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Abstract
Options, restricted stock, bonuses tied to total shareholder return, and similar equity-
based compensation contracts stipulate payments that depend on stock price. Any such
contract is a function of shareholder value net of the compensation payment, because
stock price (1) is proportional to this net value or “net outcome” and (2) anticipates
compensation-related payments and dilution. The net outcome, in turn, is reduced by the
payment and so depends on the contract. Standard moral hazard analyses, wherein
contractual payments are based on the gross outcome before any payment to the agent,
overlook this dependency. We characterize the optimal net-outcome contract, describe
its shape and pay-for-performance sensitivity, contrast it with the optimal gross-outcome
contract, and discuss implications for equity-based compensation arrangements.

Keywords Dilution .Moral hazard . Team compensation . Optimal contracting . Pay-for-
performance sensitivity . Stock option

JEL classification D86 . J33 .M41

1 Introduction

In most corporations, the lion’s share of incentives to senior executives takes the form
of equity-based compensation, such as restricted stock, performance shares, stock
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options, or bonuses tied to total shareholder return. A distinct feature of these arrange-
ments is that the performance measure is a function of the executive’s compensation
payment. For example, stock options awarded to an executive are contingent claims
that, if exercised, dilute the ownership interest of the shareholders and thus diminish
shareholder value. Stock price is reduced because this dilution is anticipated, illustrat-
ing how the compensation arrangement (i.e., stock options) affects the performance
measure (i.e., stock price). The nonlinear payoff structure implied by stock options
leads to intricate interactions between compensation and the performance measure.
Because shareholder value (defined as the stock price times the number of shares
outstanding) is net of the value of equity-based compensation payments (i.e., a net
outcome), we refer to stock options (and similar equity-based compensation) as net
contracts. In contrast, the archetypal contract in agency theory is based on a gross
outcome before any compensation paid to the agent; we call such contracts gross
contracts. We study the optimal net contract in a standard Holmstrom (1979) moral
hazard setting, characterize its slope, curvature, complexity, and pay-for-performance
sensitivities (PPS), and contrast it with the optimal gross contract.

To illustrate how a gross contract and a net contract can be equivalent in substance
but different in form, consider the classic sharecropping example in which the land-
owner is the principal and the farmhand is the agent. For simplicity, we suppress
considerations of moral hazard and uncertainty and restrict attention to linear arrange-
ments. A contract that specifies how much of the total crop the farmhand keeps is a
gross contract. Such a contract might specify that the farmhand keeps one-quarter of the
total crop. If the total crop is 12,000 bushels of corn, then the farmhand gets 3,000
bushels and the landowner gets the remaining 9,000 bushels. Suppose a bushel of corn
sells for $1. The value of the crop will be $12,000 and the farmhand’s compensation
will be $3,000—which could be specified as a piece rate of 25 cents per bushel. This is
also a gross contract. The value to the landowner who owns the crop, but must
compensate the farmhand, is $9,000. To concretize the notion of a net contract, note
that the farmhand’s one-quarter share could equivalently be expressed as one-third of
the net crop (i.e., one-third of 9,000 bushels of the total crop left to the landowner after
the farmhand has taken his share). Further, suppose the landowner incorporates the
farm and pays the farmhand a bonus equal to one-third of the value of the corporation.
Then the value of the corporation is $9,000, and the bonus compensation is $3,000.

To show that stock options are akin to a bonus tied to the net value of the
corporation, replace the bonus with stock options issued by the corporation to
the farmhand. Suppose the landowner owns 900 shares of stock in the corpo-
ration and the corporation issues stock options with an exercise price of zero,
thereby allowing the farmhand to acquire 300 shares. This is a net contract.
The landowner anticipates that the farmhand will exercise the options, which
will dilute the landowner’s 100% interest in the corporation, implying a stock
price of $10.00 per share (i.e., the value of the crop, $12,000, divided by the
sum of the 900 shares issued to the landowner and the 300 new shares that will
be issued to the farmhand upon option exercise). The compensation to the
farmhand is stock, worth $3,000, acquired on exercise of the options. Alterna-
tively, the corporation could issue 1,200 shares of stock in total, 900 to the
landowner and 300 to the farmhand, so that, from the start, the equity stake of
the farmhand is 25%, also worth $3,000. This is a gross contract. Although the
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net and gross contracts are economically equivalent, they have quite different
slopes: 33% of the 900 shares outstanding with a net contract and 25% of the
1,200 shares outstanding with a gross contract, respectively.

While the equivalence of the gross and net contracts in the linear case above is
intuitive, complications arise in practice. First, much equity-based compensation is
nonlinear in stock price (in particular, the exercise price of stock options generally
is not zero), so that shareholder value depends on the value of nonlinear compen-
sation, which itself is a nonlinear function of shareholder value. Second, for an
actual corporation, the outcome is the entire stream of future cash flows. Measur-
ing these values is hard in practice because the shareholder value implied by the
stream of future cash flows to the shareholders and the value of the stream of
future compensation to the executives are uncertain. Third, some forms of equity-
based compensation (such as stock options) are dilutive, while others (such as
stock appreciation rights or a bonus based on total shareholder return) are not.
Both forms, however, transfer value to employees from existing shareholders and
so reduce shareholder value.

Given moral hazard and uncertainty, a direct characterization of the optimal net
contract appears—to us, at least—infeasible because of the interactions between net
outcome and the compensation implied by the net contract. Nevertheless, we obtain a
characterization of the net contract by reference to a notional gross outcome and the
associated notional gross contract. The notional gross contract allows us to characterize
the optimal net contract as a well-defined function of the net outcome.

We characterize the optimal net contract’s slope and its degree of convexity
(or concavity). We find that the optimal net contract is convex if the agent’s
relative risk aversion is small, whereas it is concave if the relative risk aversion
is large. This finding implies that the optimal net contract is convex with
square root utility, linear with logarithmic utility, and concave with negative
exponential utility. We also find that the convexity of the optimal contract
varies with the level of the net outcome, first decreasing and then increasing in
the net outcome. This finding implies that compensation increases at an in-
creasing rate at higher levels of net outcome.

Our characterization of the optimal net contract has two applications. In the first, we
determine the set of instruments and the weights on these instruments in the optimal net
contract. An optimal contract can be thought as a mix of stock and stock options
awarded to the agent. We find that the optimal net contract requires at least one
additional instrument and a higher ratio of option-like instruments to stock than the
optimal gross contract. The reason is that the net contract exhibits a greater degree of
convexity than the gross contract. In practice, greater convexity can be achieved by (1)
granting options with different maturities and exercise prices, (2) increasing the number
of equity instruments, (3) tying the number of options that are granted to specific
performance conditions, or (4) allowing for reload options.1

In the second application, we show how conventional pay-for-performance sensi-
tivity (PPS) measures differ between economically-equivalent gross and net contracts,

1 Larcker and Tayan (2012) document premium options in US executives’ pay packages. Likewise, Canil and
Rosser (2007) report that, in a representative sample of Australian corporations, 39% of option grants were
granted at a discount, 29% were granted at a premium, and 32% were granted at the money.
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and so do not meet the SEC’s objective that disclosed pay-for-performance relations be
comparable across firms with different compensation arrangements and performance
measures. This finding applies whether pay is defined narrowly, as the flow of
compensation in the current period, or broadly, as the change in the executive’s wealth.
When PPS is defined as the $-change in compensation per $-change in shareholder
value (this is the measure used by Demsetz and Lehn 1985; Jensen and Murphy 1990;
and Yermack, 1995; among others), the PPS of the net contract is always larger than the
PPS of the gross contract. However, when PPS is defined as the %-change in
compensation per %-change in shareholder value (as does Murphy 1986), whether
the PPS of the net contract is larger or smaller than the PPS of the gross contract
depends on the magnitude of the executive’s fixed compensation.

In an extension, we study the case that the agent is endowed with security
holdings at the contracting stage. We show that the slope and the curvature of
the combined pre-existing security holdings and net contract together exhibit
the same properties as in the base case. In another extension, we consider the
total compensation offered to a team of employees (e.g., top management). For
a self-disciplining team whose members have identical preferences and whose
efforts are perfect substitutes, the slope and the curvature of the optimal net
team contract exhibit the same properties as in the base case. Thus insights
gained from the applications hold in these settings as well.

Our results speak to empirical studies on compensation that estimate an executive’s
PPS using net performance measures such as stock returns, but interpret their results in
light of theoretical analyses that are based on gross measures. Because the PPS of
economically-equivalent net and gross contracts differ, cross-sectional comparisons
should consider whether observed differences in PPS are driven, in part, by the
propensity of some corporations to offer compensation primarily in net versus gross
form (loosely speaking, corporations awarding stock options versus corporations with
profit-sharing plans or in which founder-CEOs are motivated primarily by the stock
they already own).

Our paper relates to analytical work by Aseff and Santos (2005), Dittmann
and Maug (2007), and Kadan and Swinkels (2008), who study incentive effects
of stocks and options as piecewise linear payment schemes. Other research
acknowledges that stock price is a net performance measure but, for the sake
of simplicity, ignores the dilutive effect of compensation and studies compen-
sation in terms of gross contracts (e.g., Hemmer, Kim, and Verrecchia 2000,
Fn. 10). Bushman and Indjejikian (1993) study linear compensation contracts
based on earnings and stock prices, where the stock price is the corporation’s
outcome less the compensation payment. Assuming linear contracts and
allowing for relative performance evaluation, Black, Dikolli, Hofmann, and
Pfeiffer (2021) investigate the bias in naïve OLS regression estimates of gross
and net pay-for-performance sensitivities. Relative to the latter two papers, we
study a broader class of utility functions, allowing for the characterization of
optimal nonlinear contracts.

Section 2 presents relevant institutional arrangements. Section 3 describes the
model. Section 4 studies properties of the optimal net contract. Section 5 describes
implications for equity-based compensation arrangements. Section 6 extends the
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baseline model. Section 7 concludes. Appendix 1 presents a numerical example.
Appendix 2 presents the proofs.

2 Institutional arrangements

Because shareholder value is the product of stock price times the number of shares
outstanding, net contracts are those for which an executive’s compensation (1) depends
on the stock price and the anticipated future value transferred to the executive lowers
present shareholder value or (2) has the potential to dilute the ownership interest of the
existing shareholders. Stock options are a form of compensation that satisfy both criteria.
Other common examples of net contracts are (i) cash bonuses based on stock price
performance or similar instruments such as stock appreciation rights or phantom stock
(because they satisfy the first criterion) and (ii) stock awards, grants of restricted stock
units, and similar instruments, whether automatic or performance-based (because they
satisfy the second criterion). Examples of gross contracts, which satisfy neither criterion,
are cash bonuses based on metrics other than stock price (such as sales or nonfinancial
metrics). Shares already owned by the executive are gross contracts because they entail
neither a transfer of value from existing shareholders nor a dilution of shares outstanding.

