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Abstract

Purpose The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and
radiomic features extracted from static as well as dynamic ['8F]FET PET for the survival stratification in patients with newly
diagnosed IDH-wildtype glioblastoma.

Methods A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic ['®F]FET PET prior to
surgical intervention were included. Patients with a survival time < 12 months were classified as short-term survivors. First
order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and
dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (n=99) and a testing cohort (n=42).
After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on
the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-
radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy,
sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for
identifying short-term survivors in both the training and testing cohort.

Results A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features
achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the
independent testing cohort.

Conclusions This study successfully built and evaluated prediction models using ['®F]FET PET-based radiomic features
and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-
wildtype glioblastoma. The combination of both clinical parameters and dynamic ['*F]JFET PET-based radiomic features
reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data
shows that the integration of dynamic ['®F]FET PET radiomic data into clinical prediction models may improve patient
stratification beyond established prognostic markers.
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Introduction

The inclusion of mandatory molecular markers for diagnosis
in the World Health Organization (WHO) Classification
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of Tumors of the Central Nervous System (CNS) in 2016
and revised in 2021 has led to a more rigid definition of
prognostically distinct entities [1, 2]. In particular, the
isocitrate dehydrogenase (IDH)-wildtype status is associated
with a worse prognosis in adult diffuse astrocytic gliomas [3]
and results in the diagnosis of a glioblastoma, WHO grade
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4, according to the 2021 WHO classification. Additional
predictive markers such as the methylation status of the
0-6-methylguanine-DNA-methyltransferase (MGMT)
promotor further help to stratify brain tumor patients
according to their individual risk profile [4]. However,
even within the distinct molecularly defined tumor type of
IDH-wildtype glioblastomas, few patients survive several
years whereas others remain short-term survivors (STS) and
decease within the first year, indicating further potential for
improvement regarding patient stratification [5]. Balancing
aggressive treatment including radiation and chemotherapy
with quality of life is critical for patients [6].Therefore,
additional prognostic markers beyond established molecular
genetic markers and a stratification of survival beyond the
neuropathological classification of brain tumors would be
helpful to further improve individual prognostication and
guide patient management accordingly.

Molecular imaging using positron emission tomography
(PET) with radiolabeled amino acids such as 0-(2-["®F]-
fluoroethyl)-L-tyrosine (['®F]FET) has been applied suc-
cessfully for the characterization and evaluation of primary
brain neoplasms [7-9]. Hence, PET imaging was recom-
mended by the Response Assessment in Neuro-Oncology
(RANO) Working Group as useful imaging method in addi-
tion to conventional magnetic resonance imaging (MRI) in
the clinical management of brain tumor patients [10]. Espe-
cially dynamic ['"®F]FET PET has been shown to be helpful
for non-invasive tumor classification [11] and for individual
prognostication even within defined molecular subgroups [7,
12]. Here, radiomics have recently gained increasing interest
as a promising non-invasive tool, where quantitative features
are extracted from medical images and combined with clini-
cal and genomic information to establish predictive models
[13, 14]. However, up to now, there is no radiomic approach
based on dynamic ['®F]FET PET data which aims to per-
form survival stratification specifically in patients with an
IDH-wildtype glioblastoma, despite being one of the most
common and aggressive brain tumors.

Therefore, the purpose of this study was to build and
evaluate a prediction model, which incorporates clinical
parameters and radiomic features extracted from static as
well as dynamic ['8F]FET PET for an individualized sur-
vival stratification in patients with a newly diagnosed IDH-
wildtype glioblastoma.

Materials and methods
Patients
The retrospective analysis of PET imaging and clinical data

was approved by the institutional review board of the LMU
Munich (604-16), and all patients gave written informed
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consent before the PET scan. Patients with primary diag-
nosis of a glioma who received a pre-treatment dynamic
['8F]FET PET scan at the Department of Nuclear Medicine
of the LMU Munich were identified for this retrospective
study. The inclusion criteria for analysis were (1) histo-
logically confirmed IDH-wildtype glioblastoma according
to the updated 2016 WHO classification [1]; (2) pre-treat-
ment evaluation of a dynamic ['8F]FET PET scan (ECAT
EXACT HR +, Siemens Healthineers, Inc., Erlangen, Ger-
many; Siemens Medical Systems, Inc., Erlangen, Germany);
(3) ['®F]FET-positive glioma (tumor-to-background ratio,
TBR > 1.6); and (4) availability of clinical characteristics,
including age, gender, Karnofsky Performance Score (KPS),
as well as MGMT promoter methylation status and telomer-
ase reverse transcriptase promoter (TERTp) mutation status.
Patients with no follow-up data were excluded. Patients with
a survival time < 12 months were defined as short-term sur-
vivors (STS) [15, 16].

