of the workers with skill above s may find it profitable to take

the lowest-complexity tasks. Notice also that this condition is compatible with Assumption 4,

since the comparison is for different skill levels. In fact, the juxtaposition of these two conditions

highlights that in our model conditions for the comparative advantage of capital and labor are en-

dogenous, since which skill type’s productivity is compared to capital’s productivity is determined

in equilibrium.

3.3 Characterization of Equilibrium

We next provide a characterization of equilibrium when Assumptions 1 to 3 hold and q ≥ q0 (so

that there is automation in equilibrium). Under these assumptions, the set of automated tasks

takes the form Xk = [x, x] with x ≤ x < 1. This leaves the sets [0, x) and (x, 1] for labor, with

skills above a threshold s̃ ∈ [0, 1) employed in (x, 1] and those below s̃ employed in [0, x).

By standard arguments from the assignment literature, the allocation of skills to tasks in either

of the two sets [0, x) and (x, 1] can be described by an assignment function X : [0, s̃) ∪ (s̃, 1] →

[0, x) ∪ (x, 1] mapping skills to tasks.12 The assignment function is differentiable (except at the

12Recall that Xs was defined as the set of tasks performed by skill s, and thus in general X should be a correspon-

dence. However, under Assumptions 1 to 3, Xs is a singleton and henceforth we treat X as a function.
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threshold s̃), strictly increasing and onto (see Costinot and Vogel, 2010). These properties are

illustrated in Figure 1.

Condition (4) implies that every worker type is assigned to the task in which its marginal value

product is maximized. Thus, we have

logws = log pXs
+ logψs,Xs

= max
x

{log px + logψs,x} .

An envelope argument then yields the differential equation

(logws)
′ =

∂ logψs,Xs

∂s
∀s 6= s̃, (10)

which we can think of as determining wages given assignment and a boundary condition (where

(logws)
′ denotes the derivative of the function logws with respect to s). When Assumptions 4 and

5 hold and automation is interior, the boundary condition is provided by the requirement that in

both tasks x and x, production must be equally costly with capital and skill s̃:

ws̃
ψs̃,x

=
1/q

ψk,x
and

ws̃
ψs̃,x

=
1/q

ψk,x
.

When automation is low-skill, we have x = 0 and s̃ = 0 and the first equality becomes an

inequality—it must be weakly more costly to produce task x = 0 with skill s̃ = 0 than with

capital—while the second equality provides the relevant boundary condition. So, taking logs, we

have

logws̃ = logψs̃,x − logψk,x − log q ≥ logψs̃,x − logψk,x − log q, (11)

with equality when automation is interior and with s̃ = x = 0 when automation is low-skill. Note

also that, when automation is interior, the wage function characterized by (10) and (11) has a kink

point at s̃, where the assignment function jumps upwards.

Intuitively, equation (10) ensures that all workers find it optimal to sort into the tasks assigned

to them. This requires that the marginal return to skill at any level s is given by the marginal

productivity gain in the task assigned to s, Xs.

Next, we can combine the equilibrium conditions for wages (4), task prices (5), and task pro-

duction (2) to obtain an expression for inverse labor demand,

ws = Y
1

λA
λ−1

λ

Xs
ψ

λ−1

λ

s,Xs
L
− 1

λ

Xs
,

where LXs
is the marginal density of labor over tasks. A change of variable allows us to express

this density in terms of the density of labor over skills, X ′
sLXs

= ls, for s 6= s̃. Using this and
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rearranging, we obtain the labor demand curve

ls
X ′
s

=
Y Aλ−1

Xs
ψλ−1
s,Xs

wλs
∀s 6= s̃. (12)

The labor demand curve here takes the form of a differential equation for the assignment function,

given wages. If automation is interior, the assignment function has two branches, one on [0, s̃) and

one on (s̃, 1]. If automation is low-skill instead, only the upper branch exists. For the lower branch,

the boundary condition is

lim
sրs̃

Xs = x (13)

whereas for the upper branch, the boundary condition is given by

lim
sցs̃

Xs = x . (14)

Intuitively, if labor demand in task Xs is high (e.g., because aggregate output is high or the wage

of skill s low), equation (12) requires that the density of labor supplied to task Xs is high as well.

This is achieved if the slope of the assignment function X ′
s is small, which means that more workers

are squeezed into a few tasks in the neighborhood of Xs.

Overall, we have a two-dimensional system of differential equations (and boundary conditions)

for wages and assignment. This system fully characterizes equilibrium together with the production

function (1), the capital allocation rule

K = argmax

{
Y −

K

q

}
,

and the requirement that any task is assigned to some production factor. If automation is interior,

this requires X0 = 0 and X1 = 1. If automation is low-skill, only X1 = 1 is required.

Our characterization displays the two channels via which automation, as induced by a decline in

the price of capital, affects wages and assignment. The first is a displacement effect as in Acemoglu

and Restrepo (2022): a decline in the price of capital (an increase in q) reduces the boundary

condition for wages (11) and hence, given assignment, the wage of worker type s̃. This implies,

in particular, that workers directly competing with capital must either relocate to other tasks

or accept a wage decline in proportion to the reduction of the price of capital. The second is a

productivity effect, driven by the fact that a lower price of capital raises aggregate output Y . From

equation (12), the productivity effect raises labor demand in all tasks proportionately and, for a

given assignment, wages for all skill levels rise proportionately as well.

Finally, we can derive a simple expression for the share of capital in national income, which will

be useful when discussing the TFP effects of automation. Combining the task production function
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(2), task prices (5), and equation (6) for the marginal product of capital, we obtain

1

q
= Y

1

λA
λ−1

λ
x ψ

λ−1

λ

k,x K
− 1

λ
x .

Then, solving for capital, integrating over [x, x] and dividing by qY yields the share of capital in

gross output as

αk =
K/q

Y
= Γkq

λ−1 , (15)

where

Γk =

∫ x

x

Aλ−1
x ψλ−1

k,x dx

is the task share of capital, a productivity-weighted measure for the set of automated tasks. Equa-

tion (15) shows that a decline in the price of capital has two distinct effects on the capital share: a

capital deepening effect (as captured by qλ−1) the sign of which depends on whether tasks are com-

plements or substitutes; and the effect of the expansion of the task share of capital, the counterpart

of the displacement effect on wages discussed above.

4 Local Effects of Automation

In this section, we assume that Assumptions 1, 2, 3, 4 and 5 hold so that automation is interior, and

study the implications of a small decline in the price of capital goods (an increase in q), which will

expand the set of automated tasks. Our main results characterize the polarization and inequality

consequences of automation.

4.1 Employment Polarization

Proposition 5 (Automation and employment polarization) Suppose Assumptions 1, 2, 3,

4 and 5 hold and consider a small increase in the productivity of capital d log q > 0. Then,

dx < 0 and dx > 0

(automation expands in both directions) and

dxs < 0 for all s ∈ (0, s̃) and dxs > 0 for all s ∈ (s̃, 1)

(the assignment function shifts down below the set of automated tasks and shifts up above the set).

Moreover, if λ ≥ 1, the labor share always decreases. If λ < 1, there exists a threshold for

capital productivity q̂ > q0 such that the labor share decreases if q ∈ (q0, q̂).
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Figure 2: Employment Polarization. In response to a local increase in capital productivity, the set

of automated tasks expands in both directions and workers move towards the extremes of the task

distribution, here illustrated for the case with ds̃ < 0.

The first part of this proposition establishes that a decline in the price of capital goods (or

an increase in the productivity of capital) always expands the set of automated tasks on both

sides, and relatedly, it shifts the assignment of workers further towards the two extremes of the

task distribution, as shown in Figure 2. This result thus implies that the employment polarization

pattern documented in Autor, Levy and Murnane (2003), Goos, Manning and Salomons (2009)

and Acemoglu and Autor (2011) always applies so long as we consider a small increase in the set

of automated tasks, starting from interior automation.13

The second part provides conditions under which the labor share declines. There are two

channels via which automation affects the labor share (see also our discussion of equation (15) for

the capital share). First, the expansion of the set of automated tasks, established in the first part

of the proposition, always decreases the labor share. Second, the productivity gain in tasks that are

already automated decreases the labor share when tasks are substitutes (λ ≥ 1) but raises it when

tasks are complements (λ < 1). Hence, when tasks are complements, the total effect is ambiguous.

Yet, even in this case, the proposition shows that the expansion of the set of automated tasks

dominates and the labor share declines in the initial stages of automation (when the productivity

of capital is small enough).

