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Abstract

Background: Online adaptive radiation therapy (RT) using hybrid magnetic
resonance linear accelerators (MR-Linacs) can administer a tailored radiation
dose at each treatment fraction. Daily MR imaging followed by organ and tar-
get segmentation adjustments allow to capture anatomical changes, improve
target volume coverage, and reduce the risk of side effects. The introduction
of automatic segmentation techniques could help to further improve the online
adaptive workflow by shortening the re-contouring time and reducing intra- and
inter-observer variability. In fractionated RT, prior knowledge, such as planning
images and manual expert contours, is usually available before irradiation, but
not used by current artificial intelligence-based autocontouring approaches.
Purpose: The goal of this study was to train convolutional neural networks
(CNNs) for automatic segmentation of bladder, rectum (organs at risk, OARs),
and clinical target volume (CTV) for prostate cancer patients treated at 0.35
T MR-Linacs. Furthermore, we tested the CNNs generalization on data from
independent facilities and compared them with the MR-Linac treatment plan-
ning system (TPS) propagated structures currently used in clinics. Finally,
expert planning delineations were utilized for patient- (PS) and facility-specific
(FS) transfer learning to improve auto-segmentation of CTV and OARs on
fraction images.

Methods: In this study, data from fractionated treatments at 0.35 T MR-Linacs
were leveraged to develop a 3D U-Net-based automatic segmentation. Cohort
C1 had 73 planning images and cohort C2 had 19 planning and 240 fraction
images. The baseline models (BMs) were trained solely on C1 planning data
using 53 MRIs for training and 10 for validation. To assess their accuracy, the
models were tested on three data subsets: (i) 10 C1 planning images not used
for training, (ii) 19 C2 planning, and (iii) 240 C2 fraction images. BMs also served
as a starting point for FS and PS transfer learning, where the planning images
from C2 were used for network parameter fine tuning. The segmentation output
of the different trained models was compared against expert ground truth by
means of geometric metrics. Moreover, a trained physician graded the network
segmentations as well as the segmentations propagated by the clinical TPS.
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1 | INTRODUCTION

The introduction of magnetic resonance (MR) linear
accelerators (Linacs) into clinical practice has facilitated
online adaptive radiotherapy." Fully integrated daily
MR imaging enables fast dose re-optimization based
on the anatomy of the day, which has the potential
to improve tumor coverage and reduce gastrointesti-
nal and genitourinary toxicity in abdominal and pelvic
targets.>® With the current state-of-the-art, these ben-
efits come at the cost of longer workflows, notably due
to the need for online re-contouring.” The median frac-
tion time excluding the irradiation itself can be as long
as 30 min, as presented by Sahin et al® for 500 frac-
tions delivered to 72 patients. Other studies reported 54
min for adapted abdominal and pelvic stereotactic body
radiotherapy (SBRT) fractions,? 50 min for liver tumors,'°
and up to 71 min in MR-guided SBRT boosts for gyneco-
logical cancer patients.!’ During the adaptation process
at 0.35 T MR-Linacs (MRlIdian, ViewRay Inc, Cleveland,
OH),'? the planning MRI is matched to the daily MRI
using deformable image registration (DIR) and subse-
quently the planning contours are propagated to the
anatomy of the day using either the same deformation
field or rigid registration for the CTV. The propagated
structures are corrected manually by radiation oncolo-
gists and only then can be used for dose evaluation and
optimization. An automatic or semi-automatic segmen-
tation, which requires no or fewer corrections, has the
potential to shorten the treatment time and thus increase
patient throughput at MR-Linacs.'>15 It could also help
to avoid the inter- and intra-physician variability caused
by work under time pressure, fatigue and the level of
individual experience.'®

Several studies have been conducted to address the
problem of auto-contouring in cancer patients by means
of state-of-the-art machine learning techniques in the
scope of MR-guided radiation therapy (MRgRT). Liang
et al.'” described an approach regarding abdominal
multi-organ auto-contouring integrating information from

Results: The BMs showed dice similarity coefficients (DSC) of 0.88(4) and
0.93(3) for the rectum and the bladder, respectively, independent of the facil-
ity. CTV segmentation with the BM was the best for intermediate- and high-risk
cancer patients from C1 with DSC=0.84(5) and worst for C2 with DSC=0.74(7).
The PS transfer learning brought a significant improvement in the CTV segmen-
tation, yielding DSC=0.72(4) for post-prostatectomy and low-risk patients and
DSC=0.88(5) for intermediate- and high-risk patients. The FS training did not
improve the segmentation accuracy considerably. The physician’s assessment
of the TPS-propagated versus network-generated structures showed a clear
advantage of the latter.

Conclusions: The obtained results showed that the presented segmentation
technique has potential to improve automatic segmentation for MR-guided RT.

0.35 T MR-Linac, adaptive radiotherapy, automatic segmentation, deep learning, patient-specific
transfer learning, prostate cancer

the manually segmented simulation 0.35 T MR images
with predictions generated by a support vector machine
(SVM). Fu et al.'® presented an architecture comprising
a segmentation convolutional neural network (CNN) fol-
lowed by two correction CNNs that was trained for liver,
kidney, stomach, bowel, and duodenum automatic delin-
eation for MRgRT. Eppenhof et al.'® proposed a CNN for
contour propagation based on DIR during fractionated
prostate cancer treatment at a 1.5 T MR-Linac sys-
tem. The architecture implemented by Eppenhof et al.
is a UNet which is frequently used for organ segmenta-
tion and broadly discussed in the literature2° Friedrich
et al?! investigated the stability of conventional and
machine learning-based 2D tumor auto-segmentation
techniques for 2D tumor tracking at a 0.35 T MR-
Linac.