The emphasis on net contracts and the dilution inherent in equity-based performance
measures is pertinent to ongoing SEC rulemaking mandated by the Dodd-Frank Act.
The SEC requires that corporations provide “information that shows the relationship
between executive compensation actually paid and the financial performance of the
issuer, taking into account any change in the value of the shares of stock and dividends
of the issuer and any distributions.”2 This disclosure mandate necessitates careful
consideration of the dilutive effects of compensation. To measure PPS consistently,
standardization is necessary when (i) some companies award compensation in the form
of a gross contract and others award compensation in the form of a net contract and (ii)
the dilution due to net contracting is large.3

As an illustration, consider two startups that differ only in the stock and stock
options they have issued. Because both are otherwise identical, the values of the
companies to their respective claimants (i.e., shareholders and holders of contingent
claims, namely options) are identical. Let this value be $100 million. In Company G
(for gross contract), there are 10 million shares outstanding. Therefore the stock price of
Company G is $10 per share. The CEO has been granted 2 million of these shares. A
measure of PPS for the CEO of Company G would be the change in the CEO’s wealth,
expressed as a fraction of the change in shareholder value, if the value of the stock
increases by one dollar. Because the CEO owns 2 million shares of stock, the CEO’s

2 The related SEC Proposed Rule Release is No. 34–7835 (dated April 29, 2015) of the Dodd-Frank Wall
Street Reform and Consumer Protection Act § 953(a) (codified at 15 U.S.C. 78n(i))).
3 Two papers that investigate the effects of dilutive equity-based compensation on valuation are those by Core,
Guay, and Kothari (2002) and Li andWong (2005). Core et al. (2002) show how the treasury-stock method of
accounting for options understates the options’ dilutive effect, with the result that earnings-based valuation
models yield upwardly-biased estimates of the market value. Li and Wong (2005) find that ignoring the
dilutive effect of employee stock options would overstate the stock price estimate by 4% to 11.8%.
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wealth increases by $2 million. Because there are 10 million shares outstanding, the
value to all shareholders increases by $10 million. Thus PPS is 20%.

In Company N (for net contract), there are 8 million shares outstanding and
additional shares are available for issue. Company N’s CEO has been granted
options to buy two million shares at $1 per share and also receives a salary of
$2 million dollars.4 The shareholders of Company N anticipate the exercise of
deep-in-the money options (for which the option delta is approximately one),
meaning they anticipate the dilution of their ownership due to the issuance of
an additional 2 million shares of stock when the CEO exercises the options.
Because Company N is identical to Company G, except for its ownership
structure, the underlying value is also $100 million. The $100 million valuation
of Company N implies a per-share value of $10, which is the $100 million
valuation for Company N divided by 10 million shares (i.e., the 8 million now
outstanding and 2 million that will be issued on exercise of the options). A one
dollar increase in the stock price implies a $2 million increase in CEO wealth
(i.e., an option delta of 1 multiplied by 2 million shares under option). Because
there are 8 million shares outstanding, the value to current shareholders in-
creases by $8 million. Thus PPS is 25%.5

The forgoing illustration shows how the dilution inherent in a stock option contract
and appropriately anticipated by the market yields PPS values that are higher than those
for a comparable gross contract. This example, like the farmhand example above, is
constructed so that both CEOs’ compensation contracts are nearly linear. As will be
shown in later sections, nonlinear compensation contracts induce additional
complexities.

In addition to mandatory disclosures of the dilutive effects of compensation,
nonmandatory heuristic measures of the costs of compensation are common-
place. For example, Institutional Shareholder Services, an independent assessor
of corporate governance practices, computes measures of dilution, namely,
equity “burn rates.” These burn rates are multi-year averages of the corporate
stock and options granted to employees that are expressed as a percentage of
shares outstanding. The economic importance of net contracts is illustrated by
the dilution implied by an all-equity burn rate of 2% per year over 5 years,
which is common in some sectors: employees receive 9.6% of shareholder
value (i.e., 1 − (1 − 0.02)5).

Tesla and its CEO, Elon Musk, constitute a remarkable example of highly-dilutive
equity-based compensation in a public corporation. In 2009, Musk was granted a
package of 20,135,920 options (some performance-based), which represented 8% of

4 The CEO of Company N receives a salary of $2 million but must pay $2 million to Company N to exercise
the options.
5 This calculation of PPS accords with Murphy (2013, p. 234): “Effective percentage ownership for stock
options is measured by weighting each option held by the executive at the end of the fiscal year by ‘Option
Delta’ for that option (which varies according to the exercise price and time remaining to exercise), and
dividing by the total number of shares outstanding.”
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Tesla’s common stock on the date of its initial public offering in 2010.6 By 2013,
Tesla’s stock price had increased fivefold, and Musk owned 27.54% of Tesla’s
common stock and held options representing a further 10% of common stock.7 In
2018, Tesla’s shareholders voted to again grant an outsize option package to Musk that
could dilute the interest of Tesla’s shareholders by a further 12%. The eligibility
conditions for the first and second tranches of these performance options were met
less than 3 years later.8 Another prominent example is Google with its CEO, Eric
Schmidt.9

For many startups and smaller corporations, compensation to managers and
founders is a significant fraction of shareholder value and results in sizable
dilution. While data on compensation arrangements in startups, which are
private companies, is sparse, it is nevertheless important to understand their
compensation arrangements. In part, this is because some of them have grown
to become market behemoths. Gornall and Strebulaev (2020) describe the
dilutive effects of the several rounds of financing that so-called unicorns
experience along the path to becoming public companies. In pre-IPO financing,
the option pool (i.e., the number of authorized, unissued shares available to be
awarded as stock options) is typically selected to be in the range of 10% to
20% of the post-money authorized shares in each round.

6 See Tesla’s S-1 registration statement filed with the Securities and Exchange Commission on January 29,
2010.
7 Tesla’s 2013 proxy statement indicates 120 million shares outstanding, of which 33,076,212 (or 27.54%) are
owned by Elon Musk. In addition, Musk holds options on (i) 6,711,972 shares from a December 4, 2009
options grant, (ii) 5,274,901 shares from an August 13, 2012 options grant. The options vest only if certain
performance criteria are met. These two grants represent a potential dilution of 10%.
8 Elon Musk’s compensation under this second grant of stock options was valued at up to $50 billion. The
compensation consists of 12 tranches of options that vest when various performance targets are met. Each
tranche represents options to buy 1% of Tesla’s outstanding shares (i.e., 1.69 million shares). See Kristen
Korosec (March 22, 2018), “What Elon Musk’s Compensation Deal Means for Tesla Motors,” http://fortune.
com/2018/03/22/elon-musk-compensation-tesla/ (accessed May 28, 2018); Robert Ferris (March 21, 2018),
“Elon Musk could make more than $50 billion from pay plan shareholders approved ... but he has a lot to
deliver,” https://www.cnbc.com/2018/03/21/tesla-shareholders-approve-elon-musks-multibilion-dollar-
compensation-plan.html (accessed May 28, 2018); and Tim Higgins (July 23, 2020), “Tesla Posts Fourth-
Consecutive Quarterly Profit, Defying Pandemic Shutdown,” https://www.wsj.com/articles/tesla-posts-fourth-
consecutive-quarterly-profit-defying-pandemic-shutdown-11595450752 (accessed July 23, 2020).
9 When Google hired Eric Schmidt as CEO in 2001, his employment agreement provided an option to
purchase 14,331,708 shares of common stock at an exercise price of $0.30, an option to buy 426,892 shares of
convertible (upon an IPO) preferred stock at a purchase price of $2.3425 per share, and an annual salary of
$250,000. At the time of Google’s IPO in 2004, Schmidt’s equity stake amounted to 6% of the corporation
and was valued at over $1 billion. See p. 35 of the Google Inc. Definitive Proxy Statement for the 2005 annual
meeting of shareholders (https://www.sec.gov/Archives/edgar/data/1288776/000119312505072803/ddef14a.
htm, accessed June 6, 2018) and “Google IPO Aims To Change the Rules” by Kevin J. Delaney and Robin
Sidel, The Wall Street Journal (http://www.wsj.com/articles/SB108328345314098183, accessed July 25,
2016). After a restructuring in 2012, Google became Alphabet.
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3 Model

We consider the optimal compensation contract in a standard moral hazard setting with a
single contracting variable, namely the net outcome of the corporation (i.e., the corpora-
tion’s residual net of the agent’s compensation). The model setup is chosen to parallel
Holmstrom (1979). At date 0, the risk-neutral principal (shareholder) and the risk-averse
agent (manager) enter into a compensation contract that provides the agent with incentives
to exert unverifiable and personally costly effort at date 1. At date 2, the net outcome is
realized, the agent consumes the wealth from the contract, and the principal consumes the
residual. We characterize the optimal compensation contract as a function of the corpo-
ration’s net outcome and term this solution the optimal net contract.

To elaborate, y 2 y; y
h i

� R
þ denotes the corporation’s net outcome (e.g., the value

of a limited liability corporation) with the boundary values, y and y . Only the net

outcome is available as a verifiable performance measure to assess the agent’s effort, a
≥ 0, implying that the agent’s performance measure is inseparable from compensation.
The agent’s preferences are represented by the utility function,

U w; að Þ ¼ uðwÞ � kðaÞ; ð1Þ

where u(w) is the agent’s utility for wealth, w, and the cost of effort, k(a), is increasing
and convex in the agent’s effort, a. The agent’s utility for wealth is represented by a
member of the Hyperbolic Absolute Risk Aversion (HARA) class of utility functions,

uðwÞ ¼ 1� �

�
b � w

1� �
þ h

� ��

; ð2Þ

with b, h > 0 and bw/(1 − γ) + h > 0. This class encompasses, among others, the
linear, the negative exponential, the logarithmic, and the square root utility functions.

