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Abstract

Introduction:Carrying out a randomized controlled trial to estimate the causal effects

of regional brain atrophy due to Alzheimer’s disease (AD) is impossible. Instead, we

must estimate causal effects fromobservational data. However, this generally requires

knowing and having recorded all confounders, which is often unrealistic.

Methods: We provide an approach that leverages the dependencies among multiple

neuroanatomical measures to estimate causal effects from observational neuroimag-

ing data without the need to know and record all confounders.

Results: Our analyses of N = 732 subjects from the Alzheimer’s Disease Neuroimag-

ing Initiative demonstrate that using our approach results in biologically meaningful

conclusions,whereas ignoringunobserved confounding yields results that conflictwith

established knowledge on cognitive decline due to AD.

Discussion: The findings provide evidence that the impact of unobserved confounding

can be substantial. To ensure trustworthy scientific insights, future AD research can

account for unobserved confounding via the proposed approach.
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1 BACKGROUND

During the last decade, a number of data-sharing initiatives have been

established in neuroimaging that make it possible to identify disease

predictors with low effect sizes. However, despite efforts to standard-

ize data collection, confounding is a major concern that limits the

ability of large-scale neuroimaging studies to uncover markers with a

true cause-and-effect relationship. Often, the relationship between a

marker and an outcome is confounded because there are one or more

latent factors that are a common cause of both the marker and the

outcome.1 In the worst case, the observed association is only due to

the latent confounder(s), and there is no direct causal link between

the marker and the outcome. An important aspect of confounding is

that, whether it is present depends on the research question being

studied. For instance, age is often considered a confounder in studies

on Alzheimer’s disease (AD), but if the study focuses on age-related

cognitive decline in a healthy population, age is not considered a

confounder.2 Therefore, it is vital to rigorously define the research

question and the causal quantities in which one is interested. If the

study is subject to confounding, investigators need to account for it.

Otherwise, they risk drawing erroneous conclusions because the col-

lected data will be compatible with many – potentially contradictory

– causal explanations that cannot be distinguished from each other

based on the data alone.1

Previous work on confounding in neuroimaging mostly assumed

that all confounding variables were known and had been measured. In

the Regress-Out approach, volume and thickness measurements are

replaced by the residuals of a regression model fitted to estimate the

original volume/thickness from the confounding variables.3–9 A sec-

ond stream of work adjusts for confounders via instance weights that

are used in a downstream classification or regression model to obtain

a pseudo-population that is approximately balanced with respect to

the confounders.10, 11 Note that both the Regress-Out and weighting

approaches could lead to valid causal estimates if all confounders are

accounted for, but none of the previously cited work actually studied

whether causal effects could be identified.

Our previous investigation across 17neuroimaging studies revealed

that considerable bias remained in volume and thickness measure-

ments after adjusting for age, gender, and type of MRI scanner.12

In addition, a study on confounders in the UK Biobank brain imag-

ing study identified hundreds of potential confounders related just to

the acquisition process.13 These results suggest that having records

on all confounders is an unrealistic assumption. Instead, we must

acknowledge the presence of unobserved confounding effects. Studies

using Mendelian randomization (MR) are based on a strong theo-

retical foundation from causal inference to account for unobserved

confounders.14–21 Their downside is that they require the selection of

an instrumental variable that is causal only for the measurement of

interest but not the unobserved confounder, which cannot be verified

based on data alone. MR addresses this issue by searching for a single-

nucleotide polymorphism (SNP) as the instrumental variable, such that

the SNP is believed to be causal only for the measurement of inter-

est. Finding a suitable SNP can be challenging because most SNPs will

have pleiotropic effects, for example, due to alternative splicing, and

thus influence the phenotype of interest as well as other factors that

affect the outcome of interest. This would violate the assumption that

the SNP only influences the outcome via the phenotype of interest.