However, until now there are very few studies that
leverage the scheme of fractionated MRgRT at MR-
Linacs, and the available prior knowledge such as initial
treatment planing segmentation. For online plan adap-
tation, prior knowledge could be beneficial for organ
segmentation in patients with unusual anatomies or for
clinical target volume (CTV) delineation, since the lat-
ter does not necessarily follow visible organ boundaries
and requires additional clinical information.

The aim of this work was to use a 3D U-Net
architecture®® with customized data augmentation to
generate organs-at-risk (OARs), that is bladder and
rectum, and CTV segmentation for prostate cancer
patients treated at a 0.35 T MR-Linac. In order to inves-
tigate the transferability of trained models, the network
performance was additionally tested with data from
an independent facility which operates the same MR-
Linac. Furthermore, the network-generated contours
were compared with the structures automatically prop-
agated by the treatment planning system (TPS) during
the online adaptive MRgRT workflow and graded with
regard to their clinical usability for treatment adaptation.
Facility-specific (FS) transfer learning has been per-
formed to test if the trained baseline neural network can
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study.

improve its performance on data from an independent
facility by adapting to the specific segmentation style as
suggested by Balagopal et al23 Finally and most impor-
tantly, patient-specific (PS) transfer learning was carried
out in order to investigate whether incorporating prior
knowledge, as typically available in fractionated adaptive
MRgRT, further improves segmentation performance for
fraction images.2*

2 | MATERIALS AND METHODS

21 | Database

A total of 92 prostate cancer patients treated between
January 2018 and June 2021 with online adaptive
MRgRT at the Department of Radiation Oncology of the
University Hospital of the LMU Munich (19 patients) and
the Gemelli University Hospital in Rome (73 patients)
were included in this study. At both facilities, MR imag-
ing was performed at the ViewRay 0.35 T MRIdian
MR-Linac system. The images were acquired using the
clinical balanced steady-state free-precession (bSSFP)
sequence resulting in a T2*/T1 image contrast, and had
a resolution of 1.5 mm x 1.5 mm x 1.5 mm or 1.5 mm
x 1.5 mm x 3 mm.'? The latter were resampled to
1.5 mm x 1.5 mm x 1.5 mm in the scope of this study,
using the plastimatch convert?® function with nearest
neighbor interpolation.

All patients were treated following a similar workflow
(Figure 1), which consisted of an initial offline plan-
ning phase and irradiation in 5-33 fractions. After the
acquisition of a planning MR image, OARs, including
the bladder and the rectum, as well as the CTV were
manually delineated by trained consulting physicians
(planning contours). The CTV was defined as a volume
of tissue that contains a demonstrable gross target vol-
ume and/or sub-clinical malignant disease at a certain
probability considered relevant for therapy. Depending
on the tumor development, different regions of the
seminal vesicles were included in the CTV: none for
low-, proximal for intermediate- (int) and entire for high-
risk prostate cancer. There were no other additional

—

Treatment fractions (5 — 33)

lllustration of the adaptive radiotherapy workflow at the MRIdian presenting the different types of contours incorporated in the

differences in contouring between the risk groups. A
separate subgroup comprises post-prostatectomy (pp)
patients. For them, the CTV includes only the remaining
parts of the prostate and seminal vesicles after surgery,
which makes them visibly different from the rest of
the patients. Then, the planning target volume (PTV)
was generated as a CTV expansion by 4 mm/posterior
3 mm at the LMU Hospital and isotropically by 5 mm
at Gemelli Hospital (which due to the TPS rounding
to a full pixel size of 1.5 mm?3 results in 4.5 mm/3 mm
at LMU and 4.5 mm for Gemelli) and clinical treat-
ment plans were created. At each fraction, a daily MRI
was acquired with the same imaging sequence as the
one used for the offline planning and rigidly aligned
with the pre-treatment image. The planning MRI was
then matched to the fraction image with DIR and the
planning structures were propagated by the ViewRay
TPS using the same DIR for all OARs, while the CTVs
were propagated using rigid registration, according to
the clinical guidelines followed in our institutes. The
resulting contours will be referred to as propagated
contours. Subsequently, they were inspected by a physi-
cian and, if necessary, corrected, which led to the final
fraction contours. These were used for adaptation of
the daily treatment plan, if deemed necessary. After
dose re-optimization, a new plan was delivered.

All contours were initially stored in the DICOM RT-
struct format, which represents structures as point
clouds. The segmentations were converted into binary
masks using plastimatch?® with nearest neighbors
interpolation, in order to be suitable for the subsequent
neural network training. The image-binary mask pairs
were cropped/padded around the PTV center to a size
of 220 x 220 x 220 pixels, which in all but one case, cov-
ered all structures of interest with a substantial margin.
The exception case had a part of the bladder cropped.

Throughout this work, the planning and fraction
contours, as generated and approved by the radiation
oncologists, were considered as ground truth, while the
propagated structures were used only for comparison
in the evaluation phase. The Gemelli dataset, cohort 1
(C1), consisted exclusively of planning MRs and cor-
responding manual expert delineations, while the LMU
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TABLE 1 Datasets used in the study.
Cohort Type Stage Number
OARs C1 Planning - 73
C2 Planning - 19
Fraction - 240
Propagated - 24 (5 patients)
CTV C1 Planning pp & low 10
Planning int & high 57
C2 Planning pp & low 8
Fraction pp & low 91
Planning int & high 11
Fraction int & high 144

Note: For each subgroup, the origin of the data (C1 or C2), the type of
contours (planning, fraction, or propagated, see Figure 1), and the number
of images available are given. For the CTV, it was differentiated between
intermediate- and high-risk patients (int & high) and the remaining cases, that is,
post-prostatectomy (pp) and low-risk (low) patients.

dataset, cohort 2 (C2), included planning as well as frac-
tion images along with their contours. Propagated OAR
contours were available for a subset of C2 patients, in
addition to expert delineations on each image. Table 1
summarizes the characteristics of the dataset.