["8FIFET PET image acquisition

["®F]FET PET images were acquired on an ECAT EXACT
HR + PET scanner (Siemens Healthineers) with the stand-
ard protocol [8, 17] at the Department of Nuclear Medicine
of the LMU Munich. Dynamic ['"*F]FET PET images were
acquired over 40 as detailed in [14]. If relevant motion was
observed in dynamic PET images, a frame-wise correc-
tion was performed using PMOD fusion tool (version 3.5;
PMOD Technologies, Zurich, Switzerland) after frame-wise
checking for motion.

Segmentation of tumor volumes and brain
background

The mean background activity was assessed from a large
crescent-shaped volume of interest (VOI) in the contralateral
healthy hemisphere as published previously [18] and recom-
mended in the Joint EANM/EANO/RANO practice guide-
lines/SNMMI procedure standards for imaging of gliomas
using PET with radiolabeled amino acids [19]. For tumor
segmentation, a VOI was delineated with a TBR-threshold
of 1.6 in static 20—40 min p.i. summation images as previ-
ously described [20].

TBR and TTP image generation

The image values were normalized with the mean back-
ground value to generate static 20-40 min p.i. (TBR, 40)
TBR images. An in-house developed software described
previously by Kaiser et al. [21] (C+ + with integration of
the ROOT data analysis framework, version 6.22/08, CERN,
Switzerland; and ITK segmentation and registration toolkit
4.13.3, National Library of Medicine, National Institutes of
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Health, USA) was applied to generate voxel-wise parametric
images. For the generation of TTP images, time—activity
curves (TACs) were derived from each voxel, which were
then classified according to the time frame reaching the peak
uptake, i.e., (1) <5 min, (2) 5-10 min, (3) 10-15 min, (4)
15-20 min, (5) 20-30 min, and (6) 3040 min. TTP analyses
excluded the first 2.7 min p.i. to avoid influence from early
blood flush [21]. In case of a positive late slope (15-40 min
p.i.), the TTP was assigned to group 6.

Radiomic feature extraction

Images were resampled to isotropic voxels using linear inter-
polation (size 2.03 x2.03 % 2.03 mm?), then radiomic fea-
tures were extracted in Python (version 3.8.5) using PyRadi-
omics (version 3.0.1) [22], which complies with the Imaging
Biomarker Standardization Initiative (IBSI) guidelines [23].
The included feature classes were first-order features, shape
features and texture features, which were extracted from
TBR and TTP images, respectively. No image filters were
applied. As previously published, a fixed intensity bin size
was set to 0.13 for TBR,, 4, images, resulting from the aver-
age interquartile range divided by 4 [21, 24, 25]. The small-
est time frame duration considered in the TTP categories
was 5 min, which was used as the fixed bin width for feature
extraction from TTP images.

Machine learning pipeline

Before feature selection, a stratified random split was used
to assign 70% of the patients to the training cohort (n=99)

. Feature
Datasets Segmentation Extraction
Patients Based on First order
diagnosed with standard static
IDH-wildtype images with Shape
diffuse astrocytic TBR-threshold
gliomas (n= 141) of 1.6 GLCM
Pre-treatment GLRLM
dynamic
["*F]FET PET GLSZM
images TTP Image
Generation NGLDM
GLDM
TAC were
derived from No image filters
each voxel, . were used
which were then
classified
| — | J

Fig. 1 The workflow of radiomic process. TBR, tumor-to-background
ratio; TTP, time-to-peak; TAC, time—activity curves; GLCM, gray level
co-occurrence matrix; GLRLM, gray level run length; GLSZM, gray

and the remaining 30% to the testing cohort (n=42), with
a balanced distribution of STS and non-STS (P =0.8654,
Pearson’s X2 test) and clinical parameters in both groups
using the FeAture Explorer (FAE) [26]. The independent
testing cohort was not involved in the process of model
training and used only for model testing. Machine learning
including feature selection and model construction was
implemented in Python (version 3.8.5) using scikit-
learn package (version 0.24.1) [27]. The workflow of the
processing pipeline is presented in Fig. 1.

