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Abstract

Shrinking methods in regression analysis are usually designed for metric pre-
dictors. If independent variables are categorial some modifications are necessary.
In this article two L1-penalty based methods for factor selection and clustering
of categories are presented and investigated. The first approach is designed for
nominal scale levels, the second one for ordinal predictors. All methods are illus-
trated and compared in simulation studies, and applied to real world data from
the Munich rent standard.
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1 Introduction

Within the last decade regularization and in particular variable selection has been
a topic of intensive research. With the introduction of the Lasso, proposed by
(Tibshirani, 1996), sparse modeling in the high-predictor case with good perfor-
mance in terms of identification of relevant variables combined with good per-
formance in predictive power became possible. In the following many alternative
regularized estimators that include variable selection were proposed, among them
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the elastic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), the Dantzig se-
lector (Candes and Tao, 2007) and boosting approaches (for example Bühlmann
and Yu, 2003).

Most of these methods focus on the selection of variables in the case where
the effect of one variable is determined by one coefficient, that means one selects
coefficients rather than variables. When all predictors are metric and a main
effect model is assumed to hold, of course selection of coefficients is equivalent to
selection of predictor variables. This is different when categorical variables have
to be included because then a group of coefficients refers to one variable. One
of the few approaches that explicitly select categorical predictors was proposed
by Yuan and Lin (2006) under the name Group Lasso. The approach explicitly
includes or excludes groups of coefficient that refer to one variable.

In selection problems for categorical predictors it should be distinguished be-
tween two problems:

• Which categorical predictors should be included in the model?

• Which categories within one categorical predictor should be distinguished?

The latter problem is concerned with one variable and poses the question which
categories differ from one another with respect to the dependent variable. Or, to
put it in a different way, which categories should be collapsed? The answer to
that question depends on the scale level of the predictor, one should distinguish
between nominal and ordered categories because of their differing information
content.

To be more concrete let us first consider just one categorial predictor C ∈
{0, . . . , k} and dummy coding xi = I{C=i}. Then the classical linear model is
given as

y = α +
k∑

i=0

βixi + ε,

with E(ε) = 0 and Var(ε) = σ2. If category 0 is chosen as reference, coefficient
β0 is fixed to zero. When computing a penalized estimate, for example by use of
the simple Lasso (Tibshirani, 1996), the shrinkage effect depends on the coding
scheme that is used and the choice of the reference category. With category zero
chosen as reference, shrinkage always refers to the difference between category i
and zero. Moreover, Lasso type penalties tend to set some coefficients to zero.
Usually this feature is seen as a great advantage over methods like Ridge regres-
sion, since it can be used for model/variable selection. Applied to dummy coded
categorial predictors, however, selection only refers to the currently chosen ref-
erence category. In most cases of nominal predictors, class labeling and choice
of the reference category is arbitrary, which means that the described selection
procedures are not really meaningful. In addition, the estimated model is not
invariant against irrelevant permutations of class labels.
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Figure 1: Paths of dummy coefficients of categorial predictors obtained by the proposed method.

For categorical predictor variables with many categories a useful strategy is to
search for clusters of categories with similar effects. The objective is to reduce the
k +1 categories to a smaller number of categories which form clusters. The effect
of categories within one cluster is supposed to be the same but responses will differ
across clusters. An example, which will be considered in more detail in Section 4,
is the modeling of the influence of the urban district where a person lives on the
rent she/he has to pay. The data comes from the Munich rent standard, where
data is available for all 25 urban districts of Munich. It can be expected that
not all districts do differ substantially. Therefore the aim is to combine districts
which do not differ in terms of rent per square meter. Hence, in a regression
model corresponding dummy coefficients should be equal. Figure 1 shows paths
of dummy coefficients obtained by the method proposed in this article. It is seen
that with decreasing tuning parameter s, categories are successively fused, i.e.
coefficients are set equal. In addition, several other covariates are given, among
them the (categorized) year of construction. Corresponding paths of dummy
coefficients are also shown in Figure 1.

Clustering or fusion of metric predictors was for example realized by so-called
Variable Fusion (Land and Friedman, 1997) and the Fused Lasso proposed by
Tibshirani et al. (2005). If predictors can be reasonably ordered, by putting a L1-
penalty on differences of adjacent coefficients many of these differences are set to
zero which produces a piecewise constant coefficient function. Recently, Bondell
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and Reich (2009) adapted this methodology for factor selection and level fusion in
ANOVA. The result are dummy coefficients being constant over some categories.
In the following this method is reviewed and applied to regression problems. Some
modifications are proposed and an approximate solution is presented which allows
for easy computation of coefficient paths. In addition, the method is adapted for
the modeling ordinal predictors.

2 Regularization for Categorical Predictors

In the following we consider the penalized least squares criterion

Qp(β) = (y −Xβ)T (y −Xβ) + λJ(β), (1)

with penalty J(β). The estimate of β is given by

β̂ = argminβ{Qp(β)}. (2)

The decisive point is a suitable choice of penalty J(β). We start with the case of
one variable and will distinguish between nominal and ordinal predictors.

2.1 Unordered Categories

If the categorial predictor has only nominal scale level, a modification of Variable
Fusion (Land and Friedman, 1997) and the Fused Lasso (Tibshirani et al., 2005),
has been proposed by Bondell and Reich (2009) in the form of the penalty

J(β) =
∑
i>j

wij|βi − βj|, (3)

with weights wij and βi denoting the coefficient of dummy xi. Since the ordering
of x0, . . . , xk is arbitrary, not only differences βi − βi−1 (as in original fusion
methodology), but all differences βi − βj are considered. Since i = 0 is chosen
as reference, β0 = 0 is fixed. Therefore in the limit case, λ → ∞, all βi are
set to zero and the categorial predictor C is excluded from the model since no
categories are distinguished anymore. For λ < ∞ the Lasso type penalty (3) sets
only some differences βi − βj to zero, which means that categories are clustered.
With adequately chosen weights wij some nice asymptotic properties of β̂ can
be derived. These (adaptive) weights decisively depend on the distance of the
ordinary least squares estimates β̂

(LS)
i and β̂

(LS)
j .