Multivariable MR overcomes this by explicitly modeling pleiotropy.22

In addition, SNPs are often in linkage disequilibrium with each other,

which makes it hard to establish that a specific SNP is indeed causal

for the phenotype of interest and not another SNP that is in linkage

disequilibriumwith it.23

The aim of this studywas to estimate casual effects of regional brain

atrophy on cognition in the AD continuum. In our analyses, we explic-

itly acknowledge the existence of unobserved confounding and apply

a recently developed statistical method to estimate a substitute con-

founder from regional volume and thickness measurements.24 When

applied to data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), our results demonstrate that ignoring unobserved confound-

ing leads to conclusions that are misleading and not in agreement with

our current understanding of AD. When accounting for unobserved

confounding, thosemisconceptions are resolved andone arrives at bio-

logically meaningful conclusions. Our replication study on data from

the JapaneseADNI (J-ADNI) provides further evidence that the impact

of unobserved confounding is substantial and that it can be over-

come with the proposed approach to obtain a trustworthy diagnostic

model.

2 METHODS

2.1 Data

We used T1-weighted magnetic resonance imaging (MRI) brain scans

from the baseline visit of N = 732 subjects with an Alzheimer’s

pathologic change (CSF A𝛽42 ≤ 192 pg/ml;25) from ADNI.26 In our

replication study, we used MRI from baseline visits of N = 101 sub-

jects with Alzheimer’s pathology (CSF A𝛽42 ≤ 333 pg/ml; 27) from

the J-ADNI.28 The characteristics of the datasets are summarized in

Table 1.

Each scan was segmented with FreeSurfer29 to obtain cor-

tical thickness and subcortical volume measurements. We com-

bined measurements from the left and right hemispheres and

averaged highly correlated thickness measurements belonging to

the same lobe. This resulted in 11 subcortical volume measure-

ments and 20 cortical thickness measurements. The distribution of

each measurement was normalized to appear normally distributed

(Appendix A.1).
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources that focused on confounding

and causal inference in neuroimaging studies. Previous

research did not discuss whether causal effects were

identifiable from observational data.

2. Interpretation: This article studied the impact of con-

founding on estimating the causal effects of regional

brain atrophy on cognition in the Alzheimer’s disease

continuum. We found that ignoring unobserved con-

founding could lead to conclusions that conflicted with

our current understanding of cognitive impairment due

to Alzheimer’s disease. Therefore, we propose to account

for unobserved confounding by estimating a substitute

confounder, which resolves thosemisconceptions.

3. Future directions: As neuroimaging studies continue to

increase in size, the potential impact of unobserved con-

founding is expected to increase. Future research should

explicitly consider unobserved confounders and discuss

their consequences in their study.

2.2 Causal inference

Having observed data on D = 31 neuroanatomical measures X1,… , XD
and the associated Alzheimer’s Disease Assessment Scale Cognitive

Subscale 13 score (ADAS;30), we want to estimate the average change

in ADAS in a hypothetical experiment in which we modify the brains

of subjects such that the volumes/thicknesses of neuroanatomical

structures in  have the values x′

∈ ℝ||:

𝔼[ADAS|do(X = x′

)]. (1)

The expectation is called the average causal effect (ACE), and the

conditioning operator do(⋅) denotes an intervention that sets the

neuroanatomical measures X equal to x′

.1

The central question in causal inference is that of identification:

Is the ACE uniquely determined by the observed joint distribution

over volume/thickness measures and the ADAS? Usually, this is only

the case if we know and record all confounders, that is, all com-

mon causes of neuroanatomy and the ADAS. The causal graph in

Figure 1A captures the known relationships in AD that are associated

with our research question and highlights the quantities of interest

in red (see Appendix A.2 for details on its construction). From the

graph we can conclude that there are two sources that confound the

relationship between neuroanatomy and ADAS: (i) age as a known

confounder,31 and (ii) U as a representative of all other factors that

previous research highlighted but are unmeasured and unknown.12, 13

Therefore, it appears that unobserved confounding (due toU) prevents

us from uniquely identifying the ACE of neuroanatomy on cognition

from observational data (Appendix A.3).

