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Abstract

Background: Acute myeloid leukemia (AML) with initial hyperleukocytosis is asso-

ciated with high early mortality and a poor prognosis. The aims of this study were to

delineate the underlying molecular landscape in the largest cytogenetic risk group,

cytogenetically normal acute myeloid leukemia (CN‐AML), and to assess the prog-

nostic relevance of recurrent mutations in the context of hyperleukocytosis and

clinical risk factors.

Methods: The authors performed a targeted sequencing of 49 recurrently mutated

genes in 56 patients with newly diagnosed CN‐AML and initial hyperleukocytosis of

≥100 G/L treated in the AMLCG99 study. The median number of mutated genes per

patient was 5. The most common mutations occurred in FLT3 (73%), NPM1 (75%),

and TET2 (45%).

Results: The predominant pathways affected by mutations were signaling (84% of

patients), epigenetic modifiers (75% of patients), and nuclear transport (NPM1; 75%)

of patients. AML with hyperleukocytosis was enriched for molecular subtypes that

negatively affected the prognosis, including a high percentage of patients presenting
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with co‐occurring mutations in signaling and epigenetic modifiers such as FLT3 in-

ternal tandem duplications and TET2 mutations.

Conclusions: Despite these unique molecular features, clinical risk factors, including

high white blood count, hemoglobin level, and lactate dehydrogenase level at

baseline, remained the predictors for overall survival and relapse‐free survival in

hyperleukocytotic CN‐AML.
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acute myeloid leukemia (AML), hyperleukocytosis, molecular profiling, normal karyotype

INTRODUCTION

Acute myeloid leukemia (AML) is the second most common form of

leukemia in adult patients. AML originates in the bone marrow,

where specific somatic genetic changes in hematopoietic stem cells

cause clonal proliferation and a differentiation block. This results in

bone marrow failure as well as complications derived from the

excessive blast production, such as leukostasis, tumor lysis syndrome,

and disseminated intravascular coagulation.1,2

Overall, outcomes in AML are poor, especially for patients older

than 60 years, who have a cure rate of only 5%–15% versus 35%–

40% in younger patients.1 Primary refractory AML (10%–40% of

newly diagnosed AML cases) and relapses after an initial response

are the major causes of the short overall survival (OS) and remain

challenges in the treatment of these patients.

Besides the cytogenetic and molecular heterogeneity that affects

outcomes in AML,3–6 clinical risk factors such as an older age and an

Eastern Cooperative Oncology Group (ECOG) performance status of

≥2 have been shown to affect the prognosis.7 One laboratory risk

factor associated with adverse outcomes in AML, a high early death

rate, and a high relapse rate is an initial hyperleukocytosis (HL) with a

white blood count (WBC) ≥100 G/L, which occurs in 8%–18% of pa-

tients with AML.2,7–10 HL can cause leukostasis, a medical emergency

with microcirculation disturbances and reduced tissue perfusion.

Previous analyses have revealed an association between HL in

AML and the French–American–British M4/M5 subtype,11 the

presence of a FLT3 internal tandem duplication (FLT3‐ITD),12,13 or

KMT2A rearrangements.12,14

However, a comprehensive molecular assessment in a homoge-

neously treated study cohort to delineate the mutational landscape

of cytogenetically normal acute myeloid leukemia (CN‐AML) with HL

and to identify specific driver mutations of this particular AML type

has not been performed yet.

MATERIALS AND METHODS

Patients

Analyses were based on a total of 86 patients with CN‐AML and HL

(WBC ≥ 100 G/L) at diagnosis who had been enrolled in the

AMLCG99 study (NCT00266136).15 The study protocol was

approved by the Bundesinstitut für Arzneimittel und Medi-

zinprodukte (BfArM). Details regarding patients, treatments, and

patient selection are provided in the supplementary appendix and

Figure S1. In a subset of 56 of these 86 patients (65%), bone marrow

that could be used for a targeted sequencing approach was available.

For 30 of the 86 patients, no further specimens were available.

Targeted sequencing

For the 56 patients with additional bone marrow available, DNA was

extracted, and targeted sequencing was performed. A total of 49

genes known to be recurrently mutated in AML16 were included in

our panel (Table S1). The entire coding region (for 16 of these genes)

and recurrently mutated regions (for 33 genes) were sequenced with

a custom, amplicon‐based, targeted enrichment kit (design 27327‐
1399408228, 1–500 kb, HaloPlex, Agilent, Böblingen, Germany)

and an Illumina MiSeq instrument (Illumina, San Diego, California).