The agent’s wealth equals the compensation received, w, which is based on the
corporation’s net outcome, y. The risk-neutral principal chooses the net contract that
maximizes the expected net outcome, E[y], subject to the agent’s individual rationality
and incentive compatibility constraints, (IRN) and (ICN). The (IRN) constraint assures
that the agent receives at least a reservation utility of U . The (ICN) constraint ensures
that the agent implements the action stipulated by the principal. The optimal net
contract is the solution to the following problem:

PNð Þ : maxwðyÞ;a E y½ �
s:t:

IRNð Þ: E U wðyÞ; að Þ½ � � U

ICNð Þ: a 2 argmax E U½ ðwðyÞ; aÞ�f g:

ð3Þ

Specifying (3) for a particular principal/agent relation requires a description of how the
agent’s effort affects net outcome. Because the net outcome is a function of the agent’s
compensation, which itself is a function of the net outcome, a statement about the
relation between a and y requires a specification of w(y), prior to solving (3). Also, the
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expectations in (3) are taken with respect to a density function on a and y and therefore
depend on the specification of w(y).

Given these complications, the optimal net contract in (3) cannot be determined
directly. To overcome these complications and to describe the consequences of the
agent’s effort, we introduce the notional gross outcome before compensation, x 2 x; x½ �
� R

þ. Specifically, the density f(x,a) of the notional gross outcome is parameterized by
the agent’s effort and describes how a affects x. The density is common knowledge and
satisfies usual properties such as first-order stochastic dominance. This approach allows
us to specify an equivalent agency problem based on the notional gross outcome and to
derive as the optimal solution the notional gross contract, c(x). Then we characterize
the optimal net contract, w(y), as a function of the optimal notional gross contract, c(x).
Thus we exploit the property that the net outcome equals the notional gross outcome
less the optimal compensation corresponding to the gross outcome; that is, y = x −
c(x). The relation between a and y follows in equilibrium, given the optimal net
contract. While our solution technique requires consideration of the gross outcome, it
is important to note that the gross outcome is a notional variable.

Before we state the equivalent agency problem based on the notional gross outcome,
we provide some intuition. Fig. 1 illustrates the relation between gross and net
outcomes (i.e., the mapping from x to y = x − c(x)) for the case that the notional
gross contract is strictly convex in the gross outcome. It is apparent from Fig. 1 that two
complications arise in constructing the notional gross contracting problem. One is at the
left end of the domain of x, and the other is at the right end. On the left, a gross contract
could exist for which c(x) is greater than x, which would imply y < 0. While it is
routine in agency problems to assume that the principal has deep pockets so that gross
contracts can provide payoffs to the agent that in bad states exceed the value of the
project in that state, this is inconsistent with the notion that y is the value of a limited
liability corporation whose value is bounded below by zero. On the right, beyond the
critical value, xmax, a convex gross contract could award the agent more than a one unit
increase in compensation for a unit increase in outcome so that c'(x) ≥ 1. At this point,
x − c(x) is a decreasing function of x. Thus, if the domain of gross outcome extends
higher than xmax, then there are two gross outcomes that relate to the same net outcome,
so that there is not a one-to-one mapping between x and y. In summary, the notional
gross contracting problem corresponding to the original net contracting problem
includes bounds that are not present in the typical agency problem.

The optimal notional gross contract is the solution to the following agency problem
based on the notional gross outcome; that is,

PGð Þ : maxc xð Þ;a
s:t:

E x− c xð Þ½ �

IRGð Þ : E U c xð Þ; að Þ½ �≥U
ICGð Þ : a∈ argmax E U c xð Þ; að Þ½ �f g
INGð Þ : c

0
xð Þ < 1

NNGð Þ : x− c xð Þ≥0:

ð4Þ

Here the agent’s contract is based on the gross outcome, c(x). The risk-neutral
principal chooses the contract that maximizes the expected outcome net of the agent’s
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compensation, E[x − c(x)], subject to the agent’s individual rationality and incentive
compatibility constraints, (IRG) and (ICG), and the invertibility and nonnegativity
constraints, (ING) and (NNG). The invertibility constraint ensures that y is an invertible
function of x and implies that c(x) is continuous. The nonnegativity constraint ensures
that x − c(x) = y ≥ 0.10

Our subsequent analysis shows that the optimal net contract from (3) follows by
transforming the optimal notional gross contract from (4). For emphasis, we impose
Assumptions 1 and 2 below that imply that the (ING) and (NNG) constraints are
satisfied. In this case, the agency problem in (4) equals the problem studied by
Holmstrom (1979), and the optimal net contract follows from the familiar optimal

10 The invertibility constraint appears in other research on optimal gross contracts. For instance, Innes (1990),
Poblete and Spulber (2012), and Chaigneau, Edmans, and Gottlieb (2018) limit the contract slope to rule out
situations where the principal sabotages the outcome and the agent borrows money to inflate the outcome.

x

c x

y x c x

xmin xmax

x

Fig. 1 Relation between notional gross outcome, compensation, and net outcome. Figure 1 depicts the
notional gross contract, c(x), as a function of the notional gross outcome, x, in the case of a strictly convex
gross contract. The figure also depicts the associated net outcome, y = x − c(x), as a function of x. Two
observations emerge. (i) If x < xmin, then the notional gross contract provides the agent with more
compensation than the notional gross outcome, implying y < 0. (ii) If x > xmax, then the agent’s marginal
compensation exceeds the marginal increase in the notional gross outcome, c'(x) > 1, implying that the
relation between x and y is not unique. As explained in the text, the net contract is well defined if x � xmin and
x � xmax:
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gross contract. In Subsection 6.3, we relax Assumptions 1 and 2 and find that the
characteristics of the optimal net contract are largely unaffected by the relaxation.

Assumption 1. The boundary value, x, is sufficiently high and the boundary value, x, is
sufficiently low to ensure that the nonnegativity constraint is satisfied.

Assumption 2. The boundary value, x, is sufficiently low such that c′(x) < 1 for all
x 2 x; x½ �.

3.1 The optimal notional gross contract

We close this section by briefly presenting the solution to (4) when Assumptions 1 and
2 apply. For convenience, we assume that the costs of effort are sufficiently convex so
that the first-order approach is valid.11 We replace the (ICG) constraint with the
associated first-order condition. The optimal gross contract is characterized as follows
(Holmstrom 1979):

1

u0 cðxÞð Þ ¼ λþ μ � L x; að Þ; ð5Þ

where λ > 0 and μ > 0 are the Lagrangian multipliers of the associated (IRG) and
(ICG) constraints and L(x,a) = fa(x,a)/f(x,a) denotes the likelihood ratio. For simplicity,
we assume a linear likelihood ratio, L(x,a) = L0(a) + L1(a) ⋅ x, which implies
E[L(x,a)] = 0, with L0(a) < 0 and L1(a) > 0 (Lambert 2001, p. 19).12

With HARA utility, Hemmer et al. (2000) show that the optimal contract takes the form:

cðxÞ ¼ 1� �

b
� b � λþ b � μ � L x; að Þð Þ1= 1��ð Þ � h
� �

ð6Þ

and is strictly increasing in the gross outcome; that is, c'(x) > 0.
Compensation arrangements of executives often include options that induce con-

vexity in the payment structure. To study the convexity of contracts, Ross (2004) uses
the logic of the Arrow-Pratt measure of absolute risk aversion (Pratt 1964). The
curvature of the contract, M, captures the increase of the slope, relative to the slope,
and equals the ratio of the second and first derivatives of the compensation function;
that is,

M cðxÞð Þ ¼ c
0 0 ðxÞ
c0 ðxÞ � ð7Þ

11 Alternatively, we can impose standard sufficient conditions on the probability distributions to ensure the
validity of the first-order approach (e.g., Jewitt 1988).
12 Lemma 1 and Proposition 1 below do not rely on this assumption. A linear likelihood ratio holds for many
distributions from the one-parameter exponential family of distributions such as exponential, normal, gamma,
Poisson, and binomial (see Christensen and Feltham 2005, p. 69). As we assume a positive, bounded support
for x, we consider truncated distributions. Truncating a distribution does not affect the linear likelihood ratio
property.
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Since c'(x) > 0, M(c(x)) > 0 indicates a convex contract, and M(c(x)) < 0 indicates a
concave contract. Using expression (6) and following Hemmer et al. (2000), we get:

M cðxÞð Þ ¼ �

1� �
� μ � L1ðaÞ
λþ μ � L x; að Þ � ð8Þ

Given λ + μ ⋅ L(x,a) > 0 from (5), the optimal gross contract is strictly convex if γ/(1
− γ) > 0 or, equivalently, if γ ∈ (0,1), is linear if γ → 0, and is strictly concave
otherwise. In terms of the agent’s relative risk aversion, R(c) = − c ⋅ u''(c)/u'(c), the
optimal gross contract is strictly convex if R(c) < bc/(bc + h), linear if R(c) = bc/(bc
+ h), and strictly concave otherwise.

4 The optimal net contract

In this section, we characterize the optimal net contract and deduce its slope and
curvature. To do so, we transform the optimal notional gross contract into the optimal
net contract.

4.1 Characterization of the optimal net contract

To characterize the optimal net contract, we exploit the relation that the gross outcome
less the compensation based on gross outcome equals the net outcome and define the
function Tx: X → Ywith Tx(x) = x − c(x) = y. Assumption 2 implies that the function is

strictly increasing, T
0
xðxÞ ¼ 1� c

0 ðxÞ > 0, and so is invertible on the domain x 2 x; x½ �.
A one-to-onemapping between x and y exists, implying that y is an equivalent statistic to
x (Christensen and Feltham 2005, p. 78). We denote the inverse function Ty : Y → X
with TyðyÞ ¼ T�1

x TxðxÞð Þ ¼ x . The optimal net contract is equivalent to the optimal
notional gross contract state-by-state; that is,

wðyÞ ¼ cðxÞ for all x ¼ TyðyÞ; ð9Þ

which we abbreviate asw(y) = c(Ty(y)). For completeness, recall that the net outcome is
an equivalent statistic to the gross outcome, which implies that the probability distribu-
tions of x and y are equivalent; that is, F(x,a) = F(Ty(y),a) = H(y,a) for all effort levels a.
Thus the net contract in (9) induces the same effort level and ensures that agent and
principal receive the same expected utility as with the optimal notional gross contract.
The net contract in (9) is also optimal. Suppose to the contrary that the transformed net
contract is dominated by another net contract. Such a net contract can be transformed
into an equivalent gross contract, which would contradict the optimality of the gross
contract in (9). The forgoing arguments prove Lemma 1.

Lemma 1. Characterization of the optimal net contract. The optimal net contract is
equivalent to the optimal notional gross contract state-by-state; that is, w(y) = c(x) for
all x = Ty(y).

