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Abstract

Data-independent acquisition (DIA) of tandem mass spectrometry spectra has

emerged as a promising technology to improve coverage and quantification of proteins

in complex mixtures. The success of DIA experiments is dependent on the quality of

spectral libraries used for data base searching. Frequently, these libraries need to be

generated by labor and time intensive data dependent acquisition (DDA) experiments.

Recently, several algorithms have been published that allow the generation of theoret-

ical libraries by an efficient prediction of retention time and intensity of the fragment

ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass

spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented

speed, but the fragmentation spectra suffer from a lower quality than data acquired

on Orbitrap instruments. To reliably generate theoretical libraries that can be used in

SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to

improve the sensitivity and specificity of data generated by Q-TOF mass spectrome-

ters. The theoretical library built by dpSWATHallowedus to increase the identification

rate of proteins compared to traditional or library-free methods. Based on our anal-

ysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS

measurements than other algorithms based onOrbitrap data.
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1 INTRODUCTION

The analysis of the proteomic composition of biological samples

promises to provide a rich source of information, which could greatly
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learning for missed cleavage; dpMS, deep learning forMS fragment ion prediction; dpRT, deep

learning for retention time prediction; dpSWATH, deep learning for SWATH analysis; FDR,

false discovery rate; LC-MS, Liquid chromatography coupledmass spectrometry; PCC,

Pearson correlation coefficient; PSM, Peptide spectral matches; Q-TOF, Quadrupol Time of

Flight; RNN, Recurrent neural network; RPKM, reads per kilobase per millionmapped reads;

SWATH-MS, sequential window acquisition of all theoretical mass spectra.
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improve our molecular understanding of a wide range of biological

processes. It has the potential to revolutionize molecular diagnostics

and treatment of disease. Despite a substantial improvement of the

instruments (mostly mass spectrometers) used to perform proteomic

measurements, the field still suffers from a substantial undersampling

of peptides in shot gun proteomics studies (also called data dependent

acquisition or DDA) and therefore a very low coverage of all possible

peptides. Toovercome this problemdata independent acquisition (DIA)

strategies have been developed that result in the fragmentation of all

possible ions, which should (at least in theory) substantially improve

peptide coverage. To achieve this task, extremely fast tandem mass
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spectrometers (such a quadrupol time of flight or Q-TOF instruments)

need to be used, which results in a decrease of fragment spectrum

quality. One of these methods is the so called sequential window

acquisition of all theoretical fragment ion spectra mass spectrometry

(SWATH-MS) using a quadrupole-TOF instrument [1]. In SWATH-MS

mode, typically a precursor ion (MS1) spectrum is recorded, followed

by a series of fragment ion (MS2) spectra recordings with wide pre-

cursor isolation windows (for example 25 m/z). A comprehensive data

set is recorded through repeated cycling of consecutive precursor iso-

lation windows over a defined mass range, which includes continuous

information on all detectable fragment and precursor ions [1]. SWATH-

MShas been implemented inmany aspects of research,which including

quantitative proteomics [2], clinical biomarker research [3], histone

post-translational modification (PTM) analysis [4] and the analysis of

protein-protein interactomes [5].

In addition to a better peptide coverage SWATH-MS also has

advantages in reproducibility [6] and speed of analysis [7] and allows a

retrospective targeting [1], which is not possible when using targeted

workflows.

A disadvantage of all DIA methods is the requirement of spe-

cific fragment ion libraries for identification. Currently most of these

libraries are experimentally generated using DDA measurements of a

highly fractionated sample pool measured prior to SWATH-MS acqui-

sition on the same instrument [8]. A lot of efforts have been put into

building the assay library to improve the coverage and quality of pro-

teomic research [9]. In 2016, J. Wu et al. have compared the SWATH

mass spectrometry performance using local seed libraries integrated

with external assay libraries and local assay libraries alone [10] and

showed that the first one had a better performance with regard to

peptide identification and quantification. In addition, software tools

like SpectraST [11] have been developed to improve the building of

consensus mass spectrum libraries [12].