TABLE 1 Characteristics of data fromAlzheimer’s Disease
Neuroimaging Initiative (ADNI) and Japanese ADNI (J-ADNI) used in
this study. ATN classification is not available for J-ADNI

ADNI (N=732) J-ADNI (N=101)

Age

Mean (SD) 73.82 (7.13) 72.34 (6.02)

Range 54.40 – 91.40 60.98 - 83.68

Gender

Female 324 (44.3%) 51 (50.5%)

Male 408 (55.7%) 50 (49.5%)

Education

≤ 12 years 121 (16.5%) 45 (44.6%)

12–16 years 322 (44.0%) 52 (51.5%)

> 16 years 289 (39.5%) 4 (4.0%)

ATN classification71

A+/T-/N- 92 (12.6%) –

A+/T+/N- 256 (35.0%) –

A+/T+/N+ 384 (52.5%) –

ADAS-Cog 13

Mean (SD) 19.58 (9.99) 22.71 (7.846)

Range 1.00 – 55.00 4.00 - 44.00

2.3 Estimating a substitute confounder

In general, unobserved confounding prevents us from estimating

causal effects from observational data.1 Our proposed approach,

based on the work of Wang and Blei,24 overcomes the identifiabil-

ity issue by making assumptions on the data generation process. In

particular, we assume that the unobserved confounder U causally

affects multiple (≥ 2) neuroanatomical structures. In other words, we

assume that there is no unobserved confounder that only affects

a single structure. This assumption is plausible because common

sources of confounding, such as scanner, protocol, and aging, affect

the brain as a whole and not just individual regions.32, 33 Based on

this assumption, the key insight of our proposed method is that the

neuroanatomical structuresX1 ,… , XDweare interested inbecomecon-

ditionally independent given the unobserved confounder U and their

observed causes PAX1 ,…,XD , which includes the observed confounder

age:

P(x1,⋯, xD|U, PAX1 ,⋯,XD ) =
D∏

d=1

P(xd|U, PAX1 ,⋯,XD ). (2)

Therefore, we can obtain a substitute confounder z ∈ ℝK for the

unobserved confounder U by estimating the conditional distri-

bution with a probabilistic latent factor model (PLFM). Here, we

estimate a substitute confounder using probabilistic principal

component analysis (PPCA;34) and Bayesian Probabilistic Matrix

Factorization (BPMF;35) using PyStan 2.19.1.136 (Appendices A.4

and A.5).
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(A)

(B)

F IGURE 1 (A)Causal graph used to estimate the causal effect (red arrow) of subcortical volumes (Xv
d; d = 1,… , D1) and cortical thicknesses

(Xtd; d = 1,… , D2) on cognitive function (ADAS) in the presence of an unknown and unobserved confounderU. Exogenous variables irrelevant for
estimating the causal effect of interest are not shown. Circles are random variables and arrows causal relationships. Filled circles are observed,
transparent circles are hidden, bidirectional edges denote unobserved common causes. (B)Variables required to identify the causal effect of
neuroanatomical measurements Xvd , X

t
d on the ADAS (see Appendix A.6 for the proof).

2.4 Identifiability of causal effects

When it is proven that the latent representation of any PLFM does

indeed render the relationship between neuroanatomical measures

and ADAS unconfounded (Appendix A.6), the ACE of a subset of neu-

roanatomical measures  can be estimated from observational data

by accounting for the variables in Figure 1B. Effectively, we must fit

a model to predict the ADAS from neuroanatomical measures, age,

and the substitute confounder. Since the ADAS ranges between 0 and

85 (higher values indicate a more pronounced cognitive impairment),

we convert it to proportions in the interval (0,1) and use a Bayesian

beta regression model37 as implemented in rstanarm 2.19.336. We

account for collinear features using a normal prior on the regression

coefficients (Appendix A.7).