Let θ = (θ10, θ20, . . . , θk,k−1)
T denote the vector of pairwise differences θij =

βi − βj. Furthermore, let C = {(i, j) : β∗i 6= β∗j , i > j} denote the set of indices
i > j corresponding to differences of (true) dummy coefficients β∗i which are
truly non-zero, and Cn denote the set corresponding to those difference which
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are estimated to be non-zero with sample size n. If θ∗C denotes the true vector
of pairwise differences included in C, and θ̂C denotes the corresponding estimate
based on β̂, then a slightly modified version of Theorem 1 in Bondell and Reich
(2009) holds:

Proposition 1 Suppose λ = λn with λn/
√

n → 0 and λn → ∞, and all class-
wise sample sizes ni satisfy ni/n → ci, where 0 < ci < 1. Then weights wij =

φij(n)|β̂(LS)
i − β̂

(LS)
j |−1, with φij(n) → qij (0 < qij < ∞) ∀i, j, ensure that

(a)
√

n(θ̂C − θ∗C) →d N(0, Σ),

(b) limn→∞ P (Cn = C) = 1.

The proof closely follows Zou (2006) and Bondell and Reich (2009), and is given
in the Appendix. The main differences to Bondell and Reich (2009) are that a
concrete form of the dependence on sample size, specified in φij(n), is not yet
chosen, and that λn is determined by λn/

√
n → 0 and λn → ∞. The latter is

necessary for the proof of asymptotic normality, as given in Zou (2006). Bondell
and Reich (2009) used λn = Op(

√
n), which also allows λn = 0 and therefore

cannot yield limn→∞ P (Cn = C) = 1. Note, that the covariance matrix Σ of the
asymptotic normal distribution is singular due to linear dependencies of pairwise
differences, cf. Bondell and Reich (2009).

Simple consistency limn→∞ P (||β̂ − β∗||2 > ε) = 0 for all ε > 0, is also reached
if λ is fixed and wij = φij(n), with φij(n) → qij (0 < qij < ∞) ∀i, j, is chosen.
The proof is given in the Appendix. The issue, how to select concrete weights in
the n < ∞ case, is further addressed in Sections 2.5 and 3.2.

2.2 Ordered Categories

An interesting case are selection strategies for ordinal predictors, as for exam-
ple the decade of construction from Figure 1. Ordered categories contain more
information than unordered ones but the information has not been used in the
penalties considered so far. Since in the case of ordered categories the ordering
of dummy coefficients is meaningful, original fusion methodology can be applied,
which suggests penalty

J(β) =
k∑

i=1

wi|βi − βi−1|, (4)

with β0 = 0. In analogy to asymptotic properties for the unordered case, with
adequately chosen weights wi similar results can be derived. Let now C = {i > 0 :
β∗i 6= β∗i−1} denote the set of indices corresponding to differences of neighboring
(true) dummy coefficients β∗i which are truly non-zero, and again, Cn denote
the set corresponding to those difference which are estimated to be non-zero.
The vector of first differences δi = βi − βi−1, i = 1, . . . , k, is now denoted as
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δ = (δ1, . . . , δk)
T . In analogy to the unordered case, δ∗C denotes the true vector of

(first) differences included in C, and δ̂C the corresponding estimate. With β̂
(LS)
i

denoting the ordinary least squares estimate of βi, the following proposition holds.

Proposition 2 Suppose λ = λn with λn/
√

n → 0 and λn → ∞, and all class-
wise sample sizes ni satisfy ni/n → ci, where 0 < ci < 1. Then weights wi =

φi(n)|β̂(LS)
i − β̂

(LS)
i−1 |−1, with φi(n) → qi (0 < qi < ∞) ∀i, ensure that

(a)
√

n(δ̂C − δ∗C) →d N(0, Σ),

(b) limn→∞ P (Cn = C) = 1.

The proof is a direct application of Theorem 2 in Zou (2006), as sketched in the
Appendix. As before in the unordered case, simple consistency limn→∞ P (||β̂ −
β∗||2 > ε) = 0 for all ε > 0, is reached if λ is fixed and wi = φi(n), with φi(n) → qi

(0 < qi < ∞) ∀i, j. The proof is completely analogue to the proof of Proposition
3 in the Appendix.

2.3 Computational Issues

For estimation it is useful to consider the penalized minimization problem (2) as a
constrained minimization problem. That means, (y−Xβ)T (y−Xβ) is minimized
subject to a constraint. For unordered categories the constraint corresponding to
penalty (3) is ∑

i>j

wij|βi − βj| ≤ s,

with β0 = 0. There is a one-to-one correspondence between the bound s and
penalty parameter λ in (1), cf. Bondell and Reich (2009). As already mentioned,
transformed parameters θij = βi − βj yield vector θ = (θ10, θ20, . . . , θk,k−1)

T . If θ
is directly estimated (instead of β), one has to take into account that restrictions
θij = θi0 − θj0 must hold for all i, j > 0. For practical estimation, parameters θij

are additionally split into positive and negative parts, i.e.

θij = θ+
ij − θ−ij ,

with
θ+

ij ≥ 0, θ−ij ≥ 0,

and ∑
i>j

wij(θ
+
ij + θ−ij) ≤ s.

Minimization can be done by using quadratic programming methods, we used R
2.9.0 (R Development Core Team, 2009) and the interior point optimizer from
add-on package kernlab (Karatzoglou et al., 2004).
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A fast approximate solution can be computed using R add-on package lars
(Efron et al., 2004), where "approximate" means that only θij ≈ θi0 − θj0 holds.
For simplicity we assume that weights wij = 1 are chosen. But results can be
generalized easily (see Section 2.5). For the approximation we exploit that the
proposed estimator can be seen as the limit of a generalized Elastic Net. The
original Elastic Net (Zou and Hastie, 2005) uses a combination of simple Ridge
and Lasso penalties. We use a generalized form where the quadratic penalty term
is modified. With Z so that Zθ = Xβ, we define

θ̂γ,λ = argminθ

{
(y − Zθ)T (y − Zθ) + γ

∑
i>j>0

(θi0 − θj0 − θij)
2 + λ

∑
i>j

|θij|
}

.