For patient characteristics and further details on the definitions

of the clinical endpoints and statistical, molecular, and computational

analyses, see the supplementary appendix.

RESULTS

Patient selection and comparison of selected and
nonselected patients

Out of a total of 86 patients with CN‐AML and HL, 56 had material

available for targeted sequencing. Among these selected patients, the

median age was 54 years, 41% were female, 52% had an ECOG

performance status of 0–1, and most had de novo AML (96%). NPM1

mutations, FLT3‐ITDs, FKT3 tyrosine kinase domain (FLT3‐TKD)

mutations, KMT2A partial tandem duplications, and biallelic CEBPA

(biCEBPA) mutations, which were routinely assessed in all patients in

the clinical diagnostic laboratory, were present in 75%, 59%, 16%,

4%, and 0% of the patients, respectively (Table 1 and Table S2). Fifty‐
seven percent of the patients received double induction therapy

(Table 2 and Table S3). In patients younger than 60 years, double

induction was the standard therapy according to the protocol,
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regardless of the response. In patients 60 years old or older, a second

induction therapy was administered only in the case of persistent

disease in the bone marrow.

The median follow‐up time was 61.9 months (95% CI, 48.1–75.7

months). Seven percent, 16%, and 21% of the patients died within 7,

30, and 60 days, respectively, after the start of therapy (Table 2 and

Table S3). Thirteen patients underwent allogeneic hematopoietic

stem cell transplantation (HSCT) as consolidation therapy during

their first complete remission (CR; 23% of the 56 patients), whereas

three patients underwent allogeneic HSCT because of primary pro-

gressive AML. The median OS was 10.7 months (95% CI, 5.5–15.9

months), and the median relapse‐free survival (RFS) for 34 patients

who achieved CR was 7.8 months (95% CI, 0.8–15.2 months) (Table 2

and Table S3). Twenty‐eight patients (82%) in CR relapsed or died.

There were no significant differences between the 56 selected

patients and the 30 patients not selected with respect to the

following: age; gender; ECOG performance status; origin of AML (de

novo AML vs. secondary AML/therapy‐related AML), mutations in

NPM1, FLT3, and KMT2A; and clinical outcomes (Tables S2 and S3).

The selected patients did not show any biCEBPA mutations (0% vs.

19% for nonselected patients; p = .001). European LeukemiaNet

(ELN) risk groups were distributed similarly among the 56 patients

with HL and material available for next‐generation sequencing and

the 30 patients with HL who were excluded from the study because

no material was available (Table S4A). When comparing all CN‐AML

patients with HL to patients without HL treated in the AMLCG99

study, we observed a significant enrichment of the favorable ELN

subgroup NPM1mut/FLT3‐ITDlow and the intermediate‐risk groups

TAB L E 1 Baseline characteristics of younger and older patients with hyperleukocytosis

All 56 selected patients 34 patients < 60 years old 22 patients ≥ 60 years old

pNo. % Median Range No. % Median Range No. % Median Range

Age, years 54 20–78 45 20–58 68 60–78

WBC, �109/L 147 104–798 166 104–798 142 111–786 NS

Platelet count, �109/L 54 10–238 51 22–232 71 10–238 NS

Hemoglobin level, �109/L 94 50–142 96 50–142 92 62–131 NS

Bone marrow blasts, % 90 30–100 90 40–100 85 30–100 NS

LDH, U/L 1008 186–7343 1082 186–5560 794 278–7434 NS

Females 23 41.1 18 52.9 15 68.2 NS

ECOG NS

0 or 1 29 51.8 19 55.9 10 45.5

2–4 27 48.2 15 44.1 12 54.5

FAB NS

M0 0 0 0 0 0 0

M1 17 30.4 8 23.5 9 40.9

M2 9 16.1 5 14.7 4 18.2

M4 18 32.1 13 38.2 5 22.7

M5 12 21.4 8 23.5 4 18.2

M4/M5 30 81.1 21 61.8 9 40.9 NS

Type of disease NS

De novo 54 96.4 33 97.1 21 95.5

sAML/tAML 2 3.6 1 2.9 1 4.5

NPM1‐mutated 42 75.0 26 76.5 16 72.7 NS

FLT3‐ITD 33 58.9 20 58.8 13 59.1 NS

FLT3‐TKD 9 16.1 8 23.5 1 4.5 NS

KMT2A‐PTD 2 3.8 2 5.9 0 0 NS

biCEBPA 0 0 0 0 0 0 NS

Abbreviations: biCEBPA, biallelic CEBPA; ECOG, Eastern Cooperative Oncology Group; FAB, French–American–British classification; ITD, internal

