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Abstract
Structural and functional abnormalities of the anterior cingulate cortex (ACC) have frequently been identified in schizo-
phrenia. Alterations of von Economo neurons (VENs), a class of specialized projection neurons, have been found in dif-
ferent neuropsychiatric disorders and are also suspected in schizophrenia. To date, however, no definitive conclusions can 
be drawn about quantitative histologic changes in the ACC in schizophrenia because of a lack of rigorous, design-based 
stereologic studies. In the present study, the volume, total neuron number and total number of VENs in layer V of area 24 
were determined in both hemispheres of postmortem brains from 12 male patients with schizophrenia and 11 age-matched 
male controls. To distinguish global from local effects, volume and total neuron number were also determined in the whole 
area 24 and whole cortical gray matter (CGM). Measurements were adjusted for hemisphere, age, postmortem interval and 
fixation time using an ANCOVA model. Compared to controls, patients with schizophrenia showed alterations, with lower 
mean total neuron number in CGM (− 14.9%, P = 0.007) and in layer V of area 24 (− 21.1%, P = 0.002), and lower mean 
total number of VENs (− 28.3%, P = 0.027). These data provide evidence for ACC involvement in the pathophysiology of 
schizophrenia, and complement neuroimaging findings of impaired ACC connectivity in schizophrenia. Furthermore, these 
results support the hypothesis that the clinical presentation of schizophrenia, particularly deficits in social cognition, is 
associated with pathology of VENs.
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Introduction

Schizophrenia is a severe neuropsychiatric disorder with 
serious psychosocial consequences for patients and a 
considerable public health burden [1]. Despite continu-
ous research efforts since its initial description [2], the 
pathophysiology of schizophrenia has remained poorly 
understood [3]. However, reliable findings of structural 
brain alterations at the macroscopic level [4–10] strongly 
suggest that schizophrenia has neuropathologic correlates 
and cannot be understood as a purely functional mental 
illness, without structural brain involvement [11].

A particular focus of schizophrenia research has been 
the anterior cingulate cortex (ACC). Consistent neuro-
imaging and neuropathologic evidence of abnormalities 
in this region suggests its likely role as a contributor to 
the pathophysiology of schizophrenia [12]. Key findings 
include lower mean ACC gray matter volume [6, 8, 9, 12, 
13] and lower mean synaptic density [12, 14–16] in the 
ACC in patients with schizophrenia compared to controls. 
Although less unanimous, findings of perturbed ACC con-
nectivity have been frequently reported [17–19]. Area 24 is 
the major subregion of the ACC [20] and it has been thor-
oughly investigated in a series of studies focusing on the 
neuropathology of schizophrenia [21–28] as a proxy for 
the ACC. Focusing on layer-specific alterations in area 24, 
studies reported not only increased [29] but also decreased 
[28] and unchanged neuron density [23, 25, 26, 30, 31]. 
Unlike observations of neuron density, investigations on 
neuron number in area 24 resulted in no differences [22, 
32]. However, investigations of layer-specific alterations 
of total neuron numbers in schizophrenia using rigorous, 
design-based stereologic methods have not been reported 
so far. A striking characteristic of area 24 is the presence 
in its layer V of so-called spindle or von Economo neurons 
(VEN), an unusual class of neurons that in humans appear 
only in a few cortical regions, mostly the ACC and fron-
toinsular cortex [33]. VENs are likely specialized projec-
tion neurons [34–36] and occur in humans, great apes [33, 
37] and several other mammalian species [38]. A growing 
interest in the role of VENs in neuropsychiatric disorders 
has led to findings of VEN alterations in a number of ill-
nesses [36, 39–41], including schizophrenia [21, 42, 43] 
for review, see [44]. So far, however, only alterations in the 
density of VENs in area 24 of patients with schizophrenia 
were investigated, that revealed no statistically significant 
differences between patients with schizophrenia and con-
trols [21, 43]. However, lack of alterations of mean cell 
densities does not predict or imply lack of alterations of 
total cell numbers [45].