A simple choice of Z is Z = (X|0), since θi0 = βi, i = 1, . . . , k. The first penalty
term, which is weighted by γ, penalizes violations of restrictions θij = θi0 − θj0.
The exact solution of the optimization problem considered here is obtained as
the limit

θ̂ = lim
γ→∞

θ̂γ,λ.

Hence with sufficiently high γ an acceptable approximation should be obtained.
If matrix A represents restrictions θij = θi0 − θj0 in terms of Aθ = 0, one may
define precision by

∆γ,λ = (Aθ̂γ,λ)
T Aθ̂γ,λ.

The lower ∆γ,λ the better. An upper bound is given by

∆γ,λ ≤ λ(|θ̂(LS)| − |θ̂0,λ|)
γ

,

where θ̂(LS) denotes the least squares estimate (i.e. λ = 0) where Aθ̂(LS) = 0
holds, and |θ| =

∑
i>j |θij| denotes the L1-norm of vector θ. (For a proof see

the Appendix.) θ̂(LS) can be computed by θ̂γ,0 if any γ > 0 is chosen. Not
surprisingly, for higher λ also higher γ must be chosen to stabilize precision.

The advantage of using the estimate θ̂γ,λ is that its whole path can be computed
using lars (Efron et al., 2004), since it can be formulated as a Lasso solution.
With augmented data Z̃ = (ZT ,

√
γAT )T and ỹ = (yT , 0)T , one has

θ̂γ,λ = argminθ

{
(ỹ − Z̃θ)T (ỹ − Z̃θ) + λ

∑
i>j

|θij|
}

,

which is a Lasso type problem on data (ỹ, Z̃).
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In the case of ordinal predictors the penalty is

J(β) =
k∑

i=1

|βi − βi−1|,

and the corresponding optimization problem can be directly formulated as a
simple Lasso type problem. We write

Qp(β) = (y −Xβ)T (y −Xβ) + λJ(β) = (y − X̃δ)T (y − X̃δ) + λJ(δ),

with X̃ = XU−1, δ = Uβ, J(δ) =
∑k

i=1 |δi|, and

U =




1 0 · · · 0
−1 1 · · · 0

0
. . . . . . 0

0 · · · −1 1


 .

Simple matrix multiplication shows that the inverse is given by

U−1 =




1 0 · · · 0

1 1
. . . ...

... . . . 0
1 · · · · · · 1


 .

In other words, the ordinal input is just split-coded (Walter et al., 1987), and
ordinary Lasso estimation is applied. Split-coding means that dummies x̃i are
defined by splits at categories i = 1, . . . , k, i.e.

x̃i =

{
1 if C ≥ i
0 otherwise.

Now the model is parameterized by coefficients δi = βi − βi−1, i = 1, . . . , k.
Thus transitions between category i and i − 1 are expressed by coefficient δi.
Original dummy coefficients are obtained by back-transformation βi =

∑i
s=1 δs.

By applying penalty
∑k

i=1 |δi| not the whole ordinal predictor is selected, but
only relevant transitions between adjacent categories. By contrast, Walter et al.
(1987) intended the use of classical tests for such identification of substantial
"between-strata differences".

2.4 Multiple Inputs

In statistical modeling, usually a set of (potential) regressors is available and one
wants to include the relevant ones into the predictor. In the introduction we
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already considered two predictors, the urban district where a flat is located and
the decade of construction. For the handling of multiple categorial predictors,
say x1, . . . , xp, with levels 0, . . . , kl for variable xl (l = 1, . . . , p), the presented
methods can be easily generalized. The corresponding penalty is

J(β) =

p∑

l=1

Jl(βl), (5)

with

Jl(βl) =
∑
i>j

w
(l)
ij |βli − βlj|, or Jl(βl) =

kl∑
i=1

w
(l)
i |βli − βl,i−1|,

depending on the scale level of predictor xl. The first expression refers to nominal
covariates, the second to ordinal ones. Due to the (additive) form of the penalty
theoretic results from above directly generalize to the case of multiple categorial
inputs.

If multiple predictors are considered, clustering of categories of single predictors
as well as selection of predictors is of interest. Penalty (5) serves both objectives,
clustering and selection. If all dummy coefficients which belong to a specific
predictor are set to zero, the corresponding predictor is excluded from the model.
Within each nominal predictor xl, there is also an L1-penalty on the differences
to the dummy coefficient of the reference category. Since the latter is fixed to
zero, clustering of all categories of xl means that all coefficients which belong to
predictor xl are set to zero. In the ordinal case, this happens if all differences
δli = βli − βl,i−1 of adjacent dummy coefficients of predictor xl are set to zero.

2.5 Incorporation of Weights

In many situations weights w
(l)
ij 6= 1 are to be preferred over the simple weights

w
(l)
ij = 1; for example to obtain the adaptive versions described in Propositions

1 and 2, or when predictors differ in the number of levels. For nominal variables
Bondell and Reich (2009) suggested the weights

w
(l)
ij = (kl + 1)−1

√
n

(l)
i + n

(l)
j

n
, (6)

where n
(l)
i denotes the number of observations on level i of predictor xl. In the

adaptive version the weights contain additionally the factor |β̂(LS)
li − β̂

(LS)
lj |−1.

The use of these weights was motivated through standardization of design matrix
Z from Section 2.3, in analogy to standardization of metric predictors. In the
following these weights are also used, but multiplied by 2. If predictor xl is
nominal, the factor (kl + 1)−1 is necessary to ensure that penalty Jl(βl) in (5) is
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of order kl, the number of (free) dummy coefficients. Without these additional
weights Jl(βl) would be of order (kl + 1)kl, because the penalty consists of (kl +
1)kl/2 terms if no ordinal structure is assumed. By contrast, if the predictor is
ordinal, the penalty is already of order kl. Hence the factor 2(kl +1)−1 is omitted
in this case.