All proofs are provided in Appendix 2.
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Next, we study the slope and the curvature of the optimal net contract. To do so, we
analyze how properties of the optimal notional gross contract carry over to the optimal
net contract. Figure 2 depicts a convex notional gross contract and the corresponding
net contract.

Following Lemma 1, the compensation provided by the net and gross contracts is the
same, state-by-state. In the state where outcome is lowest, x� c xð Þ ¼ y and c xð Þ ¼ wðyÞ.
Similarly, in the state where outcome is highest, x� c xð Þ ¼ y and c xð Þ ¼ w yð Þ. Given a
strictly increasing gross contract, differences in net outcome are more compressed than
differences in the related gross outcome; that is, y� y ¼ x� x� c xð Þ � c xð Þð Þ<x� x.
Hence the domain of net outcome, ½y; y�, is more compressed than the domain of gross

outcome, x; x½ �. The compression implies that the optimal net contract exhibits a larger
slope than the optimal notional gross contract.

Further, Fig. 2 illustrates that the state indexed by the midpoint of the gross outcome,
xm ¼ xþ xð Þ=2, does not correspond to the state indexed by the midpoint of the net
outcome, ym ¼ ðyþ yÞ=2. With a strictly convex gross contract, the net outcome at the

gross midpoint exceeds the net midpoint, Tx(xm) = xm − c(xm) > ym. This implies that
the compensation at the gross midpoint exceeds the compensation at the net midpoint,
w(Tx(xm)) > w(ym). To obtain the same level of compensation, the net contract puts
more emphasis on higher values of y, making the net contract highly convex in y.

Next we confirm our intuition formally. The slope of the net contract equals the
change in compensation divided by the change in outcome. For two related outcomes,

Fig. 2 Relation between the net contract and the notional gross contract. Figure 2 depicts the compensation of
the notional gross contract, c(x), and the compensation of the net contract, w(y), for the domain of the notional
gross outcomes, x; x½ �, and the domain of net outcomes, ½y; y�, respectively, as well as the compensation at the
midpoints, xm ¼ xþ xð Þ=2 and ym ¼ ðyþ yÞ=2. The related net outcome at the notional gross midpoint, xm, is
given by Tx(xm) = xm − c(xm).
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y0 = x0 − c(x0) and y1 = x1 − c(x1), where w(y0) = c(x0) and w(y1) = c(x1) according
to (9), the slope of the net contract is given by:

w y1ð Þ � w y0ð Þ
y1 � y0

¼ c x1ð Þ � c x0ð Þ
x1 � x0 � c x1ð Þ � c x0ð Þð Þ

¼ c x1ð Þ � c x0ð Þ
x1 � x0

� 1

1� c x1ð Þ�c x0ð Þ
x1�x0

� ð10Þ

Letting x1 converge to x0 gives the slope, w'(y) = c'(x) ⋅ (1 − c'(x))−1 for x = Ty(y). We

get the same result by applying the implicit function theorem that yields the slope w
0 ðyÞ

¼ c
0
TyðyÞ
� � � T 0

yðyÞ, with T
0
yðyÞ ¼ 1� c

0
TyðyÞ
� �� ��1

from the derivative of the inverse

function T
0
x. That is, the slope of the optimal net contract scales the slope of the optimal

notional gross contract. In a similar fashion, we obtain w''(y) = c''(Ty(y))/(1 − c'(Ty(y)))3

and the curvature of the net contract, M(w(y)) = w''(y)/w'(y). Proposition 1 summarizes
our prior discussion.

Proposition 1. Properties of the optimal net contract. The optimal net contract

(i) is strictly increasing in net outcome with a positive slope of

w
0 ðyÞ ¼ c

0
TyðyÞð Þ

1�c0 TyðyÞð Þ > 0; and

(ii) exhibits the following curvature:

M wðyÞð Þ ¼ M c TyðyÞð Þð Þ
1�c0 TyðyÞð Þð Þ2 , where the agent’s preferences determine c(Ty(y)) by way of (6).

4.2 Contract curvature

In this subsection, we show how the agent’s preferences determine the curvature
of the net contract. Convexity induces higher benefits for the agent if a high
outcome obtains, but imposes more risk on the agent. Balancing the benefits
of stronger effort incentives with the costs of a higher risk premium, we conjecture
that the optimal net contract is convex (concave) if the agent’s relative risk aversion
is low (high). To confirm our intuition, we note that Proposition 1 (ii) implies
that the net contract is convex if and only if the notional gross contract is
convex. Likewise, the net contract is concave if and only if the notional gross
contract is concave. Expression (8) shows how the agent’s preferences relate to the
convexity of the gross contract. Exploiting this relation gives Proposition 2, where
R(w) = − w · u''(w)/u'(w) denotes the agent’s relative risk aversion.
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Proposition 2. Curvature of the optimal net contract and the agent’s risk aversion. The
optimal net contract is

(i) strictly convex if the agent’s relative risk aversion is sufficiently low (i.e., if R(w) <
bw/(bw + h), or, equivalently, if 0 < γ < 1);

(ii) linear if the agent’s relative risk aversion is intermediate (i.e., if R(w) = bw/(bw
+ h), or, equivalently, if γ → 0); and,

(iii) strictly concave if the agent’s relative risk aversion is sufficiently high (i.e., if
R(w) > bw/(bw + h), or, equivalently, if γ < 0 or γ > 1).

For example, Proposition 2 implies that the optimal net contract is convexwith square root
utility, linear with logarithmic utility, and concave with negative exponential utility.

Next we study how the curvature of the net contract changes with the net outcome.
Of particular interest is whether the contract’s convexity is greater when the net
outcome is more favorable. Such a contract provides the agent with compensation that
increases at an increasing rate for the most extreme favorable outcomes. In practice,
such a compensation arrangement can be implemented by granting the executive
tranches of premium stock options with exercise prices above the grant-date stock
price. Increasing convexity in the net outcome suggests that the agent receives ever
larger tranches of premium stock options.

Proposition 3 below shows that the convexity of a convex optimal net contract first
decreases and then increases in the net outcome. The net contract requires ever larger
compensation payments for larger values of outcome. Correspondingly, in Fig. 2, the
compression associated with net outcome contracting is greater at higher values of y.

We define the variation in the curvature of the net contract as the ratio of the
marginal curvature and the curvature:

ΔM wðyÞð Þ ¼ M
0
wðyÞð Þ

M wðyÞð Þ � ð11Þ

The convexity of a convex contract and the concavity of a concave contract increase if
ΔM > 0 and decrease otherwise. The variation in the curvature of the optimal net
contract is given by:

ΔM wðyÞð Þ ¼ �
1� 1þ�

1�� c
0
TyðyÞ
� �

1� c0 TyðyÞ
� �� �2 � μL1ðaÞ

λþ μ � L TyðyÞ; a
� � ; ð12Þ

as shown in the proof of Proposition 3.

Proposition 3. Variation in net contract curvature
(i) When the agent’s relative risk aversion is low, the convexity of the optimal net

contract decreases in net outcome when net outcome is small and increases
otherwise (i.e., if R(w) < bw/(bw + h), then ΔM ≤ 0 for y ≤ yc and ΔM ≥ 0
for y ≥ yc, where yc is given by c'(Ty(yc)) = (1 − γ)/(1 + γ));

(ii) When the agent’s relative risk aversion is high, the concavity of the optimal net contract
decreases in net outcome (i.e., if R(w) > bw/(bw + h), then ΔM < 0 for any y).
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5 Comparison between net and gross contracts with applications

In the previous section, the notional gross contract was a hypothetical construct that
allowed us to derive the optimal net contract. As outlined in the introduction, some
corporations provide incentives primarily via stock options and restricted stock (i.e., net
contracts), whereas other corporations provide incentives primarily via profit-sharing
arrangements or pre-existing stock ownership (i.e., gross contracts). In this section, we
compare properties of equivalent net and gross contracts. Conceptually, these contracts
differ in whether the contracting variable includes or excludes the agent’s compensa-
tion. Comparing equivalent net and gross contracts illustrates how the form of com-
pensation is a determinant of the apparent relationship between pay and performance.13

To acknowledge this change in focus, we drop the modifier “notional” in referring to
the gross contract.

The results in Section 4 connect the apparent forms of optimal, equivalent net and
gross contracts. Proposition 1 implies that the net contract is linear if the gross contract
is linear and the net contract is convex (concave) if the gross contract is convex
(concave). The net contract exhibits a larger slope and a higher degree of curvature
than the gross contract. Proposition 3 shows that the convexity of a convex optimal net
contract increases for higher values of net outcome. In contrast, the convexity
(concavity) of a convex (concave) gross contract is decreasing in the outcome. Corol-
lary 1 summarizes these insights and the proof provides details.

Corollary 1. Slope and curvature of net versus gross contracts For economically
equivalent optimal net and gross contracts,

(i) the net contract exhibits a larger slope than the gross contract;
(ii) the net contract is more convex (concave) than the gross contract;
(iii) when the agent’s relative risk aversion is low and outcome is sufficiently large, the

convexity of the net contract increases in net outcome, whereas the convexity of
the gross contract decreases in gross outcome. When the agent’s relative risk
aversion is high, the concavity of the net and gross contracts decreases in the
respective outcome.

Part (iii) of Corollary 1 shows that differences in the convexity of net and gross contracts
are particularly pronounced for high outcomes. As outlined in Section 2, an example of a
net contract with high convexity at more favorable outcomes is Tesla’s 2018 award to
Musk of tranches of performance-based options. Importantly, increasing convexity with
outcome is a consequence of basing pay on the net outcome. As the convexity of the
benchmark gross contract always decreases in outcome, increasing convexity with
outcome is inconsistent with implications from the familiar gross contract.

13 Recall from the example in Section 2 that, although the gross and net contracts were economically
equivalent, the PPS for Company G was 20% and the PPS for Company N was 25%.
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5.1 Instruments

This subsection provides theoretical insights into the instruments that implement
equity-based compensation contracts and compares the results with the equivalent
gross contract. Our analysis shows that the net and gross contracts differ in terms of
the required instruments, their respective award amounts, and their relative weights.
Following Corollary 1, the optimal net contract is more convex than the optimal gross
contract. Our analysis shows that higher convexity manifests in two ways: relative to
the optimal gross contract, the optimal net contract uses at least one additional equity
instrument and the ratio of option-like instruments to stock is higher, compared to the
corresponding instruments of the optimal gross contract.