In the present study, we determined total number and 
density of VENs in layer V in area 24 in postmortem brains 

(both cerebral hemispheres) of patients with schizophre-
nia and matched controls using a rigorous, design-based 
stereologic approach. In addition, we determined volumes 
of layer V in area 24, whole area 24 and the whole corti-
cal grey matter (CGM), as well as total neuron numbers 
and neuron densities in these regions of interest (ROIs). 
Using this approach, it was possible to assess whether an 
observed alteration in the brains of patients with schizo-
phrenia was specific to the investigated ROI or more gen-
eral in nature. The investigated brains were the same that 
were already analyzed in previous studies by our group 
[31, 46–48], enabling us to interpret the present results in 
conjunction with previous findings from the same brain 
specimens.

Methods and materials

Brain specimens

This study was conducted on both cerebral hemispheres 
of postmortem brains from 12 male patients with schizo-
phrenia (aged 50.5 ± 3.4 years [mean ± standard error of the 
mean, SEM]; postmortem interval 38.1 ± 7.7 h; fixation time 
199 ± 25.2 days) and 11 age-matched male controls (aged 54. 
5 ± 2.5 years; postmortem interval 23.6 ± 4.3 h; fixation time 
1028 ± 432 days). Age at disease onset was 22.6 ± 1.6 years 
for patients with schizophrenia. Clinical characteristics are 
listed in Table 1. The brain specimens analyzed in this study 
are the same that were investigated in earlier studies by our 
group [31, 46–48]. Brains were collected by H. H. between 
1988 and 1994.

All subjects had been treated in German hospitals. Full 
medical records were available for the patients with schizo-
phrenia. In addition, autopsy records (including a brief 
medical history) were available for all subjects. Ethnic back-
grounds between patients with schizophrenia and controls 
were similar but the groups were not fully matched with 
respect to socioeconomic status and education. All patients 
with schizophrenia fulfilled the diagnostic criteria of the 
Diagnostic Statistical Manual (4th revision, DSM-IV) [49] 
and the International Statistical Classification of Diseases 
and Related Health Problems (10th revision, ICD-10) [50]. 
Two experienced psychiatrists assessed the reports to ensure 
the absence of psychiatric diagnoses in the controls and to 
verify that the diagnoses of schizophrenia complied with 
DSM-IV criteria. Subjects with any of the following char-
acteristics were excluded from this study: neurological prob-
lems requiring intervention and/or interfering with cognitive 
assessment, history of recurrent seizure disorder, history of 
severe head injury with loss of consciousness, history of 
self-administered intoxication and diabetes mellitus with 
free plasma glucose > 200 mg/dl.
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All patients with schizophrenia were treated with antip-
sychotics. However, lifetime medication exposures were 
not available. Autopsies of the subjects were performed 
after obtaining consent by a relative as required by Ger-
man law. Tissue extraction and subsequent processing was 
performed by H. H. or pathologists instructed by him for 
identical specimen handling and processing procedures. 
The use of the autopsied subjects for scientific research as 
described in this study was approved by the responsible 
institutional review boards.

All brains of patients with schizophrenia and controls 
older than 40 years were tested for absence of neurofi-
brillary tangles exceeding Braak’s stage I [51]. This was 
confirmed on sections through the central portion of the 
entorhinal and transentorhinal cortex that were not stained 
with gallocyanin but processed with the Gallyas method 
[52].

Tissue processing

The brains were fixed by immersion in 10% formalin (one 
part 40% aqueous formaldehyde and nine parts water). 
Following fixation, cerebellum and brainstem were sepa-
rated from the brain at the rostral end of the pons, after 
which the hemispheres were divided mediosagittally and 
the meninges and calcified pial vessels were removed. 
Then, the hemispheres were pretreated with cryopro-
tective media, using formaldehyde, dimethylsulfoxide 
(DMSO) and glycerol as substrates, and subsequently 
embedded in 3% agarose or 15% gelatin [53]. Next, the 
tissue blocks were frozen in − 60 °C isopentane. Finally, 
the tissue blocks were serially cut into 700-µm-thick sec-
tions with a freezing microtome (Tetrander, Jung, Nuss-
loch, Germany). Every second or third section was stained 
with gallocyanin [53] and mounted on microscopic slides 

