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Abstract
Purpose The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and 
radiomic features extracted from static as well as dynamic  [18F]FET PET for the survival stratification in patients with newly 
diagnosed IDH-wildtype glioblastoma.
Methods A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic  [18F]FET PET prior to 
surgical intervention were included. Patients with a survival time ≤ 12 months were classified as short-term survivors. First 
order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and 
dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n = 99) and a testing cohort (n = 42). 
After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on 
the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-
radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy, 
sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for 
identifying short-term survivors in both the training and testing cohort.
Results A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features 
achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60–0.88) in the 
independent testing cohort.
Conclusions This study successfully built and evaluated prediction models using  [18F]FET PET-based radiomic features 
and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-
wildtype glioblastoma. The combination of both clinical parameters and dynamic  [18F]FET PET–based radiomic features 
reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data 
shows that the integration of dynamic  [18F]FET PET radiomic data into clinical prediction models may improve patient 
stratification beyond established prognostic markers.
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Introduction

The inclusion of mandatory molecular markers for diagnosis 
in the World Health Organization (WHO) Classification 
of Tumors of the Central Nervous System (CNS) in 2016 
and revised in 2021 has led to a more rigid definition of 
prognostically distinct entities [1, 2]. In particular, the 
isocitrate dehydrogenase (IDH)-wildtype status is associated 
with a worse prognosis in adult diffuse astrocytic gliomas [3] 
and results in the diagnosis of a glioblastoma, WHO grade 
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4, according to the 2021 WHO classification. Additional 
predictive markers such as the methylation status of the 
O-6-methylguanine-DNA-methyltransferase (MGMT) 
promotor further help to stratify brain tumor patients 
according to their individual risk profile [4]. However, 
even within the distinct molecularly defined tumor type of 
IDH-wildtype glioblastomas, few patients survive several 
years whereas others remain short-term survivors (STS) and 
decease within the first year, indicating further potential for 
improvement regarding patient stratification [5]. Balancing 
aggressive treatment including radiation and chemotherapy 
with quality of life is critical for patients [6].Therefore, 
additional prognostic markers beyond established molecular 
genetic markers and a stratification of survival beyond the 
neuropathological classification of brain tumors would be 
helpful to further improve individual prognostication and 
guide patient management accordingly.

Molecular imaging using positron emission tomography 
(PET) with radiolabeled amino acids such as O-(2-[18F]-
fluoroethyl)-L-tyrosine  ([18F]FET) has been applied suc-
cessfully for the characterization and evaluation of primary 
brain neoplasms [7–9]. Hence, PET imaging was recom-
mended by the Response Assessment in Neuro-Oncology 
(RANO) Working Group as useful imaging method in addi-
tion to conventional magnetic resonance imaging (MRI) in 
the clinical management of brain tumor patients [10]. Espe-
cially dynamic  [18F]FET PET has been shown to be helpful 
for non-invasive tumor classification [11] and for individual 
prognostication even within defined molecular subgroups [7, 
12]. Here, radiomics have recently gained increasing interest 
as a promising non-invasive tool, where quantitative features 
are extracted from medical images and combined with clini-
cal and genomic information to establish predictive models 
[13, 14]. However, up to now, there is no radiomic approach 
based on dynamic  [18F]FET PET data which aims to per-
form survival stratification specifically in patients with an 
IDH-wildtype glioblastoma, despite being one of the most 
common and aggressive brain tumors.

Therefore, the purpose of this study was to build and 
evaluate a prediction model, which incorporates clinical 
parameters and radiomic features extracted from static as 
well as dynamic  [18F]FET PET for an individualized sur-
vival stratification in patients with a newly diagnosed IDH-
wildtype glioblastoma.