2.5 Comparative analysis

We estimated the causal effect of 11 subcortical volume measure-

ments and 20 cortical thickness measurement on the ADAS-Cog 13

(Figure 2). We compare our approach of estimating causal effects

with three non-causal alternatives: (i) ignoring all observed and unob-

served confounders (Non-Causal), (ii) only accounting for the observed

confounder age via residualization (Regress-Out;3), and (iii) removing

scanner effects across 60 ADNI sites with ComBat.4 For the latter, we

preserve biological variability due to the causes of neuroanatomical

measures in Figure 1A that are not confounders: years of education,

gender, and p-Tau. All models have access to the same set of 31 neu-

roanatomical measurements and only differ in the set of confounders

they account for. Hence, we use the Non-Causal model to illustrate
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F IGURE 2 Estimated coefficients on data fromADNI. (A)Mean coefficient (dot), 80% (thick line), and 95% (thin line) credible interval of volume
and thickness measures. Significant effects aremarkedwith a black dot. The proposed approach uses six substitute confounders. See Appendix C
for 1–8 substitute confounders. (B)Anatomical view of mean coefficients when estimating a substitute confounder via BPMF and PPCA

the consequences if one is oblivious to all types of confounding, the

Regress-Out model to illustrate the consequences of only account-

ing for the observed confounder age, and ComBat to investigate the

impact of harmonization across scanners and sites. We consider an

effect to be statistically significant if the 95% credible interval (CI; thin

line) does not contain zero. A CI is analogous to a confidence interval

in frequentist statistics but considers the parameter to be random and

not the bounds of the interval. Hence, the 95% CI of a parameter pro-

vides the interval that contains the true parameter with a probability

of 95%.

3 RESULTS

3.1 Quantitative evaluation

Note that the true causal effect strengths are unknown and we must

rely on a qualitative comparison. For a quantitative evaluation, we

performed experiments on brain MRI from the UK Biobank with syn-

thetically generated outcomes, as described in Appendix B. Briefly,

these results show that accounting for unobserved confounding does

reduce the bias in estimated effect strengths considerably and that our

proposed approach is robust to the choice of PLFM and number of

substitute confounders.

3.2 Estimation of causal effects in ADNI

For four out of 31 brain structures, estimates are statistically signif-

icant when accounting for unobserved confounding via a substitute

confounder, whereas they are insignificant for the Non-Causal and

Regress-Out approaches: nucleus accumbens volume, amygdala vol-

ume, parahippocampal thickness, and temporal pole thickness. In

addition, three measures are deemed statistically significant by the

Non-Causal, Regress-Out, and ComBat approaches but insignificant

after accounting for unobserved confounding: frontal lobe I thick-

ness (paracentral lobule, precentral gyrus), transverse temporal gyrus

thickness, and thalamus proper volume. For the remaining measures,

statistical significance does not change, but the estimated effect

strength can differ substantially.

The six biggest absolute differences with respect to the Non-Causal

mean estimate are consistent across PPCA and BPMF approaches:

 15525279, 2023, 5, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.12825 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [18/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PÖLSTERL ET AL. 1999

thickness of temporal pole, parahippocampus and entorhinal cor-

tex, and volume of hippocampus, amygdala, and nucleus accum-

bens. For parahippocampal and temporal lobe thickness and vol-

umes of nucleus accumbens and amygdala, the 80% CIs (thick lines)

do not overlap, which supports the idea that the effect strength

is significantly underestimated when unobserved confounding is

ignored.

We can also observe that mean estimates of seven structures go

from positive to negative after unobserved confounding is accounted

for: volumes of thalamus proper and nucleus accumbens, and thick-

ness of pars orbitalis, medial orbital gyrus, lateral occipital lobe,

parahippocampus, and temporal pole. Among these, nucleus accum-

bens volume and thickness of parahippocampus and temporal pole

stand out because their estimates flip the sign and go from statistically

insignificant to significant. That means that atrophy of these struc-

tures is insignificantly associated with cognitive improvement in the

Non-Causal and Regress-Out approaches (positive mean coefficient,

CIs contain zero), but atrophy is a significant cause of cognitive decline

according to the proposed causal models (negative mean coefficient,

CIs exclude zero).

A change from negative to positivemean estimates can be observed

for optic chiasm and caudate, albeit at a smaller scale – their CIs

continue to cover zero. Finally, the meta-ROI frontal lobe I has a pos-

itive coefficient across all methods, which indicates that an increase

in thickness is linked to cognitive decline. However, this effect is

only statistically significant when ignoring unobserved confounding

(Non-Causal, Regress-Out, ComBat).