In general, if weights w
(l)
ij 6= 1 are included, the model just has to be parame-

terized by vector θ̃ = Wθ, where W is a diagonal matrix with diagonal elements
w

(l)
ij . That means the (centered) design matrix needs to be multiplied by W−1.

3 Numerical Experiments

Before applying the presented methodology to the Munich rent standard data
in Section 4, the different approaches are tested and some characteristics are
investigated in simulation studies.

3.1 An Illustrative Example

In the first simulation scenario only one predictor and a balanced design are
considered with 20 (independent) observations in each of i = 0, . . . , 8 classes. In
class i the response is N(µi,4)-distributed, where the means form three distinct
groups of categories, i.e. µ0 = µ1 = µ2, µ3 = µ4 = µ5, µ6 = µ7 = µ8. Figure
2 (left) shows empirical distributions as well as the true µi, which are marked
by dashed lines. Moreover, exact and approximate paths of dummy coefficients
(middle) are shown, where the non-adaptive version of penalty J(β) is employed.
That means the weighting term |β̂(LS)

i − β̂
(LS)
j |−1 is omitted. Since there is only

one predictor and the design is balanced simple weights wij = 1 can be used. The
x-axis indicates s/smax, the ratio of actual and maximal s value. The latter results
in the ordinary least squares (OLS) estimate. With decreasing s (or increasing
penalty λ) categories are successively grouped together. First, classes with the
same true mean are grouped as desired; for s = 0 the model finally consists of
the intercept only – the empirical mean of y. For the approximation, √γ = 105

has been chosen. It is hard to see any difference between approximate and exact
solution. Indeed, for s/smax ≥ 10−3, precision ∆γ,λ < 10−17 is obtained. Also
in the case of the "exact" solution, restrictions are just "numerically" met. In
the given example precision of the "exact" solution is about 10−18 (or better),
which is quite close to the "approximate" solution. So in the following, only
approximate estimates are used.

In the right panel of Figure 2, the results of the adaptive version which uses
the additional weights wij = |β̂(LS)

i − β̂
(LS)
j |−1 are shown. Grouping is quite good,

and compared to the non-adaptive version, bias towards zero is much smaller at
the point of perfect grouping.
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Figure 2: Empirical within-class distributions (left), exact and approximate coefficient paths
(middle), as well as results of the adaptive version (right); constant α is marked by the dashed
line.

In a second scenario, settings and data visualized in Figure 2 (left) are con-
sidered again, but now it is assumed that class labels have an ordinal structure.
Hence penalty (4) is employed. Resulting paths of dummy coefficients are plot-
ted in Figure 3. Even for the non-adaptive version (left), grouping is quite good.
Moreover, before optimal grouping is reached, bias towards zero seems to be quite
low. Of course, assuming an ordinal class structure, which is actually given be-
cause all categories with truly equal coefficients are groups of neighbors, makes
the estimation problem easier.

3.2 Comparison of Methods

For the comparison of different methods a setting with 8 predictors is consid-
ered – 4 nominal and 4 ordinal factors. For both types of variables we use two
factors with 8 categories and two with 4, of which in each case only one is rel-
evant. The true non-zero dummy coefficient vectors are (0, 1, 1, 1, 1,−2,−2)T

and (0, 2, 2)T for the nominal predictors, and (0, 1, 1, 2, 2, 4, 4)T and (0,−2,−2)T

for the ordinal predictors (constant α = 1). A training data set with n = 500
(independent) observations is generated according to the classical linear model
with standard normal error ε. The vectors of marginal a priori class probabilities
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Figure 3: Paths of dummy coefficients for data as in Figure 2, but assuming an ordinal class
structure, non-adaptive (left) and adaptive (right) version; constant α is marked by the dashed
line.

are (0.1, 0.1, 0.2, 0.05, 0.2, 0.1, 0.2, 0.05)T and (0.1, 0.4, 0.2, 0.3)T for 8-level and 4-
level factors, respectively. The coefficient vector is estimated by the proposed
method, using adaptive as well as non-adaptive weights. In addition, the effect
of taking into account marginal class frequencies n

(l)
i is investigated, that means

we check what happens if ((n
(l)
i +n

(l)
j )/n)1/2 is omitted in (6). Moreover, refitting

is tested, i.e. the penalty in (1) is only used for variable selection and clustering.
After the identification of relevant predictors and clusters, parameters are fitted
by ordinary least squares. Comparable procedures have already been proposed,
for example, by Efron et al. (2004) under the name "Lars-OLS hybrid", or by
Candes and Tao (2007) as "Gauss-Dantzig Selector".

For the determination of the right penalty λ, resp. s value, we use 5-fold cross-
validation. Of course, any information criterion like AIC or BIC could also be
employed. For the latter some measure of model-complexity is needed. In analogy
to the Fused Lasso (Tibshirani et al., 2005), the degrees of freedom of a model
can be estimated by

d̂f = 1 +

p∑

l=1

k∗l ,

where k∗l denotes the number of unique non-zero dummy coefficients of predictor
xl, the 1 accounts for the intercept.

After estimation of coefficient vector β the result is compared to the true pa-
rameters. The MSE is computed, as well as False Positive and False Negative
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adapt Adaptive version, i.e. weighting terms |β̂(LS)
i − β̂

(LS)
j |−1 are used.

stdrd Standard (non-adaptive) version, i.e. terms
|β̂(LS)

i − β̂
(LS)
j |−1 are omitted.

n(ij) Marginal class frequencies are taken into account,
i.e. ((n

(l)
i + n

(l)
j )/n)1/2 are used in (6).

rf Refitting was performed.