Nowadays, deep-learning methods have empowered proteomic

research. Especially the predictions based on the information inferred

from peptide sequence have gained a lot of attention, such as the

prediction of retention time [13] and fragment ion intensities [14, 15].

In addition to the prediction of peptide properties, deep-learning is

also used for the identification of peptides and proteins. For example,

the detection of LC-MS features is performed by deep-learningmodels

[16]. Moreover, the deep-learning approach can also be used for de

novo sequencing, such as the work that has been done by DeepNovo

[17].

More recently, tools have been developed that allow an extension

of the used libraries by applying both experimental [12, 18] and the-

oretical approaches [14, 15, 19]. However, most of the theoretical

approaches used mass spectra recorded in an orbitrap instrument,

which are of higher quality than the ones measured in a Q-TOF mass

spectrometer. To improve the SWATH-MS analysis, we developed a

novel framework and strategy to build high-quality in silico libraries by

deep-learning.

2 MATERIALS AND METHODS

2.1 Datasets

2.1.1 Datasets used for training and testing of
dpSWATH

We used datasets generated by TripleTOF 5600 and 6600 (ABSciex,

Concord, Ontario, Canada) from Homo sapiens and Drosophila

melanogaster, respectively. We used the DDA datasets from the

Pan-Human project (PXD000953) [12] as a pre-training datasets

for the TripleTOF 5600 measurements. All peptide spectra matches

(PSMs) of the Pan-Human project were extracted from file PHL.pep.xml

and split into training and testing datasets. For the training dataset,

we selected 2,000,029 unmodified PSMs containing 94,878 unique

unmodified peptides. To test the model, we used 499,999 unmodified

PSMs with 23,436 unique peptides. No DIA datasets were used for

testing on Pan-Human project.

For further training and testing we used a DDA dataset of Hela

extracts (PXD009273) [20]. To retrain the retention time and mass

spectral models to build the in silico library, 12DIA datasets were used

for DIA searching followed by identification and quantification of the

proteins.

For TripleTOF 6600, an aliquot corresponding to 500 µg of pro-

teins of a Drosophila embryo extract [21] was precipitated with TCA.

The protein pellet was dissolved in 6 M urea for subsequent protein

cleavage by LysC and trypsin, disulfide reduction and alkylation with

DTT and iodoacetamide, respectively. The obtained polypeptide mix-

ture was desalted over C18 stage tips before further high pH-reversed

phase separation. Individual fractions were injected onto an Exigent

425 nanoLC system, operated in micro-flow mode at 5 µl/min and sep-

arated on a 300 µm x 15 cm column directly coupled to the TripleTOF

6600 mass spectrometer (both ABSciex). For peptide separation a

50 min gradient from 2% to 35% acetonitrile in water was employed

followed by 5 min washing at 80% acetonitrile. Peptides eluting from

the column were detected in information-dependent detection mode

acquiring a survey scan from 350 to 1500 m/z. Maximally 20 precur-

sors with charge state 2+ or higher and a signal intensity of min. 160

countswere selected forMS/MSanalysis to obtain highquality data for

peptide identification. To further increase the number of detected pep-

tides and proteins, DDA experiments of 72 fractions of a Drosophila

embryo extract fractionated by size exclusion chromatography (Super-

ose 6 10/300 GE Healthcare, Chicago, IL). All the PSM information

was extracted using ProteinPilot (ABSciex, Concord, Ontario, Canada)

or SpectroMine (Biognosys AG, Schlieren, Switzerland) and deposited

on the Pride database (PXD038407). To evaluate the performance

of dpSWATH, the precursors of 72 fractionated DDA runs includ-

ing peptide sequences and precursor charges were extracted from

experimental library based on the searching results of Pulsar in

Spectronaut (15.2.210819, Biognosys AG, Schlieren, Switzerland). For
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the 72 fractionated library, 3655 unique peptides were extracted to

transfer-train the retention time and mass spectral models, the left

40,000 peptides with corresponding precursor charges were used to

build the validation library with prediction by dpSWATH.