Although the ACE is fully parameterized by the coefficients in

Figure 2A, Figure 3 shows the estimated ACE across varying inter-

ventions for structures with a statistically significant effect strength.

Note that we used a linear model for the estimation of causal effects,

but its link function is non-linear, and non-linear transformations

have been applied to the measurements (Appendix A.1). Therefore,

the ACE can be non-linear with respect to neuroanatomical mea-

sures. The figure shows that accounting for the observed confounder

age, but ignoring unobserved confounding, only results in a minor

difference, compared to ignoring all confounders. Similarly, harmoniz-

ing measurements with ComBat changes very little. When observed

and unobserved confounding is accounted for, differences are much

more pronounced.

When comparing the results obtained by estimating a substitute

confounder via PPCA vs. BPMF, the differences are comparatively

small. The biggest differences occur at the extremes of the distribu-

tion of measurements. When considering the ACE at the center of

the distribution (between the first and third quartile), estimates dif-

fer only slightly. The biggest difference is 1.6 for frontal lobe I at

the third quartile, which is much smaller than the difference to the

Non-Causal and Regress-Out estimates (4.3–6.1). When estimating

the ACE at the mean of the corresponding measurement, differences

between the Regress-Out approach and the proposed approach range

between 3.73 (hippocampus) and 6.78 (frontal lobe I) with a mean

difference of 5.1 across all structures. The bias due to unobserved

confounding increases when intervening on multiple structures. As

an example, let us consider the composite ACE of setting the mea-

surements of the 11 ROIs in Figure 3A from the median to the lower

quartile (𝔼[ADAS|do(x25)] − 𝔼[ADAS|do(x50)]) as depicted in Figure 3B.
When ignoring unobserved confounding, this will lead to an estimated

increase in the ADAS of 7.5 (Non-Causal), 7.7 (Regress-Out), and 8.3

(ComBat), whereaswhenunobserved confounding is accounted for the

increase is estimated to be 19.7 (PPCA) and 18.3 (BPMF).

3.3 Replication study in J-ADNI

To investigate whether our conclusions derived on data from ADNI

are generalizable, we repeated our experiments on 101 subjects from

J-ADNI (Table 1). Note that we could not evaluate ComBat because

J-ADNI does not disclose identifiers of clinical sites.

Owing to the small sample size of the J-ADNI data, the causal effects

of only three structures reach statistical significance (Figure 4A and

Appendix D). Atrophy of the hippocampus and entorhinal cortex has

been estimated to have the largest impact on cognition (most nega-

tive mean coefficient), which matches our results on ADNI. However,

the effect of atrophy of the entorhinal cortex ismarginally insignificant

when estimating substitute confounders via BPMF. When comparing

mean estimates of theNon-Causal andRegress-Outmodels to the pro-

posedmodels, the biggest differences are due to hippocampus volume,

which is also among the biggest changes on ADNI (Figure 2A). Parahip-

pocampus thickness is deemed a significant effect for both BPMF and

PPCA on J-ADNI but is only significant with PPCA on ADNI. Never-

theless, when accounting for unobserved confounding, the estimate

undergoes a change similar to that seen on ADNI, such that 80% CIs

do not overlap. Although they are deemed statistically insignificant, we

want to highlight results for temporal pole thickness. In both ADNI

and J-ADNI, its mean estimate flips signs from positive to negative,

such that atrophy is associated with cognitive improvement in the

Non-Causal and Regress-Out models but with cognitive decline in the

proposedmodels.

When considering the estimated ACE in Figure 4B, our conclu-

sions from ADNI are confirmed. First, accounting for the observed

confounder age affects estimates only marginally. Second, differences

between the BPMF and PPCA models are minor and occur at the

extremes of the observed distribution of volume and thickness mea-

surements. Finally, the impact of ignoring unobserved confounding

becomes most evident when considering the composite ACE of all sta-

tistically significant causes of the ADAS in Figure 4C.When accounting

for unobserved confounding, the estimated effect on the ADAS is an

increase of 10.2 (BPMF) and 10.5 (PPCA) points, whereas ignoring

unobserved confounding will underestimate the effect (Non-Causal:

3.5; Regress-Out: 3.6).