We first characterize the optimal gross contract and then derive the optimal net
contract. Throughout this subsection, the agent’s preferences are given by square root
utility, which is in the category of low relative risk aversion in our previous results.
From Propositions 1 and 2, the net and gross contracts are both convex. Given the
coefficients α and β implied by (6), the optimal gross contract is quadratic,

cðxÞ ¼ �þ �xð Þ2 ¼ fG þ vGxþ oGx2; ð13Þ

where fG = α2 is the fixed payment, vGx = 2αβx is a share of the gross outcome, and
oGx2 = β2x2 is a third instrument that is an increasing share of the gross outcome.14 The
quadratic form of (13) implies that the relative weights on the instruments satisfy 4fG
oG ¼ v2G and c'(x) < 1 is ensured by x < (1 − vG)/(2oG).

Next we study the equivalent net contract. Using Tx(x) = x − (fG + vGx + oGx2) = y
yields x ¼ 1� vG � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2vG � 4oGy
p½ �= 2oG½ � ¼ TyðyÞ; where invertibility requires

vG < 1/2 and that we consider the negative root. The gross contract in (13) can be
restated in terms of net outcome, yielding the equivalent net contract, c(Ty(y)) = fG +
vGTy(y) + oGTy(y)2 = w(y). Using a Taylor series approximation allows us to display
the net contract as a polynomial15:

wðyÞ ¼ fN þ vNyþ oNy2 þ hNy3 þ O y4
� �

; ð14Þ

with coefficients

fN ¼ 2 1�vG�
ffiffiffiffiffiffiffiffiffiffi
1�2vG

pð Þ
v2G

fG, vN ¼ 1� ffiffiffiffiffiffiffiffiffiffi
1�2vG

pffiffiffiffiffiffiffiffiffiffi
1�2vG

p , oN ¼ oG
1�2vGð Þ3=2 , and hN ¼ 2o2G

1�2vGð Þ5=2 .

The net contract can be interpreted as comprising a fixed payment, fN, and variable
compensation from stock, vNy, and additional option-like instruments, oNy2 and hNy3,
where vN, oN, and hN represent the quantities of the corresponding financial instruments.
In practical arrangements, the necessary convexity can be achieved with a basket of
options having different maturities and exercise prices.

14 In more detail, the square root utility is characterized by γ = 1/2, b = 1/2, and h = 0 in (2). The optimal
gross contract defined in (6) implies α = (λ + μL0(a))/2 and β = μL1(a)/2. As the quadratic form of (13)
implies a convex relation between x and c(x), the literature often interprets oGx2 as compensation from option-
like instruments.
15 While higher-order elements exist, terminating the Taylor series after the cubic element is sufficient to
illustrate the difference from the gross contract.
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In comparing the contracts, note that one additional instrument is necessary in the
net contract and the ratio of option-like instruments to stocks (interpreted as the higher-
order terms in the polynomial) is higher (i.e., hN > 0 and oN/vN > oG/vG). Intuitively,
the net contract is more convex than the gross contract and the higher convexity is
introduced in this manner. Proposition 4 summarizes our findings.

Proposition 4. Instruments needed to implement net contracts For an agent with
square root utility, the approximation of the optimal net contract in (14) requires at
least one additional option-like instrument and contains a higher ratio of option-like
instruments to stock compared to the optimal gross contract in (13).

Fromexpression (13), the gross contract is a quadratic function, implying that the expected
gross compensation, E[c(x)], is a function of the mean and the variance (i.e., the first and
second central moments of the distribution of the gross measure), but not of the skewness of
the grossmeasure (i.e., the third centralmoment). In contrast, due to the additional instrument,
the net contract is a higher-order polynomial, implying that the expected net compensation,
E[w(y)], is a function of the mean, the variance, and the skewness of the net measure.

5.2 Pay-for-performance sensitivity

This subsection provides theoretical insights into the pay-for-performance sensitivities that
describe the relation between changes in executive compensation and changes in share-
holder value. In accordance with SEC regulations, corporations must provide information
about the relation between actual compensation and performance.16 As in the empirical
literature on executive compensation, PPSmeasures are estimated based on relatives of net
outcome, such as stock price or total shareholder return. In contrast, the theoretical
literature typically characterizes the optimal PPS measures based on gross outcome. In
the following, we study properties of PPS for equivalent net and gross contracts.

We return to the general case of HARA utility functions, including optimal convex
and concave contracts. Two of the most common measures of PPS are17:

PPSI ¼ Δ compensation

Δ shareholder value
and PPSII ¼ Δ ln compensationð Þ

Δ ln shareholder valueð Þ : ð15Þ

PPSI measures the dollar change in compensation per dollar change in shareholder
value. PPSII measures the percentage change in compensation for a percentage change
in shareholder value and is termed the pay-for-performance elasticity.18

16 In its draft rules to amend Item 402 of Regulation S-K (Release No.: 34–7835), the SEC proposes “that the
compensation covered by the disclosure be ‘executive compensation actually paid.’”
17 Edmans, Gabaix, and Landier (2009) provide an overview of PPS measures. A third measure proposed by
Holmstrom (1992) is PPSIII = Δcompensation/Δln(shareholder value). The properties of PPSIII are largely
consistent with the properties of PPSII.
18 To capture an executive’s incentives, empirical proxies for executive compensation in PPS measures are
often based on the total change in executives’wealth, including the change in the value of pre-existing security
holdings. As outlined in Subsection 6.1, our insights are largely unaffected by the presence of these holdings.
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To provide a proper reference point for the empirical literature, we characterize the
PPS measures of the optimal net contract. Corresponding to (15),PPSIN is the slope and
PPSIIN is the elasticity of the optimal net contract:

PPSIN ¼ w
0 ðyÞ and PPSIIN ¼ w

0 ðyÞ
wðyÞ=y : ð16Þ

Both PPS measures are functions of the realized net outcome and generally provide a
local, not global, description of the relation between compensation and net outcome
(i.e., shareholder value).

The PPS measures of the optimal gross contract are straightforward:

PPSIG ¼ c
0 ðxÞ and PPSIIG ¼ c

0 ðxÞ
cðxÞ=x � ð17Þ

A comparison of the PPS measures of the optimal net and gross contracts in (16) and
(17) is misleading because it overlooks the distinction between net and gross outcomes.
To compare the PPS measures, we restate (17) in terms of the net outcome, y:

PPSIG ¼ w
0 ðyÞ

1þ w0 ðyÞ and PPSIIG ¼ w
0 ðyÞ

wðyÞ=y �
1þ wðyÞ=y
1þ w0 ðyÞ for y ¼ TxðxÞ � ð18Þ

To derive (18), note that gross outcome equals net outcome plus net compensation, x =
y + w(y). Further, c(x) = w(y) and c'(x) = w'(y)/(1 + w'(y)) at y = Tx(x). The proof of
Proposition 5 below provides details.

The slope of the optimal net contract exceeds the slope of the optimal gross contract,
implying that PPSIN in (16) always exceeds PPSIG in (18). The relation between PPSIIN
andPPSIIG is more subtle. Because the net outcome is gross outcome less compensation,
PPSIIN is smaller than PPSIIG if the compensation is sufficiently large (and thus net
outcome is sufficiently small). Comparing (16) and (18) yields PPSIIN<PPSIIG if w(y)/y
> w'(y). Proposition 5 summarizes.

Proposition 5. Pay-for-performance sensitivities For y = Tx(x), a comparison of the
PPS measures in (16) and (18) yields:

(a) PPSIN > PPSIG for all y;
(b) PPSIIN<PPSIIG if and only if w(y)/y − w'(y) > 0.

We use two examples to illustrate Proposition 5. First, with logarithmic utility,
optimal net and gross contracts are linear and PPSIIN<PPSIIG when the fixed payment of
the net contract is positive.19 That is, w(y)/y = (fN + vNy)/y > w'(y) = vN if fN > 0.

19 The example in Section 2 assumes a gross outcome of $100 million and the CEO of Company G receives
stock-based compensation of $20 million. The resulting net outcome is $80 million, and the CEO of Company
N receives economically-equivalent option-based compensation of $20 million. As outlined, PPSIN ¼ 0:25 >
PPSIG ¼ 0:20, whereas PPSIIN ¼ 0:25 � 80=20ð Þ ¼ 1 and PPSIIG ¼ 0:20 � 100=20ð Þ ¼ 1 because the fixed
payment is zero.
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Second, with square-root utility, optimal contracts are convex. Panels A and B in Fig. 3
depict the optimal gross and net contracts.20 Panel C plots the PPS measures (16) and
(18) for the optimal net and gross contract as a function of net outcome. Consistent with
Proposition 5, we get PPSIN > PPSIG and PPSIIN<PPSIIG for low values of net outcome.

The following implications emerge. (1) Because, in practice, PPS is largely driven by
equity-based compensation, the empirical estimates of PPS in archival studies correspond
to the measures described in (16). (2) Because PPSIIN generally attains a wider range of
values thanPPSIIG; in cases where CEO incentives exhibit significant convexity (e.g., when
a large portion of the contract’s value is due to near-the-money options or options with
contingent performance vesting requirements), PPSIIN is likely a naïve proxy of ex ante
incentives. (3) Because the slope and the convexity of the optimal net contract both increase
with net outcome, an (incorrect) naïve inference that low PPS causes low outcome would
be more strongly supported by archival evidence of pay and performance realizations
drawn from net contracts with substantial convexity. (4) Cross-sectional comparisons ought
therefore to consider whether observed differences in PPS are driven, in part, by divergence
in the propensities of corporations to provide compensation in net or gross form.

6 Extensions of the baseline model

In this section, we show how the analysis adapts to the cases of an agent with pre-
existing security holdings and a team of agents. We also show that the characteristics of
the optimal net contract are largely unaffected when Assumptions 1 and 2 are relaxed.

6.1 Pre-existing security holdings

In practice, incentives derive from both equity-based compensation awarded in the
current period and from stock and option holdings granted in prior periods. Although
we analyze a static model, our analysis offers insight into actual settings, which are
dynamic. To connect the static model to actual practice, we observe that the agent is
motivated partly by the change in value of pre-existing security holdings and partly by
the flow of compensation granted in the current period, where the latter is regarded as the
increment necessary to optimally motivate the agent.21 Combined, these two parts
provide the total effort incentives and the agent’s incentive compatibility and individual
rationality constraints are adjusted accordingly. Essentially, the principal rebalances the
agent’s total incentives and chooses the flow compensation tomaximize the net outcome
subject to the modified incentive compatibility and individual rationality constraints.22

Our analysis shows that the curvature of the combined change in value of pre-existing

20 The example in Figure 3 shows that the additional instrument in the net contract is important and the ratio of
option-like instruments to stock is higher than the ratio of the corresponding gross instruments.
21 New incentives may be necessary because the executive has exercised options and sold stock, or because
previously-granted options have fallen deep out of the money.
22 Rhodes (2016) is an example of an archival/empirical analysis that regards newly-awarded compensation as
an increment that rebalances the agent’s incentives to maximize shareholder value.
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security holdings and flow compensation has the same properties as described in
Proposition 1.