Materials and methods

Patients

The retrospective analysis of PET imaging and clinical data 
was approved by the institutional review board of the LMU 
Munich (604–16), and all patients gave written informed 

consent before the PET scan. Patients with primary diag-
nosis of a glioma who received a pre-treatment dynamic 
 [18F]FET PET scan at the Department of Nuclear Medicine 
of the LMU Munich were identified for this retrospective 
study. The inclusion criteria for analysis were (1) histo-
logically confirmed IDH-wildtype glioblastoma according 
to the updated 2016 WHO classification [1]; (2) pre-treat-
ment evaluation of a dynamic  [18F]FET PET scan (ECAT 
EXACT HR + , Siemens Healthineers, Inc., Erlangen, Ger-
many; Siemens Medical Systems, Inc., Erlangen, Germany); 
(3)  [18F]FET-positive glioma (tumor-to-background ratio, 
TBR ≥ 1.6); and (4) availability of clinical characteristics, 
including age, gender, Karnofsky Performance Score (KPS), 
as well as MGMT promoter methylation status and telomer-
ase reverse transcriptase promoter (TERTp) mutation status. 
Patients with no follow-up data were excluded. Patients with 
a survival time ≤ 12 months were defined as short-term sur-
vivors (STS) [15, 16].

[18F]FET PET image acquisition

[18F]FET PET images were acquired on an ECAT EXACT 
HR + PET scanner (Siemens Healthineers) with the stand-
ard protocol [8, 17] at the Department of Nuclear Medicine 
of the LMU Munich. Dynamic  [18F]FET PET images were 
acquired over 40 as detailed in [14]. If relevant motion was 
observed in dynamic PET images, a frame-wise correc-
tion was performed using PMOD fusion tool (version 3.5; 
PMOD Technologies, Zurich, Switzerland) after frame-wise 
checking for motion.

Segmentation of tumor volumes and brain 
background

The mean background activity was assessed from a large 
crescent-shaped volume of interest (VOI) in the contralateral 
healthy hemisphere as published previously [18] and recom-
mended in the Joint EANM/EANO/RANO practice guide-
lines/SNMMI procedure standards for imaging of gliomas 
using PET with radiolabeled amino acids [19]. For tumor 
segmentation, a VOI was delineated with a TBR-threshold 
of 1.6 in static 20–40 min p.i. summation images as previ-
ously described [20].

TBR and TTP image generation

The image values were normalized with the mean back-
ground value to generate static 20–40 min p.i.  (TBR20–40) 
TBR images. An in-house developed software described 
previously by Kaiser et al. [21] (C +  + with integration of 
the ROOT data analysis framework, version 6.22/08, CERN, 
Switzerland; and ITK segmentation and registration toolkit 
4.13.3, National Library of Medicine, National Institutes of 
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Health, USA) was applied to generate voxel-wise parametric 
images. For the generation of TTP images, time–activity 
curves (TACs) were derived from each voxel, which were 
then classified according to the time frame reaching the peak 
uptake, i.e., (1) < 5 min, (2) 5–10 min, (3) 10–15 min, (4) 
15–20 min, (5) 20–30 min, and (6) 30–40 min. TTP analyses 
excluded the first 2.7 min p.i. to avoid influence from early 
blood flush [21]. In case of a positive late slope (15–40 min 
p.i.), the TTP was assigned to group 6.

Radiomic feature extraction

Images were resampled to isotropic voxels using linear inter-
polation (size 2.03 × 2.03 × 2.03  mm3), then radiomic fea-
tures were extracted in Python (version 3.8.5) using PyRadi-
omics (version 3.0.1) [22], which complies with the Imaging 
Biomarker Standardization Initiative (IBSI) guidelines [23]. 
The included feature classes were first-order features, shape 
features and texture features, which were extracted from 
TBR and TTP images, respectively. No image filters were 
applied. As previously published, a fixed intensity bin size 
was set to 0.13 for  TBR20–40 images, resulting from the aver-
age interquartile range divided by 4 [21, 24, 25]. The small-
est time frame duration considered in the TTP categories 
was 5 min, which was used as the fixed bin width for feature 
extraction from TTP images.