2.2 | 3D U-net

In this work, the MONAI?® implementation of the resid-
ual U-Net developed by Kerfoot et al?” was used. The
network follows the well-known architecture with encod-
ing and decoding arms linked at each level via skip
connections. The network consists of five levels. Each
of them contains two convolutions with 3 x 3 x 3 ker-
nels, followed by instance normalization?® and PReLU?°
activation with the initial slope for negative arguments
of 0.2. In the encoding arm, the second convolution
has a stride of 2 serving also for down-sampling, while
in the decoding arm a transpose convolution is used
for up-sampling. The output layer of the network has
soft-max activation®? and thresholding at 0.5, which gen-
erates a binary image corresponding to the predicted
structure. A loss function based on the dice similar-
ity coefficient (DSC)3" and the Adam?®? optimizer were
employed throughout the training.

2.3 | Data augmentation and
preprocessing

The data augmentation applied during training included
random spatial transformations such as rotations,
translations, scaling, B-Spline deformation, along with
MR-specific random transformations mimicking the
occurrence of bias fields, motion artifacts, and noise.
To harmonize the data fed into the network an intensity
normalization based on image mean and standard devi-

ation, followed by scaling to the (0, 1) range was applied
to all images (training, validation, testing). Finally, the
image and binary mask pairs were centrally cropped
to the size of 192 x 192 x 192 pixels, while the pixel
spacing of 1.5 mm x 1.5 mm x 1.5 mm was preserved.
In all but one patient (with bladder extending excep-
tionally high in the superior direction), the cropping
resulted in images with substantial margins around the
structures of interest. Further details on the data aug-
mentation and hyperparameter tuning are given in the
Supporting information.

2.4 | Baseline training

A single optimal combination of hyperparameters was
sought while training three independent models for the
segmentation of bladder, rectum, and CTV. Since there
was a non-zero overlap between some structures, for
example, bladder and CTV or rectum and CTV, and
based on previous experience, no multi-organ segmen-
tation was performed. At this point, only C1 patients
were included in order to provide an independent test
cohort (C2) in the later evaluation phase and PS training
was not considered. For OARs, the C1 data split was
53/10/10 for training, validation, and testing. However, six
cases had to be excluded from the validation and test
sets in the case of CTV segmentation, as the tumor was
located outside the prostate gland (e.g., lymphatic path-
ways), which led to a division of 53/7/7. Approximately
90% of the cases were intermediate- and high-risk
patients, meaning that the CTV contained at least parts
of the seminal vesicles in most cases. Therefore, the
baseline CTV model is considered suitable for the
intermediate- and high-risk cases, and its performance
for low-risk and pp patients will be tested only to allow
comparison at later stages during PS training. The
relatively small number of low-risk and pp patients
in the training set did not affect the network perfor-
mance on the remaining cases, therefore they were not
excluded.

2.5 | Baseline models evaluation

The performance of the baseline models (BMs) was
tested separately on three data subsets: 10 planning C1
images that were not used for training, 19 C2 planning
images, and 240 C2 fraction images. Again, for the BM
evaluation we did not consider PS training.

2.6 | Network-predicted versus
treatment planning system-propagated
contours

During treatment adaptation, propagated contours are
available to physicians and form the basis for their
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Representation of the training scheme as well as the patients (ID) split for (a) the facility-specific (FS) and (b) the

patient-specific (PS) training. The gray background indicates images considered together for model training and validation. Both variants share

the same test set. The depicted frames and the patient IDs show the actual data base and the training/validation/testing split.

corrections. Due to their potentially insufficient qual-
ity, the contours have to be checked and adjusted
manually most of the time, which prolongs the treat-
ment. The aim of this section was to compare the
quality of the propagated contours with the network
predictions and to determine which would potentially
require less corrections.

The ground truth fraction delineations were generated
from the propagated contours by applying manual cor-
rections. Under time pressure physicians mostly correct
pronounced errors of the propagated structures, which
means that they may artificially be closer to the propa-
gated contours, introducing a considerable bias in favor
of propagated contours evaluated by means of DSC or
HD. Therefore, an additional qualitative analysis investi-
gating contour usability during plan adaptation has been
carried out. Please note, that prior to contour propaga-
tion, the planning and fraction images are rigidly aligned
and it is ensured, that the MR scanner/Linac isocenter
is roughly at the center of the PTV.

The propagated contours were retrieved for 24 frac-
tions from 5 patients of C2. A radiation oncologist
working at the LMU MR-Linac was presented two sets of
contours in random order: the predicted and the propa-
gated, for each fraction. First, the physician was asked
to choose the contour considered more useful during
plan adaptation, and secondly, to rate each delineation
on a four-point scale: 1-ready to use, 2-small correc-
tions required, 3-major corrections required, and 4-not
useful 33 In order to eliminate personal bias, the physi-
cian was neither informed about the study goal nor the
origin of the examined delineations. Since CTV seg-
mentation requires additional knowledge, such as the
patient’'s medical record and cancer risk category, this
analysis was restricted to the OARs.