For all of the training, testing and validation datasets, the fragment

ions were normalized which divided by the highest peak for each mass

spectrum. The minimum and maximum length of peptides is 7 and

60 respectively and, the precursor charge ranges from 1 to 6 and a

maximum charge of fragment ions of 2+.

2.1.2 Datasets used for building the theoretical
library

Fasta files of D. melanogaster and H. sapiens were downloaded from

FlyBase (http://flybase.org/) and UniProt (https://www.uniprot.org/)

respectively. Then the protein sequences were selected based on the

entries recorded in the DDA libraries. For D. melanogaster, 5006 pro-

tein groups were extracted while 10524 and 4460 protein groups

were extracted from the in Pan-Human library or the DDA experiment

prepared from HeLa extracts respectively. The peptide sequences

were prepared based on the cleavage standard rules of trypsin [22].

Up to two missed cleavages and cleavages followed by proline were

predicted by dpMC. The length of the peptides is from 7 to 60

and the charges for peptides range from 2+ to 4+. Data of mRNA

expression profiles for different stages of embryos of D. melanogaster

(gene_rpkm_report_fb_ 2017_05.tsv) were downloaded from Flybase,

while mRNA expression data for HeLa cell-lines were used from the

ProteomeXchange repository (PXD009273) [20].

2.2 Preprocessing of datasets for modeling
(dpMScore)

All datasets were preprocessed using the newly developed dpMScore

and used for both training and testing of the performance of dpSWATH

(Figure 1). dpMScore uses hierarchical clustering to choose the most

abundant andconsistent fragmentationof eachpeptide. ThedpMScore

is calculated by the following formula:

dpMScore = −ln(Dist)
∑

Nc
1

∏
Nc
i pi exp

∏Nc
1
pi(1−

∏Nc
1
pi)

whereDist is thedistanceamongdifferent fragmentations for the same

peptide, which ranges from 0.01 to 0.2 based on Pearson Correlation

Coefficient (PCC); Nc is the number of clusters split at one certain bar;

pi is the proportion of ith cluster calculated by the number of fragmen-

tations in this cluster divided by the total number of fragmentations for

this peptide, which ranges from 1 toNc.

The dpMScore was only calculated for peptides that had more than

three replicates whereas peptides with less than three replicates were

kept in the training or testing datasets for dpSWATH without a score

attached to it.

2.3 Retention time prediction

As the prediction of retention time is crucial to SWATH-MS analy-

sis, we developed dpRT as part of the dpSWATH program for a highly

accurate retention time prediction and an increased sensitivity and

identification of peptides and proteins (Figure 1, Figure S1). The frame-

work of dpRT takes advantage of both convolutional neural network

(CNN) and recurrent neural network (RNN)with self-attentionmecha-

nism (Figures 1 and S1). CNN performs very well on image and lingual

work which benefits from its powerful feature extraction function. In

dpRT, we use one-dimensional CNN as feature extractor to analyze

the peptide sequence by setting the kernel size as 3. It is beneficial

for next level RNN to use these features to predict the fragment ions’

intensities. As for the RNN work, we chose two parallel bidirectional

Long-Short Term Memory (BiLSTM) layers. The BiLSTM is very good

at dealing with sequence or sentence cases, which has the advan-

tage of processing information in both directions; for each predicted

vector, BiLSTM makes the prediction combining the past and future

states simultaneously. However, BiLSTM still shows lack of capabil-

ity of dealing with long sequences, which could be complemented by

the advantage of self-attention algorithm which is able to assign dif-

ferent weights to different features and has strong capability to deal

with long sequences. Besides the BiLSTM layers, we also adopted self-

attention layers to enhance the capability of model on dealing with the

distant information along the sequences. Then two dense layers with

256 units and 1 unit respectively were connected to above RNN layers

to generate the single predicted value.