Machine learning pipeline

Before feature selection, a stratified random split was used 
to assign 70% of the patients to the training cohort (n = 99) 

and the remaining 30% to the testing cohort (n = 42), with 
a balanced distribution of STS and non-STS (P = 0.8654, 
Pearson’s χ2 test) and clinical parameters in both groups 
using the FeAture Explorer (FAE) [26]. The independent 
testing cohort was not involved in the process of model 
training and used only for model testing. Machine learning 
including feature selection and model construction was 
implemented in Python (version 3.8.5) using scikit-
learn package (version 0.24.1) [27]. The workflow of the 
processing pipeline is presented in Fig. 1.

Feature standardization was computed only on the train-
ing cohort and then applied to both the training and the 
testing cohorts. For each feature, the mean value and the 
standard deviation were calculated. The mean value was sub-
tracted from each individual value, which was then divided 
by the standard deviation.

Before performance evaluation on the test set, feature 
selection and model fitting was conducted on the training 
set. Logistic regression (LR) models were built to predict 
short-term survival of GBM patients in the testing cohort by 
fitting selected features on the training cohort. For survival 
classification, LR was applied in “balanced” mode, which 
gives higher weight to the minority class and lower weight 
to the majority class. With this setting, weights are automati-
cally adjusted inversely proportional to class frequencies in 
the input data to avoid the influence from the imbalance of 
comparison groups [28]. Considering the small amount of 
data, the solver “liblinear” was used and the maximum num-
ber of iterations was set to 1000 for the solver to converge. 
The remaining settings of the logistic regression classifier 
provided within the scikit-learn package were set to default.

Fig. 1  The workflow of radiomic process. TBR, tumor-to-background 
ratio; TTP, time-to-peak; TAC, time–activity curves; GLCM, gray level 
co-occurrence matrix; GLRLM, gray level run length; GLSZM, gray 

level size-zone matrix; NGLDM, neighborhood gray level different 
matrix; GLDM, gray level dependence matrix
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Radiomic feature selection

Pearson correlation coefficient (PCC) was used to reduce 
the dimensions of the feature matrix [29]. The PCC of two 
features was compared iteratively. If the PCC was larger 
than 0.99 [30], the second feature was removed. Further-
more, recursive feature elimination (RFE) based on logistic 
regression classifier was performed to reduce the number 
of redundant features and select potential survival-related 
features [31]. During each iteration, a feature which is con-
sidered least important is deleted. The number of features 
to select was chosen to range between 1 and 15. The per-
formance of each model with a different number of features 
was assessed using the area under the receiver operating 
characteristic curve (AUC) obtained from repeated stratified 
cross-validation using three splits and five folds.

Model construction and testing

First, models considering radiomic features derived from 
either TBR or TTP images or only clinical parameters were 
generated and compared to each other. Radiomic signatures 
were generated by using linear combinations of the selected 
radiomic features according to the LR coefficients in the TBR 
and TTP models. The clinical model was constructed from 
all clinical parameters including age, gender, KPS, MGMT 
promoter methylation status, and TERTp mutation status. 
Second, the TBR-TTP model was built from a combination 
of the TBR signature and the TTP signature. The combined 
clinical-radiomic models were constructed by combining 
clinical parameters and radiomic signatures, respectively.

Statistical analysis

Receiver operating characteristic curve (ROC) analysis was 
performed on the training and testing cohorts to evaluate the 
model performance. AUC, accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value 
(NPV) were calculated for diagnostic power when applying 
the trained model on the testing cohort. Then, 95% confidence 
intervals (CIs) were calculated by using a non-parametric 
bootstrap method, which was repeated 1000 times to get a 
bootstrap distribution of the results.

Categorical variables or continuous variables were reported 
as numbers and percentages or as mean and standard deviation. 
Categorical variables were compared using Pearson’s χ2 test 
and continuous variables were compared using Mann–Whitney 
U test. P values < 0.05 were considered statistically significant.