Feature standardization was computed only on the train-
ing cohort and then applied to both the training and the
testing cohorts. For each feature, the mean value and the
standard deviation were calculated. The mean value was sub-
tracted from each individual value, which was then divided
by the standard deviation.

Before performance evaluation on the test set, feature
selection and model fitting was conducted on the training
set. Logistic regression (LR) models were built to predict
short-term survival of GBM patients in the testing cohort by
fitting selected features on the training cohort. For survival
classification, LR was applied in “balanced” mode, which
gives higher weight to the minority class and lower weight
to the majority class. With this setting, weights are automati-
cally adjusted inversely proportional to class frequencies in
the input data to avoid the influence from the imbalance of
comparison groups [28]. Considering the small amount of
data, the solver “liblinear” was used and the maximum num-
ber of iterations was set to 1000 for the solver to converge.
The remaining settings of the logistic regression classifier
provided within the scikit-learn package were set to default.

Machine Learning Process
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level size-zone matrix; NGLDM, neighborhood gray level different
matrix; GLDM, gray level dependence matrix
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Radiomic feature selection

Pearson correlation coefficient (PCC) was used to reduce
the dimensions of the feature matrix [29]. The PCC of two
features was compared iteratively. If the PCC was larger
than 0.99 [30], the second feature was removed. Further-
more, recursive feature elimination (RFE) based on logistic
regression classifier was performed to reduce the number
of redundant features and select potential survival-related
features [31]. During each iteration, a feature which is con-
sidered least important is deleted. The number of features
to select was chosen to range between 1 and 15. The per-
formance of each model with a different number of features
was assessed using the area under the receiver operating
characteristic curve (AUC) obtained from repeated stratified
cross-validation using three splits and five folds.

Model construction and testing

First, models considering radiomic features derived from
either TBR or TTP images or only clinical parameters were
generated and compared to each other. Radiomic signatures
were generated by using linear combinations of the selected
radiomic features according to the LR coefficients in the TBR
and TTP models. The clinical model was constructed from
all clinical parameters including age, gender, KPS, MGMT
promoter methylation status, and TERTp mutation status.
Second, the TBR-TTP model was built from a combination
of the TBR signature and the TTP signature. The combined
clinical-radiomic models were constructed by combining
clinical parameters and radiomic signatures, respectively.

Statistical analysis

Receiver operating characteristic curve (ROC) analysis was
performed on the training and testing cohorts to evaluate the
model performance. AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were calculated for diagnostic power when applying
the trained model on the testing cohort. Then, 95% confidence
intervals (ClIs) were calculated by using a non-parametric
bootstrap method, which was repeated 1000 times to get a
bootstrap distribution of the results.

Categorical variables or continuous variables were reported
as numbers and percentages or as mean and standard deviation.
Categorical variables were compared using Pearson’s X2 test
and continuous variables were compared using Mann—Whitney
U test. P values <0.05 were considered statistically significant.

Statistical analyses were implemented in Python (version
3.8.5) using scikit-learn package (version 0.24.1) [27].
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Results
Patient characteristics

A total of 141 patients (median age, 59.3 years; range,
19.0-77.2 years) were included in this study. Of the 141
patients, 94 (66.7%) patients underwent stereotactic biopsy and
47 (33.3%) microsurgical resection at initial diagnosis, with
the same distribution between the training and testing cohorts
and no significant differences between both STS and non-STS
group (P value=0.355). Forty patients (28.4%) had a survival
time of less than 12 months and were classified as STS. The
variables which constructed the clinical model included age,
gender, Karnofsky Performance Score, CNS WHO grade,
MGMT promoter methylation status, and TERTp mutation
status, and are presented in Table 1. There were no signifi-
cant differences between the training and testing cohorts with
regard to clinical parameters, with STS rates of 28.3% and
28.6%, respectively. The initial therapies of STS and non-STS
are shown in Table S1.

Radiomic feature extraction and selection

The original features considered for the model construction
included six clinical parameters and 107 radiomic features
extracted from static and dynamic ['®F]FET PET images,
respectively. After the PCC-based exclusion of redundant
features, 79 features were retained from TBR images and
94 features were retained from TTP images. With RFE, two
features were finally selected for the TBR model and six
features for the TTP model (Fig. 2).