13It is also straightforward to show that if there were technological constraints on what tasks could be automated

(as in Acemoglu and Restrepo, 2018a) and these dictated that only tasks in the set [x, x] could be automated, and

we consider an expansion of the set with dx < 0 and dx > 0, then the same employment polarization result would

hold.
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4.2 Wage Polarization

The next proposition gives one of our most important results:

Proposition 6 (Automation and wage polarization) Suppose Assumptions 1, 2, 3, 4 and 5

hold and consider a small increase in the productivity of capital d log q > 0. Then, there is wage

polarization in the sense that skill premia increase above the threshold task s̃ and decrease below

this threshold. Or equivalently,

d logws > d logws′ for all s < s′ ∈ (0, s̃] and d logws < d logws′ for all s′ > s ∈ [s̃, 1).

The wage polarization result contained in Proposition 6 is similar to the finding in Acemoglu

and Autor (2011), but as briefly discussed in the Introduction, in that paper, this result was a

direct consequence of the fact that there were three types of workers, and automation was assumed

to affect the middle type. Here, we see that wage polarization reflects much more general forces

and applies throughout the distribution, and regardless of exactly where automation is taking place

(provided that we start from interior automation). We are not aware of other results of this sort

in the literature.

The economics of this result is again related to the competing displacement and productivity

effects. The former directly harms the earnings of workers who used to perform the previously-

automated tasks, while the latter benefits all workers symmetrically. Notably, the displacement

effect does not just impact directly-affected workers (whose previous tasks are taken over by capital),

but all workers, because of the general pattern of substitutability between worker types. These

“ripple effects” are also present in Acemoglu and Restrepo (2022), but in our setting, they can be

shown to depend only on the distance of a skill group to the threshold type s̃. This, combined with

the symmetric productivity effects, immediately yields the result in Proposition 6.

Proposition 6 shows how skill premia change, generating a pattern of wage polarization. Other

important questions are whether the real wage level of some worker types will decline following the

expansion in automation and whether the top or the bottom of the wage distribution will be more

affected. The next proposition answers these questions.

Proposition 7 (Automation and wage levels) Suppose Assumptions 1, 2, 3, 4 and 5 hold and

consider a small increase in the productivity of capital d log q > 0.

1. The average wage in the economy always increases.
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2. There exists a threshold for capital productivity q̂ > q0 such that if q ∈ (q0, q̂), then for some

δ1, δ2 > 0, we have d logws < 0 for all s ∈ (s̃− δ1, s̃+ δ2).

3. Suppose that there exists s′ such that ψs′,x/ψk,x is constant in x. Then for some δ2, δ2 > 0,

we have d logws < 0 for all s ∈ (s′ − δ1, s
′ + δ2).

4. Suppose that ψ0,0/ψk,0 < ψ0,1/ψk,1. Then, there exists a threshold for capital productivity

q̃ < qm (where qm is the upper bound imposed by Assumption 5) such that if q ∈ (q̃, qm), the

inequality between the top and the bottom of the skill space increases. That is,

d logw0 < d logw1 .

The first part follows immediately from Euler’s theorem given constant returns to scale, the

constant price of capital (in terms of the final good), and competitive factor markets. In particular,

we always have that ∫ 1

0

αs
1− αk

d logws ds = d log c =
αk

1− αk
> 0,

where αs and αk are the income shares of skill s and capital, respectively, and so the left-most

term is the change in the average wage in the economy. Hence, the average wage always increases

following an expansion in automation.14

The second part is also intuitive. When the initial level of capital productivity is low, the

set of automated tasks is small. This implies that a marginal increase in q generates only a small

productivity effect, and the most affected worker type, s̃, necessarily experiences a real wage decline

(due to the displacement effect). In fact, the decline in the real wage extends to a set of workers

around s̃, because the wage level effects are continuous in skill. This result highlights the central

role of the magnitude of the productivity effect, which we characterize in the next subsection.

The third part provides a refinement of Norbert Wiener’s conjecture discussed in the Intro-

duction. Namely, if a worker type has a productivity profile very similar to that of capital, then

Wiener’s intuition that production using capital will cause the impoverishment of this worker type

is correct.15 However, in contrast to Wiener’s general statement, this is not true for all workers,

14As discussed in footnote 6, this result is itself a consequence of some of the special assumptions that are typically

imposed in these types of models, including ours, and can also be relaxed. Since this is not our main focus, we do

not explore this issue further in this paper.
15Strictly speaking, Proposition 7 requires the worker type to have exactly the same productivity profile as capital.

In Proposition 9, we extend this to worker types whose productivity profile is sufficiently similar—but not exactly

equal—to that of capital. This extension is easier to formalize when studying global changes in capital productivity,

so we defer it to Proposition 9.
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but only for specific worker types. Indeed, we know from the first part that average wages (and

hence the wages of some skill levels) have to increase.

Finally, the fourth part shows that automation increases the inequality between high- and low-

skill workers, at least if the productivity of capital is high enough. The intuition for this result is as

follows. If ψ0,0/ψk,0 < ψ0,1/ψk,1, then automation will proceed in an unbalanced way, approaching

the bottom of the task space as q grows large (see next section). As automation tilts towards the

bottom, so do its displacement effects on wages, reducing wages at the bottom relative to the top

of the skill space.

4.3 Productivity

The next proposition provides a characterization for the productivity effects of automation, using

a second-order Taylor expansion.

Proposition 8 (Productivity effects) Suppose Assumptions 1, 2, 3, 4 and 5 hold and consider

a small increase in the productivity of capital ∆ log q > 0. Then we have

∆ log TFP ≈
αk

1− αk
∆ log q +

1

1− αk

[
λ− 1 +

∂ log Γk
∂x

dx

d log q
−

∂ log Γk
∂x

dx

d log q

]
(∆ log q)2 .

The first term in the approximation is an immediate consequence of Hulten’s theorem. The

first-order effect of an increase in capital productivity is equal to capital’s share in net output. It

shows clearly that the TFP gain will be smaller when αk is small, thus confirming the result in

Proposition 7.2: when the productivity of capital is low to start with, or equivalently only a few

tasks are initially automated, then the productivity effect is small (which is the reason why negative

wage effects are more likely in this case).

The second term captures two distinct but related effects. First, the expansion of the task

share of capital Γk tends to make the TFP effects of an increase in capital productivity convex: an

increase in capital productivity expands the set of automated tasks and thus generates a bigger base

on which additional productivity gains can be obtained. Second, when holding the set of automated

tasks fixed, an increase in capital productivity increases or decreases the share of capital in national

income, depending on whether tasks are complements (λ < 1) or substitutes (λ > 1). If tasks are

complements, an increase in capital productivity leads to an increase in the labor share and a

decrease in the capital share. This counters the effect from the expansion of the set of automated

tasks and the implied convexity of TFP effects. In contrast, if tasks are substitutes, an increase

in capital productivity leads to a decrease in the labor share and an increase in the capital share,

amplifying convexity.
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5 Global Effects of Automation

In this section, we consider non-infinitesimal (potentially large) changes in the productivity of

capital. We distinguish two cases. In the first, studied in the next subsection, after this change,

automation still remains interior. In the second, studied in the subsequent subsection, we transition

from interior to low-skill automation. Finally, we also discuss additional comparative statics with

respect to labor supply changes.

5.1 Non-Local Changes with Interior Automation

Proposition 9 (Polarization with large changes in automation) Suppose Assumptions 1,

2, 3, 4 and 5 hold and consider a potentially large increase in the productivity of capital ∆ log q > 0,

which still satisfies Assumption 5. Let s̃′ = s̃+∆s̃ ∈ (0, 1) be the new threshold skill level.

1. Then, automation expands in both directions and causes employment polarization. That is,

∆x < 0 and ∆x > 0,

and

∆xs < 0 for all s ∈ (0, s̃′) and ∆xs > 0 for all s ∈ (s̃′, 1).

2. There is wage polarization in the sense that skill premia increase above the threshold skill s̃′

and decrease below this threshold. Or equivalently,

∆ logws > ∆ logws′ for all s < s′ ∈ (0, s̃′] and ∆ logws < ∆ logws′ for all s′ > s ∈ [s̃′, 1).

3. The average wage always increases, and moreover, there exists a threshold for capital produc-

tivity q̂ > q0 such that if q +∆q ∈ (q0, q̂), then for some δ1, δ2 > 0, we have d logws < 0 for

all s ∈ [s̃− δ1, s̃+ δ2].

4. Let γmaxs,k = maxx {logψs,x − logψk,x} −minx {logψs,x − logψk,x} for some s. Then,

∆ logws ≤ γmaxs,k −∆ log q.

In particular, if γmaxs,k < ǫ, then every ∆ log q > ǫ will reduce the wage of workers with skill

level s.