Statistical analyses were implemented in Python (version 
3.8.5) using scikit-learn package (version 0.24.1) [27].

Results

Patient characteristics

A total of 141 patients (median age, 59.3  years; range, 
19.0–77.2 years) were included in this study. Of the 141 
patients, 94 (66.7%) patients underwent stereotactic biopsy and 
47 (33.3%) microsurgical resection at initial diagnosis, with 
the same distribution between the training and testing cohorts 
and no significant differences between both STS and non-STS 
group (P value = 0.355). Forty patients (28.4%) had a survival 
time of less than 12 months and were classified as STS. The 
variables which constructed the clinical model included age, 
gender, Karnofsky Performance Score, CNS WHO grade, 
MGMT promoter methylation status, and TERTp mutation 
status, and are presented in Table 1. There were no signifi-
cant differences between the training and testing cohorts with 
regard to clinical parameters, with STS rates of 28.3% and 
28.6%, respectively. The initial therapies of STS and non-STS 
are shown in Table S1.

Radiomic feature extraction and selection

The original features considered for the model construction 
included six clinical parameters and 107 radiomic features 
extracted from static and dynamic  [18F]FET PET images, 
respectively. After the PCC-based exclusion of redundant 
features, 79 features were retained from TBR images and 
94 features were retained from TTP images. With RFE, two 
features were finally selected for the TBR model and six 
features for the TTP model (Fig. 2).

Diagnostic validation of the TBR model, TTP model, 
and clinical model

The TBR model reached an AUC of 0.63 (95% CI, 0.52–0.75) 
in the training cohort for the prediction of STS (Supplementary 
Fig. S1a, S1b), with a sensitivity of 60.7% and a specificity of 
60.6%, and a similar AUC of 0.63 (95% CI, 0.47–0.78) in the 
testing cohort, with a sensitivity of 50.0% and a specificity of 
73.3%. The TTP model showed a higher predictability of STS 
(Fig. S1c, S1d) with an AUC of 0.77 (95% CI, 0.69–0.84) in 
the training cohort (sensitivity 75.0% and specificity 63.4%), 
and with an AUC of 0.71 (95% CI, 0.57–0.84) in the testing 
cohort (sensitivity 50.0% and specificity 70.0%). The clinical 
model demonstrated an accuracy at a comparable level as 
the TTP model (Fig. S1e, S1f), with an AUC of 0.79 (95% 
CI, 0.71–0.86) in the training cohort (sensitivity 75.0% and 
specificity 64.8%) and an AUC of 0.69 (95% CI, 0.50–0.86) 
in the testing cohort (sensitivity 66.7% and specificity 53.3%).

The coefficients of features in the clinical model are 
shown in Supplementary Table S2. Radiomic signatures are 
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provided in Supplementary section S2. Detailed information 
about the performance of the different models is shown in 
Table 2 and Supplementary Table S3.

Diagnostic validation of the combination models

The combined TBR-TTP model reached an AUC of 0.79 
(95% CI, 0.72–0.87) in the training cohort for the prediction 

Table 1  Clinical characteristics 
of the patients

Data are means ± standard deviations or numbers of patients with percentages in parentheses. P value was 
derived from the univariate association analyses between each clinical parameter. Calculated by using 
the Mann–Whitney U test for continuous variables and Pearson’s χ2 test for categoric variables. Gender, 
MGMT, TERTp with representative number of formula of risk probability in parentheses
STS short-term survivors, KPS Karnofsky Performance Score

Training cohort (n = 99) Testing cohort (n = 42) P value

STS Non-STS STS Non-STS

Characteristic (n = 28) (n = 71) (n = 12) (n = 30) 0.865
Age, years 56.7 ± 11.8 58.5 ± 13.1 0.121
Gender

  Female (0) 40 (40.4%) 17 (40.5%) 0.857
  Male (1) 59 (59.6%) 25 (59.4%)