Diagnostic validation of the TBR model, TTP model,
and clinical model

The TBR model reached an AUC of 0.63 (95% CI, 0.52-0.75)
in the training cohort for the prediction of STS (Supplementary
Fig. S1a, S1b), with a sensitivity of 60.7% and a specificity of
60.6%, and a similar AUC of 0.63 (95% CI, 0.47-0.78) in the
testing cohort, with a sensitivity of 50.0% and a specificity of
73.3%. The TTP model showed a higher predictability of STS
(Fig. Slc, S1d) with an AUC of 0.77 (95% CI, 0.69-0.84) in
the training cohort (sensitivity 75.0% and specificity 63.4%),
and with an AUC of 0.71 (95% CI, 0.57-0.84) in the testing
cohort (sensitivity 50.0% and specificity 70.0%). The clinical
model demonstrated an accuracy at a comparable level as
the TTP model (Fig. Sle, S1f), with an AUC of 0.79 (95%
CI, 0.71-0.86) in the training cohort (sensitivity 75.0% and
specificity 64.8%) and an AUC of 0.69 (95% CI, 0.50-0.86)
in the testing cohort (sensitivity 66.7% and specificity 53.3%).

The coefficients of features in the clinical model are
shown in Supplementary Table S2. Radiomic signatures are
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Table 1 Clinical characteristics

- Training cohort (n=99) Testing cohort (n=42) P value
of the patients
STS Non-STS STS Non-STS
Characteristic (n=28) (n=171) (n=12) (n=30) 0.865
Age, years 56.7+11.8 58.5+13.1 0.121
Gender
Female (0) 40 (40.4%) 17 (40.5%) 0.857
Male (1) 59 (59.6%) 25 (59.4%)
KPS 80 (60-100) 80 (40-100) 0.587
WHO grade
11 32 (32.3%) 16 (38.1%) 0.640
v 67 (67.7%) 26 (61.9%)
MGMT
Unmethyl. (0) 47 (53.0%) 20 (51.2%) 0.988
Methyl. (1) 52 (47.0%) 22 (48.8%)
TERTp
Wildtype (0) 21 (21.2%) 10 (23.8%) 0.516
Mutation (1) 78 (78.8%) 32 (76.2%)

Data are means =+ standard deviations or numbers of patients with percentages in parentheses. P value was
derived from the univariate association analyses between each clinical parameter. Calculated by using
the Mann—Whitney U test for continuous variables and Pearson’s X2 test for categoric variables. Gender,
MGMT, TERTp with representative number of formula of risk probability in parentheses

STS short-term survivors, KPS Karnofsky Performance Score
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Fig.2 The feature selection process of the RFE. Each iteration
removes a feature that is considered least important and corresponds
to a 3-repeated 5-fold cross-validation. After cross-validation, the
average AUC of the model in the training cohort was used to deter-
mine the optimal number of features. The number of candidate fea-

provided in Supplementary section S2. Detailed information
about the performance of the different models is shown in
Table 2 and Supplementary Table S3.
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tures was chosen to range from 1 to 15. The feature number with
maximal AUC was selected. a Two features were selected in the TBR
model and b six features were selected in the TTP model. RFE, recur-
sive feature elimination; AUC, area under the receiver operating char-
acteristic curve

Diagnostic validation of the combination models

The combined TBR-TTP model reached an AUC of 0.79
(95% CI, 0.72-0.87) in the training cohort for the prediction
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Table 2 Performance of TBR, TTP, and clinical models for the testing
cohort

TBR model TTP model Clinical model

AUC 0.63 0.71 0.69

AUC 95% CI (0.47-0.78) (0.57-0.84) (0.50-0.86)
Accuracy 66.7% 64.3% 57.1%
Sensitivity 50.0% 50.0% 66.7%
Specificity 73.3% 70.0% 53.3%

PPV 42.9% 40.0% 36.4%

NPV 78.6% 77.8% 80.0%

CI confidence interval, TBR tumor-to-background ratio, 77P time-to-
peak

of STS (Supplementary Fig. S2a, S2b), with a sensitivity of
71.4% and a specificity of 69.0%, and an AUC of 0.74 (95%
CI, 0.61-0.86) in the testing cohort, with a sensitivity of
50.0% and a specificity of 70.0%.