The agent’s incentives, in the absence of any contract, were assumed to be zero in
the main analysis (i.e., endowed incentives are normalized to zero). If instead the agent
already owns corporate stock or other equity compensation prior to date 0 that vest at
date 2, the endowed incentives are nonzero. We denote the agent’s date 2 wealth from
pre-existing security holdings, which includes the change in value of the securities from
date 1 to date 2, as q(y). Corresponding to (3), the principal’s problem is characterized
by:

PNð Þ : maxw yð Þ;a E y½ �
s:t:
IRNð Þ : E U w yð Þ þ q yð Þ; að Þ½ � � eU
ICNð Þ : a 2 argmax E U w yð Þ þ q yð Þ; að Þ½ �f g:

ð19Þ

The agent’s reservation utility, eU , is the utility from the liquidated value of the pre-
existing security holdings along with the value to the agent of the best outside

employment alternative. Technically, eU is a constant in the principal’s choice problem.
What matters in the contracting problem is that ewðyÞ ¼ wðyÞ þ qðyÞ motivates the

agent to implement the optimal second-best action. To achieve this, the compensation
awarded incremental to q(y) must result in total compensation of ewðyÞ. Since q(y) is a

Panel A. Gross contract

2
0.3113 0.3698 0.1( 098) x xc x for [1,2]x .

Panel B. Net contract

2 43
0.5459 0.9598 0. )8268 0. 7 (7) 9( 6w y y Oy yy for [0.2091,0.5097]y .

Panel C. PPS measures for varying values of net outcome

Fig. 3 Numerical example: PPS measures for convex contracts. Figure 3 presents the optimal net and gross
contracts and the related pay-for-performance sensitivities (PPS) for a particular moral hazard problem, where
the agent’s preferences are characterized by square-root utility and uncertainty is represented by a truncated
gamma distribution. Details are in Appendix A. Panels A and B show the optimal gross and net contracts as
functions of the gross and net outcomes, x and y, respectively. Panel C depicts PPS as functions of the net
outcome. For each graph in Panel C, we omit the gross outcome axis and present PPSG as a function of the net
outcome. In Fig. 2, the gross and net outcomes are represented by separate axes so that the mapping from the
gross outcome to the related net outcome is explicit; here the mapping is implicit
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constant for a given y, pointwise optimizing (19) with respect to w(y) is equivalent to
pointwise optimizing with respect to ewðyÞ . Consequently the solution to (19) corre-
sponds to the solution of (3).

To determine ewðyÞ, consider the equivalent notional gross contracting problem. Let
p(x) denote the agent’s date 2 wealth from pre-existing security holdings as a function
of gross outcome. Thus p(x) is equivalent to q(y) and, as before, c(x) is equivalent to
w(y). Then the agent’s utility is given by u(c(x) + p(x)) − k(a). The principal is the
residual claimant and chooses the optimal notional gross contract as the solution to the
following agency problem; that is,

PGð Þ : maxc xð Þ;a E x� cðxÞ � pðxÞ½ �
s:t:
IRGð Þ : E½UðcðxÞ þ pðxÞ; aÞ� � U
ICGð Þ : a 2 argmax E U c xð Þ þ p xð Þ; að Þ½ �f g
INGð Þ : c0 xð Þ þ p0 xð Þ<1
NNGð Þ : x� c xð Þ � p xð Þ � 0:

ð20Þ

To derive the optimal notional gross contract, sum the flow compensation and the date
2 value of pre-existing security holdings and define ecðxÞ ¼ cðxÞ þ pðxÞ , which is
analogous to (6). The curvature of the optimal notional gross contract and the pre-
existing security holdings are M(c(x)) = c''(x)/c'(x) and M(p(x)) = p''(x)/p'(x).

We obtain the optimal combined net contract ewðyÞ by noting that net outcome equals
gross outcome less the payments from flow compensation and pre-existing security

holdings; that is, eTxðxÞ ¼ x� cðxÞ � pðxÞ ¼ y with the inverse eTyðyÞ ¼ eT�1

x
eTxðxÞ

� �
¼ x. In line with Proposition 1, the slope of the optimal net contract scales the slope of
the notional gross contract and equals

w
0 ðyÞ ¼ c

0 ðxÞ
1� c0 ðxÞ � p0 ðxÞ > 0 for all x ¼ eTyðyÞ: ð21Þ

Combined, the compensation and the change in value from pre-existing security
holdings have a curvature equal to M(w(y) + q(y)) = M(c(x) + p(x))/(1 − c'(x) −
p'(x))2 for all x ¼ eTyðyÞ. The optimal net contract’s curvature is adjusted accordingly:

M wðyÞð Þ ¼ M cðxÞ þ pðxÞð Þ
1� c0 ðxÞ � p0 ðxÞð Þ2 �

p
0 ðxÞ � M pðxÞð Þ �M cðxÞ þ pðxÞð Þð Þ

c0 ðxÞ � 1� c0 ðxÞ � p0 ðxÞð Þ for all x ¼ eTyðyÞ:

ð22Þ

We close this section by studying the effect of pre-existing security holdings on the
PPS measures. Like Edmans et al. (2009), we replace “compensation” in (15) with
“change in wealth” to obtain wealth-performance sensitivity measures, where the
change in wealth includes both the change in value of the pre-existing security holdings
and the compensation. Corollary 2 summarizes our findings.

Corollary 2. Properties of the optimal net contract with pre-existing security
holdings With pre-existing security holdings, the optimal net contract is w(y) = c(x)
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for all x ¼ eTyðyÞ with the slope and curvature outlined in (21) and (22). For any y
¼ eTxðxÞ, a comparison of the wealth-adjusted PPS measures yields PPSIN > PPSIG;
further, PPSIIN<PPSIIG if and only if w(y)/y − w′(y) > q′(y) − q(y)/y.

The rankings of wealth-performance sensitivity measures in Corollary 2 are the
same as the rankings of pay-performance sensitivity measures in Proposition 5. If the
agent has pre-existing stock and option-like holdings (i.e., q(y) = vHy + oHy2, where vH
and oH denote the quantities of stock and option-like holdings, respectively), then the
condition PPSIIN<PPSIIG reduces to w(y)/y − w′(y) > oHy. While this inequality is
unaffected by the agent’s stock holdings, greater option-like holdings will cause this
inequality to be violated, implying PPSIIN > PPSIIG.

6.2 Team contracts

In many cases, net incentive contracts are also relevant for corporations that provide
equity-based compensation to a group of employees, such as the top management team.
When these incentive contracts cover many employees, dilution is substantial. This
subsection describes how our single-agent analysis applies to a team of agents capable
of monitoring each other. We show that the slope and curvature of the optimal net team
contract exhibit the same characteristics as in Proposition 1. Consequently, the impli-
cations of the single agent analysis also apply to empirical settings where corporations
provide compensation to a group of employees. The analysis formally connects the
practitioner notion of burn rate (i.e., the dilution caused by total pay to the team) and
shareholder value.

We start by establishing the notional team problem based on the corporation’s gross
outcome that depends on the efforts of N agents that work in a team and observe each
other’s effort. To preserve tractability, we consider identical agents with HARA utility
preferences described by (1) and (2) and that the agents’ individual efforts are perfect
substitutes. The density of the notional gross outcome equals f(x,a1 + … + aN) with a
linear likelihood ratio of L0(a1 + … + aN) + L1(a1 + … + aN) ⋅ x. Identical agents
imply identical contracts and identical induced level of efforts, i.e., ci(x) = c(x) and ai
= a for all i = 1, …, N. As in the single-agent problem (4), the optimal notional gross
contracts for the team of agents solve the following agency problem:

PGTð Þ : maxc xð Þ;a E x� N � c xð Þ½ �
s:t:
IRGið Þ : E u c xð Þ;Nað Þ½ � � k að Þ � U
for all i ¼ 1; :::;N
ICGið Þ : a 2 argmax E U c xð Þ;Nað Þ½ � � k að Þf g
for all i ¼ 1; :::;N
ðINGÞ : N � c0ðxÞ<1
NNGð Þ : x� N � c xð Þ � 0:

ð23Þ

The agents’ efforts parameterize the density of notional gross outcome and can be
restated as f(x,Na) = g(x,a), where a and g capture the effect of team effort on gross
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outcome. Using the fact that any utility function is well-defined subject to a positive-
affine transformation, we restate the utility function from (1) such that Nγ ⋅ (u(c(x)) −
k(a)) = u(N ⋅ c(x)) − Nγk(a). With individual rationality and incentive compatibility
constraints being identical across agents, we recast the agency problem (23) such that
the principal chooses team compensation, C(x) = N ⋅ c(x), and team effort to maximize
the expected gross outcome less expected team compensation; that is,

ePGT� �
: maxC xð Þ;a Eg x� C xð Þ½ �

s:t:
IRGð Þ : Eg u C xð Þ; að Þ½ � � N�k að Þ � N�U
ICGð Þ : a 2 argmax Eg u C xð Þ; að Þ½ � � N �k að Þ	 

INGð Þ : C0 xð Þ<1
NNGð Þ : x� C xð Þ � 0;

ð24Þ

where Eg[⋅] denotes expected value based on g. The optimal notional gross team
contract is solved in the same way as program (4).

We obtain the optimal net team contract, W(y), by noting that net outcome equals
gross outcome less team compensation; that is, TxðxÞ ¼ x� CðxÞ ¼ y with the inverse
TyðyÞ ¼ x. The slope and curvature of the optimal net team contract is obtained as in
Proposition 1. Corollary 3 summarizes our finding.

Corollary 3. Properties of the optimal net team contract The optimal net team contract

is W(y) = C(x) for all x ¼ TyðyÞand has the following slope and curvature:W
0ðyÞ

¼ C
0
TyðyÞð Þ

1�C
0
TyðyÞð Þ > 0 and M WðyÞð Þ ¼ M C TyðyÞð Þð Þ

1�C
0
TyðyÞð Þð Þ2 .

Thus the insights for the PPS measures in Proposition 5 carry over to the optimal net
team contract.