2.4 Fragment ion prediction

For the prediction of fragment ions, we developed dpMS. In dpMS,

we also used one-dimensional CNN as feature extractor to analyze

the peptide sequence by setting the kernel size as 2, in this way CNN

could extract features from each two adjacent amino acids which have

a strong and direct effect to the fragment ions that lies between them,

which is beneficial for next level RNN to use these features to predict

the fragment ions’ intensities. As for the RNN work, we keep the simi-

lar architecture as dpRTbutmodify the units of RNNand self-attention

layer with width as 49. For the fragment ions used to construct mass

spectra, we take b ions and y ions that are generated by one time-

distributed dense layer as the output layer of dpMS and the dimension

of output is 59*4.

2.5 DDA library generation

The search engine Pulsar in Spectronaut (15.2.210819, Biognosys

AG, Schlieren, Switzerland) was used to build all the above the DDA

libraries. The public Pan-Human library is pre-deposited in the Spec-

tronaut software. To measure the performance of dpSWATH, we built

the experimental library of unmodified peptides with length from 7 to
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F IGURE 1 Theworkflow of dpSWATH and strategies applied in this study. Datasets from either ProteinPilot or SpectroMine can be analyzed,
and the generated library can be used by Spectronaut or Skyline

60 amino acids, precursor charges from 1+ to 6+ and, set Cysteine

carbamidomethylation as fixed structural modification and no variable

modification are selected. Themaximummissed cleavagewas set as 2.

2.6 Construction of dpSWATH library

After thepredictionof fragment ions’ intensities and retention time,we

assembled the two parts’ results into .txt file which could be read by

Spectronaut. The .txt file stores all available mass spectra to build the

searching library. We put all of the 10 necessary information (Supple-

mentary Note 1) of mass spectra including the predicted fragment ions

and retention time which suggested by Spectronaut into the .txt file

(Figure 1). Besides, we also prepared the script for building the library

for Skyline.

3 RESULTS

3.1 Preprocessing of the datasets

Compared toanorbitrapmass spectrometer, the fragment spectra ana-

lyzed within a TripleTOF mass analyzer show a higher variability [11,

23]. The selection of the representative mass spectrum is therefore

crucial for efficient identification and quantification of the correspond-

ing peptide. Currently, most spectral libraries were built with the

consensus mass spectra from PSMs using clustering algorithms such

as SpectraST [11]. The selection of the consensus spectrum is often

based on selecting the spectra with a minimal Q-value. However, for

TripleTOF datasets, even PSMs with similar Q-values show big differ-

ences in the intensities of individual fragment ions as shown in Figure 2.

For the training of dpSWATH, we therefore devised dpMScore to pre-

processMSdatasets and select themost abundant and consistentmass

spectra for a given peptide with the same precursor charge. In dpM-

Score, we take the similarities among mass spectra into consideration

and choose the cluster with the smallest distance and the largest num-

ber of spectra (see Section 2). In this way, the clusters of mass spectra

were not only determined by the intensities, but also by the number of

detected fragment ions and their proportions.

3.2 Benchmarking of dpSWATH

Tandem MS spectra are strongly affected by many different experi-

mental conditions ranging from sample preparation to instrumental

set up to ambient environmental conditions such as temperature,

humidity, or electrical interference (Gallien et al., 2013). We thereby

designeddpSWATH in suchaway that it canbe trainedand testedusing

data measured on multiple different instruments and under variable

conditions and used transfer learning to construct reliable libraries.

To prepare a high-quality predicted library, the algorithm should

therefore be able to efficiently extract associated features, which

affect the mass spectrum pattern and retention time. To do this, we

put the convolutional layer as the first layer to extract the features at

a deep level automatically. To address the issue of identifying very long

peptides (e.g., longer than40amino acids), we also used a self-attention

layer to deal with longer sequence peptides (Figure S1).