Table 1: Definition of labels used in Figure 4 and 5

Rates (FPR/FNR) concerning variable selection and clustering. As far as vari-
able selection is concerned, "false positive" means that any dummy coefficient of
a pure noise factor is set to non-zero; if clustering is considered, it means that
a difference within a non-noise factor which is truly zero is set to non-zero. By
contrast, "false negative" means that all dummy coefficients of a truly relevant
factor are set to zero, or that a truly non-zero difference is set to zero, respec-
tively. Figure 4 shows the results for 100 simulation runs, labels are defined in
Table 1.

In addition to the MSE and FPR/FNR, an independent test set of 1000 obser-
vations is generated and prediction accuracies are reported in terms of the mean
squared error of prediction. For comparison also the performance of the ordinary
least squares (OLS) estimate is given. MSE and prediction accuracy are shown as
boxplots to give an idea of variability, FPR (dark gray) and FNR (light-colored)
are averaged over all simulation runs. It is seen that all methods are superior
to the OLS. Concerning FPR and FNR, differences between pure adaptive ap-
proaches and refitting are caused by the fact that not necessarily the same models
are selected, because in the cross validation already refitted coefficients are used.

As already illustrated by Bondell and Reich (2009) and supported by Propo-
sitions 1 and 2, selection and grouping characteristics of the adaptive version
are quite good – at least compared with the standard approach. Also accuracies
of parameter estimates and prediction of the adaptive version are very high in
our simulation study. Via refitting they can only be slightly improved. In the
case of standard weights the improvement is much clearer. However, the most
important effect of refitting is on variable selection and clustering – in both the
adaptive and the non-adaptive case. It can be seen that via refitting error rates
are enormously diminished – concerning false variable selection as well as clus-
tering. This finding can be explained by the bias which is caused by shrinking.
If tuning parameters are determined via cross validation (as done here), with
refitting the chosen penalty parameter λ may be higher than without, because
in the latter case a higher penalty directly results in a higher bias which may
deteriorate prediction accuracy on the test fold. Since in the case of refitting the
penalty is only used for selection purposes, a higher value does not necessarily
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cause higher coefficient shrinkage and bias. Apparently, however, in many of our
simulated cases a higher penalty would have been necessary to obtain accurate
variable selection and grouping.

In a modified scenario further noise variables are included, 4 nominal and 4
ordinal, each with 6 levels and constant marginal a priori class probabilities.
Qualitatively, results (shown in Figure 5) are similar to those obtained before.
However, since the number of independent variables has been considerably in-
creased, the performance of the ordinary least squares estimates is even worse
than above. This also explains why (in the adaptive case) the MSE and predic-
tion accuracies cannot be really improved by OLS refitting, and why in the case
of refitting variability is higher. Nevertheless, variable selection and clustering
results are still distinctly better if refitting is done.

As an overall result, it can be stated that refitting has the potential to distinctly
improve selection and clustering results in the n < ∞ case, while providing accu-
rate parameter estimates (if n is not to small compared to p). Moreover, taking
into account marginal class frequencies seems to (slightly) improve estimation
results.

4 Application to Munich Rent Standard

All larger German cities compose so-called rent standards for having a decision
making instrument available to tenants, landlords, renting advisory boards and
experts. These rent standards are used in particular for the determination of the
local comparative rent. For the composition of the rent standards, a represen-
tative random sample is drawn from all relevant households, and the interesting
data are determined by interviewers by means of questionnaires. The data ana-
lyzed here comes from 2053 households interviewed for the Munich rent standard
2003. The response is monthly rent per square meter in Euro. The predictors
are ordered as well as unordered and binary factors. A detailed description is
given in Table 2. The data can be downloaded from the data archive of the De-
partment of Statistics at the University of Munich. The direct link is http://
www.stat.uni-muenchen.de/service/datenarchiv/miete/miete03_e.html.

For the estimation of regression coefficients corresponding to Table 2 we con-
sider the approaches which performed best in the previous section; more concrete,
both the adaptive as well as the standard (non-adaptive) version remain candi-
dates, but each with refitting only and taking marginal class frequencies into
account. In the considered application more than 2000 observations are available
for the estimation of at maximum 58 regression parameters. So it can be as-
sumed that OLS estimation is accurate, and hence (in the light of the simulation
study before) refitting distinctly improves estimation accuracy as well as variable
selection and clustering performance of the penalized approach.
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Figure 4: Evaluation of adaptive and non-adaptive (standard) as well as refitting (rf) ap-
proaches, taking into account class sizes (ni,nj) or not, for comparison also the results for
the ordinary least squares (ols) estimator are given; considered are the mean squared error of
parameter estimate, prediction accuracy, and false positive/negative rates (FPR/FNR) con-
cerning variable selection and identification of relevant differences (i.e. clustering) of dummy
coefficients.
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Figure 5: Evaluation of different approaches in the presence of many noise variables: adaptive
and non-adaptive (standard) as well as refitting (rf), taking into account class sizes (ni,nj) or
not, for comparison also the ordinary least squares (ols) estimator; considered are the mean
squared error of parameter estimate, prediction accuracy, and false positive/negative rates
(FPR/FNR) concerning variable selection and identification of relevant differences (i.e. cluster-
ing) of dummy coefficients.
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urban district nominal, labeled by numbers
1, . . . , 25

year of construction given in ordered classes [1910, 1919],
[1920, 1929], . . .

number of rooms taken as ordinal factor with levels
1, 2, . . . , 6

quality of residential area ordinal, with levels "fair",
"good", "excellent"

floor space (in m2) given in ordered classes (0, 30),
[30, 40), [40, 50), . . . , [140,∞)

hot water supply binary (yes/no)
central heating binary (yes/no)
tiled bathroom binary (yes/no)
supplementary equipment in bathroom binary (no/yes)
well equipped kitchen binary (no/yes)

Table 2: Explanatory variables for monthly rent per square meter.