5. Suppose that ψ0,0/ψk,0 < ψ0,1/ψk,1. Then, if q +∆q is sufficiently close to qm, the inequality

between the top and the bottom of the skill space increases, i.e.,

∆ logw0 < ∆ logw1.
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In summary, this proposition establishes that our main employment and wage polarization re-

sults do not depend on whether we consider small or large changes in capital productivity—provided

that automation starts out and remains interior. Moreover, as before, when we initially have rel-

atively few tasks automated (or the productivity of capital is still relatively low), an expansion

in automation hurts workers around the skill threshold s̃. Our refinement of Wiener’s conjecture

also extends to this case: the wages of worker types with productivity profiles sufficiently similar

to capital’s will decline (but, as before, wages cannot decline for all worker types). Finally, under

the same conditions as in the local analysis, the impact of automation on the wage distribution is

asymmetric: inequality increases between high-skill and low-skill workers.

We will next see that, in contrast to this case, when automation ceases to be interior, we obtain

very different comparative statics.

5.2 Transition to Low-Skill Automation

We now consider a non-local change in capital productivity that induces a transition from interior

to low-skill automation.

Proposition 10 (Transition to low-skill automation) Suppose Assumptions 1, 2, 3 and 4

hold. Suppose also that
ψ0,0

ψk,0
<

ψ0,1

ψk,1
(16)

and Assumption 5 holds initially. Now consider a potentially large increase in the productivity of

capital ∆ log q > 0 that violates Assumption 5. Then:

1. Automation transitions from interior to low-skill, so all low-complexity tasks are taken over

by capital. That is, ∆x = −x.

2. This transition does not induce employment polarization. Instead, the assignment function

shifts up everywhere, ∆Xs > 0 for all s < 1.

3. It does not induce wage polarization either. Instead, skill premia increase over the entire skill

space. That is,

∆ logws < ∆ logws′ for all s < s′.

Next, suppose Assumptions 1, 2, 3, 4 and condition (16) hold but we start from q ≥ qm already,

so that Assumption 5 is violated. Then, a further increase in the productivity of capital shifts up

the assignment function everywhere and skill premia increase over the entire skill space (i.e., there

is no longer any employment or wage polarization).
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Figure 3: Transition to low-skill automation. If capital productivity grows large enough, automation

becomes low-skill. A further increase in capital productivity then pushes all workers towards the

upper end of the task distribution.

The most important result in this proposition is that for a sufficiently large capital productiv-

ity, automation transitions from interior to low-skill and this transition changes the wage effects of

automation qualitatively. In contrast to the wage polarization pattern we have seen so far, once au-

tomation becomes low-skill it induces monotone increases in wage inequality—whereby automation

impacts the lowest-skill workers most negatively. In this case, the employment polarization effects

of automation vanish as well: further automation now pushes all workers towards more complex

tasks. Figure 3 diagrammatically illustrates this transition.

Note finally that Proposition 10 is stated under condition (16), which ensures that the ratio

of capital productivity to the productivity of the least skilled workers is greater at the lowest

complexity tasks than at the highest complexity tasks. To understand the importance of this

assumption, note that as q increases towards q∞, all tasks will asymptotically become automated.

This pushes all workers towards those tasks in which they have global comparative advantage

relative to capital, i.e., in which their productivity relative to capital is maximized. If condition

(16) holds, even the least skilled workers have global comparative advantage relative to capital

in the most complex tasks, so they are ultimately forced to relocate towards these tasks.16 This

induces a transition from interior to low-skill automation and increases all skill premia.17

16If this process pushed low-skill workers’ wages below their reservation wages, then rather than relocating towards

more complex tasks, they would leave the labor force, further speeding up the transition to low-skill automation.
17If condition (16) is not satisfied, automation remains interior indefinitely. To see this, note that we have already

imposed in Assumption 3.2 that the most skilled workers have global comparative advantage relative to capital in

the most complex tasks, so they will never be displaced from these tasks. In contrast, if both condition (16) and
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5.3 Implications of Labor Supply Changes

Finally, we consider the implications of changes in the labor supply profile. Although this could

have been studied for local changes, it is more convenient to discuss these comparative statics in

the case of global changes. The main comparative static is given in the next proposition.

Proposition 11 (Labor Supply Changes and Automation) Suppose Assumptions 1, 2, 3, 4

and condition (16) hold and Assumption 5 holds under the initial labor supply l. Now consider

a change in labor supply such that ∆ log ls < ∆ log ls′ for all s < s′ (an increase in the relative

supply of more skilled workers). Then, the threshold capital productivity qm at which automation

transitions from interior to low-skill declines, ∆qm < 0.

Moreover, suppose that qm + ∆qm < q so that Assumption 5 is violated after the labor supply

change and automation transitions from interior to low-skill. Then, skill premia increase in the

bottom part of the wage distribution and decrease in the upper part. Specifically, there exists ŝ ∈

(s̃, 1) (where s̃ is the threshold skill before the labor supply change) such that

∆ logws < ∆ logws′ for all s < s′ ∈ (0, ŝ] and ∆ logws ≥ ∆ logws′ for all s′ > s ∈ [ŝ, 1).

There are two important results contained in this proposition. First, relative scarcity of low-skill

workers accelerates the transition to low-skill automation. The intuition is provided by inequality

(8) and is related to our results about the effects of a minimum wage in Proposition 4: a lower

relative supply of low-skill workers raises their wage and makes it more profitable to automate

the tasks previously performed by the low-skilled. Put differently, automation is initially interior

in Proposition 11 because low-skill workers have local comparative advantage relative to capital

in less complex tasks (Assumption 4), but also because they are relatively abundant and hence

relatively cheap. Lower wages make automating low-complexity tasks less profitable and lead to

interior automation.

A second important result in Proposition 11 is a type of upward-sloping relative demand for

skills. Given a fixed assignment of workers and capital to tasks, the monotone increase in the

supply of skills would have reduced skill premia. However, the response of equilibrium assignment

qualitatively changes this pattern. Low-skill automation becomes more likely and this reduces

the relative wages of low-skill workers and raises skill premia at the bottom. Other instances of

greater relative supply of skills leading to higher skill premia are present in models of directed

Assumption 3.2 were violated, automation would transition from interior to high-skill at some point (whereby the

most complex tasks would be taken over by capital).
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technological change (because greater abundance of skilled workers encourages more skill-biased

technological change, as in Acemoglu, 1998, 2007), and in models of search and matching (because

with more skilled workers around, more employers make investments complementary to skilled

workers and search for them, as in Acemoglu, 1999). In the model here, a similar outcome arises,

even though the equilibrium is competitive and there is no endogenous innovation. Rather, this

result is driven by the response of the equilibrium assignment of tasks between capital and labor.

6 Conclusion

There has been rapid automation of a range of tasks across the industrialized world over the

last four decades. There is growing evidence that this automation has fueled both inequality

and polarization—whereby middle-skilled workers have been displaced from their jobs and have

experienced relative wage declines.

To develop a deeper understanding of the causes of polarization, this paper has built an as-

signment model of automation. In our model, each of a continuum of tasks of variable complexity

is assigned to either capital or one of a continuum of labor skills. Our model generalizes existing

assignment models, which typically impose global supermodularity conditions that ensure mono-

tone matching between workers and tasks. In contrast, in our model with capital there is no global

supermodularity.

We prove existence and essential uniqueness of competitive equilibria and characterize conditions

under which automation is interior, meaning that it is tasks of intermediate complexity that are

assigned to capital. Put simply, interior automation arises when the most skilled workers have a

comparative advantage in the most complex tasks relative to capital and other labor, and because

the wages of the least skilled workers are sufficiently low relative to their productivity and the

effective cost of capital in low-complexity tasks. Highlighting the role of wages at the low-end of

the wage distribution, we demonstrate that minimum wages and other sources of higher wages at

the bottom make interior automation less likely.

We provide a series of local and global comparative statics, showing how further automation

impacts wages and assignment patterns. Most importantly, when automation starts and remains

interior, a lower cost of capital (or greater capital productivity) causes employment polarization:

middle-skill workers are displaced from middle-complexity tasks and are pushed towards higher

or lower parts of the complexity distribution. This type of automation also causes wage polariza-

tion: the skill premium monotonically increases above a skill threshold and monotonically declines
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below the same threshold. Moreover, automation tends to reduce the real wage of workers with

comparative advantage profiles close to that of capital.

Our global comparative static results additionally establish that large enough increases in capital

productivity ultimately induce a transition to low-skill automation, whereby the pattern of com-

parative statics changes qualitatively. In particular, after this transition to low-skill automation,

further declines in the cost of capital no longer cause employment or wage polarization. Rather,

they have a monotone effect on the skill premium.

Despite its richness, our framework is fairly tractable and opens the way to further analysis of

the changing assignment patterns in modern labor markets. Fruitful areas of future inquiry include

the following. First, automation has been going on together with a changing structure of tasks and

an evolving distribution of skills over at least the last 250 years. This can be introduced into our

framework by simultaneously expanding the range of tasks and skills, and would be an important

area for future work. Second, the productivity of capital in various tasks should in principle change

endogenously, responding to which tasks are being assigned to capital—or are likely to be assigned

to capital in the future. This issue can be investigated in an extended version of our framework in

which the direction of technological change and capital productivity across tasks are endogenized.