First, we split the Pan-Human datasets from TripleTOF 5600 into

training, validation, and testing datasets into a ratio of 8:1:1. By

applying dpMScore as described in the methods, dpMS has achieved

a median Pearson Correlation Coefficient (PCC) of 0.968 and median

dot-product of 0.973 between the observed and predicted mass
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F IGURE 2 Different mass spectra patterns for the same precursor on the same condition. (A) The line plot of mass spectra of peptide
“FTTALSFYDGYR” with precursor charge 2, the fragment ions’ names are shown in x-axis with relative intensities in y-axis. All mass spectra
pattern for this peptide are shown, the red patterns are the cluster chosen based on the dpMScore, the left gray pattern are filtered out by
dpMScore for this peptide; (B) the clustering diagram for this peptide, the index of different mass spectra for this peptide are shown in x-axis with
the distance among different mass spectra shown in y-axis. The chosen cluster are shown red corresponding to the redmass spectra in (A), which
are chosen on the threshold at distance based on PCC 0.07

spectra (Figure 3A). For all validation and testing datasets, the

peptides were not shown in the training datasets. We then applied

transfer-learning on human datasets of TripleTOF 6600 with the

trainedmodel on TripleTOF 5600 to predict the fragmentation spectra

of 57157 peptides fromD. melanogaster. When doing this, we achieved

a median Pearson Correlation Coefficient (PCC) of 0.980 and median

dot-product 0.983 between observed and predicted mass spectra

(Figure 3A,B). The similarities between observed and predicted mass

spectra can directly affect the success of the identification and quanti-

tation of proteins and peptides in the downstream analysis. Compared

withDeepDIAon the samedatasets, dpMSachievedmuchhigher accu-

racy, which benefits the following analysis. Besides the higher accuracy

given by dpMS, the capability of prediction for the longest sequence

has been up to 60 and up to 6 of the highest precursor charges.

Then we applied the same strategy to the prediction of reten-

tion time. To eliminate the differences among different experiments

and facilitate the prediction, we applied indexed retention time (iRT)

throughout this study. The information of retention time can provide

a reliable coordinate for mapping corresponding peptides [24, 25]

and is usually combined with other analytical coordinates (m/z, inten-

sity) for a reliable identification and quantification [25]. Therefore, we

developed dpRT as part of the dpSWATH framework to facilitate the

generation of building reliable in silico libraries (Figures 3C and S2).

Basedon thehighaccuratepredictiononmass spectra and retention

time, we benchmarked the performance of dpSWATH by integrating

the results from dpMS and dpRT on the validation datasets (see Sec-

tion 2), which contains 40,000 peptides in the library. From the results,

we got more peptides and proteins compared to the experimental 72

fractionated library and the library built by DeepDIA (Figure 3E,G).

Compared to the experimental identified 28,940 peptides and 3301

protein groups, dpSWATH identified 31,012 peptides and 3545 pro-

tein groups, which are also more than the results fromDeepDIAwhich

identified 25,938 peptides and 2606 proteins. The libraries built by

experimental (DDA) or theoretical approaches (dpSWATH, DeepDIA)

are based on very different strategies. TheDDA librarywas built on the

identifiedPSMsof given precursors,whichwas basedon the consensus
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F IGURE 3 Benchmarking of dpSWATH. (A) The performance of dpMS andDeepDIA on datasets from TripleTOF 5600 and TripleTOF 6600,
the blue histograms show the distribution of PCC, while the orange histograms show the distribution of dot-product, themedian PCC and
dot-product are shown. (B) Themirror plot for peptide ‘TAPLNLHISR’ with precursor charge of 2. The experimental mass spectra is shown in upper
blue while the predicted shown in lower red. (C) The prediction of retention time by dpRT on datasets ofD. melanogaster, the correlation of PCC,
interquantile range (IQR) and distance of 95% datapoints are shown; (D) the prediction of retention time by DeepDIA on the same datasets as (C);
(E) The overlapping of precursors among libraries of DDA, dpSWATH andDeepDIA. (F) The coefficient of variance (CV) of precursors for each
stage of the embryo development inD. melanogaster. (G) The overlapping of protein groups among libraries of DDA, dpSWATH andDeepDIA. (H)
The coefficient of variance (CV) of protein groups for each stage of the embryo development inD. melanogaster

mass spectra generation algorithm like SpectraST. For the library built

by dpSWATH, the training processwas based on the filtered PSMs, and

then the mass spectra pattern and retention time were predicted by

dpMS and dpRT, respectively. The library built by DeepDIA, only the

PSMs with minimum Q-values were used for training which leads to

relatively higher specificity but lower sensitivity.