2.7 | Facility- and patient-specific
transfer learning

The study also aimed at investigating whether transfer
learning can improve segmentation accuracy in fraction
images. Two approaches have been taken: FS and PS
transfer learning. In both training types, network weights
and biases were initialized with parameters of the BM
and further trained with a planning image (or images) of
interest, adjusting all network parameters. The hyperpa-
rameter search was carried out analogously to the BM
optimization. In FS transfer learning, the BMs were fine-
tuned with a set of planning images from C2, while in
PS transfer learning a single C2 planning image for a
particular patient was used for fine-tuning. The goal of
this approach is to slightly adjust the BM using informa-
tion from the planning image. The approach is similar
to Chun and Park et al?* To prevent overfitting to the
anatomy seen on the planning image, data augmenta-
tion was applied to mimic possible anatomical changes
occurring over the following fractions. Figure 2 shows
the design of both transfer learning approaches with the
data subdivision and patient split.

The FS training was carried out with ten randomly
selected patients from C2. Planning images were used
to optimize data augmentation, hyperparameters, and
fine-tune the network parameters, while the correspond-
ing fraction data were employed for validation. The
trained model was tested on the fraction data of the nine
remaining C2 patients.

In the PS training, no validation data are available to
select the stopping epoch when applying the procedure
to test data. Thus, ten separate models were fine-tuned
simultaneously for each of the ten preselected train-
ing patients (see Figure 2). Again, the planning images
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Image slices showing (left) one of the best, (middle) average, and (right) worst, baseline model performance. Image slices from

(top) C1, (middle) C2 planning, and (bottom) C2 fraction MRs are shown. The (solid line, saturated colors) ground truth and (dashed, faded
counterparts) network predictions for the investigated organs (blue) bladder, (orange) prostate, and (red) rectum are presented.

were used for model fine-tuning and the fraction images
for validation. Collecting validation results from all 10
patients allowed to adjust the data augmentation, learn-
ing rate, and number of training epochs the same for all
patients. Finally, models were fine-tuned for the nine test
patients using their planning images and fixed hyperpa-
rameters. Both FS and PS training shared the same test
set of 115 fraction images.

2.8 | Data evaluation

The network predictions were compared to the ground
truth via DSC, the 95! percentile and the average Haus-
dorff distance, HDgs and HD,q, respectively. The eval-
uation of the rectum segmentation considered slices
including the PTV and 10 additional slices reaching
1.5 cm above and below the upper and lower PTV ends.
We performed the analysis separately for planning and
fraction images. The CTV contours for the intermediate-
and high-risk cases were considered separately from
the post-prostatectomy and low-risk patients, due to
the considerable differences in the inclusion of seminal
vesicles. To determine whether the differences between
different methods or datasets are statistically signif-
icant, the Wilcoxon-signed rank test was performed
with the p-value < 0.05 being considered statistically
significant.

2.9 | Technical details

The network architecture and the training loop were
implemented using MONAI2® PyTorch ** and TorchlO3°
libraries. The computations were carried out in a Docker
container built from the projectmonai/monai image ver-
sion 0.6.0 on Nvidia Quadro RTX 8000 and/or Nvidia
RTX A6000 GPUs.

3 | RESULTS

3.1 | Baseline training

The BMs were trained over 300 epochs with a batch
size of 2,which required approximately 4 min/epoch and
resulted in a training duration of 20 h. The same set
of hyperparameters was used for the final training of
models for all three organs. The final values and details
on the hyper-parameter optimization are given in the
Supporting information.

3.2 | Baseline model evaluation

Figure 3 collects exemplary slices showing cases with
one of the best, average, and poor network segmen-
tations for the C1 test patients, the C2 planning, and
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TABLE 2 Numerical outcomes of the baseline models performance for the OARs and the CTV.
Bladder Rectum CTV int&high N CTV low&pp
DsC DsC DsC DsSC
HDg5 (mm) HDgs5 (mm) HDgs5 (mm) HDg5 (mm)
Dataset N HD,yg (mm) HD,yg (mm) N HD,yg (mm) HD,yg (mm)
C1 10 0.93(0.03) 0.88(0.03) 5 0.84(0.05) 2 0.82(0.09)
planning 3.7(1.8) 3.6(1.4) 5.2(2.4) 9.2(4.2)
1.3(0.4) 1.2(0.3) 1.8(0.5) 3.0(1.7)
c2 19 0.93(0.03) 0.88(0.04) 11 0.76(0.06) 8 0.35(0.19)
planning 3.6(3.5)(s%) 3.7(1.6) 8.8(3.0) 15(8)
1.3(0.7)(9) 1.2(0.3) 3.1(0.8) 6.9(5.1)
Cc2 240 0.90(0.07) 0.87(0.08) 144 0.75(0.06) 91 0.39(0.17)
fraction 6.2(5.6)(s%) 4.9(3.3) 8.6(2.8) 14(5)
1.8(1.1)(9) 1.5(1.0) 3.1(0.8) 6.0(2.8)

Note: Dice similarity coefficient (DSC), average and 95 percentile Hausdorff distance (HDgyg, HDgs), with (standard deviation of the mean) are presented for a
given number N of C1 test patients, C2 planning, and C2 fraction images. Low-risk and post-prostatectomy (low & pp) patients were considered separately from the
intermediate and high-risk (int & high) cases. The statistically significant pairs are marked with ().