4 DISCUSSION

The results presented in the preceding section indicate that we

arrive at strikingly different conclusions when ignoring unobserved
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(A)

(B)

F IGURE 3 (A) Estimates of average causal effect (ACE)𝔼[ADAS|do(x)] across structures with significant effect (Figure 2A). Note that the
noncausal and regress-out approaches are by definition not valid estimators of the ACE because they ignore unobserved confounding. Box plots
depict the distribution of volume/thickness measures in the observed data. Orange lines: median; diamonds: mean. (B)Composite ACE from
setting the 11 structures in subfigure A from themedian (x50) to the lower quartile (x25)

confounding. Next, wewill discuss these results in terms of our current

understanding of cognitive decline in AD.

On ADNI, all models agree on the five regions that have the largest

absolute mean coefficient. The most important causes of cognitive

decline are entorhinal and hippocampal atrophy. This is a reassuring

result because neural losses of the entorhinal cortex and hippocam-

pus are among the best studied neuroimaging markers in AD.38–41

The third ranked cause of cognitive decline is parietal lobe atrophy.

Although it is not considered a marker for traditional AD, it is a well-

described pattern in the atypical presentation of posterior cortical

atrophy (PCA; 42). In subjects with AD of the PCA subtype, first symp-

toms are typically related to visual impairment rather than episodic

memory impairment. Since the ADAS 30 assesses both aspects, and it

is known that theADNI study includes subjectswith PCA,43 the results
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(A)

(B)

(C)

F IGURE 4 Selection of causal effects on J-ADNI. (A)Mean coefficient (dot), 80% (thick line), and 95% (thin line) credible interval of volume and
thickness measures. Significant effects aremarkedwith a black dot. The proposed approach uses six substitute confounders. See Appendix D for
full results. (B) Estimates of average causal effect (ACE)𝔼[ADAS|do(x)]. (C)Composite ACE from setting the three structures in subfigure B from
themedian (x50) to the lower quartile (x25).
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illustrate that the proposed approach can correctly capture cognitive

decline across AD subtypes. Atrophy of the meta-ROI temporal lobe

and isthmus of cingulate gyrus completes the top five most impor-

tant causes. Atrophy of the temporal lobe, comprising fusiform, banks

of superior temporal sulcus, superior temporal, inferior temporal, and

middle temporal gyrus, is an established marker of AD and is known to

affect cognitive function,41, 44, 45 as confirmed by our results. Further-

more, atrophy of the isthmus of cingulate gyrus is a cause of cognitive

decline, which agrees with the results of a study on cognition in pro-

dromal AD46 and on patterns of regional atrophy in subjects with mild

cognitive impairment.47

We obtained strikingly different results when ignoring unob-

served confounders for parahippocampal thickness, amygdala volume,

nucleus accumbens volume, and temporal pole thickness. Parahip-

pocampal thickness and amygdala volume are deemed statistically

insignificant causes of cognition in the Non-Causal and Regress-Out

models but statistically significant causes when accounting for unob-

served confounding via the proposed approach. Both structures are

part of the medial temporal lobe, whose function is critical in forming

short-termmemory. Neural loss in the parahippocampus and amygdala

occurs early in the course of AD; hence, these areas are established

markers for diagnosing AD.38, 41, 48, 49 This effect is only captured cor-

rectly when accounting for unobserved confounding, as indicated by a

negativemean coefficient. If it is ignored, unobserved confounding will

cause the investigator to arrive at implausible conclusions that conflict

with our current understanding of AD.

Although statistically insignificant, the results of the Non-Causal,

Regress-Out, and ComBat models that atrophy of the nucleus accum-

bens leads to cognitive improvement (indicated by a positive mean

coefficient) contradict previous research too. The nucleus accumbens

integrates information from the limbic system and is a part of the

ventral striatum, which is involved in regulating episodic memory

function.50 Previous researchers observed that atrophy of the nucleus

accumbens correlates with cognitive impairment.51, 52 This would only

be captured correctly when accounting for unobserved confounding.