To estimate the applicability of theoretical libraries, we also mea-

sured the coefficient of variance when quantifying protein groups

from two technical replicates of five different developmental stages

of Drosophila embryos (Figure 3F,H). In each case the CV is very simi-

lar between analyses made using the dpSWATH predicted library and

derived from a DDA experiment (Figure S3A–S3F). Even when com-

paring the quantification of individual precursor ions both DDA and

dpSWATH libraries performed equally well (Figure S3G). From this

comparative analysis we conclude that dpSWATH not only identifies

more peptides and protein groups, but also provides a robust and

reproducible quantitation similar to the DDA approach but on this

higher number of identified peptides.

3.3 The interpretation of mass spectra on amino
acids level

To understand the inner mechanism of our algorithm we investigated

the amino acid contributions and therefore analyzed the impact of dif-

ferent amino acids on the prediction of the pattern of mass spectra.

In the process of predicting mass spectra by dpMS, the properties of

amino acids are encoded into each neuron, which is given different

weights depending on the peptide sequence. The heatmap illustrates

the weights of each amino acid assigned during predictions. We could
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F IGURE 4 The heatmap of the correlation among amino acids
based on their features

see that some amino acids such as the aromatic amino acids F and

Y cluster together due to their biochemical properties and structures

(Figure 4).

3.4 Missed cleavage prediction by dpMC

In proteomic analysis, trypsin is widely used to digest proteins

into peptides. Despite being a robust and efficient protease

tryptic cleavage rarely reaches a100% efficiency. To predict the

sites of inefficient cleavagemost search engines use the Keil rules [22].

When it comes to building a large library based on entire proteomes,

one problem is how to accurately predict missed cleavages. DeepDIA
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F IGURE 5 The performance of dpMC on datasets ofD. melanogaster andHeLa

simply adopts the Keil rules to fully predict missed cleavages. To

improve this prediction, we developed dpMC [26] (Figure 5). For the

application of dpMC in dpSWATH, we also optimized parameters for

the combinations of trypsin and LysC.

Besides, since the training of dpMC is based on the detected pep-

tides in experiments, so the cleaved peptides also have the information

of detectability, which is mentioned by AP3 [27]. Thus, the candidate

peptides are most detectable for DIA analysis. In this way, we not

only reduce the search time while maintaining a high specificity, but

also improve the recovery rate and control FDR of theoretical libraries

effectively.

3.5 SWATH-MS analysis improvement using
theoretical libraries generated by dpSWATH

Combined with the predictions of peptide fragment spectra by dpMS,

retention time by dpRT and accurate missed cleavage sites by dpMC,

we built an in silico library of all proteins detected inDDAexperiments.

To generate the theoretical library, we prepared the precursor candi-

dates for each protein group detected in DDA library. This resulted

in a library based on 5006 protein groups in D. melanogaster. We pre-

pared the library using either the same peptide entries as observed

in the DDA library, or the library predicted from the protein groups

identified up to two missed cleaved sites by Keil rules or up to two

missed cleaved sites predicted by dpMC. Then we searched data

from the corresponding SWATH runs using these libraries with the

same settings in Spectronaut. A comparison showed that we got the

most identifications with the library built by dpSWATH with the pre-

dicted missed cleavages by dpMC. For the DDA based theoretical

library, the protein groups’ recovery rate of the library from 66.36%

(3560/5006) to 95.65% (4788/5006) of the DDA library. We also per-

formed the searching with directDIA 2.0 developed by Spectronaut,

which showed only half of the identifications compared to the library

built by dpSWATH (Figure 6).