the C2 fraction images. The average DSC, HDgs5, and
HD,,g comparing the network-generated segmentation
and the ground truth delineation are given in Table 2.
Apart from the HDs between the planning and frac-
tion bladder contours of C2, there were no statistically
significant differences between the three test sets exam-
ined. For the rectum, mean DSC was 0.87-0.88 and
for the bladder it was 0.90-0.93. For both OARs, the
HDs increased for fraction contours compared to the
planning images from approximately 3.6-3.7 to 4.9—
6.2 mm for the HDg5 and from 1.2—1.3 to 1.5—1.8 mm for
the HD,,4. Analysis of the CTV predictions showed the
best outcomes for intermediate- and high-risk C1 test
patients, that is, DSC=0.84(0.05), HDg5=5.2(2.4) mm,
and HD,,4=1.8(0.5) mm, thus having the same risk cat-
egory as the majority of patients in the training set. The
delineations for the remaining C1 test patients (low-risk
and post-prostatectomy) showed a comparable DSC
value of 0.82(0.09), yet worse HDg5 of 9.2(4.2) mm and
HD,,g of 3.0(1.7) mm. However, these results should
be treated with caution, as only two low-risk patients
were available for testing and therefore, the results
are not statistically significant. Applying the same net-
work to intermediate- and high-risk C2 patients yielded
worse results of DSC=0.75(0.06), HDg5 = 8.8(3.0) mm,
and HD,,4 = 3.1(0.8) mm, regardless of the contour
type (fraction or planning). The network performance
on the remaining C2 cases, both planning and fraction,
yielded worse outcomes of DSC<0.4, HDg5=15(8) mm,
and HD,,y=6.9(5.1) mm. Here as well, no consider-
able differences between planning and fraction contours
were observed.

Figure 4 illustrates the DSC for the C2 cohort, sep-
arately for each patient. For the bladder, 10 of 19
test patients consistently showed a DSC above 0.9
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FIGURE 4 The baseline model outcomes. Dice similarity
coefficient (DSC) for the bladder, rectum, and clinical target volume
(CTV) segmentation for all 19 C2 patients separately. For each
patient (horizontal black line) the median value, (orange)
performance on the planning data, and (blue) performance on
fraction data are marked.
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Contour grading: predicted vs propagated

Bladder Rectum

B Predicted
Propagated

18 B Predicted 18
Propagated

17

Grade

FIGURE 5 Bar plots showing physician’s grading of the network
predictions (baseline models) and the treatment planning system
(TPS)-propagated delineations. The grading is defined as follows:
1—ready-to-use, 2—small corrections, 3—major corrections required,
and 4—not useful.

for all planning and fraction images. A slight tendency
towards more accurate network contouring on planning
compared to fraction images was observed. The consid-
erable DSC variations in several patients, for example, 5
and 14, were caused by the acquisition of some fraction
images with an empty bladder, in contrast to the plan-
ning stage, when all patients followed closely the clinical
recommendations of a filled bladder.

For the rectum, the DSC for most patients was above
0.80 for both planning and fraction data. There was no
clear tendency towards better DSC in the planning data.

The CTV segmentation showed the largest variation
in the DSC among the three structures examined. All
patients with an average DSC < 0.6 were low-risk and
post-prostatectomy patients, while those with DSC > 0.6
were intermediate- and high-risk cases. No consistent
performance differences were observed between the
planning and the fraction MRIs.

3.3 | Network-predicted versus
treatment planning system-propagated
contours

In the physician examination, the OAR contours gen-
erated by the network were preferred over the TPS-
propagated contours for the bladder and the rectum
in 22 and 23 out of 24 cases, respectively. Figure 5
presents the outcomes of the additional assessment,
which graded the contour quality. In almost half of the
cases (11 out of 24) the network delineations of the
bladder were ready to use directly and further 38%
(9 out of 24) required only minor corrections. For the
remaining four instances (constituting 17% of the test
set), the physician declared the need for major changes
or rejection of the predicted contours. On the contrary,
none of the propagated contours was considered as
ready-to-use and in as many as 17 cases (68%) major

TABLE 3 Quantitative outcomes evaluating the BM-predicted
and TPS-propagated OAR contours.

Bladder Rectum

DSC DSC

HDg5 (mm) HDg5 (mm)
Method N HD,yg (Mmm) HD,yg (mm)
Network 24 0.91(0.09) 0.81(0.02)(s9)
predicted 1.5(0.9) 2.2(2.9)(9)

4.1(2.6) 5.8(6.6)(%%)
TPS- 24 0.91(0.1) 0.88(0.16)(ss)
propagated 1.5(1.3) 1.2(1.7)(9)

5.2(4.9) 3.4(4.1)(s)

Note: DSC, HD,g, and HDgs with (standard deviation of the mean) are given.
The statistically significant pairs are marked with (). BM, baseline model; DSC,
Dice similarity coefficient; OARs, organs at risk, TPS, treatment planning system.

corrections would be necessary or the contours were
declared not useful.

Similarly, an advantage of the predicted contours over
the propagated ones was visible for the rectum. In
all cases but one, which was labeled not useful, the
predicted rectum contours were either ready-to-use or
required only minor corrections. Among the propagated
contours, 11 (45% of the cases) needed no or minor cor-
rections, and the remaining 13 (55%) were labeled as
requiring major corrections or not useful.

Table 3 presents the quantitative evaluation of the
contours. Only the differences for the rectum were
statistically significant. It can be observed that the
TPS-propagated contours score equally good or even
higher in terms of quantitative analysis (see Table 3)
and clearly worse in the qualitative assessment (see
Figure 5). This can be explained by the potential bias
in favor of TPS contours measured by DSC and HD as
already described in Section 2.6. Due to this bias, the
quantitative results should be interpreted with caution.