Table 1  Clinical characteristics 
of all included subjects

S patient with schizophrenia, C control, A age at death, O age at onset, PMI postmortem interval (time 
between death and autopsy), Fix fixation time, DSM-IV Diagnostic Statistical Manual (4th revision) [49], 
ICD-10 International Statistical Classification of Diseases and Related Health Problems (10th revision) 
[50], y years, h hours, d day
a These numbers refer to the numbers also used in earlier studies of the same sample by our group [46–48]. 
Unfortunately, original cases S13, C1 and C4 could not be investigated in this study because sections of 
these brains were unfortunately damaged. Accordingly, these cases are omitted from the table
b The volume, total neuron number and neuron density of the cortical gray matter of these cases could not 
be analyzed because sections from the frontal and occipital poles were missing

Noa A O Cause of death PMI Fix Diagnosis

[y] [y] [h] [d] DSM-IV ICD-10

S1 22 19 Suicide 88 130 295.30 F20.00
S2 36 28 Suicide  < 72 115 295.30 F20.00
S3 46 24 Systemic hypothermia  < 24 327 295.30 F20.01
S4 50 17 Peritonitis  < 24 203 295.30 F20.00
S5 50 22 Suicide 18 170 295.30 F20.00
S6 51 17 Septicemia 33 127 295.60 F20.50
S7 54 20 Septicemia 27 250 295.60 F20.50
S8 55 22 Right-sided heart failure 25 84 295.30 F20.00
S9 57 37 Septicemia 76 163 295.30 F20.00
S10 60 24 Pulmonary embolism  < 48 311 295.30 F20.01
S11b 62 19 Aspiration 7 171 295.30 F20.00
S12 63 22 Acute myocardial infarct 15 338 295.60 F20.50
C2 36 – Gunshot 24 143 – –
C3 47 – Acute myocardial infarct  < 24 133 – –
C5 50 – Avalanche accident 23 498 – –
C6 51 – Septicemia 7 285 – –
C7 54 – Acute myocardial infarct 18 168 – –
C8 56 – Acute myocardial infarct 60 3570 – –
C9 58 – Acute myocardial infarct 28 126 – –
C10 60 – Gastrointestinal hemorrhage 18 101 – –
C11b 60 – Gastrointestinal hemorrhage 27 302 – –
C12 62 – Acute myocardial infarct  < 24 3696 – –
C13 65 – Bronchopneumonia 6 2289 – –
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(Fig. 1). The remaining sections of the hemispheres were 
stored in 4% formalin in plastic boxes. All sections were 
visually examined for the absence of macroscopic and 
histopathologic alterations, including tumors, infarcts, 
heterotopias, signs of autolysis, staining artifacts and 
gliosis.

In one case, the hemispheres of control subject C7 
were embedded in celloidin [54] and serially cut into 
440–500-µm-thick sections using a sliding microtome (Poly-
cut, Cambridge Instruments, UK). Those slices were also 
stained with gallocyanin [53].

Stereological analysis

Three investigators (R.G., M.P. and A.V.) performed the 
stereologic analyses on both hemispheres of all brains. All 
investigators were blinded to any clinical characteristics of 
the subjects, including diagnosis. Analyses were performed 

on fully equipped stereology workstations (see Supplemen-
tary Table 2 for further details on the stereology worksta-
tions). Stereologic analysis was performed between 2019 
and 2021.

One investigator performed all analyses of the CGM, the 
second investigator all analyses of area 24 except for the 
VENs and the third investigator the analysis of the VENs. 
In addition, the third investigator performed all delineations 
of ROIs on sections containing area 24. This procedure 
excluded the possibility that differences in results between 
patients with schizophrenia and controls could have been 
introduced by different investigators.

Three ROIs were delineated at low magnification using a 
1.25 × objective: whole CGM, whole area 24 and layer V in 
area 24. Delineation of area 24 in the ACC was performed 
according to the cytoarchitectural characteristics described 
by Vogt et al. [20]. Photographs of the ACC were taken to 
determine the rostral and caudal borders of area 24 in the 
hemispheres (1176 photographs in total) (Fig. 2). Simulta-
neously, the absence of VENs was carefully checked as the 
presence of these cells is limited to area 24 in the ACC and 
is therefore a reliable marker for this area [36].