Next, we built an in silico library referring to the peptide entries in

Pan-Human library [12] and a DDA library of HeLa extracts [20] from

TripleTOF 5600. We built the libraries with similar strategies except

the library with up to two missed cleaved sites by Keil rules. Similar

to our Drosophila data set, we got the most identifications of pro-

tein groups when we searched publicly available SWATH runs of HeLa

extracts using a library built by dpSWATH with the predicted missed

cleavages by dpMC (Figures 6C, S4C,E). Also in this case, the recov-

ery rate of the Pan-Human library increased substantially from32.40%

(3410/10524) to 69.09% (7271/10524). The recovery rate increases

when we use a library based on the entries from a DDA experiment

performed on HeLa extracts, which is due to the same source. Even in

this case the library built by dpSWATHperforms better than the library

built from experimental data only (86.32% (3850/4460) to 96.39%

(4299/4460)) (Figure S4E). We also performed searches using direct-

DIA 2.0 in Spectronaut, which resulted in far less identifications than

by dpSWATH (Figure 6).

The prior DDA analysis to define the proteomic space used for the

generation of a theoretical library was essential to keep a low FDR

of the DIA search. In fact, when the library is generated from the

entire proteome many DIA searches result in a low rate of peptide

identifications and quantifications, which is often due to a high FDR.

To limit the search space without the need of a prior extensive DDA

measurement we built the in silico libraries based on transcriptomic

data from the corresponding source. To do this, theoretical fragment

spectra were generated from all protein candidates where the corre-

sponding gene had an average number of reads per kilobase permillion

mapped reads (RPKM) [28] greater than or equal to 1. For the different

developmental stages of D. melanogaster, this resulted in the inclu-

sion of 17299 proteins. Compared with the DDA library, this strategy

resulted in amuch higher identification of protein groups (6156/3322),

and peptides (64782/31538). The same effect is also observed

when using the transcriptomic data from HeLa cells where we pre-

dicted the fragment spectra of peptides derived from 8758 proteins

(Figure S4).

A detailed analysis of the correlation between the predicted mass

spectra and the measured ones revealed the strong benefit of using

dpMScore, which turned out to be crucial for building high quality

libraries onQ-TOF datasets (Figure S5).

 16159861, 2023, 9, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200179 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [18/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 10

F IGURE 6 The identifications of protein groups and peptides from different libraries. (A) The number of identified protein groups on
D.melanogaster. “DDA” indicates results from 72 fractionated DDA library; “directDIA” indicates the number of identified protein groups onD.
melanogaster by directDIA 2.0; “dp_asDDA” indicates results from the in silico library on the same entries as DDA library; “dp_SWATH ” indicates
results from the in silico library on the digested FASTA sequence of the transcriptome based library by dpMCwith up to twomissed cleavages
combinedwith nomissed cleavages. (B) The number of identified peptides onD. melanogaster. (C) The number of identified protein groups onHeLa
datasets from TripleTOF 5600 refer to the PanHuman library; “DDA” indicates results from experimental Pan-Human library; “directDIA” indicates
the number of identified protein groups onHeLa datasets by directDIA 2.0; “dp_asDDA” indicates results from the in silico library on the same
entries as experimental Pan-Human library; “dp_SWATH” indicates results from the in silico library on the digested FASTA sequence of the
transcriptome based library by dpMCwith up to twomissed cleavages combinedwith nomissed cleavages. (D) The number of identified peptides
on HeLa datasets from TripleTOF 5600 compared to the PanHuman library. Identifications overlappedwith the DDA-based libraries are denoted
as “shared.” Novel identifications by in silico libraries are denoted as “extra.” The numbers and sensitivities of protein groups or peptides are shown

For the improved identifications, an estimate of the FDR control

is crucial. We estimated the FDR by including predicted spectra from

other species. Identifications from these species were counted as false

positives. For these libraries from other species, we also digested the

protein sequences with dpMC and predict the intensities and reten-

tion time by dpMS and dpRT respectively. We prepared the libraries of

other species with the same number of proteins as the corresponding

libraries built above for D. melanogaster and HeLa. We used a S. cere-

visiae library of 5006 proteins which corresponds to D. melanogaster

DDA library, the library of C. elegans and D. discoideum containing

10,524 proteins which corresponds to Pan-Human library, and the

library of S.cerevisiae including 4460 proteins corresponding to the

HeLa DDA library. For the transcriptome wide library, 17,299 proteins

and 8758 proteins from C. elegans andD. discoideumwere prepared for

entrapment library ofD.melanogaster andHeLa, respectively.