3.4 | Facility- and patient-specific
transfer learning

Fine-tuning over 500 epochs was found sufficient dur-
ing training and validation in all cases for both FS and
PS transfer learning. The learning rate Ir and the maxi-
mum displacement d for the B-spline deformation field
were decreased in both training variants to Ir = 10~*
and d = 30 mm compared to the baseline training (see
Supporting information). The total training time was
9.5 h and 2 h for the FS and PS models, respectively.
Figure 6 and Table 4 collect evaluation outcomes for
the nine test patients. No signs of overfitting to the plan-
ning image anatomy were observed in any of the ten
patients, and training was performed until performance
stopped improving on the validation data, that is, the
corresponding fraction images.

85UB0| SUOWWOD dA1RID) 3|qeot dde ay) Aq pauienob aie S3pIe YO ‘88N JO S3|NJ 10} ARIg1T 8UIUQ AB]IA UO (SUOIPUCO-PUB-SLIBYLICD" A3 | 1M A el 1jBU1 UO//SANY) SUORIPLOD PUe SIS 18U} 39S *[£202/60/8T ] UO AReid1 8uliuO AB|IM ‘Aueuses aueiyooD Aq 9509T du/Z00T OT/I0p/woo A3 | 1M AReid 1 jpuljuo widee//sdiy WOy papeojumod ‘¢ ‘€202 ‘60ZVELYZ



PATIENT-SPECIFIC SEGMENTATION IN MRGRT

MEDICAL PHYSICS——2!

1o Bladder
6 st @ He dot g ey &P
0.9 J ' -j 1 o
* 1
05 ' [
o
()
la}
0.7
* Baseline
0.6] . Facility-specific
- Patient-specific
0.5

01 04 06 09 10 11 12 14 16

Q 1
3 1
00.80
0.75
0.70{
01 04 06 09 10 11 12 14 16
CcTv
-’
$ .t b g 8 #
0.8 & 3 é& :l”a 3 ]
# : ot B op,
L 06 [_] ' .
(2]
[a]
0.4
0.2 B, T
4
01 04 06 09 10 11 12 14 16
Patient ID
FIGURE 6 Box plots comparing the outcomes of the (blue)

baseline, the (orange) facility-, and the (green) patient-specific
training for the nine test patients. A single point on the plot represents
dice similarity coefficient (DSC) of a predicted fraction contour.

Both types of transfer learning resulted in minor
enhancements in the bladder segmentation accuracy.
The only exception was patient 01, in which the incor-
rect inclusion of a substantial part of the surrounding
tissue has been corrected for. In the remaining eight
instances, patients with a wider range of the DSC values
on the BM showed also a similar spread in both transfer
learning variants.

The PS training was helpful to adjust the top and the
bottom of the rectum according to the planning con-
tours. This resulted in DSC improvements in patients
06, 10, and 16. However, by design, the training was
prone to major differences between planning and frac-
tion anatomy, for example, due to different rectum filling,
which was the case for patients 01 and 12.

A clear benefit was observed in case of the CTV
for PS training, which can be seen in Figure 7 and is
summarized in Table 4. The average DSC improved by
0.52 for low-risk and post-prostatectomy cases (patients
12 and 14) and by 0.14 for intermediate- and high-risk
(remaining patients), respectively. Also, the HDgs/HD 4
decreased by 14/5.9 mm for the first ones and by
5.3/1.7 mm for the latter. The predictions generated by
the PS model overlap well with the ground truth con-
tours. In particular, the correct parts of seminal vesicles
and normal tissue surrounding the prostate gland were
included in the predicted CTVs. The PS-generated con-
tours do not follow the visible organ boundaries but
adjust to the planning delineations.

4 | DISCUSSION

In this work, we investigated the feasibility of deep learn-
ing for the automatic segmentation of the CTV, bladder,
and rectum in prostate cancer patients treated at a

TABLE 4 Outcomes of the FS and PS training compared to the baseline models (BMs).

Bladder Rectum CTV int&high N CTV low&pp
DSC DSC DSC DSC
HDg5 (mm) HDg5 (mm) HDg5 (mm) HDg5 (mm)
Model N HD,yg (mm) HD,yg (mm) N HD,yg (Mm) HD,yg (Mmm)
BM 114 0.91(0.07) 0.87(0.04)(s) 105 0.73(0.07) 10 0.2(0.05)("s)
6.0(5.1) 5.2(2.8)(s) 9.6(2.8) 17(4)
1.8(1.1) 1.5(0.5)(s) 3.3(0.8) 7.2(1.8)(ns)
FS 0.92(0.04) 0.87(0.04)("s) 0.78(0.07) 0.18(0.06)")
3.8(1.8) 5.0(2.7)"s) 8.6(3.2) 12(3)
1.4(0.4) 1.4(0.5)(s) 2.9(1.1) 6.6(1.6)"s)
PS 0.93(0.06) 0.90(0.03) 0.88(0.05) 0.72(0.04)
3.5(2.6) 3.7(2.1) 4.3(1.5) 3.2(0.4)
1.2(0.7) 1.1(0.4) 1.7(0.6) 1.3(0.1)

Note: DSC, average and 95™ percentile Hausdorff distance (HD4yg, HDgs), with (standard deviation of the mean). The evaluation has been restricted to fraction images
of the nine test patients. Results of the best performing models in bold. The non-statistically significant differences are marked with (™). CTV, clinical target volume;
DSC, Dice similarity coefficient; FS, facility-specific; PS, patient-specific.
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Patient 01

—— Ground truth — == Baseline

Patient-specific

FIGURE 7 Image slices showing the comparison between
clinical target volume (CTV) segmentation performed by the (top)
baseline and (bottom) patient-specific models.