Third, in practice multiple tasks may be assigned to a worker because either there are economies of

scope or other types of task complementarities, and extending this class of models to “one-to-many”

matching is another important area for further inquiry. Last but not least, the framework here can

be used to further refine the empirical investigation of the relationship between automation and

inequality, for example, by adding more structure and predictions to studies such as Acemoglu and

Restrepo (2022).
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A Proofs for Section 3: Characterization of Equilibrium and In-

terior Automation

A.1 Proof of Proposition 1: Existence and Uniqueness

Existence An equilibrium allocation maximizes net output subject to labor market clearing,

given by ∫ 1

0
Ls,xdx ≤ ls for all s. (17)

To prove existence, it is useful to split the problem of net output maximization into two steps.

First, we fix the aggregate capital stock K and maximize gross output for given K and subject

to (17). This is a problem of maximizing a continuous function over a compact set, such that a

maximizer is guaranteed to exist. Let F (K, l) denote the maximal gross output for given K and

labor supply l.

In the second step, we choose K to maximize net output F (K, l) − K/q. This is again a

continuous problem, but K can be any positive real number, so we have to establish boundedness.

For this, note that

lim
K→∞

∂F (K, l)

∂K
=

(∫ 1

0
Aλ−1
x ψλ−1

k,x dx

) 1

λ−1

.

Thus, Assumption 1 ensures that

lim
K→∞

∂F (K, l)

∂K
<

1

q

such that net output is bounded and attains its maximum for finite K.

Essential Uniqueness For essential uniqueness of equilibrium, note that net output is concave in

the allocation and the set of feasible allocations is convex. This implies that, while the equilibrium

allocation itself may not be unique, the Frechet derivative of net output is constant across all

equilibrium allocations.18 Hence, equilibrium wages are unique. The same argument applies to

task prices when writing the maximization of net output as a maximization over task inputs,

including task production functions as constraints, i.e.,

max
{Yx}1x=0

,L,K

[∫ 1

0
(AxYx)

λ−1

λ dx

] λ
λ−1

−
1

q

∫ 1

0
Kx dx

subject to task production (2) and labor market clearing (3).

18One way to see this is as follows. The set of maximizers of a concave function on a convex set is a face of the

hypograph of the function. Thus, there exists a supporting hyperplane of the hypograph that contains the entire set

of maximizers. Together with differentiability, this immediately implies that the derivative of the function is constant

on the set of maximizers.
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Uniqueness Our proof of Proposition 2 below shows that under Assumptions 1, 2 and 3, the

labor allocation L and the set of tasks performed by capital Xk are uniquely determined given

wages. Moreover, given prices, Xk and the labor allocation, choosing the output-maximizing capital

allocation K is a strictly concave problem with a unique solution.

Thus, given wages and task prices, the equilibrium allocation is determined uniquely. Since

equilibrium wages and task prices are unique, the equilibrium allocation is unique as well.

A.2 Proof of Proposition 2: Convexity of Assignment

Monotonicity Monotonicity of the labor allocation under comparative advantage assumptions

is a standard result. One way to prove it, which is useful for our argument in the next step below,

is presented here. Let

Sminx = argmin
s

{logws − logψs,x}

be the set of skills that produce task x at minimal cost. By Assumption 2, logws−logψs,x is strictly

submodular, so Topkis’ monotonicity theorem (Topkis 1998) implies that if s ∈ Sminx , s′ ∈ Sminx′

and x > x′, then s ≥ s′. Moreover, if for some x there exist s, s′ ∈ Sminx with s > s′, then all skill

levels in (s′, s) can only be assigned to x. This creates a mass point in the density of labor over

tasks, such that px = 0, contradicting condition (4). Hence, Sminx is a singleton for all x. Inverting

this correspondence, we obtain Xs ⊆
{
x
∣∣s ∈ Sminx

}
. Finally, from the properties of Sminx it follows

immediately that if x ∈ Xs, x
′ ∈ Xs′ and s > s′, then x > x′.

Convexity We start with the following lemma which will be useful to establish properties of Xk

throughout the paper.

Lemma 1 Suppose Assumptions 1, 2 and 3.1 hold and let

ωx = min
s

{
wsψk,x
ψs,x

}

be the minimal effective unit cost of producing the amount ψk,x of task x with labor. Then, the set

of automated tasks is equal to the upper level set of ω at level 1/q,

Xk = {x|ωx ≥ 1/q}.

Proof. The unit cost of producing the amount ψk,x of task x with capital is 1/q. Hence on Xk, we

must have 1/q ≤ ωx. Moreover, if 1/q < ωx at some x, then x must be in Xk. Hence,

{x|ωx > 1/q} ⊆ Xk ⊆ {x|ωx ≥ 1/q} .
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Now suppose that Xk and {x|ωx ≥ 1/q} differ by a set of strictly positive measure. Then, since

the labor endowment has no mass points, a strictly positive measure of skills must be assigned to

a subset of {x|ωx = 1/q}. In particular, there must exist skill levels s1 < s2 < s3 assigned to tasks

x1 < x2 < x3 in {x|ωx = 1/q}. Moreover, since the cost-minimizing skill Sminx is unique for every

task (see first step of the proof), we must have

ws2ψk,x1
ψs2,x1

>
ws1ψk,x1
ψs1,x1

=
ws2ψk,x2
ψs2,x2

=
ws3ψk,x3
ψs3,x3

<
ws2ψk,x3
ψs2,x3

.

But this string of relations contradicts the quasi-concavity of ψk,x/ψs2,x. Hence, the difference

between Xk and {x|ωx ≥ 1/q} must be of measure zero and we can set Xk = {x|ωx ≥ 1/q} without

loss of generality.

The “if” part of Proposition 2.2 follows from Lemma 1. By Assumption 3.1, wsψk,x/ψs,x is

quasi-concave in x for all s. Thus, ωx is the lower envelope of quasi-concave functions and as such

it is quasi-concave itself. Hence, its upper level sets are convex and so is Xk.

Next, consider the “only if” part. We will prove that if ψk,x/ψs,x is not quasi-concave in x

for some s, then there exists a labor endowment l and capital productivity q such that Xk is not

convex. For this it turns out useful to rewrite labor market clearing as

∫ s

0

∫ 1

0
Ls′,x dx ds

′ = Hs for all s,

where Hs is the cumulative distribution function of labor endowments. This specification allows to

embed mass points as jumps in Hs.

Suppose now that ψk,x/ψs′,x is not quasi-concave in x for s′ and consider the case where only

skill s′ is supplied,

Hs = Is>s′ =

{
0 if s < s′

1 if s ≥ s′.

Since ψk,x/ψs,x is not quasi-concave, there exist x1 < x2 < x3 such that

ws′ψk,x1
ψs′,x1

>
ws′ψk,x2
ψs′,x2

<
ws′ψk,x3
ψs′,x3

.

By Euler’s theorem, ws′ equals net output. Next note that net output is continuous in the allocation

and in q, and hence Berge’s maximum theorem applies and implies that equilibrium net output is

continuous in q (and equilibrium allocations are upper hemicontinuous in q). Moreover, net output

is also increasing in q. Thus, the wage ws′ is continuously increasing in q and there exists a value

for q such that
ws′ψk,x1
ψs′,x1

,
ws′ψk,x3
ψs′,x3

>
1

q
>

ws′ψk,x2
ψs′,x2

,
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which implies that Xk cannot be convex.

It remains to extend the result to labor endowments without mass points, which is a simple

continuity argument. Net output is continuous in allocations while the set of feasible allocations is

continuous in the endowment cumulative density function H. Thus by the maximum theorem, the

set of equilibrium allocations is upper hemicontinuous in H. Since there is no equilibrium allocation

generating a convex Xk under the endowment function Is>s′ considered above, we can construct

a sequence of differentiable endowment functions with strictly positive derivative, {H(n)}n∈N, that

converges to Is>s′ ; for sufficiently large n, the set of automated tasks cannot be convex.

No High-Skill Automation Suppose 1 ∈ Xk (to derive a contradiction). Then, it must be

cheaper to produce task x = 1 with capital than with labor, wsψk,1/ψs,1 ≥ 1/q for all s. Moreover,

the first step of the proof (“monotonicity”) implies that among all labor types, task x = 1 can be

produced at the lowest cost using skill s = 1, Smin1 = {1}. Thus,
wsψk,1

ψs,1
> 1

q
for all s < 1. Together

with Assumption 3.2, this implies that there exists an ǫ > 0 such that wsψk,0/ψs,0 > 1/q for all

s ∈ (1− ǫ, 1], i.e., it is cheaper to produce the least complex task with capital than with the most

skilled workers.