The combined clinical-TBR model showed only slightly
higher predictability of STS than the TBR model, with an
AUC of 0.80 (95% CI, 0.72-0.87) in the training cohort and
0.64 (95% CI, 0.47-0.81) in the testing cohort (Fig. S2c,
S2d). The sensitivity and specificity were 75.0% and 70.4%
in the training cohort, and 58.3% and 60.0% in the testing
cohort, respectively.

The combined clinical-TTP model showed best predict-
ability of STS, with an AUC of 0.86 (95% CI, 0.78-0.92) in
the training cohort (sensitivity 82.1% and specificity 74.7%)
and 0.74 (95% CI, 0.60-0.88) in the testing cohort (sensitivity
66.7% and specificity 70.0%) (Fig. S2e, S2f).

The clinical-TBR-TTP model reached an AUC of 0.86
(95% CI, 0.70-0.93) in the training cohort for the prediction
of STS (Fig. S2g, S2h), with a sensitivity of 8§9.3% and a
specificity of 71.8%, and AUC of 0.72 (95% CI, 0.59-0.86) in
the testing cohort, with a sensitivity of 58.3% and a specificity
of 73.3%.

LR coefficients of the combined models are provided in
Supplementary section S3. Detailed information about the
performance of the combined models is shown in Table 3
and Supplementary Table S4.

Table 3 Performance of combined models for the testing cohort

Discussion

This study illustrates that integration of radiomics based
on dynamic ['®F]FET PET may improve the assessment of
short-term survival probability in patients with newly diag-
nosed IDH-wildtype glioblastoma. As opposed to prediction
models based on clinical parameters or radiomic features
alone, specifically a combined clinical-TTP model includ-
ing both clinical parameters and an additional radiomic sig-
nature derived from dynamic PET accomplished a higher
prognostic value for short-term survival.

Several studies have analyzed the role of ['®F]FET PET for
the assessment of survival probability in patients with glioma
[7, 8, 12, 32-35]. It has been reported that a large biological
tumor volume (BTV) on static ['*F]JFET PET [32, 33, 35] as
well as a short TTP, ;. extracted from dynamic ['3F]FET PET
at initial diagnosis are associated with STS [7, 12, 34, 35].
Besides, Bauer et al. showed that TTP,;, is an independent
prognostic factor for overall survival, reaffirming the value of
dynamic ['"*F]FET PET in the prediction of survival in glioma
patients. Yet, initial radiomics data in high-grade glioma have
been provided by MRI studies, achieving high AUC values
for the prognostication of overall survival in the range of
0.652-0.858 in the test cohort [36—40] demonstrating that
radiomics might be a valuable tool to estimate survival in
brain tumor patients. Meanwhile, first promising studies
have brought ['®F]FET PET-based radiomics into the focus:
Radiomic features extracted from static ['®F]JFET PET
showed better accuracy than conventional static parameters
(e.g., TBR,,,,) to identify pseudoprogression [13]. For the
differentiation between radiation injury and recurrence of
brain metastasis, textural features extracted from ['®F]FET
PET had a diagnostic accuracy of 83% [41]. Carles et al.
reported that ['®F]FET PET radiomics could contribute
to the prognostic assessment [42], and Paprottka et al.
established a promising tool for objective differentiation
of tumor progression from treatment-related changes by
combining ['8F]FET PET and multiparametric MRI [43].
However, those initial studies only analyzed static ['*F]
FET PET features without taking into account important
clinical parameters and, furthermore, no study so far has

Model AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
TBR-TTP 0.74 (0.61-0.86) 64.3 50.0 70.0 40.0 77.8
Clinical-TBR 0.64 (0.47-0.81) 59.5 58.3 60.0 36.8 78.3
Clinical-TTP 0.74 (0.60-0.88) 69.0 66.7 70.0 47.1 84.0
Clinical-TBR-TTP 0.72 (0.59-0.86) 69.0 58.3 73.3 46.7 81.5

CI confidence interval, TBR tumor-to-background ratio, 77TP time-to-peak

@ Springer



European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:535-545 541

utilized dynamic ['*F]JFET PET-based radiomics to assess
the probability of poor prognosis within distinct molecular
brain tumor types.