0.35 T MR-Linac. Data from two independent facilities
were used to test for generalizability of trained mod-
els. In addition, contours propagated by the TPS were
compared to the network predictions and evaluated
regarding their clinical usability during treatment adapta-
tion. Furthermore, the data of the fractionated adaptive
treatment course were leveraged, first, to examine differ-
ences between planning and fraction contour prediction
accuracy and, second, to generate facility- and patient-
specific models for the automatic delineation of fraction
images by fine-tuning the network parameters on the
planning data.

The analysis of the BM yielded no considerable differ-
ences between OAR segmentation on planning images
from two independent facilities. The mean DSC val-
ues for the bladder and the rectum were around 0.93
and 0.88, respectively, while the HDgs and HD,,, were
below 3.7 and 1.3 mm, regardless of the OAR. This sug-
gests that models trained in one of the institutes can
be directly used in the other without the necessity of
additional model fine-tuning.

This, however, does not apply to the CTV. All three
employed metrics indicate more severe errors, that is,
drop in DSC by 0.08 and an increase of HDgs/HD,,q by
3.6 mm/1.3 mm for intermediate- and high-risk cases
and more pronounced miss-classifications for low-risk
and post-prostatectomy patients when applying the BM
to C2 planning images. This potentially rules out model
generalizability for CTV delineation and is potentially
related to more pronounced differences in contouring
style between different facilities for the CTV.

Table 5 presents the outcomes of several recent
studies on neural networks for pelvic region auto-
segmentation in MRI. The performance of the BM is
comparable to those presented in the recent literature.
One should bear in mind, however, that the data col-
lected in Table 5 are given as reported by the authors

TABLE 5 Overview of the performance of automatic OAR
delineation techniques on MR images.
Bladder Rectum
DsC DsC
Study Method HDg5 (mm) HDgs5 (mm)
Elguindi et al.3® DeepLabV3+ 0.93(0.04) 0.82(0.05)
Savenije et al 37 DeepMedic 0.96(0.02) 0.88(0.05)
2.5(1.1) 7.4(4.4)
Sanders et al 38 DenseNet 0.96(0.03) 0.91(0.05)
3.49(6.9) 9.16(6.9)
Huang et al.° U-Net variation 0.90(0.09) 0.78(0.07)
8.7(9.4) 11.8(8)
This study 3D U-Net 0.93(0.03) 0.88(0.03)
(Baseline) 3.6(3.0) 3.6(1.5)

Note: A brief description of the method is reported together with DSC and
HDgs metrics. DSC, Dice similarity coefficient; OAR, organs at risk; MR,
magnetic resonance.

using different training and testing sets. Therefore, they
should be interpreted as an estimate of what can be
achieved for OAR segmentation on MR images and not
as a direct comparison.

The analysis of the BM predictions on planning and
fraction OAR contours showed differences in the aver-
age DSC between the subsets below 0.03, yet both HDgys5
and HD,,4 were higher for fraction contours by up to 2.6
and 0.5 mm. The difference could be caused by the lim-
ited time that can be dedicated to correct the propagated
structures and the fact that mainly the region close to
the PTV, that is, the high dose region, is subjected to
additional contour adjustments.

According to our institutional protocol, patients were
instructed to show up consistently with at least half-full
bladder. All patients followed the recommendations for
the planning image acquisition, but not always for frac-
tions. This was frequently observed in patients 05 and 14
and resulted in a considerable DSC spread of approxi-
mately 0.35. The same was observed in several fractions
of patients 01,08, 12,and 17, represented by the lowest
points on the plot (see Figure 4). The bladder volume
of patient 03 was about three times larger than aver-
age. Both, empty and exceptionally big bladders, were
underrepresented in the training set.

Larger variations in rectum DSC, as visible in Figure 4,
were caused mostly by the challenges in capturing the
sigmoid-rectum transition. The network has tended to
segment several additional slices of the large intes-
tine compared to the ground truth segmentation. This
issue has been improved upon after PS training, when
the precise rectum end for a given patient has been
adapted from the planning contours. The source of
the problem lies in the hardly visible colon-rectum
boundary and the fact that this is a low-dose region,
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meaning, that the physician’s attention is shifted rather
to areas of greater importance, which potentially leads
to discrepancies in ground truth contours. Training a
network with inconsistent segmentation might lead to
an average segmentation style, which will naturally
lower performance on the test set.

The physician evaluation clearly showed the advan-
tage of the network predicted structures over the
TPS-propagated ones. In contrast to the propagated
contours, the vast majority of the predicted structures,
83% of the bladder and 96% of the rectum contours,
could be used either directly or after small corrections,
thus potentially shortening the time required for re-
contouring in the adaptive MRgRT workflow. In order
to minimize the impact of personal bias on the results,
the physician who performed this analysis was not
informed about the details of the study. In the quanti-
tative assessment, it could have been expected, that the
TPS-propagated contours would show equally good or
even higher DSC and HD due to the way they were gen-
erated. Under time pressure, when the patient is lying on
the couch, physicians mostly correct pronounced errors
of the propagated structures with the main focus on
the high-dose region. Slices that are not ideally con-
toured, but are of quality sufficient for plan adaptation or
located in a low-dose region, might be left unchanged.
This gives the propagated structures a considerable
advantage over the ground truth segmentation in terms
of geometric metrics.