Hence, for every s ∈ (1 − ǫ, 1), we have established that s is strictly more expensive than

capital in both the most and the least complex task. Quasi-concavity of ψk,x/ψs,x (Assumption

3.1) requires that this extends to all tasks:

wsψk,x
ψs,x

>
1

q
for all s ∈ (1− ǫ, 1).

But this implies that skill levels s ∈ (1− ǫ, 1) cannot be assigned to any task in equilibrium, which

is clearly incompatible with an equilibrium allocation maximizing (finite) net output. Hence, we

must have 1 /∈ Xk: the most complex task is not automated.

A.3 Characterization of Capital Productivity Thresholds

Here we provide a characterization of the two productivity thresholds q0 and qm.

No Automation Threshold For q0, suppose that we restrict capital usage to zero in all tasks

and consider the output-maximizing allocation of labor. Let w0 be the resulting wage vector such

that ω0
x = mins{w

0
sψk,x/ψs,x} is the corresponding minimum labor cost function. Then, we can

define
1

q0
= max

x
ω0
x,

as the prohibitive cost of capital. Capital will be used in equilibrium if and only if q ≥ q0.
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Interior Automation Threshold To characterize qm suppose that Assumption 4 holds, such

that ψk,x/ψ0,x is strictly increasing in x on a neighborhood of x = 0. Then, we define a threshold

task xm as the smallest x ∈ (0, 1) such that

ψk,0
ψ0,0

=
ψk,x
ψ0,x

.

That is, the productivity ratio between capital and the least skilled workers is the same at task xm

and task 0. Such an xm exists if and only if

ψ0,0

ψk,0
<

ψ0,1

ψk,1
,

which is condition (16) imposed in our Proposition 10. If condition (16) does not hold, set qm equal

to the upper bound q∞.

Now, suppose that condition (16) holds and we restrict capital to tasks below xm and labor

to tasks above xm. Then we choose the allocation that maximizes net output subject to these

restrictions. Let wms be the resulting wage function. Note that wms is strictly increasing in q,

allowing us to define qm as the unique value of q that solves

1

qm
=

wm0 (qm)ψk,xm
ψ0,xm

,

where we wrote wm0 (q) to emphasize the dependence of wm0 on q. Intuitively, this condition equates

the costs of producing task xm with capital and with the least skilled workers.

Finally, note that if q = qm, the restriction of capital to tasks below xm and labor to tasks

above xm is not binding, and in this case we have Xk = [0, xm].

A.4 Proof of Proposition 3: Interior Automation

Interior Automation We start by showing that under Assumptions 1-5, automation is interior.

We already know from Proposition 2 and our definition of q0 in Appendix A.3 that under Assump-

tions 1-3 and if q > q0, automation is interior or low-skill. In particular, the set of automated tasks

takes the form [x, x] with x < x < 1. It remains to show that x > 0 if q < qm.

In Appendix A.3 we have shown that Assumption 4 allows us to define qm such thatXk = [0, xm]

if q = qm. Moreover, we show in Propositions 5 and 10 that the set of automated tasks is strictly

increasing in q on q ≥ q0, i.e., Xk(q) ⊃ Xk(q
′) for all q > q′ ≥ q0.

19 Now suppose that Xk = [0, x]

for some q ∈ (q0, qm). Since Xk is strictly increasing in q, we must have x < xm in this case. Hence,

1

q
≤

w0ψk,0
ψ0,0

<
w0ψk,x
ψ0,x

for all x ∈ (0, x],

19Proposition 5 shows this when starting from q such that automation is interior while Proposition 10 considers

the case where the initial q is such that automation is low skill.
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where the second inequality comes from the definition of xm and the fact that x < xm. This implies

that skill 0 cannot be allocated to tasks (0, x+ ǫ) for some ǫ > 0, and the same holds for all skills

in some neighborhood of 0 by continuity of wages and productivities. But then, since the labor

allocation is monotone (Proposition 2.1), no skill type can be allocated to (x, x + ǫ). Since these

tasks are also not performed by capital, they would not be performed at all, which is incompatible

with equilibrium. Hence, we must have x > 0 if q ∈ (q0, qm).

Low-Skill Automation Next, we show that automation is low-skill if Assumptions 4 and 5 do

not hold (while still imposing Assumptions 1-3). If Assumption 4 does not hold, we have

∂ logψk,0
∂x

−
∂ logψ0,0

∂x
≤ 0.

By log supermodularity of labor productivity (Assumption 2), it follows that

∂ logψk,0
∂x

−
∂ logψs,0

∂x
< 0 for all s > 0.

Together with quasi-concavity of ψk,x/ψs,x (Assumption 3), this implies that wsψk,x/ψs,x is de-

creasing in x for all s > 0. By continuity of productivity schedules, the same must then hold for

s = 0.

So, ωx is the lower envelope of a family of decreasing functions and must therefore be decreasing

itself. This implies that {x|ωx ≥ 1/q} is either empty (if q < q0) or contains zero (if q ≥ q0). Using

Lemma 1, the same holds for the set of automated tasks Xk.

Labor Allocation Finally, the result that there exists s̃ ∈ (0, 1) such that skills below s̃ are

allocated to tasks below Xk and skills above s̃ are allocated to tasks above Xk is an immediate

consequence of monotone labor allocations (Proposition 2.1) and the fact that no positive mass of

skills can be allocated on Xk. The latter is implied by our proof of Lemma 1.

A.5 Proof of Proposition 4: Minimum Wages and Automation

The first part of the proof follows closely the proof of low-skill automation for the case where

Assumptions 4 and 5 do not hold in Proposition 3. In particular, condition (9) together with

comparative advantage across labor types (Assumption 2) implies that ψk,x/ψs,x is decreasing in

x for all s > s and, by continuity, also for s = s (where s is such that all skills below s are non-

employed due to the minimum wage). Thus, the minimum labor cost function ωx is decreasing and

the set of automated tasks, which is equal to {x|ωx ≥ 1/q}, is either empty or contains zero.
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The second part is to show that, if q ∈ (q0, qm) as in Assumption 5, then the set of automated

tasks remains non-empty after the introduction of the minimum wage. For this, we compare the

assignment problems without capital, with and without the minimum wage.

Without capital, our setting has been studied extensively in the literature (e.g., Costinot and

Vogel 2010). The introduction of the minimum wage is equivalent to a shift in the lower bound of

the skill space from 0 to s. Without capital, it leads to a decline in skill premia along the entire

skill space, with the wage of the least skilled remaining worker type s increasing and the wage of

the most skilled worker type (s = 1) decreasing (Teulings, 2000; Costinot and Vogel, 2010). Let w0
s

be the wage function without capital and without minimum wage (and ω0
x the associated minimum

labor cost function) and w0,min
s the wage function without capital but with minimum wage. Then,

1

q
< max

x
ω0
x ≤ max

x

w0
sψk,x

ψs,x
≤

w0,min
s ψk,0
ψs,0

,

where the first inequality uses that q > q0 by Assumption 5, the second follows from the definition

of ω0
x as the lower envelope of all workers’ effective cost, and the last inequality is implied by

w0
s ≤ w0,min

s and ψk,x/ψs,x being decreasing in x. The inequalities imply that if Xk were empty,

we had 0 ∈ Xk by Lemma 1, a contradiction. Hence, Xk remains non-empty after introduction of

the minimum wage.

B Proofs for Section 4: Local Effects of Automation

We use our characterization of the wage and the assignment function in terms of the differential

equation system (10)-(14) to conduct comparative statics with respect to capital productivity.

Implicitly, this imposes Assumptions 1 to 3 and q ≥ q0.

We consider a small change in capital productivity d log q (if q = q0 we impose d log q > 0 such

that our equilibrium characterization continues to hold) and study its first-order effects on wages

and assignment. From equations (10) and (12), we obtain the variational equations

(d logws)
′ =

∂2 logψs,Xs

∂s∂x
dXs (18)

(dXs)
′ =λ

lsw
λ
s

Y Aλ−1
Xs

ψλ−1
s,Xs

d logws −
lsw

λ
s

Y Aλ−1
Xs

ψλ−1
s,Xs

d log Y

− (λ− 1)
lsw

λ
s

Y Aλ−1
Xs

ψλ−1
s,Xs

(
∂ logAXs

∂x
+

∂ logψs,Xs

∂x

)
dXs, (19)

which hold for all s 6= s̃. The boundary conditions for the upper branch of these variations, i.e.,
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the branch on (s̃, 1], are given by

d logw+
s̃
=

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx+

∂ logψs̃,x
∂s

ds̃− d log q − (logws̃)
′+ds̃

=

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx− d log q (20)

dX+
s̃

= dx− (Xs̃)
′+ds̃

= dx−
ls̃w

λ
s̃

Y Aλ−1
x ψλ−1

s̃,x

ds̃, (21)

where the superscript ‘+’ denotes the right-side limit of the respective function. The boundary

conditions for the lower branch (which exists only if automation is interior) are

d logw−
s̃
=

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx+

∂ logψs̃,x
∂s

ds̃− d log q − (logws̃)
′−ds̃

=

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx− d log q (22)

dX−
s̃

= dx− (Xs̃)
′−ds̃

= dx−
ls̃w

λ
s̃

Y Aλ−1
x ψλ−1

s̃,x

ds̃, (23)

with the superscript ‘−’ denoting left-side limits.