On average, every 9th section showing the CGM and 
every 5th section showing area 24 (every 6th section in the 
analysis of VENs) was analyzed, resulting in a systemati-
cally and randomly sampled (SRS) series of sections encom-
passing each ROI. Using the Cavalieri principle [55, 56], the 
volumes of the CGM, area 24 and layer V in area 24 were 
estimated. The profile areas of the CGM were determined 
using point counting [55], whereas the profile areas of area 
24 as well as layer V in area 24 were obtained by reading off 
the calculated area in the software’s contour measurements. 
The actual section thickness after the histologic procedure 
was determined as described in Heinsen et al. [57] and var-
ied between 455 and 578 µm.

Total neuron numbers were determined using the opti-
cal fractionator method [58]. In that procedure, a series of 
unbiased virtual counting spaces (UVCSs) covers the ROI. 
The ROI-specific size of the UVCSs and the distance in X 
and Y directions between the UVCSs were determined in 
pilot studies, such that a per-hemisphere count of approxi-
mately 500 objects of interest (neurons and VENs) was 
achieved. This procedure resulted in low coefficients of error 
(CE < 0.1) [59, 60].

Neurons and VENs were counted at high magnification 
(20 × and 40 × objectives); further details of the stereologic 
counting procedure are provided in Supplementary Table 1. 
Identification of neurons was based on their typical shape: a 
large soma with several dendrites emerging from the soma 
and a prominent dark nucleolus (Fig. 3). VENs were identi-
fied by an elongated soma, basal and apical dendrite, distinct 
ovoid nucleus and prominent dark nucleolus (Fig. 3g, h). 
Neurons and VENs were counted in case their nucleolus 

Fig. 1  Representative coronal sections of brain hemispheres investi-
gated in this study. Hemispheres from a control (a, c) and a patient 
with schizophrenia (b, d). The brackets in the overview photographs 
(a, b) denote area 24, a part of which is each shown in the close-up 
photographs (c, d). Layers are indicated in Roman numerals. Scale 
bar = 10 mm in a and b, 370 µm in c and d 
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Fig. 2  Representative series of 
coronal sections throughout area 
24 in a patient with schizo-
phrenia. Delineations of area 
24 (black lines) and its layer 
V (yellow lines) are indicated. 
Panels a and l show the sections 
caudal and rostral to area 24. 
The position of the most caudal 
section showing area 24 (b) was 
defined as 0 mm; the distance 
between this section and the 
other sections is indicated 
in Panels a and c–l. Area 33 
and 32 are not indicated. The 
apparent absence of area 33 is 
an artifact caused by different 
shrinkage factors of grey and 
white matter [100]. Tears were 
regularly observed (very notice-
able on a and g) at the point 
of the ventral cingulate gyrus 
where both, myelin rich corpus 
callosum and gray matter of 
the cingulate gyrus are closely 
attached to each other. Scale 
Bar = 5 mm in a–h, 9.5 mm in i 
and j, 7.3 mm in k and l 
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came into focus within an UVCS and did not hit the exclu-
sion line (red in Supplementary Fig. 1) or hit the inclu-
sion line (green in Supplementary Fig. 1) of the unbiased 

counting frame [46]. Neuron densities were calculated by 
dividing the estimated total neuron number of a given ROI 
by the estimated total volume of this ROI.