tandem duplication; LDH, lactate dehydrogenase; NS, not significant; PTD, partial tandem duplication; sAML, secondary acute myeloid leukemia

evolving from a previous hematological disorder; tAML, therapy‐related acute myeloid leukemia; TKD, tyrosine kinase domain; WBC, white blood count.
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NPM1mut/FLT3‐ITDhigh and NPM1wt/FLT3‐ITDlow in patients with

HL (Table S4B). The frequency of the double‐negative NPM1wt/

FLT3wt group was significantly lower in patients with HL (Table S4B).

No patient with HL CN‐AML belonged to the NPM1wt/FLT3‐ITDhigh

adverse‐risk group according to ELN 2017, whereas eight patients

with non‐HL CN‐AML did; however, this was not significantly

different (Table S4B).

Spectrum of driver mutations and associated
pathways in 56 selected patients

A total of 269 variants (166 of which were unique variants) were

identified in 37 of the 49 assessed genes. Predominantly, missense

mutations (60.9%), frameshift insertions (17.1%), and in‐frame in-

sertions (13.8%) were detected (Figure S2A). The majority of the

mutations were single‐nucleotide variants (64.7%), which were fol-

lowed by insertions and deletions in 30.9% and 4.4% of the cases,

respectively (Figure S2B). Nucleotide changes occurred most

frequently as C to T or T to C transitions (Figure S2C). The median

number of variants per sample was 5 (range, 2–8) (Figures S2D and

S3A). The median number of missense mutations, frameshift in-

sertions, and in‐frame insertions per sample was 3, 1, and 1,

respectively (Figure S2E).

Among the 37 genes that showed mutations, 32 were mutated in

>3% of the patients, and 13 genes were mutated in >10% of the

patients (Figure 1A). Twelve genes in our sequencing panel (BRAF,

CFS3R, CSFR1, ETV6, GATA1, GATA2, JAK1, JAK2, KRAS, MPL, TERC,

and U2AF1) did not show mutations in any of the patients. The me-

dian number of mutated genes per patient was 5 (range, 1–8)

(Figure S3B). All patients showed at least one driver mutation

(Figure S3B). The top 11 recurrently mutated genes included NPM1

(75%), FLT3 (73%), TET2 (45%), BCORL1 (27%), SF3A1 (23%), BCOR

(18%), KIT (16%), IDH2 (12%), IDH1 (11%), SMC3 (11%), and ASXL1

(11%) (Figure 1A,B). Notably, 57% of all 56 patients who underwent

targeted sequencing (32 of 56) had mutations in both NPM1 and

FLT3, and no biCEBPA mutation was detected. Thirty‐three of the 56

patients were positive for FLT3‐ITD. In 32 of the 33 FLT3‐ITD–pos-

itive patients for whom the FLT3‐ITD allelic ratio (AR) was available,

the median FLT3‐ITD AR was 0.41 (range, 0.02–0.98) (Table S5A). In

24 patients with co‐occurring NPM1 mutations and FLT3‐ITD, the

median FLT3‐ITD AR was 0.46 (range, 0.04–0.98) (Table S5A).

There was no significant difference in WBCs between patients

with a FLT3‐ITD AR <0.50 and those with a FLT3‐ITD AR ≥0.50

among all patients who underwent targeted sequencing (p = .075;

Table S5B). When analyses were restricted to FLT3‐ITD–positive

patients, the median WBC among FLT3‐ITD–positive patients was

slightly higher for patients with a FLT3‐ITD AR of <0.50 versus ≥0.50

(p = .040; Table S5B). In patients with co‐occurring NPM1 mutations

and FLT3‐ITD, there was no difference in WBCs between patients

with a FLT3‐ITD AR <0.50 and patients with a FLT3‐ITD AR ≥0.50

(p = .114; Table S5B).