We applied the entrapment strategy by pooling the entrapment

libraries with their corresponding target libraries together to check

the false positives, which revealed the false positives identified by the
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interferences of each other species. By calculation of the entrapments

in the DIA searches based on DDA measurements or the transcrip-

tome, we found the FDRwas slightly higherwhen using larger libraries.

For bothDDAbased libraries ofD.melanogaster andHeLa, the FDRwas

around 1%, while it was around 2% for the transcriptome (Figure S6).

Such a streamlining of the library is also intrinsically achieved by the

use of an accurate prediction algorithm for missed cleavages such as

dpMC. Based on the above FDR analysis, we showed the robustness

of our method and strategy to buihighly accurate spectral libraries for

SWATH-MS analysis.

In agreementwith previous findings, the correlation (PCC) between

the logarithmically transformedabundanceof geneexpression (RPKM)

and protein intensities is rather moderate with a PCC value of 0.55

and0.52 forD.melanogaster andHeLa respectively (Figure S7). Besides,

for different scales of libraries built forD. melanogaster, the similarities

between replicates for each stage of embryo development were also

shown in Figure S8, in which the high correlations between replicates

indicate the high quality of in silico libraries built by dpSWATH.

4 DISCUSSION

The accurate theoretical prediction of peptide fragment spectra holds

great promise for an improvedquantificationof entire proteomesusing

DIA methods such as SWATH-MS. Recently different models were

developed to achieve a higher quality when predicting mass spec-

tra. For example, Prosit [15] uses Collision Energy as an additional

feature to train their model. However, for Q-TOF instruments the colli-

sion energy only marginally increases the accuracy of prediction [23],

suggesting that many other subtle factors that could also affect the

behavior of mass spectra. To consider such other, potentially unknown

factors, we developed dpMScore to filter out the unreliable fragments

spectra, which resulted in a more consistent and high-quality train-

ing and testing datasets for dpSWATH, in particular when using lower

quality Q-TOF data.

The highly accurate prediction of mass spectra pattern and reten-

tion timemakes SWATH-MS analysis methods more widely applicable.

The reliable and effective workflow of dpSWATH, enables an fast

generation and an efficient use of theoretical libraries. Based on the

predicted library we built for D. melanogaster and H. sapiens (HeLa),

we identified more proteins and peptides compared to an experimen-

tal library. This increase on the proteome coverage will favor a more

comprehensive analysis of the biological system of interest.

During the development of the algorithm and its application to a

wide range of data sets, we realized that the selection of consensus

fragment mass spectra based on the dpMScore clustering algorithm

is especially important for lower quality MS/MS spectra as the once

recorded with non-trapping Q-TOF instruments. As these fragment

spectra are substantially influenced by a various extrinsic factor such

as the build of the instrument, humidity, temperature external electric

fields et cetera,we suggest building the theoretical library basedon the

training datasets on the same platform and experimental conditions.

Moreover, it turned out that the accuracy of peptide identification can

be substantially improved by reducing the search space when building

in silico libraries. In our proof-of concept studies we did this by apply-

ing a highly accurate predictionofmissed tryptic cleavages using dpMC

and a restriction to the proteins that are known to be expressed in the

samples. The information about the proteins expressed in the studied

sample(s) can be relatively easily gathered by RNA-Seq analysis or by a

deep proteomic analysis of a pool of all samples. Based on our analysis,

the transcriptome-based theoretical library showed the highest iden-

tification rate while maintaining FDR as the library based on a DDA

measurement.

In summary, dpSWATH allows a robust and reliable prediction of

fragment spectra that can be used in SWATH analyses therefore allow-

ing a rapid and efficient quantification of a higher number of proteins

and peptides compared to the classical DDA experiments or DIA

experiments that rely on experimentally generated libraries.
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