Fig. 3  Representative photo-
micrographs of different layers 
in area 24. The panels show 
layers II (a, b), III (c, d), Va (e, 
f), Vb (g, h) and VI (i, j) in a 
hemisphere from a control sub-
ject (a, c, e, g, i) and a patient 
with schizophrenia (b, d, f, h, 
j). Arrowheads point to neurons 
(predominantly pyramidal cells) 
and arrows to VENs. Scale 
bar = 50 µm in a–j 
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Statistical analysis

An adjusted between-group Cohen’s d effect size (dadj) and 
adjusted percentage group difference were calculated for 
each of the investigated outcome variables. The adjustment 
for extraneous variables was carried out by constructing a 
separate linear model (analysis of covariance, ANCOVA) 
with each outcome as the independent variable, in turn. 
The model included the fixed factors diagnosis (control vs. 
schizophrenia) and hemisphere, and the covariates age, post-
mortem interval and fixation time (five degrees of freedom). 
Treatment coding was used for the fixed factor diagnosis, 
with the control group as reference while sum coding was 
used for hemisphere. The covariates were mean-centered 
prior to fitting for better interpretability of the intercept.

P values were obtained from the t statistic of ANCOVA 
for each fixed factor and covariate. The statistical signifi-
cance level alpha was set to 0.05. dadj values were computed 
from the coefficients of the diagnosis fixed factor in each 
model. [61] Consistent with Cooper et al. [61], effect sizes in 
the ranges 0.2–0.5, 0.5–0.8, and above 0.8 were interpreted 
as small, medium and large, respectively. Of note, percentage 
group differences were also adjusted by dividing the coeffi-
cient of the fixed factor diagnosis by the model intercept (by 
design, the model intercept represented the outcome’s mean 
in the control group after adjustment by hemisphere and 
covariates). Lastly, all subjects’ outcome values (volumes, 
neuron numbers and neuron densities) were adjusted by the 
covariates age, postmortem interval and fixation time. This 
was achieved by subtracting the estimated linear effect of 
the covariates from the raw value. These adjusted outcome 
values were visualized for each diagnosis and hemisphere 
group via box plots. The statistical analysis was performed 
using the Python libraries pandas [62], statsmodels [63] and 
SciPy [64]. The graphical visualization was performed with 
GraphPad Prism (version 9 for Windows, GraphPad Soft-
ware, San Diego, CA, USA).

Results

No differences in mean volumes of the investigated ROIs 
were observed between patients with schizophrenia and 
controls. The mean CGM volume was 6.3% smaller in 
patients with schizophrenia than in controls (after adjust-
ment by hemisphere and the covariates age, postmortem 
interval and fixation time) and had an adjusted Cohen’s d of 
dadj =  − 0.61 (P = 0.095; Fig. 4a). Comparable results were 
obtained for the volumes of area 24 (on average − 11.6%, 
dadj =  − 0.54, P = 0.111; Fig. 4b) and layer V of area 24 (on 
average − 13.2%, dadj =  − 0.64, P = 0.065; Fig. 4c). Corre-
sponding adjusted Cohen’s d effect sizes are given in Fig. 4d. 

Results of statistical analysis (P values of ANCOVA covari-
ates and fixed factors) are summarized in Table 2.

The mean total neuron number in CGM was lower in 
patients with schizophrenia than in controls (− 14.9%, 
dadj =  − 0.94, P = 0.007, Fig. 4e). No difference was observed 
in the mean total neuron number of area 24 between patients 
with schizophrenia and controls (− 14.5%, dadj =  − 0.63, 
P = 0.08; Fig. 4f). However, the mean total neuron number 
in layer V of area 24 was lower in patients with schizo-
phrenia than in controls (− 21.1%, dadj =  − 1.00, P = 0.002, 
Fig. 4g). Corresponding adjusted Cohen’s d effect sizes are 
given in Fig. 4h.

Compared to controls, patients with schizophrenia 
showed a lower mean neuron density in CGM (− 9.63%, 
dadj =  − 0.57, P = 0.041; Fig. 4i) but not in the whole area 
24 (− 1.61%, dadj =  − 0.10, P = 0.773; Fig. 4j). Nevertheless, 
the mean neuron density in layer V of area 24 was lower 
in patients with schizophrenia than in controls (− 9.08%, 
dadj =  − 0.78, P = 0.024; Fig. 4k). Corresponding adjusted 
Cohen’s d effect sizes are given in Fig. 4l.