The biggest challenge of the CTV segmentation
was classifying the correct amount of seminal vesi-
cles and normal tissue surrounding the prostate gland.
The network was trained on data, where 90% of the
cases constituted intermediate- and high-risk cases and
therefore assumed the CTV to include parts of the sem-
inal vesicles. An alternative training that excluded the
low-risk cases did not improve segmentation results,
therefore all cases including all risk categories, were
kept in the baseline training set. Yet, the low-risk and
post-prostatectomy cases were taken into account sep-
arately while testing. It can be also noticed on the
upper part of Figure 7 that the BM assumed no addi-
tional margin around the prostate, which might, however,
sometimes be required in CTV definition.

For the OARs, the FS and PS training improved
the average DSC accuracy only slightly, yet brought a
decrease in HDgs and HD,,4. The PS training was ben-
eficial mostly for determining the correct colon-rectum
boundary (patients 06, 10, 16) and correcting for mis-
classification of larger areas of normal tissue (bladder,
patient 01). However, if the rectum filling was remarkably
different on the planning day than on the day of irradi-
ation (e.g., patients 01 and 12), the PS training reduced
accuracy. This behavior can be observed in Figure 6.
Both types of transfer learning are intrinsically sensi-
tive to the quality of the planning segmentation and
might be affected by large changes in organ shape with
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respect to the planning image. Although advantageous
for patients with unusual anatomies, it could propagate
errors in initial contouring and over-favor the planning
shape. Therefore, we believe that for the OARs a BM
trained on more examples of unusual anatomies, for
example, various bladder fillings, would be the better
choice than the PS training.

A clear benefit was observed for the CTV undergoing
a PS training. The models learned the geometry of the
planning CTV and successfully applied it to delineate
fraction contours. Especially, they learned to include the
correct amount of seminal vesicles and normal tissue
as can be seen in Figure 7. For the nine test patients,
the DSC improved from 0.68(0.16) to 0.86(0.06), the
HDgs from 10(4) mm to 4.2(1.5) mm and the HD,q4
from 3.7(1.4) mm to 1.6(0.6) mm, which corresponds
to approximately one and three pixels, respectively. It
should be noted that an average CTV volume is much
smaller than the size of a (half) full bladder and there-
fore, a high score on DSC is harder to achieve here.
In the context of MRgRT, where expert delineations
can be expected on a planning image, PS transfer
learning may lead to time gains during online adaptive
fractions.

In order to achieve the desired accuracy, the PS net-
works were fine-tuned over 500 epochs, which took
about 2 h. If needed, this could be shortened to 300
epochs with only a small loss in performance, reduc-
ing the training time by roughly 50 min. Since the first
fraction takes place several days after the planning MR
acquisition, the proposed PS training is feasible in a
typical clinical workflow. The time required to predict a
single contour with a trained model, approximately 1 s,
is negligible compared to the duration of the treatment
adaptation procedure.

The study presented here has its limitations. Due
to the lack of a complete model reliability, physician
review remains unavoidable. However, as suggested
in'*15 the time required to correct network-generated
structures might be significantly shorter than contouring
from scratch. One can also speculate that in our case
the correction of network predictions is shorter than
adjusting the TPS-propagated contours, given the better
grading observed in our study (see Figure 5). The qual-
ity of bladder autosegmentation could be improved by
including cases with variable bladder filling in the train-
ing set, since not all patients follow the clinical protocol
that recommends filling the bladder before each frac-
tion. For the low-risk CTV, one could consider collecting
a larger database and training a dedicated BM as the
basis for PS transfer learning.

Another study limitation concerns the manual local-
ization of the PTV. The augmentation pipeline takes
input data of size 220 x 220 x 220 pixels and crops
it further to 192 x 192 x 192. Despite the final size
of 1923 voxels, which corresponds a relatively large
volume of 28.8% cm?, an approximate isocenter position
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might be determined by an additional network for full
automization.

This study focused on the CTV, bladder, and rec-
tum segmentation as crucial structures with regard to
prostate cancer RT. Delineations of more OARs might
be required in the future, especially in other anatom-
ical sites, where a significant segmentation burden is
expected (e.g., abdomen). However, there are no con-
ceptual limitations to expand the network toward the
prediction of further structures.

Currently, the biggest limitation is the quality of
ground truth segmentation. The contours were created
by several physicians with the assumption to be suffi-
ciently accurate for treatment planning. However, while
small inconsistencies, especially outside of the high-
dose region, do not affect the dose calculation, they can
decrease DSC considerably. As previously mentioned,
the random nature of these inconsistencies did not have
a strong impact on network learning, as the differences
naturally average out, and the trained models approach
the visible boundaries of the organs. However, this
negatively impacts validation and testing. Using con-
sistently segmented datasets would help to solve
this problem.

5 | CONCLUSIONS

In this work, 3D U-Nets for CTV, rectum, and bladder
segmentation were successfully trained for prostate
cancer patients treated at two 0.35 T MR-Linacs at
two independent facilities. The quality of the predicted
contours was confirmed by the high DSC and low
HD scores. In addition, the investigated network delin-
eations of OARs were preferred over the currently
used structures that are suggested by the clinical
system. It was shown that the accuracy of the OAR
segmentation was transferable to a second cohort from
an independent institute. Moreover, for the first time
the usefulness of PS training to improve CTV auto-
segmentation was demonstrated, which could be an
effective method for exploiting the prior knowledge avail-
able due to the fractionated type of data seen in adaptive
MRgRT.
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