The present study used clinical parameters combined
with ["®F]FET PET radiomic features to develop combined
clinical-radiomic models. A model based on clinical data
only, built from six important survival-related clinical
parameters, achieved an AUC of 0.69 in the independent
testing cohort. A TBR model, built from two static [18F]
FET PET features, achieved an AUC of 0.63 in the testing
cohort and thus did not perform better than the clinical
model. The TTP model, however, generated from six
dynamic ['"®F]FET PET features, achieved an AUC of 0.71
in the testing cohort, thus slightly exceeding the clinical-only
model and outranging the TBR-only model, highlighting the
importance of dynamic PET data in the context of survival-
related analyses. The combined purely imaging-based TBR-
TTP model achieved only slightly better results than each
model alone (AUC of 0.74 vs. AUC of 0.63 and AUC of
0.71). Eventually, the merger of the TTP radiomic signature
and clinical data, resulting in the combined clinical-TTP
model, achieved best predictive performance with an AUC
of 0.74. Integrated discrimination improvement (IDI) was
calculated between the clinical model and the combined
clinical-TTP model [44]. The value of IDI was 0.1089,
which was greater than 0, and the P value was 0.023, which
was statistically significant. It indicated that the combination
of TTP radiomics and clinical data, compared to clinical
parameters alone, led to an improved ability of the model
to identify patients at risk. Although intriguing to speculate
that the clinical-TBR-TTP model would achieve highest
accuracy as it includes all available information, the AUC
did not improve, which may be related to the limited value
of TBR information in this context, but this should be
re-evaluated in larger cohorts. Taken together, as previously
shown for other entities, it seems beneficial not to narrow
the view to the clinical information alone when constructing
a predictive model but to include radiomic signatures in
clinical prediction studies as well, as the combination of
clinical and radiomic information seems to be of particular
value with regard to survival risk prediction [45]. When
considered on its own, an AUC of 0.74 still does not seem
satisfactory, as further underscored by a positive predictive
value for the identification of a short-term survivor of only
47.1% even for the best model (see Table 3). From a clinical
point of view, the positive and negative predictive values are
highly useful metrics in the context of decision-making as
they give an estimate on the correctness of a prediction. In
the clinical setting, it would be particularly beneficial to
identify patients at risk for short-term survival in order to
facilitate the selection of more aggressive treatments or
earlier inclusion in experimental treatment studies, rather

than just standard treatment, to which approximately 30%
of patients do not respond. However, also the identification
of long-term survivors would be helpful in the clinical
routine, as pseudoprogression can occur in one-third of the
patients and may, when misinterpreted as tumor progression
on MRI, lead to a premature cessation of an effective
treatment. Of note, while the positive predictive value
was extremely low in all models, the negative predictive
value, reflecting the predictability of long-term survival,
reached 84% in the best model. Therefore, even though
the overall accuracies of our prediction models may not
yet be satisfactory for the clinical use and the low positive
predictive values impede the prediction of a short-term
survivor, the high negative predictive value may be helpful
for clinical decision-making. Our study supports that within
a neuropathologically homogenous group of aggressive
IDH-wildtype glioblastomas, especially the combination of
different types of information (in this case clinical data and
radiomic signature) can add value to a survival prediction
model and consequently hints to the potential, which lies
in the inclusion of even further image-based information.
Indeed, one might speculate that the addition of conventional
MRI data and in a next step more sophisticated MRI data
such as perfusion or diffusion-weighted MRI may further
increase the power of survival risk prediction of the
combined clinical-TTP model [46], but such analyses require
a standardized imaging protocol to assure comparability of
MRI-based radiomic features. In other tumor entities as
well, especially multiparametric imaging approaches have
shown highly promising results for survival prediction,
e.g., reaching an accuracy of up to 98% in a study on
cervical cancer as compared to only 56-60% for prediction
models using the standard clinical variables alone [47, 48].
Accordingly, dual PET imaging studies including other
tracers than ['®F]FET in IDH-wildtype glioblastoma, such
as TSPO-ligands which offer complementary information
to the ['*F]FET uptake [49], are of high potential to further
increase the power of survival prediction models, as
exemplified by recent successful multi-tracer PET prediction
approaches in other entities, such as prostate cancer [50].
Although the number of patients included in the cur-
rent study is by far higher than in most previous ['®F]FET
PET radiomics studies, a further increase in patient num-
bers may in future result in outperforming radiomics-only
based approaches, as already shown in large-scale analyses
for other medical settings [51]. According to the above-
generated multivariate LR-based formulas, the known risk
factors of high WHO grade, unmethylated MGMT promoter,
TERTp mutation as well as higher patient age and lower
KPS at diagnosis of IDH-wildtype glioblastoma were more
likely associated with short-term survival [52-55]. However,
gender has different correlations in different formulas, which
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is inconsistent with the literature [53], although the weight
of this parameter was low. This may likewise be due to the
relatively low number of patients included in this study.