KPS 80 (60–100) 80 (40–100) 0.587
WHO grade

  III 32 (32.3%) 16 (38.1%) 0.640
  IV 67 (67.7%) 26 (61.9%)

MGMT
  Unmethyl. (0) 47 (53.0%) 20 (51.2%) 0.988
  Methyl. (1) 52 (47.0%) 22 (48.8%)

TERTp
  Wildtype (0) 21 (21.2%) 10 (23.8%) 0.516
  Mutation (1) 78 (78.8%) 32 (76.2%)

Fig. 2  The feature selection process of the RFE. Each iteration 
removes a feature that is considered least important and corresponds 
to a 3-repeated 5-fold cross-validation. After cross-validation, the 
average AUC of the model in the training cohort was used to deter-
mine the optimal number of features. The number of candidate fea-

tures was chosen to range from 1 to 15. The feature number with 
maximal AUC was selected. a Two features were selected in the TBR 
model and b six features were selected in the TTP model. RFE, recur-
sive feature elimination; AUC, area under the receiver operating char-
acteristic curve
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of STS (Supplementary Fig. S2a, S2b), with a sensitivity of 
71.4% and a specificity of 69.0%, and an AUC of 0.74 (95% 
CI, 0.61–0.86) in the testing cohort, with a sensitivity of 
50.0% and a specificity of 70.0%.

The combined clinical-TBR model showed only slightly 
higher predictability of STS than the TBR model, with an 
AUC of 0.80 (95% CI, 0.72–0.87) in the training cohort and 
0.64 (95% CI, 0.47–0.81) in the testing cohort (Fig. S2c, 
S2d). The sensitivity and specificity were 75.0% and 70.4% 
in the training cohort, and 58.3% and 60.0% in the testing 
cohort, respectively.

The combined clinical-TTP model showed best predict-
ability of STS, with an AUC of 0.86 (95% CI, 0.78–0.92) in 
the training cohort (sensitivity 82.1% and specificity 74.7%) 
and 0.74 (95% CI, 0.60–0.88) in the testing cohort (sensitivity 
66.7% and specificity 70.0%) (Fig. S2e, S2f).

The clinical-TBR-TTP model reached an AUC of 0.86 
(95% CI, 0.70–0.93) in the training cohort for the prediction 
of STS (Fig. S2g, S2h), with a sensitivity of 89.3% and a 
specificity of 71.8%, and AUC of 0.72 (95% CI, 0.59–0.86) in 
the testing cohort, with a sensitivity of 58.3% and a specificity 
of 73.3%.

LR coefficients of the combined models are provided in 
Supplementary section S3. Detailed information about the 
performance of the combined models is shown in Table 3 
and Supplementary Table S4.

Discussion

This study illustrates that integration of radiomics based 
on dynamic  [18F]FET PET may improve the assessment of 
short-term survival probability in patients with newly diag-
nosed IDH-wildtype glioblastoma. As opposed to prediction 
models based on clinical parameters or radiomic features 
alone, specifically a combined clinical-TTP model includ-
ing both clinical parameters and an additional radiomic sig-
nature derived from dynamic PET accomplished a higher 
prognostic value for short-term survival.