Forty‐seven percent of the patients (26 of 55) were classified as

having favorable‐risk AML according to the current ELN risk classi-

fication, 36% (20 of 55) showed an intermediate‐risk profile, and 16%

(9 of 55) were classified as having an adverse risk6(Table S5A).

The three most frequent mutations—NPM1, FLT3, and TET2—

were not significantly associated with any of the other sequenced

mutations in pairwise comparisons (Table S6A–C).

Eighty‐four percent of the patients had mutations in genes asso-

ciated with activated cellular signaling (Figure 2A). Other pathways

affected by these gene mutations included nuclear transport (NPM1;

TAB L E 2 Therapy and outcomes in younger and older patients with hyperleukocytosis

All 56 selected patients 34 patients < 60 years old 22 patients ≥ 60 years old

pNo. % Median 95% CI No. % Median 95% CI No. % Median 95% CI

No. of induction cycles .002

1 24 42.9 9 26.5 15 68.2

2 32 57.1 25 73.5 7 31.8

CR 34 60.7 20 58.8 14 63.6 NS

Early death until Day 7 4 7.1 3 8.8 1 4.5 NS

Early death until Day 30 9 16.1 6 17.6 3 13.6 NS

Early death until Day 60 12 21.4 8 23.5 3 13.6 NS

Total allogeneic SCT 16 28.6 14 41.2 2 9.1 .009

In first CR 13 23.2 12 35.3 1 4.5 .002

Primary refractory 3 5.4 2 5.9 1 4.5 NA

Median OS, months 10.7 5.5–15.9 11.8 NA 7.2 1.8–12.7 NS

Median RFS, months 7.8 0.8–15.2 11.5 0.7–22.3 5.7 1.1–10.2 NS

Abbreviations: CR, complete remission; NA, not applicable; NS, not significant; OS, overall survival; RFS, relapse‐free survival; SCT, stem cell

transplantation.
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75%), mutations in genes encoding epigenetic modifiers (75%), splicing

factors (48%), members of the cohesion complex (25%), tumor sup-

pressors (14%), and transcription factors (13%) (Figure 2A). Mutations

within nuclear transport and/or activated signaling and/or epigenetic

modifier pathways were present in the majority of the patients (96%

[54 of 56]) (Figure 2B). The median number of pathways affected in a

patient was 3 (range, 1–6) (Table S7). Predominantly, mutations

occurred in combinations of three or four different pathways (30.4%

and 43% of patients, respectively) (Table S7).

We next assessed associations between different pathways.

Pairwise comparisons revealed that co‐occurring mutations most

commonly led to alterations in the following three pathways: acti-

vated signaling, nuclear transport, and epigenetic modifiers. In detail,

64%, 63%, and 59% of the patients had mutations in both activated

signaling and nuclear transport, activated signaling and epigenetic

modifiers, or nuclear transport and epigenetic modifiers, respectively

(Table S8). Mutations in epigenetic modifiers and splicing factors

tended to be mutually exclusive (odds ratio, 0.17; 95% CI, 0.03–0.70),

but this did not reach significance when we adjusted for multiple

testing. In addition, mutations affecting epigenetic modifiers and

cohesin, mutations affecting epigenetic modifiers and tumor sup-

pressors, and mutations of tumor suppressors and activated signaling

tended to be mutually exclusive (Table S8).

Forty‐eight percent of the patients (27 of 56) showed co‐
occurring mutations in all three pathways of nuclear transport,

signaling, and epigenetic modifiers (Figure 2B). In 10 of these 27

patients, no other pathway was affected. Fourteen of these 27 pa-

tients showed one additional pathway affected, with splicing factors

most commonly involved (7 of 14). In three of these triple‐pathway‐
mutated patients, two or three additional pathways were altered. In

23 patients (41%) who showed dual combinations of activated

signaling, nuclear transport, and epigenetic modifiers, the pathways

that were most commonly altered included splicing factors (12 of 23)

and cohesin complex (8 of 23).

We next assessed the spectrum of mutations in younger (61%)

and older patients (39%).

In patients younger than 60 years, the top 10 recurrently

mutated genes were FLT3 (77%), NPM1 (74%), TET2 (43%), SF3A1

(23%), IDH2 (17%), SMC3 (17%), BCORL1 (17%), IDH1 (14%), KIT

(14%), and ASXL1 (14%) (Figure 3A,B).