6.3 Optimal net contract with unbounded support

In this subsection, we show that the characteristics of the optimal net contract are largely
unaffected when relaxing Assumptions 1 and 2. Assume that the gross outcome is
nonnegative and may be unboundedly large, x ∈ ℝ+. As before, we first determine the
optimal notional gross contract in (4) and then transform it into the optimal net contract.
For convenience, we restate the invertibility constraints in (4), (ING): c'(x) ≤ z = 1 − ε for
all x ∈ ℝ+, where ε is an arbitrarily small number. The notional gross contract equals:

cð0Þ � 0 for x ¼ 0; ð25Þ

1

u0 cðxÞð Þ ¼ λþ μ � L x; að Þ for all x > 0 and c
0 ðxÞ<z; ð26Þ
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cðxÞ ¼ f G þ z � x for all x > 0 and c
0 ðxÞ ¼ z: ð27Þ

When gross outcome equals the lower bound of zero, the nonnegativity constraint,
(NNG): 0 − c(0) ≥ 0, implies that the agent’s compensation is not positive. When gross
outcome is positive and the invertibility constraint does not bind, the gross contract has
the same structure as in (5). When gross outcome is sufficiently large, the invertibility
constraint binds and the slope of the gross contract equals c'(x) = z, implying that the
gross contract is linear in gross outcome.

Since invertibility is preserved everywhere on the domain, we can transform the
piecewise gross contract in (25)–(27) into an equivalent net contract over a right
unbounded interval, y � y ¼ 0� cð0Þ � 0. The payments provided by the net and the

gross contract are the same, state-by-state. For the lower boundary value, (25) implies
wðyÞ ¼ cð0Þ . Moving rightward, eq. (26) implies that the net contract has the same

structure as the optimal net contract from Proposition 1 until the invertibility constraint
binds. When the invertibility constraint binds, the gross contract in (27), c(x) = fG + z ⋅ x,
implies that the net outcome is given by y = x − c(x) = (1 − z)x − fG and the net contract
is linear in net outcome,w(y) = [(1 + z)fG + z ⋅ y]/(1 − z). Finally, y = (1 − z)x − fG and
unbounded positive support for x together imply unbounded positive support for y.

The transformed net contract is optimal. Suppose to the contrary that the transformed
net contract is dominated by another net contract. Such a net contract can be trans-
formed into an equivalent gross contract, which would contradict the optimality of the
notional gross contract in (25)–(27).

Proposition 6 summarizes our finding.

Proposition 6. Optimal unbounded net contracts For unbounded positive support
y � y, the optimal net contract is given by:

w yð Þ ¼

c 0ð Þ for y

c Ty yð Þ� �
for all y > y such that c

0
Ty yð Þ� �

< z

1þ z
1−z

� f G þ z
1−z

� y for all y > y such that c
0
Ty yð Þ� � ¼ z:

8>>>>><
>>>>>:

We close this subsection by studying how the optimal net contract performs, relative to
the optimal gross contract. With unlimited positive support x ∈ ℝ+, the optimal gross
contract is given by eq. (6) and is the solution to a program without the invertibility and
nonnegativity constraints. In contrast, the optimal net contract in Proposition 6 is the
solution to a program with both constraints. When the invertibility constraint binds, the
optimal net contract is strictly dominated by the optimal gross contract. The invertibility
constraint binds when the agent’s relative risk aversion is low because the optimal gross
contract is strictly convex and its slope exceeds one for large values of x. Proposition 7
summarizes.
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Proposition 7. Optimal unbounded net versus gross contracts When the agent’s
relative risk aversion is low, the optimal gross contract strictly dominates the
optimal net contract for unbounded positive support of gross outcome.

Proposition 7 implies that the best net contracting solution is no better than
the best gross contracting solution. While it is sometimes more efficient (and
never less efficient) to write contracts based on the gross outcome, note that
gross outcome is often unavailable for contracting. Recall that shareholder value
(and hence the stock price) is the value shareholders expect to receive, net of
all costs, including compensation costs. Thus shareholder value is a net out-
come whenever total compensation includes dilutive equity-based compensation,
such as stock options. For public companies, this value is the market price
determined by competitive stock traders. Therefore the net outcome is readily
available for contracting. The gross outcome is not priced by competitive
traders and so would have to be calculated (somehow) for it to be available
for contracting. Adding back compensation to a corporation’s market value to
derive a notional gross outcome is hard, because the shareholder value implied
by the stream of future cash flows and the value of the stream of future
compensation are both uncertain. One reason for the ubiquity of net contracts
is the ready availability of a market-determined, objective stock price. This
stands in sharp contrast to the difficulty and subjectivity of the adding back
calculation that would be required to implement a gross contract.

7 Conclusion

We provide insights into key characteristics of an important class of compen-
sation arrangements, namely, net contracts. Net contracts are those for which an
executive’s compensation (1) depends on the stock price and the anticipated
future value transferred to the executive lowers the present shareholder value or
(2) has the potential to dilute the ownership interest of the existing share-
holders. Examples of net contracts include stock options and restricted stock.
To analyze the link between equity-based compensation and shareholder value,
we construct and solve a novel agency program. We use this solution to
characterize the net contract’s shape and the variety of equity instruments
needed to implement this shape. We extend the analysis to address executives’
pre-existing security holdings and team-based compensation considerations. Our
findings provide a potential explanation for highly convex contracts along with
a varying number of equity instruments in startups and smaller corporations
where executive compensation is a significant fraction of shareholder value. To
provide insights into the executives’ incentives, we also relate the contract
shape to various empirical measures of pay-for-performance sensitivity.
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Our analysis identifies challenges regulators face in writing rules mandating
disclosure of the relation between equity-based compensation and performance,
as well as challenges investors face in interpreting such disclosures. Computing
pay-for-performance consistently across gross and net contractual forms—even
when the contracts are economically-equivalent—is problematic.23 In practice,
this difficulty is compounded by the facts that (i) compensation arrangements
for a single employee may include both gross and net elements; (ii) some of
these elements may be nonlinear; (iii) companies have multiple employees, each
with their own compensation arrangements; and (iv) pay-for-performance sen-
sitivity is a local measure.

Our framework suggests avenues for future analytical research: while we con-
sider pure net contracts, practical arrangements of executive compensation often
entail a mixture of equity-based compensation and annual bonus plans using
financial and nonfinancial performance measures, suggesting a mixture of net and
gross contracting elements. Practical compensation arrangements also often cover
multiple years. For example, given a stock option program with different maturities,
granting and exercising stock options implies time-varying dilutive effects on
executives’ incentives, suggesting that measures of PPS vary over time. Our
analysis of employee teams raises the interesting empirical question of how antic-
ipated dilution (what practitioners estimate as burn rates) relate to corporate per-
formance and measures of compensation cost prescribed by GAAP and the SEC.

Appendix 1: Numerical example

Considering a truncated gamma distribution, Fig. 3 illustrates our results in Subsection
5.2 for the case of square root utility. From an empirical perspective, the truncated
gamma distribution is similar to the lognormal distribution and is often used in option
pricing. Specifically,

f x; að Þ ¼ 1

a
exp � x=að Þ½ � x=að Þn�1

n� 1ð Þ! sðaÞ for x 2 x; x½ �; ð28Þ

where a ≥ 0 is the agent’s action, n is an integer greater than 1 that characterizes the

skewness of the distribution, and s(a) ensures
R x
x f x; að Þdx ¼ 1.

In Fig. 3, n = 2, x ¼ 1, x ¼ 2, k(a) = a/20, and U ¼ 1. The optimal action is a∗ =
0.7289. We verified numerically that the optimal action is a global maximum.

23 Harmonization of PPS measures across gross and net contracts is straightforward when the contracts are
linear. One way to accomplish this is to convert gross pay-for-performance sensitivity to a net basis by
removing from the denominator the manager-owned component of shareholder value. In the case of Company
G in Section 2, this has the effect of changing the denominator from $100 million to $80 million. As a result,
the PPS for companies G and N are both 25%.
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Appendix 2: Proofs

Proof of Lemma 1. Follows as outlined in the text.

Proof of Proposition 1. With y = x − c(x) = Tx(x) and the inverse function, x ¼ T�1
x ðyÞ

¼ TyðyÞ, we getw'(y) = c'(Ty(y)) ⋅ Ty'(y) andw''(y) = c''(Ty(y)) ⋅ Ty'(y)2 + c'(Ty(y)) ⋅ Ty''(y),
with Ty'(y) = (1 − c'(Ty(y)))−1 and Ty''(y) = c''(Ty(y))/(1 − c'(Ty(y)))3. Hence we get:

w
0 ðyÞ ¼ c

0
TyðyÞð Þ

1�c0 TyðyÞð Þð Þ ;

w
0 0 ðyÞ ¼ c

0 0
TyðyÞð Þ

1�c0 TyðyÞð Þð Þ2 þ
c
0
TyðyÞð Þ�c0 0 TyðyÞð Þ
1�c0 TyðyÞð Þð Þ3 ¼ c

0 0
TyðyÞð Þ

1�c0 TyðyÞð Þð Þ3 ; and
ð29Þ

M wðyÞð Þ ¼ w
0 0 ðyÞ

w0 yð Þ ¼ c
0 0
TyðyÞ
� �

c0 TyðyÞ
� � 1

1� c0 TyðyÞ
� �� �2 ¼ M c TyðyÞ

� �� �
1� c0 TyðyÞ

� �� �2 :

Proof of Proposition 2. Since c'(Ty(y)) < 1, we get sgn[M(w(y))] = sgn[M(c(x))]. From
the discussion around (8), we get sgn[M(c(x))] = sgn[γ/(1 − γ)]. Noting that

u
0 ðwÞ ¼ b b � w

1� �
þ h

� ���1

; u
0 0 ðwÞ ¼ �b2 b � w

1� �
þ h

� ���2

; and RðwÞ

¼ 1

1� �
þ h

bw

� ��1

ð30Þ

provides the result.