Several studies have analyzed the role of  [18F]FET PET for 
the assessment of survival probability in patients with glioma 
[7, 8, 12, 32–35]. It has been reported that a large biological 
tumor volume (BTV) on static  [18F]FET PET [32, 33, 35] as 
well as a short  TTPmin extracted from dynamic  [18F]FET PET 
at initial diagnosis are associated with STS [7, 12, 34, 35]. 
Besides, Bauer et al. showed that  TTPmin is an independent 
prognostic factor for overall survival, reaffirming the value of 
dynamic  [18F]FET PET in the prediction of survival in glioma 
patients. Yet, initial radiomics data in high-grade glioma have 
been provided by MRI studies, achieving high AUC values 
for the prognostication of overall survival in the range of 
0.652–0.858 in the test cohort [36–40] demonstrating that 
radiomics might be a valuable tool to estimate survival in 
brain tumor patients. Meanwhile, first promising studies 
have brought  [18F]FET PET–based radiomics into the focus: 
Radiomic features extracted from static  [18F]FET PET 
showed better accuracy than conventional static parameters 
(e.g.,  TBRmax) to identify pseudoprogression [13]. For the 
differentiation between radiation injury and recurrence of 
brain metastasis, textural features extracted from  [18F]FET 
PET had a diagnostic accuracy of 83% [41]. Carles et al. 
reported that  [18F]FET PET radiomics could contribute 
to the prognostic assessment [42], and Paprottka et  al. 
established a promising tool for objective differentiation 
of tumor progression from treatment-related changes by 
combining  [18F]FET PET and multiparametric MRI [43]. 
However, those initial studies only analyzed static  [18F]
FET PET features without taking into account important 
clinical parameters and, furthermore, no study so far has 

Table 2  Performance of TBR, TTP, and clinical models for the testing 
cohort

CI confidence interval, TBR tumor-to-background ratio, TTP time-to-
peak

TBR model TTP model Clinical model

AUC 0.63 0.71 0.69
AUC 95% CI (0.47–0.78) (0.57–0.84) (0.50–0.86)
Accuracy 66.7% 64.3% 57.1%
Sensitivity 50.0% 50.0% 66.7%
Specificity 73.3% 70.0% 53.3%
PPV 42.9% 40.0% 36.4%
NPV 78.6% 77.8% 80.0%

Table 3  Performance of combined models for the testing cohort

CI confidence interval, TBR tumor-to-background ratio, TTP time-to-peak

Model AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

TBR-TTP 0.74 (0.61–0.86) 64.3 50.0 70.0 40.0 77.8
Clinical-TBR 0.64 (0.47–0.81) 59.5 58.3 60.0 36.8 78.3
Clinical-TTP 0.74 (0.60–0.88) 69.0 66.7 70.0 47.1 84.0
Clinical-TBR-TTP 0.72 (0.59–0.86) 69.0 58.3 73.3 46.7 81.5
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utilized dynamic  [18F]FET PET–based radiomics to assess 
the probability of poor prognosis within distinct molecular 
brain tumor types.

The present study used clinical parameters combined 
with  [18F]FET PET radiomic features to develop combined 
clinical-radiomic models. A model based on clinical data 
only, built from six important survival-related clinical 
parameters, achieved an AUC of 0.69 in the independent 
testing cohort. A TBR model, built from two static  [18F]
FET PET features, achieved an AUC of 0.63 in the testing 
cohort and thus did not perform better than the clinical 
model. The TTP model, however, generated from six 
dynamic  [18F]FET PET features, achieved an AUC of 0.71 
in the testing cohort, thus slightly exceeding the clinical-only 
model and outranging the TBR-only model, highlighting the 
importance of dynamic PET data in the context of survival-
related analyses. The combined purely imaging-based TBR-
TTP model achieved only slightly better results than each 
model alone (AUC of 0.74 vs. AUC of 0.63 and AUC of 
0.71). Eventually, the merger of the TTP radiomic signature 
and clinical data, resulting in the combined clinical-TTP 
model, achieved best predictive performance with an AUC 
of 0.74. Integrated discrimination improvement (IDI) was 
calculated between the clinical model and the combined 
clinical-TTP model [44]. The value of IDI was 0.1089, 
which was greater than 0, and the P value was 0.023, which 
was statistically significant. It indicated that the combination 
of TTP radiomics and clinical data, compared to clinical 
parameters alone, led to an improved ability of the model 
to identify patients at risk. Although intriguing to speculate 
that the clinical-TBR-TTP model would achieve highest 
accuracy as it includes all available information, the AUC 
did not improve, which may be related to the limited value 
of TBR information in this context, but this should be 
re-evaluated in larger cohorts. Taken together, as previously 
shown for other entities, it seems beneficial not to narrow 
the view to the clinical information alone when constructing 
a predictive model but to include radiomic signatures in 
clinical prediction studies as well, as the combination of 
clinical and radiomic information seems to be of particular 
value with regard to survival risk prediction [45]. When 
considered on its own, an AUC of 0.74 still does not seem 
satisfactory, as further underscored by a positive predictive 
value for the identification of a short-term survivor of only 
47.1% even for the best model (see Table 3). From a clinical 
point of view, the positive and negative predictive values are 
highly useful metrics in the context of decision-making as 
they give an estimate on the correctness of a prediction. In 
the clinical setting, it would be particularly beneficial to 
identify patients at risk for short-term survival in order to 
facilitate the selection of more aggressive treatments or 
earlier inclusion in experimental treatment studies, rather 