Figure 6 shows the (10-fold) cross-validation score as a function of s/smax, for
the refitted model with non-adaptive (dashed black) as well as adaptive weights
(solid red). It is seen that with adequately chosen penalty, refitting with adaptive
weights may improve the ordinary least squares estimate (i.e. s/smax = 1) in terms
of prediction accuracy, whereas for non-adaptive weights such improvement is less
obvious. It is plausible that adaptive weights are better than the non-adaptive
ones, since a lot of data is available, which means that ordinary least squares
estimates are quite stable, and the latter decisively influence adaptive weights.
So we choose adaptive weights at cross-validation score minimizing s/smax = 0.61
(marked by dotted line in Figure 6). The estimated regression coefficients are
given in Table 3. There is no predictor which is completely excluded from the
model. However, some categories of nominal and ordinal predictors are clustered,
for example houses constructed in the 1930s and 1940s, or urban districts 14, 16,
22 and 24. The biggest cluster, which contains 8 categories, is formed within the
25 districts. A map of Munich with color coded clusters (Figure 7) illustrates
the 10 found clusters. The map has been drawn using functions from R add-on
package BayesX (Kneib et al., 2009). The most expensive district is the city
center. The fact that districts 16, 22 and 24 are found among the cheapest
districts makes good sense, because Munich’s deprived areas are primarily located
in these (non-adjacent) districts. Concerning district 12, however, results partly
contradict the experiences made by experts and tenants. The problem is that this
district is very large and reaching from the city center to the outskirts in the north.
So very expensive flats which are close to the city center are put together with
the cheap ones on the outskirts. On average rents are rather high in this district,
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Figure 6: Cross-validation score as a function of s/smax if refitting with standard (dashed black)
or adaptive (solid red) weights is used for the analysis of Munich rent standard data.

which causes that it is clustered with other expensive but more homogeneous
areas. So in Figure 7 some actually cheap regions in the north are marked as
expensive. But this is a problem of the data, not of the type of penalization
used here. In an ordinary least squares model, district 12 is even identified as
belonging to the three most expensive districts. In our case it is only among
the top seven. But note, in the final regression model there is also an ordinal
predictor included which indicates the quality of the residential area and allows for
further discrimination between flats which are located in the same district. Not
surprisingly by contrast, rent per square meter goes down if the number of rooms
increases. Between four, five or more rooms, however, no relevant differences
are identified. Flats with two rooms are fused with the reference category, since
the corresponding dummy coefficient is set to zero. The fact that no differences
between flats with one and two rooms are fitted is caused by the inclusion of
floor space into the model. Existing differences are obviously modeled via the
variable which directly measures the flat’s size, with the result: The larger the
flat the lower the rent per square meter. Between 90 and 140 m2, however, no
differences are identified with respect to rent per square meter. All in all the
selected model has 32 degrees of freedom, i.e. 32 unique non-zero coefficients
(including the intercept), which means that the complexity of the unrestricted
model (58 df) is reduced by about 45%.

5 Summary and Discussion

We showed how L1-penalization of dummy coefficients can be employed for sparse
modeling of categorial explanatory variables in multiple linear regression. De-
pending on the scale level of the categorial predictor two types of penalty were
investigated. Given just nominal covariates, all pairwise differences of dummy
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Figure 7: Map of Munich indicating clusters of urban districts; colors correspond to estimated
dummy coefficients from Table 3.

coefficients belonging to the same predictor are penalized. If the variable has or-
dinal scale level differences of adjacent coefficients are considered. L1-penalization
causes that certain differences are set to zero. The interpretation is clustering of
categories concerning the influence on the response. In the Munich rent standard
example this meant that e.g. certain urban districts were identified where rents
do not substantially differ. If all dummy coefficients which belong to a certain
predictor are set to zero, the corresponding covariate is completely removed from
the model.

Though penalization with adaptive weights has some nice asymptotic prop-
erties, simulation studies also showed that in the case of finite n particularly
variable selection and clustering performance can even be further improved via
ordinary least squares refitting of fused categories. A generalization of refitting
is the so-called relaxed Lasso (Meinshausen, 2007), which puts a second penalty
on (dummy) coefficients of fused categories. The disadvantage of relaxation is
the second tuning parameter. In case of the Munich rent standard, sample sizes
are so high that accurate (ordinary) least squares estimation is possible, which
means that the second penalty parameter can be omitted.

In case of ordinal predictors computation is easily carried out by the lars algo-
rithm (Efron et al., 2004), since the estimate is just an ordinary Lasso solution, if
independent variables are split-coded. If predictors are nominal, we showed how
procedures designed for ordinary Lasso problems can also be used to compute an
approximate solution of the problem considered here.
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Appendix

Proof of Proposition 1: We first show asymptotic normality, which closely
follows Zou (2006) and Bondell and Reich (2009). Coefficient vector β is rep-
resented by u =

√
n(β − β∗), i.e. β = β∗ + u/

√
n, where β∗ denotes the true

coefficient vector. Then we also have β̂ = β∗ + û/
√

n, with

û = argminuΨn(u),

where

Ψn(u) =

(
y −X

(
β∗ +

u√
n

))T (
y −X

(
β∗ +

u√
n

))
+

λn√
n

J(u),

with

J(u) =
∑

i>j;i,j 6=0

√
n

φij(n)

|β̂(LS)
i − β̂

(LS)
j |

∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣

+
∑
i>0

√
n

φi0(n)

|β̂(LS)
i |

∣∣∣∣β∗i +
ui√
n

∣∣∣∣ .

Furthermore, since y −Xβ∗ = ε, we have Ψn(u)−Ψn(0) = Vn(u), where

Vn(u) = uT

(
1

n
XT X

)
u− 2

εT X√
n

u +
λn√
n

J̃(u),

with

J̃(u) =
∑

i>j;i,j 6=0

√
n

φij(n)

|β̂(LS)
i − β̂

(LS)
j |

(∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣− |β∗i − β∗j |
)

+
∑
i>0

√
n

φi0(n)

|β̂(LS)
i |

(∣∣∣∣β∗i +
ui√
n

∣∣∣∣− |β∗i |
)

.