Proof of Proposition 3. Note that the variation of the curvature is given by:

M wðyÞð Þ ¼ w
0 0 ðyÞ

w0 ðyÞ ; M
0
wðyÞð Þ ¼ w

0 0 0 ðyÞ
w0 ðyÞ � w

0 0 ðyÞ
w0 ðyÞ

� �2

; and ΔM wðyÞð Þ

¼ w
0 0 0 ðyÞ

w0 0 ðyÞ � w
0 0 ðyÞ

w0 ðyÞ � ð31Þ

For net contracts, we get from (29):

w
0 0 0 ðyÞ ¼ c

0 0 0
TyðyÞ
� � � Ty 0 ðyÞ3 þ 3Ty

0 ðyÞTy 0 0 ðyÞc0 0
TyðyÞ
� �þ c

0
TyðyÞ
� � � Ty 0 0 0 ðyÞ

� ð32Þ
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Using Ty'''(y) = [c'''(Ty(y))(1 − c'(Ty(y))) + 3c''(Ty(y))]/(1 − c'(Ty(y)))5, we get:

w
0 0 0 ðyÞ ¼ c

0 0 0
TyðyÞ
� �

1� c
0
TyðyÞ
� �� �þ 3c

0 0
TyðyÞ
� �2

1� c0 TyðyÞ
� �� �5 � ð33Þ

For the gross contract, we obtain from (6):

c
0 ðxÞ ¼ μL1ðaÞ � b � λþ μ � L x; að Þð Þð Þ�= 1��ð Þ;

c
0 0 ðxÞ ¼ μ2L21ðaÞ � b�

1�� � b � λþ μ � L x; að Þð Þð Þ 2��1ð Þ= 1��ð Þ; and

c
0 0 0 ðxÞ ¼ μ3L31ðaÞ � b

2� 2��1ð Þ
1��ð Þ2 � b � λþ μ � L x; að Þð Þð Þ 3��2ð Þ= 1��ð Þ:

ð34Þ

Using (29), (33), and (34) gives:

ΔMðwðyÞÞ ¼ w
0 0 0 ðyÞ

w0 0 ðyÞ � w
0 0 ðyÞ

w0 ðyÞ

¼ �
1� 1þ�

1�� c
0ðTyðyÞÞ

ð1� c0ðTyðyÞÞÞ2
μL1ðaÞ

λþ μ � L TyðyÞ; a
� � ;

ð35Þ

where μL1(a) > 0 and λ + μ ⋅ L(Ty(y),a) > 0 by (5).
Note that R(w) < bw/(bw + h) is equivalent to 0 < γ < 1 and R(w) > bw/(bw + h)

is equivalent to γ < 0 or γ > 1. For 0 < γ < 1, (i) follows from sgn[ΔM(w(y))] =
sgn[(1 + γ)c'(Ty(y)) − (1 − γ)] and 0 < c'(Ty(y)) < 1. For γ < 0 or γ > 1, (ii) follows

from 1� 1þ�
1�� c

0
TyðyÞ
� �

> 0.

Proof of Corollary 1. (i) and (ii) follow from Proposition 1. (iii) follows from Propo-
sition 3 and, using (34), the variation of the curvature for the gross contract equals:

ΔM cðxÞð Þ ¼ c
0 0 0 ðxÞ
c0 0 ðxÞ � c

0 0 ðxÞ
c0 ðxÞ ¼ � μL1ðaÞ

λþ μ � L x; að Þ<0; ð36Þ

since μL1(a) > 0 and λ + μ ⋅ L(x, a) > 0 by (5).

Proof of Proposition 4. Follows as outlined in the text, with

vN
oN

¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2vG

p� �
1� 2vGð Þ

oG
� vG

oG
� ð37Þ

The relation holds only with equality for vG = 0.

Proof of Proposition 5. We define PPS like Edmans et al. (2009, p. 4891). For net
contracts, with the shareholders’ net return given by (1 + ry)E[y] = y,
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PPSIN ¼ Δ compensation
Δ shareholder value ¼ dwðyÞ

dry
= dy

dry
¼ @wðyÞ

@y
@y
@ry

= @y
@ry

¼ w
0 ðyÞ and

PPSIIN ¼ Δ ln compensationð Þ
Δ ln shareholder valueð Þ ¼ d ln wðyÞð Þ

dry
= d lnðyÞ

dry
¼ 1

wðyÞ
@wðyÞ
@y

@y
@ry

= 1
y

@y
@ry

� �
¼ w

0 ðyÞ
wðyÞ=y :

ð38Þ

For gross contracts, with the shareholders’ gross return (1 + rx)E[x] = x, we get:

PPSIG ¼ Δ compensation
Δ shareholder value ¼ dcðxÞ

drx
= dx

drx
¼ @cðxÞ

@x
@x
@rx

= @x
@rx

¼ c
0 ðxÞ and

PPSIIG ¼ Δ ln compensationð Þ
Δ ln shareholder valueð Þ ¼ d ln cðxÞð Þ

drx
= d lnðxÞ

drx
¼ 1

cðxÞ
@cðxÞ
@x

@x
@rx

= 1
x

@x
@rx

� �
¼ c

0 ðxÞ
cðxÞ=x :

ð39Þ

To restate the PPS measures of the optimal gross contract in terms of the net outcome,
we note that the gross outcome equals the net outcome plus net compensation, Ty(y) =
y + w(y) = x. Since T

0
yðyÞ ¼ 1þ w

0 ðyÞ > 0 , the inverse function exists, TxðxÞ
¼ T�1

y TyðyÞ
� �

. The gross compensation is c(x) = c(Tx(x)) = w(y), and the marginal gross

compensation follows as c
0
TxðxÞð Þ � T 0

xðxÞ , with c'(Tx(x)) = w'(y) and T
0
xðxÞ ¼

1þ w
0 ðyÞ� ��1

from the derivative of the inverse function, T
0
y . Using these transforma-

tions in (17) gives (18).

Proof of Corollary 2. With y ¼ x� cðxÞ � pðxÞ ¼ eTxðxÞ and the inverse function,

x ¼ eTyðyÞ, we get w
0 ðyÞ ¼ c

0 eTyðyÞ
� �

� eTy

0
ðyÞ and w

0 0 ðyÞ ¼ c
0 0 eTðyÞ� �

� eTy

0
ðyÞ2 þ

c
0 eTyðyÞ
� �

� eTy

0 0
ðyÞ, with

eTy

0
ðyÞ ¼ 1� c

0 eTyðyÞ
� �

� p
0 eTyðyÞ
� �� ��1

ð40Þ

and

eT 0 0
ðyÞ ¼ c

0 0 eTyðyÞ
� �

þ p
0 0 eTyðyÞ
� �h i

= 1� c
0 eTyðyÞ
� �

� p
0 eTyðyÞ
� �h i3

: ð41Þ

For sake of simplicity, we suppress the notion and get:

w
0 ¼ c

0

1�c0 �p0
;

w
0 0 ¼ c

0 0

1�c0�p0ð Þ2 þ
c
0 � c

0 0þp
0 0ð Þ

1�c0�p0ð Þ3 ; and
w
0 0

w0 ¼ M cþpð Þ
1�c0�p0ð Þ2 �

p
0 � MðpÞ�M cþpð Þð Þ
c0 � 1�c0�p0ð Þ

ð42Þ

with curvatures M cþ pð Þ ¼ c
0 0 þp

0 0

c0 þp0
¼ c

0 �MðcÞþp
0 �MðpÞ

c0þp0
, MðpÞ ¼ p

0 0

p0
, and MðcÞ ¼ c

0 0

c0
.
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Similar to (38) and (39), the wealth-performance sensitivity measures are given by:

PPSIN ¼ Δ agent
0
s wealth

Δ shareholder value ¼ w
0 ðyÞ þ q

0 ðyÞ;
PPSIIN ¼ Δ ln agent

0
s wealthð Þ

Δ ln shareholder valueð Þ ¼ w
0 ðyÞþq

0 ðyÞ
wðyÞþqðyÞ½ �=y ;

PPSIG ¼ c
0 ðxÞ þ p

0 ðxÞ; and
PPSIIG ¼ c

0 ðxÞþp
0 ðxÞ

cðxÞþpðxÞ½ �=x :

ð43Þ

As in the proof of Proposition 5, we use the inverse function eTyðyÞ ¼ yþ wðyÞ þ qðyÞ
¼ x with eT 0

yðyÞ ¼ 1þ w
0 ðyÞ þ q

0 ðyÞ and eT 0

xðxÞ ¼ 1þ w
0 ðyÞ þ q

0 ðyÞ� ��1
, to restate the

PPS measures of the optimal gross contract in terms of the net contract:

PPSIG ¼ w
0 ðyÞþq

0 ðyÞ
1þw0 ðyÞþq0 ðyÞ and

PPSIIG ¼ w
0 ðyÞþq

0 ðyÞ
1þw0 ðyÞþq0 ðyÞ

yþwðyÞþqðyÞ
wðyÞþqðyÞ :

ð44Þ

A comparison of (43) and (44) provides the result.

Proof of Corollary 3. Follows from the arguments in the text.

Proof of Proposition 6. Note that the invertibility constraint, c'(x) ≤ z, implies that c(x)
is continuous in x ∈ ℝ+. As outlined, for x = 0, the nonnegativity constraint implies
(25); that is, c(0) ≤ 0. Note, c'(x) < 1 and c(0) ≤ 0 ensure nonnegativity; that is, x −
c(x) > 0 for all x, because

cðxÞ ¼
Z x

0
c
0 ðuÞduþ cð0Þ<

Z x

0
1 � duþ cð0Þ ¼ xþ cð0Þ � x: ð45Þ

Hence we can replace the (NNG) constraint by the constraint c(0) ≤ 0 and consider the
Lagrange function

L ¼ R1
0 x� cðxÞð Þf x; að Þdxþ λ

R1
0 u cðxÞð Þf ðx; aÞdx� kðaÞ � U

� �
þ μ

R1
0 u cðxÞð Þf aðx; aÞdx� k

0 ðaÞ
� �

þ ςðxÞ z� c
0 ðxÞ� �� ηcð0Þ; ð46Þ

with the Lagrange multipliers ς(x) for (ING) and η for c(0) ≤ 0.
If (ING) is not binding, then ς(x) = 0 and pointwise optimization yields for x > 0:

� f x; að Þ þ λ � u0
cðxÞð Þf x; að Þ þ μ � u0

cðxÞð Þf a x; að Þ ¼ 0; ð47Þ

implying (26). If (ING) is binding; that is, c'(x) = z, integration yields (27).

Proof of Proposition 7. For a binding (ING) constraint, the result follows immediately
from Proposition 6. The (ING) constraint binds if limx→∞c'(x) > 1. For low risk
aversion γ ∈ (0, 1), the gross contract is strictly convex and c'(x) is increasing. Solving
the equation c'(xc) = 1, where c(x) is given by (6), yields
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xc ¼ μ � L1ðaÞð Þ� 1��ð Þ=� � b � λþ μ � L0ðaÞð Þ
b � μ � L1ðaÞ ð48Þ

and c'(x) > 1 if x > xc.
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