than just standard treatment, to which approximately 30% 
of patients do not respond. However, also the identification 
of long-term survivors would be helpful in the clinical 
routine, as pseudoprogression can occur in one-third of the 
patients and may, when misinterpreted as tumor progression 
on MRI, lead to a premature cessation of an effective 
treatment. Of note, while the positive predictive value 
was extremely low in all models, the negative predictive 
value, reflecting the predictability of long-term survival, 
reached 84% in the best model. Therefore, even though 
the overall accuracies of our prediction models may not 
yet be satisfactory for the clinical use and the low positive 
predictive values impede the prediction of a short-term 
survivor, the high negative predictive value may be helpful 
for clinical decision-making. Our study supports that within 
a neuropathologically homogenous group of aggressive 
IDH-wildtype glioblastomas, especially the combination of 
different types of information (in this case clinical data and 
radiomic signature) can add value to a survival prediction 
model and consequently hints to the potential, which lies 
in the inclusion of even further image-based information. 
Indeed, one might speculate that the addition of conventional 
MRI data and in a next step more sophisticated MRI data 
such as perfusion or diffusion-weighted MRI may further 
increase the power of survival risk prediction of the 
combined clinical-TTP model [46], but such analyses require 
a standardized imaging protocol to assure comparability of 
MRI-based radiomic features. In other tumor entities as 
well, especially multiparametric imaging approaches have 
shown highly promising results for survival prediction, 
e.g., reaching an accuracy of up to 98% in a study on 
cervical cancer as compared to only 56–60% for prediction 
models using the standard clinical variables alone [47, 48]. 
Accordingly, dual PET imaging studies including other 
tracers than  [18F]FET in IDH-wildtype glioblastoma, such 
as TSPO-ligands which offer complementary information 
to the  [18F]FET uptake [49], are of high potential to further 
increase the power of survival prediction models, as 
exemplified by recent successful multi-tracer PET prediction 
approaches in other entities, such as prostate cancer [50].

Although the number of patients included in the cur-
rent study is by far higher than in most previous  [18F]FET 
PET radiomics studies, a further increase in patient num-
bers may in future result in outperforming radiomics-only 
based approaches, as already shown in large-scale analyses 
for other medical settings [51]. According to the above-
generated multivariate LR-based formulas, the known risk 
factors of high WHO grade, unmethylated MGMT promoter, 
TERTp mutation as well as higher patient age and lower 
KPS at diagnosis of IDH-wildtype glioblastoma were more 
likely associated with short-term survival [52–55]. However, 
gender has different correlations in different formulas, which 
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is inconsistent with the literature [53], although the weight 
of this parameter was low. This may likewise be due to the 
relatively low number of patients included in this study.