The mean total number of VENs in layer V of area 24 
was, as well as the mean total neuron number, lower in 
patients with schizophrenia than in controls (− 28.3%, 
dadj =  − 0.72, P = 0.027, Fig. 5a). There was no difference 
between patients with schizophrenia and controls in the 
mean density of VENs in layer V of area 24 (− 19.06%, 
dadj =  − 0.52, P = 0.128; Fig. 5b). Corresponding adjusted 
Cohen’s d effect sizes are given in Fig. 5c.

Among the covariates, age had an effect on the total neu-
ron number in CGM (ANCOVA coefficient: + 0.028 ×  109 
per year of age, P = 0.035), neuron density in CGM 
(+ 0.313 ×  106/cm3 per year of age, P < 0.001) and neuron 
density in layer V of area 24 (+ 0.067 ×  106/cm3 per year of 
age, P = 0.041). Furthermore, the postmortem interval had 
an effect on neuron number in CGM (+ 0.024 ×  109 per hour 
PMI, P < 0.001), neuron density in CGM (+ 0.221 ×  106/cm3 
per hour PMI, P < 0.001) and neuron density in layer V of 
area 24 (+ 0.034 ×  106/cm3 per hour PMI, P = 0.025). A sin-
gular effect of the fixation time on the neuron density in area 
24 (− 0.001 ×  106/cm3 per day in fixative, P = 0.007) was 
observed, as well. Because these covariates were included 
in the ANCOVA model and thus statistically controlled for, 
the observed differences in mean CGM neuron number and 
mean area 24 layer V neuron density in patients with schizo-
phrenia were not attributable to differences in patients’ age 
or postmortem interval. In this regard, no obvious trends 
were also evident in graphical diagrams of the respective 
outcome variables against these covariates (Supplementary 
Figs. 2, 3). Finally, no other effects of covariates or hemi-
sphere on the different outcomes were present, meaning 
there were also no hemispheric asymmetries in any outcome.

There was no difference in individual ratios of mean 
total neuron numbers in layer V of area 24 and the lateral 
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Fig. 4  Results of the design-based stereologic analyses, Part 1: The 
panels show Tukey box plots of total volume (a–c), total neuron num-
ber (e–g) and neuron density (i–k) in whole CGM (a, e, i), area 24 
(all layers) (b, f, j) and layer V of area 24 (c, g, k) after adjustment by 
covariates in the left cortical hemisphere (open boxes) and right corti-

cal hemisphere (grey boxes) of patients with schizophrenia (S) and 
matched controls (C), as well as 95% confidence intervals of adjusted 
Cohen’s d effect sizes (dadj) for each outcome (d, h, l). Statistically 
significant results are indicated (*P < 0.05; **P < 0.01). CGM cortical 
gray matter

Table 2  Results of statistical 
analysis: P values of ANCOVA 
covariates and fixed factors

P values < 0.05 are given boldface
PMI postmortem interval, Fix fixation time, CGM cortical gray matter, VEN von Economo neuron

Region of interest Variable Age PMI Fix Diagnosis Hemisphere

CGM Volume 0.072 0.090 0.480 0.095 0.802
CGM Neuron number 0.035  < 0.001 0.064 0.007 0.179
CGM Neuron density  < 0.001  < 0.001 0.070 0.041 0.127
Area 24 Volume 0.435 0.734 0.200 0.111 0.173
Area 24 Neuron number 0.696 0.409 0.265 0.078 0.101
Area 24 Neuron density 0.097 0.365 0.007 0.773 0.295
Area 24 Layer V Volume 0.693 0.502 0.377 0.065 0.221
Area 24 Layer V Neuron number 0.442 0.057 0.603 0.002 0.113
Area 24 Layer V Neuron density 0.041 0.025 0.398 0.024 0.434
Area 24 Layer V VEN number 0.799 0.917 0.084 0.027 0.842
Area 24 Layer V VEN density 0.844 0.504 0.171 0.128 0.836
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amygdaloid nucleus between patients with schizophrenia 
and controls (dadj =  − 0.19, P = 0.599; Supplementary Fig. 4; 
the total neuron numbers in the lateral amygdaloid nucleus 
in the same brains investigated in the present study were pre-
viously determined by Kreczmanski et al. [46]). Moreover, 
the correlation between individual total neuron numbers in 
layer V of area 24 and the lateral amygdaloid nucleus was 
positive and of moderate strength in all subjects (r = 0.407, 
P = 0.005, Supplementary Fig. 5A) and positive and of weak 
strength in the control (r = 0.226, P = 0.313, Supplementary 
Fig. 5B) and patient (r = 0.264, P = 0.212, Supplementary 
Fig. 5C) groups, respectively.