From the upper branch of the system, we can obtain the change in assignment of the most

skilled workers, dX1(dx, ds̃), as a function of dx and ds̃. Analogously, if automation is interior, the

lower branch yields dX0(dx, ds̃), the change in assignment of the least skilled workers as a function

of dx and ds̃. Both of these changes must be zero in equilibrium, which defines functions dx(ds̃)

and dx(ds̃). The following lemma establishes some properties of dx(ds̃) and dx(ds̃).

Lemma 2 Suppose Assumptions 1, 2 and 3 hold, q ≥ q0 and d log q > 0. Then, the function

dx(ds̃) is strictly increasing, satisfies dx(0) > 0 and

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx(0) < d log q +

1

λ
d log Y.

Moreover, if x > 0, dx(ds̃) is strictly increasing, satisfies dx(0) < 0 and

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx(0) < d log q +

1

λ
d log Y.

Proof. We focus on the results for dx(ds̃). The proof for dx(ds̃) proceeds analogously. Define

d log w̃s = d logws −
1

λ
d log Y

as the wage change net of the productivity effect, i.e., the pure displacement effect of automation.
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With this, we can write the variational equations (18) and (19) more compactly as

(d log w̃s)
′ = γ(s)dXs

(dXs)
′ = α(s)dXs + β(s)d log w̃s

where γ(s), β(s) > 0 for all s and the initial values are

d log w̃+
s̃
=

(
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx− d log q −

1

λ
d log Y

dX+
s̃

= dx−
ls̃w

λ
s̃

Y Aλ−1
x ψλ−1

s̃,x

ds̃.

We next show that the implied change dX1 is strictly increasing in both initial values. First consider

dX
+(1)
s̃

< dX
+(2)
s̃

with d log w̃+
s̃

equal in both cases. The implied path dX
(2)
s starts above dX

(1)
s .

Suppose now dX
(2)
s crosses dX

(1)
s for the first time at a skill level s1. Clearly, this crossing must be

from above, that is, we need (dX
(2)
s1 )′ ≤ (dX

(1)
s1 )′. But from the differential equations, we obtain

(dX(1)
s1

)′ − (dX(2)
s1

)′ = β(s1)(d log w̃
(1)
s1

− d log w̃(2)
s1

) < 0,

where the last inequality follows from the fact that d log w̃
(2)
s starts from the same value as d log w̃

(1)
s

but increases at a faster rate until s1 because dX
(2)
s > dX

(1)
s for s < s1. It follows that the two

paths cannot cross and we have dX
(2)
1 > dX

(1)
1 .

The reasoning for the second initial value, d log w̃+
s̃
, follows a similar line. If we increase d log w̃+

s̃
,

the path dXs will have a larger slope initially and hence move upwards for s slightly above s̃. Then,

the argument for why it can’t cross its original path again, is the same as above.

We have thus shown that the change dX1 is strictly increasing in both initial values. Both initial

values, in turn, are increasing in dx. Moreover, dX+
s̃

is strictly decreasing in ds̃ while d log w̃+
s̃

is

unaffected by ds̃. Thus, dX1 is strictly increasing in dx and strictly decreasing in ds̃. Then, setting

dX1 = 0 yields the first claim of the lemma: dx is strictly increasing in ds̃.

Next, we show that if ds̃ = 0, then dX1 = 0 requires to set dx such that the initial value dX+
s̃

is positive while d log w̃+
s̃
is negative (recall from above that d log w̃+

s̃
is negative at dx = 0). To see

why this must be the case, suppose we were to start with both initial values negative. Then, dXs

could never attain zero for any s ≥ s̃ by reasoning analogous to that used above: If dXs approaches

zero from below, its derivative will turn negative because β(s)d log w̃s is negative (d log w̃s starts

from a negative initial value and declines from there because dXs is negative initially). Similarly,

if we start with both initial values positive (and at least one strictly positive), dXs can never

attain zero either, because as it approaches zero, its derivative will become positive by reversing

the arguments from the case with both initial values negative.
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Hence, when setting ds̃ to zero, then dX1 = 0 requires dx to be strictly positive but sufficiently

small for log w̃+
s̃

to be strictly negative, which are the second and third claims of the lemma.

B.1 Proof of Proposition 5: Automation and Employment Polarization

Expansion of Automation Suppose now that Assumptions 4 and 5 hold such that automation

is interior. In this case, condition (11) requires that

(
∂ψs̃,x
∂x

+
∂ logψk,x

∂x

)

︸ ︷︷ ︸
=γs̃,x

dx(ds̃) +
∂ logψs̃,x

∂s
ds̃ =

(
∂ψs̃,x
∂x

+
∂ logψk,x

∂x

)

︸ ︷︷ ︸
=γs̃,x

dx(ds̃) +
∂ logψs̃,x

∂s
ds̃, (24)

where we have already inserted the functions dx(ds̃) and dx(ds̃) derived from equations (18) to

(23) above. Rearranging and signing terms, we obtain:

γs̃,x︸︷︷︸
≥0

dx(ds̃)− γs̃,x︸︷︷︸
≤0

dx(ds̃) =

(
∂ logψs̃,x

∂s
−

∂ logψs̃,x
∂s

)

︸ ︷︷ ︸
<0

ds̃.

By Lemma 2, the left-hand side of this equation is increasing while the right-hand side is strictly

decreasing in ds̃. Thus, the equation determines a unique equilibrium change ds̃∗.

If γs̃,xdx(0) − γs̃,xdx(0) is strictly positive, then ds̃∗ must be strictly negative, which implies

that dx(ds̃∗) < 0 (by Lemma 2) and

dx(ds̃∗) =
γs̃,x
γs̃,x

dx(ds̃∗) +
1

γs̃,x

(
∂ logψs̃,x

∂s
−

∂ logψs̃,x
∂s

)
ds̃∗ > 0.

Note here that γs̃,xdx(0)− γs̃,xdx(0) > 0 can only hold if γs̃,x > 0.

Analogously, if γs̃,xdx(0) − γs̃,xdx(0) is strictly negative, then ds̃∗ must be strictly positive,

which implies that dx(ds̃∗) > 0 and dx(ds̃∗) < 0.

Finally, if γs̃,xdx(0)− γs̃,xdx(0) equals zero, then ds̃∗ must be zero as well, such that dx(s̃∗) > 0

and dx(ds̃∗) < 0 follow immediately from Lemma 2.

At this point, note also that

max{γs̃,xdx(ds̃
∗), γs̃,xdx(ds̃

∗)} ≤ max{γs̃,xdx(0), γs̃,xdx(0)} < d log q +
1

λ
d log Y,

where the second inequality follows from Lemma 2. This implies that the initial values d log w̃+
s̃

and d log w̃−
s̃
must both be negative at ds̃∗. This result will be useful in the next step of the proof.

Employment Polarization We have just shown above that d log w̃+
s̃
is strictly negative in equi-

librium. This implies that the initial value dX+
s̃

in the dynamic system for dXs and d log w̃s must
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be strictly positive:

dX+
s̃

= dx−
ls̃w

λ
s̃

Y Aλ−1
x ψλ−1

s̃,x

ds̃ > 0.

If it were negative, we could never attain dX1 = 0 by the reasoning in the proof of Lemma 2.

Suppose now that at some skill s1 > s̃, dXs turns negative, that is, it crosses zero from above:

dXs1 = 0 and (dXs1)
′ ≤ 0. To obtain dX1 = 0, dXs must at some point s2 > s1 attain zero again,

this time from below: dXs2 = 0 and (dXs2)
′ ≥ 0. The differential equation for (dXs)

′, however,

implies that

(dXs)
′ = β(s)d log w̃s for s = s1, s2.

We must therefore have d log w̃s1 ≤ 0. Since dXs is negative between s1 and s2, we will also have

d log w̃s2 < 0 by the equation for (d log w̃s)
′. This in turn implies (dXs2)

′ < 0, a contradiction.

As a result, dXs cannot cross zero but stays positive until dX1.
20 Analogous reasoning yields

dXs < 0 for 0 < s < s̃.