Among the younger patients, 62% (21 of 34) showed mutations

in both NPM1 and FLT3, and no biCEBPA mutation was detected.

Forty‐four percent (15 of 34) were classified as having favorable‐risk
AML according to the current ELN risk classification, 35% (12 of 34)

showed an intermediate‐risk profile, and 21% (7 of 34) belonged to

the adverse‐risk group6 (Table S9A).

In patients 60 years old or older (n = 22), similarly, the most

frequently mutated genes included NPM1 (76%), FLT3 (67%), and

TET2 (48%), which were followed by mutations in BCORL1 (43%),

BCOR (24%), SF3A1 (24%), KIT (19%), DNMT3A (14%), RAD (14%), and

PTPN11 (14%) (Figure 3C,D). Fifty percent of the patients (11 of 22)

had both NPM1 and FLT3 mutations. Fifty‐two percent (11 of 21),

38% (8 of 21), and 10% (2 of 21) were classified as having AML with

favorable, intermediate, and adverse ELN risk, respectively6

(Table S9B). There were no significant differences in single‐mutation

frequencies or frequencies of affected pathways when we compared

younger and older patients (data not shown).

Association of mutations with clinical features and
outcomes

We further assessed associations between detected gene mutations

and baseline clinical characteristics. PTEN mutations tended to occur

(A) (B)

F I GUR E 1 Overview of driver gene mutations identified by targeted sequencing in 56 patients with cytogenetically normal acute myeloid
leukemia and initial hyperleukocytosis. (A) An oncoplot depicts driver gene mutations and their associated pathways, numbers and types of
identified variants, and single nucleotide changes per patient. (B) A histogram depicts the frequency of driver gene mutations detected in >1%

of the patients. The bars are colored according to the functional category assigned to each driver gene
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more frequently in older patients versus younger patients, whereas

NRAS mutations were associated with younger age. Mutations of

IDH1, U2AF2, CEBPA, and PHF6 were detected more frequently in

men. RUNX1, BCOR, and SMC1A were associated with French–

American–British types M4 and M5. IDH1 mutations occurred less

in patients with M4/M5. SF3B1 mutations tended to be more com-

mon in patients with an ECOG performance status of 2–4, whereas

NOTCH1 mutations were less common in patients with a poor ECOG

status. CALR and SF3B1mutations were associated with secondary or

therapy‐related AML. SETBP1 and KIT mutations were associated

with a lower median WBC, SMC3 mutations were associated with a

higher median hemoglobin count, and SETBP1 mutations were asso-

ciated with lower median bone marrow blasts in comparison with

patients without mutations in these genes. However, none of these

(A) (B)

F I GUR E 2 Overview of associated pathways that were affected by gene mutations in 56 patients with cytogenetically normal acute
myeloid leukemia and initial hyperleukocytosis. (A) A histogram depicts the frequency of affected pathways. The bars are colored according to

the functional category assigned to each pathway. (B) An oncoplot depicts the type and number of affected pathways per patient
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associations between individual gene mutations and clinical charac-

teristics reached significance after adjustments for multiple testing

(Table S10A,B).

In an effort to compare the molecular characteristics of early

responders and nonresponders, we used the day sixteen (d16) early

blast cell clearance, a biomarker shown to be a prognostic factor for

predicting survival and responses to induction therapy.17 No signifi-

cant differences in the frequencies of gene mutations were detected

in patients who showed an early d16 blast clearance of <10% versus

≥10% (Table S11A). Similarly, we did not observe a significant dif-

ference in activated pathways (Table S11B).

Next, we sought to assess the impact of driver mutations that

were present in ≥3% of the patients on treatment outcomes in uni-

variate analyses. The median OS and RFS for the 56 patients selected

for mutational analysis were 11.8 months (95% CI, 5.9–17.6 months)

and 10.7 months (95% CI, 4.9–16.6 months), respectively

(Figure S4A,B). In all 86 patients with CN‐AML and HL, the median

OS and RFS were 10.8 months (95% CI, 5.9–17.7 months) and 10.7

months (95% CI, 7.1–14.3 months), respectively. Patients treated

with chemotherapy displayed median OS and RFS times of 7.2

months (95% CI, 4.8–9.7 months) and 9.8 months (95% CI, 5.9–13.6

months), respectively. Patients who received chemotherapy and un-

derwent allogeneic transplantation showed median OS and RFS times

of 32.8 months (95% CI, 11.3–54.4 months) and 10.8 months (95%

CI, 2.8–18.8 months), respectively (Figure S5A–F).