As given in Zou (2006) we will consider the limit behavior of (λn/
√

n)J̃(u). If
β∗i 6= 0, then

|β̂(LS)
i | →p |β∗i |, and

√
n

(∣∣∣∣β∗i +
ui√
n

∣∣∣∣− |β∗i |
)

= ui sgn(β∗i );
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and similarly, if β∗i 6= β∗j ,

|β̂(LS)
i − β̂

(LS)
j | →p |β∗i − β∗j |, and

√
n

(∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣− |β∗i − β∗j |
)

= (ui − uj) sgn(β∗i − β∗j );

Since by assumption φij(n) → qij (0 < qij < ∞) and λn/
√

n → 0, by Slutsky’s
theorem, we have

λn√
n

φi0(n)

|β̂(LS)
i |

√
n

(∣∣∣∣β∗i +
ui√
n

∣∣∣∣− |β∗i |
)
→p 0, and

λn√
n

φij(n)

|β̂(LS)
i − β̂

(LS)
j |

√
n

(∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣− |β∗i − β∗j |
)
→p 0, respectively.

This also makes clear that assumption λn = Op(
√

n) is not enough. If β∗i = 0 or
β∗i = β∗j , however,

√
n

(∣∣∣∣β∗i +
ui√
n

∣∣∣∣− |β∗i |
)

= |ui|, and

√
n

(∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣− |β∗i − β∗j |
)

= |ui − uj|, respectively.

Moreover, if β∗i = 0 or β∗i = β∗j , due to
√

n-consistency of the ordinary least
squares estimate (which is ensured by condition ni/n → ci, 0 < ci < 1 ∀i),

lim
n→∞

P (
√

n|β̂(LS)
i | ≤ λ1/2

n ) = 1, resp. lim
n→∞

P (
√

n|β̂(LS)
i − β̂

(LS)
j | ≤ λ1/2

n ) = 1,

since λn →∞ by assumption. Hence,

λn√
n

φi0(n)

|β̂(LS)
i |

√
n

(∣∣∣∣β∗i +
ui√
n

∣∣∣∣− |β∗i |
)
→p ∞, or

λn√
n

φij(n)

|β̂(LS)
i − β̂

(LS)
j |

√
n

(∣∣∣∣β∗i − β∗j +
ui − uj√

n

∣∣∣∣− |β∗i − β∗j |
)
→p ∞,

if ui 6= 0, resp. ui 6= uj. That means, if for any i, j > 0 with β∗i = β∗j or β∗i = 0,
ui 6= uj or ui 6= 0, respectively, then (λn/

√
n)J̃(u) →p ∞. The rest of the proof of

part (a) is almost identical to Bondell and Reich (2009). Let X∗ denote the design
matrix corresponding to the correct structure, i.e. columns of dummy variables
with equal coefficients are added and collapsed, and columns corresponding to
zero coefficients are removed. Then V ∗

n (u∗) denotes the value of function Vn based
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on X∗. Since ∀i ni/n → ci (0 < ci < 1),

1

n
X∗T X∗ → C > 0 and

εT X∗
√

n
→d w, with w ∼ N(0, σ2C).

Let θCc denote the vector of differences θij = βi − βj which are truly zero, i.e.
not from C, and uCc the subset of entries of θCc which are part of u. By contrast,
uC denotes the subset of θC which are in u. As given in Zou (2006), by Slutsky’s
theorem, Vn(u) →d V (u) for every u, where

V (u) =

{
uT
∗Cu∗ − 2uT

∗w if θCc = 0
∞ otherwise.

Since Vn(u) is convex and the unique minimum of V (u) is (C−1w, 0)T , we have
(cf. Zou, 2006; Bondell and Reich, 2009)

ûC →d C−1w, and ûCc →d 0.

Hence, ûC →d N(0, σ2C−1). By changing the reference category, i.e. changing the
subset of entries of θ which are part of u, asymptotic normality can be proven
for all pairwise differences in θ̂C.

To show the consistency part, we first note that limn→∞ P ((i, j) ∈ Cn) =
1, if (i, j) ∈ C, follows from part (a). We will now show that if (i, j) /∈ C,
limn→∞ P ((i, j) ∈ Cn) = 0. The proof is a modified version of the one given by
Bondell and Reich (2009). Let Bn denote the (nonempty) set of pairs of indices
i > j which are in Cn but not in C. Then we may choose reference category 0
such that β̂q = β̂q − β̂0 > 0 is the largest difference corresponding to indices from
Bn. Moreover, we may order categories such that β̂1 ≤ . . . ≤ β̂z ≤ 0 ≤ β̂z+1 ≤
. . . ≤ β̂k. That means estimate β̂ from (2) with penalty (3) is equivalent to

β̂ = argmin{β1≤...≤βz≤0≤βz+1≤...≤βk}
{
(y −Xβ)T (y −Xβ) + λnJ(β)

}

with

J(β) =
∑

i>j;i,j 6=0

φij(n)
βi − βj

|β̂(LS)
i − β̂

(LS)
j |

+
∑

i≥z+1

φi0(n)
βi

|β̂(LS)
i |

−
∑
i≤z

φi0(n)
βi

|β̂(LS)
i |

.

Since β̂q 6= 0 is assumed, at the solution β̂ this optimization criterion is differ-
entiable with respect to βq. We may consider this derivative in a neighborhood
of the solution where coefficients which are set equal remain equal. That means,
terms corresponding to pairs of indices which are not in Cn can be omitted, since
they will vanish in J(β̂). If xq denotes the qth column of design matrix X, due
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to differentiability, estimate β̂ must satisfy

Q′
q(β̂)√
n

=
2xT

q (y −Xβ̂)√
n

= An + Dn,

with

An =
λn√
n


 ∑

j<q;(q,j)∈C

φqj(n)

|β̂(LS)
q − β̂

(LS)
j |

−
∑

i>q;(i,q)∈C

φiq(n)

|β̂(LS)
i − β̂

(LS)
q |




and
Dn =

λn√
n

∑

j<q;(q,j)∈Bn

φqj(n)

|β̂(LS)
q − β̂

(LS)
j |

.