Labor Share Instead of proving the results for the labor share directly, we prove that the inverse

of these results holds for the capital share. From equation (15), we obtain the response of the

capital share to the increase in capital productivity as

dαk = αk(λ− 1)d log q + qλ−1∂Γk
∂x

dx+ qλ−1∂Γk
∂x

dx

= αk(λ− 1)d log q − qλ−1
(
Aλ−1
x ψλ−1

k,x

)
dx+ qλ−1

(
Aλ−1
x ψλ−1

k,x

)
dx. (25)

The last two terms are strictly positive by our employment polarization result, such that the capital

share increases if λ ≥ 1.

If λ < 1, the total effect on the capital share depends on the relative strength of the capital

deepening effect (first term) and the expansion of the set of automated tasks (second and third

term). If q = q0, we have αk = 0, such that the capital deepening effect vanishes. Moreover, Lemma

2 implies that

max{|dx|, |dx|} ≥ min{|dx(0)|, |dx(0)|} > 0,

which means that the expansion of the set of automated tasks does not vanish. So, we must have

dαk(q0) > 0. Finally, note that dαk (considering the perturbation d log q > 0) is a right-hand

derivative and as such it is continuous from the right, i.e.,

lim
qցq0

dαk = dαk(q0) > 0.

20We can exclude the case where dXs has a critical zero (a point where dXs is tangent to zero but does not cross

it). This is because a critical zero would imply (dXs)
′ = 0 and dXs = 0. But then, the entire upper branch of dXs

would be identical zero, which is incompatible with the initial value dX+

s̃
being strictly positive.
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This proves that dαk > 0 in some right neighborhood of q0.

B.2 Proof of Proposition 6: Automation and Wage Polarization

By (18), we have

d logws − d logws′ =

∫ s

s′

∂2 logψt,Xt

∂s∂x
dXt dt.

By Assumption 2.2 and our employment polarization result in Proposition 5, this expression is

strictly positive for all s > s′ ≥ s̃ and also for all s < s′ ≤ s̃.

B.3 Proof of Proposition 7: Automation and Wage Levels

We have already proved part 1 of the proposition in the main text. Here we prove parts 2 to 4.

Part 2 Condition (11) implies that

d logws̃ =

{
∂ logψs̃,x

∂s
ds̃+ γs̃,xdx− d log q − (d logws̃)

′− = γs̃,xdx− d log q if ds̃ ≥ 0
∂ logψs̃,x

∂s
ds̃+ γs̃,xdx− d log q − (d logws̃)

′+ = γs̃,xdx− d log q if ds̃ ≤ 0
(26)

where γs̃,x and γs̃,x are defined as in equation (24). Now suppose at first that q = q0. Then, x = x

and γs̃,x = γs̃,x = 0 because x = x is a maximizer of the effective labor cost function ωx. So, we

obtain d logws̃ = −d log q < 0.

Next, for d log q > 0, d logws̃ is a right-hand derivative and thus must be continuous from

the right. So, d logws̃ < 0 in a right neighborhood of q0. Finally, this extends to skills in some

neighborhood around s̃ because the wage change d logws is continuous in s.

Part 3 If ψs′,x/ψk,x is constant, we must have

ws′

ψs′,x
=

1/q

ψk,x

for all x.21 Differentiating this, we obtain

d logws′ = −d log q < 0.

Since the change d logws is continuous in s, we obtain d logws < 0 for all s in some neighborhood

of s′.

21Otherwise, either the set of automated tasks were empty (if the equation held with < instead of =) or skill s′

could not be assigned to any task (if the equation held with > instead of =).
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Part 4 Suppose at first that q = qm and consider d log q < 0. It is easy to check that for d log q < 0,

the reasoning of Lemma 2 can be adjusted to imply that dx(ds̃) is still strictly increasing but now

dx(0) < 0 and (
∂ logψs̃,x

∂x
−

∂ logψk,x
∂x

)
dx(0) > d log q +

1

λ
d log Y.

Since at q = qm we have x = 0 and s̃ = 0, the analogous results for dx do not apply. Instead, we

have dX−
s̃

= 0 and hence by equation (23),

dx(ds̃) =
l0w

λ
0

Y Aλ−1
x ψλ−1

s̃,x

ds̃.

So dx(s̃) is strictly increasing and dx(0) = 0.

As we consider d log q < 0 starting from qm, equation (11) holds and so does its variational

counterpart (24). Then, by reasoning analogous to that in the first part of the proof of Proposition

5, we can show that dx < 0 and dx ≥ 0. Next, by the same reasoning as in the second part of the

proof of Proposition 5, we obtain that dXs < 0 for all s ∈ (0, 1). By the argument of the proof of

Proposition 6, this implies that d logw1 < d logw0.

Finally, note that for d log q < 0, the changes d logw1 and d logw0 are left-hand derivatives

and as such they are continuous from the left. So, we have that d logw1 < d logw0 in response to

d log q < 0 for all q in some left neighborhood of qm. But for q ∈ (q0, qm), wages are differentiable

in q and we obtain the reverse for d log q > 0, i.e., d logw1 > d logw0 in response to d log q > 0 for

all q in some left neighborhood of qm.

B.4 Proof of Proposition 8: Productivity Effects

TFP, or net output, satisfies

c = max
K

F (K, l)−
K

q

where F is maximal output subject to aggregate factor supplies K and l (see proof of Proposition

1). So by the envelope theorem, we obtain dc/dq = K/q2 and hence:

d log c

d log q
=

K/q

c
=

K/q

Y −K/q
=

αk
1− αk

.

The second-order term is then given by

d log(αk/(1− αk))

d log q
=

1

1− α

d logαk
d log q

,

which by our previous result (25) can be written as

1

1− αk

(
λ− 1 +

∂ log Γk
∂x

dx

d log q
+

∂ log Γk
∂x

dx

d log q

)
.

40



Combining these first- and second-order terms yields our second-order Taylor approximation of

∆ log c.

C Proofs for Section 5: Global Effects of Automation

C.1 Proof of Proposition 9: Polarization with Large Changes in Automation

Part 1 The first result, the expansion of the set of automated tasks, is a direct consequence of its

local counterpart in Proposition 5 and the fundamental theorem of calculus. In particular, we can

obtain ∆x by integrating a series of local changes dx from q to q+∆q. Since [q, q+∆q] ⊂ (q0, qm),

all of these local changes are strictly negative by Proposition 5 and, hence, we have ∆x < 0.

Analogously, we obtain that ∆x > 0.

For the corresponding changes in labor assignment, we split the skill space into three intervals.

First on (0,min{s̃′, s̃}), all of the local changes dXs when moving from q to q + ∆q are strictly

negative (by Proposition 5), such that we obtain ∆Xs < 0 for all s ∈ (0,min{s̃′, s̃}). Analogously,

all local changes on (max{s̃′, s̃}, 1) are strictly positive by Proposition 5 such that we have ∆Xs > 0

for all s ∈ (max{s̃′, s̃}, 1).

Finally the skills on (min{s̃′, s̃},max{s̃′, s̃}) switch from one side of the set of automated tasks

to the other when capital productivity increases from q to q +∆q. Suppose at first that s̃′ < s̃. In

this case, Xs < x < xnew < Xnew
s for all s ∈ (s̃′, s̃). So, ∆Xs > 0 for all s ∈ (s̃′, s̃). Analogously, if

s̃ < s̃′, we have Xs > x > xnew > Xnew
s and therefore ∆Xs < 0 for all s ∈ (s̃, s̃′).

Part 2 By equation (10) and Assumption 2.2 (supermodularity of logψs,x), the local skill premium

(logws)
′ is strictly increasing in the task assigned to s. With the employment polarization result

from part 1, this immediately implies wage polarization as stated in part 2 of the proposition.

Part 3 These two results follow immediately from the fundamental theorem of calculus and their

local counterparts in Proposition 7, along the lines of part 1 above.

Part 4 Consider first the equilibrium under q ≥ q0 and any skill s. Since there must be some

task in which capital is less costly than s, we have

ws ≥ min
x

{
ψs,x
ψk,xq

}
.
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Under the new capital productivity qnew = q +∆q, there must be some task performed by skill s

in equilibrium, so we must have

wnews ≤ max
x

{
ψs,x

ψk,xqnew

}
.

Combining the previous two inequalities, we obtain

wnews

ws
≤

maxx {ψs,x/ψk,x}

minx {ψs,x/ψk,x}

q

qnew
,

or, in logs,

∆ logws ≤ max
x

{logψs,,x − logψk,x} −min
x

{logψs,x − logψk,x} −∆ log q.

Part 5 We have shown in Appendix A.3 that qm < q∞ if ψ0,0/ψk,0 < ψ0,1/ψk,1. So at first suppose

that the new capital productivity qnew = q + ∆q is equal to qm. Since the equilibrium allocation

is continuous in q, the same reasoning as in part 1 of the proof implies that Xnew
s > Xs for all

s ∈ (s̃′, 1).22 Moreover, by definition of qm we have s̃′ = 0 (see Appendix A.3). Thus, Xnew
s > Xs

for all s ∈ (0, 1) and, by the same reasoning as in part 2, ∆ logw1 > ∆ logw0.