No significant association (q < 0.05) between individual gene

mutations and OS, RFS, or the CR rate was observed when we cor-

rected for multiple testing (Tables S12–S14). To account for the

complexity of interactions, we performed multivariate analyses for

OS and RFS, including mutations that were present in ≥20% of the

patients together with clinical parameters (see the Materials and

Methods section for details). These analyses revealed higher WBC

(p = .01 and p = .014), hemoglobin level (p = .036 and p = .005), and

lactate dehydrogenase (LDH) level (p = .020 and p = .008) at the

(A) (B)

(C) (D)

F I GUR E 3 Overview of gene mutations identified by targeted sequencing in 34 younger patients and 22 older patients with
cytogenetically normal acute myeloid leukemia and initial hyperleukocytosis. (A) An oncoplot depicts driver gene mutations and their

associated pathways, numbers and types of identified variants, and single nucleotide changes for each patient younger than 60 years. (B) A
histogram depicts the frequency of driver gene mutations detected in >1% of the patients younger than 60 years. (C) An oncoplot depicts
driver gene mutations and their associated pathways, numbers and types of identified variants, and single nucleotide changes for each patient

60 years old or older. (D) A histogram depicts the frequency of driver gene mutations detected in >1% of the patients 60 years old or older.
The bars are colored according to the functional category assigned to each driver gene
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baseline as risk factors for significantly shorter OS and RFS, whereas

no mutation reached the level of significance (Tables S15 and S16).

DISCUSSION

The aim of this study was to delineate the genetic landscape of driver

mutations in CN‐AML with HL. Selected patients with HL AML were

enriched for the AML M4/M5 subtypes and did not show any

biCEBPA mutations in comparison with unselected patients. This bias

was inevitable because our selection was based merely on the

availability of bone marrow. Targeting sequencing was performed to

assess 49 genes known to be recurrently mutated in AML. The me-

dian number of genes mutated per patient was 5, which is similar to

published data for AML in general.4

Our gene panel included the NPM1, FLT3, and CEBPA genes as

well as TP53, RUNX1, and ASXL1, which are required for the current

ELN risk stratification of AML.6 NPM1 mutations are enriched in CN‐
AML, where they occur in 50%–60% of cases.5,18–21 Mutations in the

FLT3 gene occur in approximately 30% of patients with AML; they

include FLT3‐ITDs ine25% of patients and FLT3‐TKDs in 7%–10% of

patients.22–24 Similarly to NPM1 mutations, FLT3‐ITDs have their

highest frequency in CN‐AML: 32%–38%.22,23,25

In our cohort of patients with HL AML, we observed higher

frequencies of both NPM1 mutations and FLT3‐ITDs in comparison

with the literature as well as compared to the data for all patients

with CN‐AML in the AMLCG99 study7 (NPM1, 75% in our cohort vs.

52% in all AMLCG99 patients with CN‐AML; FLT3‐ITD, 59% in our

cohort vs. 29% in all AMLCG99 patients with CN‐AML). No biallelic

mutation of CEBPA was detected.

NPM1 mutations have been shown to occur more frequently in

patients with HL AML versus patients with non‐HL AML (30% vs.

17%) in analyses performed by Tien et al.,13 but their analyses were

not restricted to CN‐AML. We are the first to report that NPM1

mutations are enriched in CN‐AML with HL. The frequency of NPM1

mutations in our HL CN‐AML cohort was more than twice as high as

that in the HL AML cohort described by Tien et al. (75% vs. 30%).

Although FLT3‐ITDs are known to be associated with high

baseline WBCs,22,25 there was no positive association of a higher

FLT3‐ITD AR and WBCs in the context of HL CN‐AML.