Whereas, in clinical routine, established dynamic [18F]
FET PET parameters such as the time—activity curve and/or
the slope are usually only derived from representative sub-
volumes of interest within the tumor [7, 9, 56], in the current
study every single voxel of the tumor was analyzed in order
to generate whole-tumor TTP maps of dynamic ['*F]FET
PET images. This comprehensive whole-tumor approach
facilitated radiomic features extraction in dynamic image
data and ensured to account for heterogeneity of uptake
kinetics which has a major clinical impact when assessing
brain tumors in dynamic ['8F]FET PET [57]. In this con-
text, a relationship between tumor heterogeneity and the
STS group could be found in the feature ClusterProminence
(CP). CP belongs to the Gray Level Co-occurrence Matrix
(GLCM) and measures the skewness and asymmetry of the
GLCM. A higher value implies more asymmetry while a
lower value indicates a peak near the mean value and less
variation around the mean. This correlation with the STS
group indicates that a patient with a heterogeneous tumor
in dynamic ['®F]FET PET images is more likely to be iden-
tified as high-risk patient for short-term survival. Another
exemplary radiomic feature, which is associated with the
STS group, is Maximum 3D diameter, 3D shape feature.
The latter is defined as the largest pairwise Euclidean dis-
tance between tumor surface mesh vertices. This correlation,
in simplified terms, indicates that patients belonging to the
STS group have a tumor that shows large spread on PET.
This finding is consistent with the literature—large tumor
volumes on ['8F]FET PET were reported to be associated
with poor overall survival in glioblastoma patients before
radiation therapy with concomitant and adjuvant temozo-
lomide [32, 33]. Details of other features are shown in the
Supplementary information.

There are several limitations to this study. Only single-
center data have been investigated, which led to the relatively
small sample size and the lack of external validation. Yet,
only single-center data have been chosen in this study since
dynamic ['®F]FET PET is not always acquired routinely in
other centers and pooling PET data with differences in time
framing, image reconstruction algorithm, and scanner type
may require prior implementation and validation of, e.g.,
feature harmonization procedures [58]. Moreover, it should
be noted that almost all previous ['8F]FET PET radiomics
studies have been performed with much smaller numbers of
cases. The reliability of the reported scores was additionally
evaluated using nested cross-validation [59] with five random
splits in the outer loop, yielding a high AUC variability of
10% for the TTP model, 15% for the TBR model, and 11%
for the clinical model (Supplementary material S4). Thereby,
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different radiomic signatures were obtained for each split of
the outer loop since feature selection and model building are
not robust when dealing with small sample sizes. Feature
selection represents a challenge and has an impact on the
performance of prediction models. Other feature selection
methods comprise, e.g., filter methods such as minimum
redundancy maximum relevance (MRMR) or ensemble
methods, which provide a good balance between robust
feature selection and model performance. Wrapper methods
such as RFE have the advantage that feature dependencies can
be modeled and that they interact with the classifier, while also
bearing the risk of overfitting [60]. To enable standardized
segmentation of tumor regions, only positive ['*F]JFET PET
images were included. Furthermore, MRI-based radiomics,
as a more widely established and complementary tool, were
not included in this study. Future studies may benefit from the
combined use of multiparametric MRI data.

Conclusion

This study built and evaluated prediction models for sur-
vival combining both radiomic features extracted from
static and dynamic ['8F]FET PET and clinical parameters.
Specifically, the combination of clinical parameters with
radiomics based on dynamic ['8F]FET PET data achieved
a higher prognostic accuracy for the individualized assess-
ment of short-term survival in patients with newly diagnosed
IDH-wildtype glioblastoma in comparison to models using
conventional clinical parameters only. Although the final
accuracy remained moderate, the integration of dynamic
['8F)FET PET radiomic data into clinical prediction models
may improve patient stratification beyond established prog-
nostic markers. Future prospective radiomic studies using
multimodal imaging data are needed to evaluate whether
the integration of additional imaging parameters may further
improve the prognostic performance and enhance the clinical
interpretation of the study results.
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