Next, since wages are continuous in q, ∆ logw1 > ∆ logw0 must hold for all qnew in some lower

neighborhood of qm, which is claim 5 of the proposition.

C.2 Proof of Proposition 10: Transition to Low-Skill Automation

Low-Skill Automation We start by showing that if automation is low-skill, it remains low-skill

when capital productivity increases further. Moreover, further increases in capital productivity

shift all skills towards more complex tasks and raise all skill premia, which is the last part of the

proposition.

If automation is low-skill, only the upper branch of the differential system (10) to (14) applies

while we have s̃ = 0 and x = 0. We now conjecture that a marginal increase in capital productivity

d log q > 0 leaves the threshold skill and the lower bound of the set of automated tasks unchanged,

ds̃ = 0 and dx = 0, i.e., automation remains interior. Then, from Lemma 2 we obtain that dx > 0,

while the first part of equation (11) implies that

d logw0 =

(
∂ logψ0,x

∂x
−

∂ logψk,x
∂x

)
dx− d log q > −d log q.

22Continuity of the equilibrium allocation in q follows from Berge’s maximum theorem (see the proof of Proposition 2

above) and uniqueness of the allocation (by Proposition 1), which allows to strengthen the conclusion of the maximum

theorem from upper hemicontinuity to continuity.
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To verify our initial conjecture that automation remains interior, we can now check that the second

part of equation (11) remains satisfied, i.e.,

d logw0 ≥

(
∂ logψ0,x

∂x
−

∂ logψk,x
∂x

)
dx− d log q = d log q,

which we have shown above. Thus, we have shown that if automation starts low-skill, then it

remains low-skill when capital productivity increases. So, automation is low-skill for all q ≥ qm.

What are the employment and wage effects of an increase in capital productivity when automa-

tion is low-skill? We have already shown that ds̃ = 0 and dx > 0. Then, the same reasoning as

in part 2 (“Employment Polarization”) of the proof of Proposition 5 implies that the assignment

function shifts up everywhere, i.e., dXs > 0 for all s ∈ (0, 1). By the same reasoning as in the proof

of Proposition 6, this in turn implies that all skill premia increase, i.e., d logws is strictly increasing

in s.

By the fundamental theorem of calculus, these local effects of low-skill automation extend to

increases in capital productivity of any size when starting from q ≥ qm.

Transition We have shown above that automation is low-skill for all q ≥ qm. This implies that

if we start from q < qm and consider a change ∆q such that q + ∆q ≥ qm, then ∆x = −x (i.e.,

automation transitions from interior to low-skill), which is claim 1 of the proposition.

Task Upgrading We have shown in the first part above (“Low-Skill Automation”) that dXs > 0

for all s ∈ (0, 1) in response to a marginal increase d log q > 0 starting from q ≥ qm. Moreover,

in Proposition 5, we have shown that dXs > 0 for all s ∈ (s̃, 1) in response to d log q > 0 when

starting from q ∈ (q0, qm), where s̃ is the threshold skill level at q. Integrating these marginal

changes between q ∈ (q0, qm) and qnew ≥ qm, we obtain that ∆Xs > 0 for all s ∈ (s̃, 1).

For skills s ≤ s̃, which switch to the other side of the set of automated tasks when capital

productivity increases to qnew, we have

Xs < x < xnew < Xnew
s ,

and hence ∆Xs > 0 as well.

Rise in Skill Premia The task upgrading result in the previous part immediately implies that

all skill premia increase, i.e., ∆ logws is strictly increasing in s, by the reasoning of part 2 of

Proposition 9.
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C.3 Proof of Proposition 11: Labor Supply Changes and Automation

We start with a useful lemma on the wage effects of labor supply changes which holds for all settings

where production is concave and linear homogeneous in labor and wages equal marginal products.

Lemma 3 Consider any two labor endowments l > 0 and lnew > 0 with corresponding wage

functions w and wnew. Then, if ws ≤ wnews for all s, we must have w = wnew.

Proof. By Euler’s homogeneous function theorem, we have

cnew − c =

∫ 1

0
wnews lnews ds−

∫ 1

0
wsls ds

=

∫ 1

0
(wnews − ws)l

new
s ds+

∫ 1

0
ws(l

new
s − ls) ds

⇒

∫ 1

0
(wnews − ws)l

new
s ds =cnew − c−

∫ 1

0
ws(l

new
s − ls) ds ≤ 0,

where the inequality in the last line follows from concavity of net output in labor inputs. The last

line shows that it is impossible to have ws ≤ wnews for all s and with strict inequality on a subset

of skills of strictly positive measure. Hence, if ws ≤ wnews for all s, then w = wnew, i.e., the two

wage functions are equal almost everywhere.

The important implication of Lemma 3 is that a labor supply change alone can never cause all

wages to increase or all wages to decrease. Instead there will always be some wages that increase

and some that decrease, except in the case where the wage function is completely unchanged.

Low-Skill Automation Threshold We can now prove that the threshold where automation

transitions from interior to low-skill, qm, is strictly decreasing in relative skill supply. First, recall

from Appendix A.3 that qm is defined as the unique solution to

1

qm
=

wm0 (qm)ψk,xm
ψ0,xm

, (27)

where wm is the wage function obtained under the restriction that capital can only be allocated to

tasks below xm and labor only to tasks above xm. This equation has a unique solution because the

left-hand side is strictly decreasing and the right-hand side strictly increasing in qm.

Now consider an increase in relative skill supply, ∆ log l with ∆ log ls strictly increasing in s. We

know from prior work that such a change in labor supply lowers all skill premia in the pure labor

assignment model, i.e., if no capital were used (Costinot and Vogel, 2010). With the restriction

that capital must be assigned below and labor above xm, the labor allocation is determined as in

a pure labor assignment model. Hence, the result from prior work applies and the wage change

44



∆ logwms must be strictly decreasing in s. By Lemma 3, the wage change cannot be negative for all

skill levels and we must have ∆ logwm0 > 0.23 Thus, the right-hand side of equation (27) increases,

such that qm must decrease to solve equation (27), ∆qm < 0.

Wage Effects Consider now an increase in relative skill supply ∆ log l such that q ∈ (q0, qm)

initially but q > qnewm after the change.

We know that before the change, automation is interior and x < xm, where xm is the value

defined in the characterization of qm in Appendix A.3.24 After the change, by construction of qnewm ,

we must have xnew > xm. So, for all skills s ∈ [0, s̃], we have

Xs < x < xnew ≤ Xnew
s

such that the assignment function increases strictly on [0, s̃].

Suppose now that the assignment function shifts up everywhere. Then, by the reasoning of part

2 of the proof of Proposition 9, ∆ logws is increasing in s. However, since task x = 0 is assigned

to skill s = 0 before the change and to capital afterwards (while the productivities of capital and

labor are unchanged), the wage w0 must increase strictly. This requires that all wages increase,

∆ logws > 0 for all s, in contradiction to Lemma 3. So, there must exist a skill level ŝ ∈ (s̃, 1) such

that the new assignment function Xnew crosses the old function X from above at ŝ.

Next, suppose that Xnew crosses X again at some skill s1 ∈ (ŝ, 1), this time from below. Then,

we have Xnew
s1

= Xs1 and X ′new
s1

≥ X ′
s1
. Moreover, there is another skill s2 > s1 (potentially but

not necessarily equal to 1) such that Xnew
s2

= Xs2 and X ′new
s2

≤ X ′
s2

because the two assignment

functions must intersect at s = 1. Now, since we also have lnews2
/lnews1

> ls2/ls1 , the ratio of labor

supply in Xs2 over Xs1 is strictly greater under lnew than under l. By equation (12), this implies

wnews2

wnews1

<
ws2
ws1

.

But since Xnew crosses X from below at s1, we have Xnew
s ≥ Xs for s ∈ [s1, s2] such that equation

(10) implies that
wnews2

wnews1

≥
ws2
ws1

,

which yields a contradiction.

23Note that the proof of Lemma 3 only uses linear homogeneity and concavity of net output in labor, so it also

applies to the situation where capital is restricted to tasks below and labor to tasks above xm.
24If we had x ≥ xm before the change, then no skill could be assigned to any task below xm by construction of xm

and hence we would have x = 0, which contradicts interior automation.
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We have therefore established that there exists ŝ ∈ (s̃, 1) such that ∆Xs > 0 for all s ∈ (0, ŝ)

and ∆Xs ≤ 0 for all s ∈ [ŝ, 1]. With the reasoning from part 2 of the proof of Proposition 9, this

implies that ∆ logws is strictly increasing on [0, ŝ] and decreasing on [ŝ, 1].
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