Signaling was the top pathway altered by mutations. Specifically,

84% of the patients showed mutations causing the activation of FLT3

signaling (FLT3 mutations, 73%), KIT signaling (KIT mutations, 16%),

RAS signaling (PTPN11 mutations, 11%; NRAS mutations, 7%; HRAS

mutations, 2%), or JAK/STAT signaling (JAK3 mutations, 7%; CALR

mutations, 4%), besides others. In line with our results, Tien et al.,13

who performed sequencing of 20 genes in 693 patients with AML,

found higher frequencies of mutations affecting signaling: FLT3‐ITD

(33%), NRAS (20%), and PTPN11 (7.4%) in 200 patients with HL

versus 493 patients without HL. Notably, KIT mutations, which are

typically associated with cytogenetically favorable CBF leukemias

and are rare in CN‐AML, were enriched in our cohort.4 This was not

observed by Tien et al., whose analyses included AML of all

cytogenetic groups and used a lower WBC threshold than the one

used by us (50 vs. 100 G/L).

Seventy‐five percent of the patients showed mutations in

epigenetic modifiers, with the most common being mutations in TET2

(45% of the patients). TET2 mutations typically occur in 6%–36% of

patients with CN‐AML, are associated with a reduced response to

chemotherapy and impaired OS,26,27 and also have been shown to be

more frequent in patients with AML and HL by Tien et al. (22%).

Furthermore, we observed a high frequency of mutations in the

transcriptional corepressors BCOR and BCORL1. Eighteen percent of

our patients had BCOR mutations, which typically occur in CN‐AML

with a frequency of only approximately 4%. They are mutually

exclusive with NPM1 mutations and tend to be associated with a

dismal prognosis.28,29 BCORL1 mutations were found in 27% of our

patients versus approximately 6% of patients with AML in general.30

Mutations in epigenetic modifiers that alter hematopoietic dif-

ferentiation have been shown to cooperate with dysregulated growth

factor signaling and drive oncogenic transformation.31–33 Interest-

ingly, 62.5% of our cohort displayed alterations in both signaling and

epigenetic modifiers. Notably, FLT3 together with TET2 mutations

was the most common combination affecting signaling and epigenetic

pathways. This combination, which has been shown to confer a poor

prognosis in AML, was found in 30% of the patients (17 of 56) in our

cohort versus a frequency of 3%–8% in patients with AML, including

normal and abnormal cytogenetics.4,34–36

We did not observe significant differences in the frequencies of

mutations between younger and older patients with AML, although a

higher frequency of mutations in, for example, epigenetic modifiers in

elderly patients has been reported.16 This discrepancy might be due

to the fact that our cohort was restricted to CN‐AML with HL, so

trends in frequencies did not reach statistical significance because of

the smaller number of patients.

Despite molecular enrichment for mutations with a negative

impact on prognosis, in a multivariate model for OS and RFS, only

clinical risk factors such as WBC, hemoglobin level, and LDH level

remained significant. This might be due to the fact that these risk

factors have a strong impact on the development of leukostasis,

which is associated with high early mortality.

A high WBC is a known risk factor for an adverse prognosis in

AML.37 Elevated hemoglobin levels have been linked to increases in

blood viscosity causing microcirculatory disturbances and eventually

life‐threatening leukostasis.38,39 In fact, Harris40 reported the death

of three patients with AML and a WBC >100 G/L who died after a

blood transfusion; two had developed fatal cerebral leukostasis.40

Furthermore, data from AML MRC trials 4 and 5 revealed that the

mean hemoglobin levels of patients with a WBC >100 G/L who died

within the first week were significantly higher than those of survi-

vors.40 Elevated serum lactate levels could indicate microcirculatory

failure and leukostasis, which is associated with high early mortality

in patients with AML and HL.41

In our cohort, patients who underwent allogeneic HSCT showed

a median OS of 32.8 months, whereas patients who were treated

with chemotherapy only showed a median OS of only 7.2 months.
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This could suggest a role of allogeneic HSCT in ameliorating the

prognosis in patients with HL AML. Yet, further data, ideally pro-

spective, are needed to further elucidate the role of allogeneic HSCT

in this patient population.

Altogether, CN‐AML with initial HL is enriched for molecular

subtypes that negatively affect the prognosis. This includes a high

percentage of patients presenting with co‐occurring mutations in

signaling genes and epigenetic modifiers such as FLT3‐ITD and TET2

mutations. Despite these unique molecular features, clinical risk

factors, including high WBC, hemoglobin levels, and LDH levels at the

baseline, remain the main predictors for OS and RFS in HL CN‐AML.
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