Similarly, the results for temporal pole thickness are statistically

insignificant, but deceiving. Thinning of the temporal pole is associated

with cognitive improvement in the non-causal models, but cognitive

decline when unobserved confounding is accounted for. The results of

models that ignore unobserved confounding again contradict previous

results demonstrating that thinning correlates with AD and cognitive

decline.44, 53 Our analysis suggests that temporal pole thinning is a

statistically significant cause of cognitive impairment, which has been

verified by a recentMR study on the causal effects of corticalmeasures

on AD.20

The result that atrophy of corpus callosum is causal of cognitive

decline seems to be plausible, too (all models agree on this). The cor-

pus callosum is the brain’s largest white matter structure, integrating

information from the left and right cerebral hemispheres. Several stud-

ies found corpus callosum atrophy in AD patients and its association

with cognitive impairment.54–57

The results for the meta-ROI frontal lobe I are inconclusive. It

has a statistically significant positive coefficient for the Non-Causal,

Regress-Out, andComBat approaches,meaning thatmodels agree that

thinning of this area leads to improved cognition. When accounting

for unobserved confounding via PPCA, the estimated effect strength

is slightly reduced and becomes barely insignificant. When using the

BPMF approach, the effect is further reduced, such that the estimated

80%CI covers zero. Anatomically, the precentral gyrus and paracentral

lobule comprise the primarymotor cortex.58

Although AD pathology can be detected in the primary motor cor-

tex of AD patients,59 and animal models,60 the underlying processes

connecting atrophy of the primary motor cortex, motor deficits, and

cognition remain unknown.61 Previous research showed that atrophy

of the primary motor cortex occurred in later stages of the disease,

which may inhibit motor function.61, 62 Ongoing efforts that focus on

studying the association of cognitive and motor impairments might

help to shed light on this aspect of AD.63

When the differences in estimated ACE in Figure 3 are considered,

the consequences of ignoring confounding appear striking. Account-

ing only for observed confounding due to age changes the estimated

effects nominally. Moreover, harmonizing data to account for scanner

effects is ineffective with respect to addressing unobserved con-

founding. In contrast, when observed and unobserved confounding is

accounted for via the proposed approach, conclusions can changedras-

tically.

When considering interventions across multiple structures in

Figure3B, thebias due tounobserved confounding increases.Using the

Non-Causal, Regress-Out, andComBatmodels, theACE is estimated to

be 7.5, 7.7, and 8.3, respectively. However, when accounting for unob-

served confounding, the increase is estimated to be 19.7 (PPCA) and

18.3 (BPMF). The ADNI study reported differences in the ADAS in

the range 5–10 between diagnostic groups,64, 65 which roughly cor-

responds to the difference when unobserved confounding is ignored

(10.0 –12.2). Hence, it is likely that estimates made using a diagnos-

tic model that ignores unobserved confounding would be misleading.

This example clearly illustrates that one must account for unobserved

confounding to obtain a trustworthy diagnostic model.

Our replication study on J-ADNI yielded only three statistically sig-

nificant causes of the ADAS because the CIs are relatively large due to

the limited sample size of 101 subjects. The results on J-ADNI confirm

our results on ADNI that atrophy of the hippocampus and entorhi-

nal cortex has the greatest impact on reducing cognitive abilities. It

also confirms that ignoring unobserved confounding will result in esti-

mates that underestimate the effect of atrophy on the ADAS by a

large margin (Figure 4). Overall, we can conclude that the proposed

approach is effective at correcting for unobserved confounding but

that we can only detect the most significant factors in the ADAS with

statistical significance.Webelieve a replication study on a datasetwith

a larger sample size would help to confirm factors with smaller effect

sizes, too.