If β∗ denotes the true coefficient vector, Q′
q(β̂)/

√
n can be written as

Q′
q(β̂)√
n

=
2xT

q (y −Xβ̂)√
n

=
2xT

q X
√

n(β∗ − β̂)

n
+

2xT
q ε√
n

.

From part (a) and applying Slutsky’s theorem, we know that 2xT
q X

√
n(β− β̂)/n

has some asymptotic normal distribution with mean zero, and 2xT
q ε/

√
n as well

(by assumption, and applying the central limit theorem), cf. Zou (2006). Hence
for any ε > 0, we have

lim
n→∞

P (Q′
q(β̂)/

√
n ≤ λ1/4

n − ε) = 1

Since λn/
√

n → 0, we also know ∃ ε > 0 such that limn→∞ P (|An| < ε) = 1.
By assumption λn → ∞; due to

√
n-consistency of the ordinary least squares

estimate, we know that

lim
n→∞

P (
√

n|β̂(LS)
q − β̂

(LS)
j | ≤ λ1/2

n ) = 1,

if (q, j) ∈ Bn. Hence
lim

n→∞
P (Dn > λ1/4

n ) = 1.

As a consequence
lim

n→∞
P (Q′

q(β̂)/
√

n = An + Bn) = 0.

That means if (i, j) /∈ C, also

lim
n→∞

P ((i, j) ∈ Cn) = 0.
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Proof of Proposition 2: In Section 2.3 it is has been shown that the proposed
estimate given an ordinal class structure is equivalent to a Lasso type estimate,
if ordinal predictors are split-coded. That means, since φi(n) → qi (0 < qi < ∞)
∀i by assumption, and employing Slutsky’s Theorem, (the proof of) Theorem
2 about the adaptive Lasso by Zou (2006) can be directly applied. Condition
ni/n → ci, with 0 < ci < 1 ∀i, ensures that the ordinary least squares estimate
is
√

n-consistent.

Proposition 3 Suppose 0 ≤ λ < ∞ has been fixed, and all class-wise sample
sizes ni satisfy ni/n → ci, where 0 < ci < 1. Then weights wij = φij(n), with
φij(n) → qij (0 < qij < ∞) ∀i, j, ensure that estimate β̂ from (2) with penalty
(3) is consistent, i.e. limn→∞ P (||β̂ − β∗||2 > ε) = 0 for all ε > 0.

Proof : If β̂ minimizes Qp(β) from (1), then it also minimizes Qp(β)/n. The
ordinary least squares estimator β̂(LS) minimizes Q(β) = (y − Xβ)T (y − Xβ),
resp. Q(β)/n. Since Qp(β̂)/n →p Q(β̂(LS))/n and Qp(β̂)/n →p Q(β̂)/n, we have
Q(β̂)/n →p Q(β̂(LS))/n. Since β̂(LS) is the unique minimizer of Q(β)/n, and
Q(β)/n is convex, we have β̂ →p β̂(LS), and consistency follows from consis-
tency of the ordinary least squares estimator β̂(LS), which is ensured by condition
ni/n → ci, with 0 < ci < 1 ∀i.

Proposition 4 If restriction θij = θi0 − θj0 is represented by Aθ = 0, define
θ̂γ,λ = argminθ{(y−Zθ)T (y−Zθ)+γ(Aθ̂)T Aθ̂+λ|θ|}, where θ = (θ10, . . . , θk,k−1)

T

and |θ| = ∑
i>j |θij|. Then with γ > 0 and λ ≥ 0, ∆γ,λ = (Aθ̂γ,λ)

T Aθ̂γ,λ is bounded
above by

∆γ,λ ≤ λ(|θ̂(LS)| − |θ̂0,λ|)
γ

,

where θ̂(LS) denotes the least squares estimate (i.e. λ = 0) where Aθ̂(LS) = 0
holds.

Proof : Obviously, for all γ > 0 and λ ≥ 0,

(y − Zθ̂γ,λ)
T (y − Zθ̂γ,λ) + λ|θ̂γ,λ|+ γ∆γ,λ ≤ (y − Zθ̂(LS))T (y − Zθ̂(LS)) + λ|θ̂(LS)|.

Since also

(y − Zθ̂0,λ)
T (y − Zθ̂0,λ) + λ|θ̂0,λ| ≤ (y − Zθ̂γ,λ)

T (y − Zθ̂γ,λ) + λ|θ̂γ,λ|,

and
(y − Zθ̂0,λ)

T (y − Zθ̂0,λ) ≥ (y − Zθ̂(LS))T (y − Zθ̂(LS)),

we have
γ∆γ,λ ≤ λ(|θ̂(LS)| − |θ̂0,λ|).
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predictor label coefficient
intercept 12.597
urban district 14, 16, 22, 24 -1.931

11, 23 -1.719
7 -1.622
8, 10, 15, 17, 19, 20, 21, 25 -1.361
6 -1.061
9 -0.960
13 -0.886
2, 4, 5, 12, 18 -0.671
3 -0.403

year of construction 1920s -1.244
1930s, 1940s -0.953
1950s -0.322
1960s 0.073
1970s 0.325
1980s 1.121
1990s, 2000s 1.624

number of rooms 4, 5, 6 -0.502
3 -0.180
2 0.000

quality of residential area good 0.373
excellent 1.444

floor space (m2) [140,∞) -4.710
[90, 100), [100, 110), [110, 120),
[120, 130), [130, 140) -3.688
[60, 70), [70, 80), [80, 90) -3.443
[50, 60) -3.177
[40, 50) -2.838
[30, 40) -1.733

hot water supply no -2.001
central heating no -1.319
tiled bathroom no -0.562
suppl. equipment in bathroom yes 0.506
well equipped kitchen yes 1.207

Table 3: Estimated regression coefficients for Munich rent standard data using adaptive weights
with refitting, and (cross-validation score minimizing) s/smax = 0.61.
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