Whereas, in clinical routine, established dynamic  [18F]
FET PET parameters such as the time–activity curve and/or 
the slope are usually only derived from representative sub-
volumes of interest within the tumor [7, 9, 56], in the current 
study every single voxel of the tumor was analyzed in order 
to generate whole-tumor TTP maps of dynamic  [18F]FET 
PET images. This comprehensive whole-tumor approach 
facilitated radiomic features extraction in dynamic image 
data and ensured to account for heterogeneity of uptake 
kinetics which has a major clinical impact when assessing 
brain tumors in dynamic  [18F]FET PET [57]. In this con-
text, a relationship between tumor heterogeneity and the 
STS group could be found in the feature ClusterProminence 
(CP). CP belongs to the Gray Level Co-occurrence Matrix 
(GLCM) and measures the skewness and asymmetry of the 
GLCM. A higher value implies more asymmetry while a 
lower value indicates a peak near the mean value and less 
variation around the mean. This correlation with the STS 
group indicates that a patient with a heterogeneous tumor 
in dynamic  [18F]FET PET images is more likely to be iden-
tified as high-risk patient for short-term survival. Another 
exemplary radiomic feature, which is associated with the 
STS group, is Maximum 3D diameter, 3D shape feature. 
The latter is defined as the largest pairwise Euclidean dis-
tance between tumor surface mesh vertices. This correlation, 
in simplified terms, indicates that patients belonging to the 
STS group have a tumor that shows large spread on PET. 
This finding is consistent with the literature—large tumor 
volumes on  [18F]FET PET were reported to be associated 
with poor overall survival in glioblastoma patients before 
radiation therapy with concomitant and adjuvant temozo-
lomide [32, 33]. Details of other features are shown in the 
Supplementary information.

There are several limitations to this study. Only single-
center data have been investigated, which led to the relatively 
small sample size and the lack of external validation. Yet, 
only single-center data have been chosen in this study since 
dynamic  [18F]FET PET is not always acquired routinely in 
other centers and pooling PET data with differences in time 
framing, image reconstruction algorithm, and scanner type 
may require prior implementation and validation of, e.g., 
feature harmonization procedures [58]. Moreover, it should 
be noted that almost all previous  [18F]FET PET radiomics 
studies have been performed with much smaller numbers of 
cases. The reliability of the reported scores was additionally 
evaluated using nested cross-validation [59] with five random 
splits in the outer loop, yielding a high AUC variability of 
10% for the TTP model, 15% for the TBR model, and 11% 
for the clinical model (Supplementary material S4). Thereby, 

different radiomic signatures were obtained for each split of 
the outer loop since feature selection and model building are 
not robust when dealing with small sample sizes. Feature 
selection represents a challenge and has an impact on the 
performance of prediction models. Other feature selection 
methods comprise, e.g., filter methods such as minimum 
redundancy maximum relevance (MRMR) or ensemble 
methods, which provide a good balance between robust 
feature selection and model performance. Wrapper methods 
such as RFE have the advantage that feature dependencies can 
be modeled and that they interact with the classifier, while also 
bearing the risk of overfitting [60]. To enable standardized 
segmentation of tumor regions, only positive  [18F]FET PET 
images were included. Furthermore, MRI-based radiomics, 
as a more widely established and complementary tool, were 
not included in this study. Future studies may benefit from the 
combined use of multiparametric MRI data.

Conclusion

This study built and evaluated prediction models for sur-
vival combining both radiomic features extracted from 
static and dynamic  [18F]FET PET and clinical parameters. 
Specifically, the combination of clinical parameters with 
radiomics based on dynamic  [18F]FET PET data achieved 
a higher prognostic accuracy for the individualized assess-
ment of short-term survival in patients with newly diagnosed 
IDH-wildtype glioblastoma in comparison to models using 
conventional clinical parameters only. Although the final 
accuracy remained moderate, the integration of dynamic 
 [18F]FET PET radiomic data into clinical prediction models 
may improve patient stratification beyond established prog-
nostic markers. Future prospective radiomic studies using 
multimodal imaging data are needed to evaluate whether 
the integration of additional imaging parameters may further 
improve the prognostic performance and enhance the clinical 
interpretation of the study results.
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