Despite the ability of the proposed approach to estimate causal

effects in the presence of unobserved confounding, it does rely on

important assumptions. The gold standard in estimating causal effects

would be a randomized experiment, where subjects’ cortical thick-

nesses and subcortical volumes are randomly assigned. Because this
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is impossible, we must resort to an observational study. This requires

several assumptions, some of which cannot be verified based on data

alone. An alternative approach to estimating causal effects in the pres-

ence of unobserved confounding is MR. Like our approach, it requires

making specific assumptions regarding causal relationships to render

causal effects identifiable. MR assumes an instrumental variable – a

SNP – that only influences the outcome via the neuroanatomical mea-

sure of interest, not through other paths. Considering that most SNPs

have pleiotropic effects, finding a marker that satisfies this require-

ment is difficult, in particular, whenwe are interested in estimating the

effects of many neuroanatomical structures.

Multivariable MR22 allows estimation in the presence of pleiotropy

but still requires that the majority of SNPs be valid instruments.66

In contrast, the proposed approach requires that the unobserved

confounder affects multiple (≥ 2) neuroanatomical structures. This

provides us with information on the unobserved confounder such that

we can estimate a substitute for it via a PLFM.When the aim of a study

is to estimate the causal effects of many neuroanatomical structures,

we believe that the assumptions of the proposed approach will be eas-

ier to satisfy than those ofMR. Nevertheless, a multivariableMR study

on the causal effects of 14 gray matter volumes on AD diagnosis iden-

tified the hippocampus and inferior temporal cortex, which aligns with

our results.

Specifically, our approach is based on the following assumptions.

First, it is inherently linked to the structure of the graph in Figure 1.

This implies that we assume that the unobserved confounder is shared

across two or more neuroanatomical measures and that there are

no direct causal relationships between measurements. Unfortunately,

both cannot be verified based on data, but we believe that likely candi-

dates for the unknown confounder are scanner- or age-related, which

would affect the brain as a whole and satisfy the first assumption.

The second assumption that measurements are not causally depen-

dent is plausible for cross-sectional data, too. Although brain regions

are certainly connected, we argue that it is reasonable to assume that

one structure’s volume/thickness is not causal for another structure’s

volume/thickness, but both are the result of a higher-order biological

process, which would satisfy this assumption. To account for cogni-

tive reserve, we used years of education, but alternatives exist. We

evaluated the American National Adult Reading Test67 in Appendix E,

which yielded comparable results. In this study, we assumed that

gender had no effect on ADAS, but no consensus has been reached

regarding whether this is truly the case.68–70 However, accounting for

gender as an additional observed confounder is made straightforward

by including it in the beta regressionmodel.

Another assumption is implied in the use of a linear model to

estimate causal effects. Since there are infinitely many causal inter-

ventions on volume/thickness measures one could investigate, non-

parametrical estimation becomes impossible, and we must resort to

modeling. We did not consider interaction effects, but we did con-

sider non-linear effects by transformingmeasurements (AppendixA.1).

Because the true functional formof the effect of neuroanatomicalmea-

sures on theADAS is unknown, ourmodelmight bemisspecified, which

would introduce bias. This warrants further investigation into alter-

native approaches to modeling the causal effects of neuroanatomical

measures on the ADAS.

In conclusion, causal analysis of neuroanatomy offers the possibil-

ity of estimating how cognitionmight change if we introduced a certain

patternof regional brain atrophy. This couldhelpus improveourunder-

standing about the neuroanatomical determinants of cognitive decline.

Our analyses of the causal effects on cognition in theADNI and J-ADNI

studies demonstrated that this represents a daunting task because

the impact of unobserved confounding is substantial, which renders

causal effects unidentifiable.Weovercame this challengebyestimating

a substitute confounder via a latent factor model.

Our results on ADNI revealed that the causes of cognitive decline

are atrophy of the entorhinal cortex, hippocampus, parietal lobe, isth-

mus of cingulate gyrus, themeta-ROI temporal lobe, amygdala, tempo-

ral pole, corpus callosum, nucleus accumbens, and parahippocampus.

If unobserved confounding is ignored, one risks arriving at conclu-

sions that aremisleading and in conflictwithour currentunderstanding

of AD.
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Additional supporting information can be found online in the Support-
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