The full statistical analysis was repeated without the data 
of the 22-year-old patient with schizophrenia (S01), for 
whom there was no age-matched control case. This resulted 
in no change in the magnitudes of adjusted Cohen’s d effect 
sizes and in the significance of p values (Supplementary 
Figs. 6, 7).

Discussion

Lower mean CGM neuron number and density 
in patients with schizophrenia

The estimated mean CGM volume, mean total CGM neu-
ron number and mean CGM neuron density of the controls 
reported in this study are in line with previous reports [47, 
65]. To our knowledge, only one study [66] compared the 
mean total neuron number in the whole cerebral cortex 
between patients with schizophrenia and controls. In that 
study [66], no statistically significant difference between 
the groups was found. However, while patients with 
schizophrenia and controls were matched for sex and age, 

other important extraneous variables were not statistically 
accounted for. Our data indicate that the postmortem interval 
has a statistically significant effect on the estimated CGM 
total neuron number and neuron density.

Meta-analyses of structural MRI studies of smaller mean 
cortical volume in patients with schizophrenia compared 
to controls have reported Cohen’s d effect sizes of − 0.43 
and − 0.28/ − 0.27 (for left/right hemisphere) [4, 8]. A 
recent large-scale meta-analysis [10] observed effect sizes 
of − 0.530/ − 0.516 (left/right hemisphere) for mean corti-
cal thickness and − 0.251/ − 0.254 for mean cortical surface 
area, implying a lower mean cortical volume, as well. Other 
studies [4, 7] focused on specific brain lobes and found wide-
spread indications of smaller mean cortical volume, with an 
emphasis on the temporal and frontal lobes. Such findings 
extend also to the ACC [6, 10, 12, 13, 67] with meta-analytic 
effect size estimates of − 0.34 and − 0.26 between patients 
with schizophrenia and controls [8, 9].

Notably, the effect sizes from these meta-analyses are of 
comparable magnitude to the effect sizes dadj of the present 
study for patients with schizophrenia vs. control regional 
volume differences. However, our results did not reach sta-
tistical significance.

Our observation that the mean CGM neuron density is 
significantly lower in patients with schizophrenia than in 
controls contrasts with evidence from meta-analyses dem-
onstrating increased [68] or unchanged [69] mean cortical 
neuron density in patients with schizophrenia. However, 
these meta-analyses must be interpreted with some cau-
tion, because they aggregated studies that analyzed indi-
vidual cortical regions and not the whole cerebral cortex. 
Based on an analysis of whole-cortex CGM, our finding of 
a significantly lower mean CGM neuron density suggests 
that the smaller mean CGM neuron number in patients 

Fig. 5  Results of the design-based stereologic analyses, Part 2: The 
panels show Tukey box plots of the estimated total number of VENs 
(a) and the estimated VEN density (b) in layer V of area 24 after 
adjustment by covariates in the left cortical hemisphere (open boxes) 
and right cortical hemisphere (grey boxes) of patients with schizo-

phrenia (S) and matched controls (C), as well as 95% confidence 
intervals of adjusted Cohen’s d effect size for each outcome (c). Sta-
tistically significant results are indicated (*, P < 0.05; **, P < 0.01). 
VEN von Economo neuron
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with schizophrenia is not merely a direct consequence of a 
decreased CGM volume but that it reflects a superimposed 
disease process disproportionately affecting cortical neu-
rons. Because we assessed only the total neuron number in 
the whole CGM, it remains unclear whether this represents 
a diffuse process over the whole cerebral cortex or localized 
to a few specifically affected brain regions (at least area 24 
was not affected).

No statistically significant differences in area 24 
between patients with schizophrenia and controls

We did not observe statistically significant differences in 
mean area 24 total neuron number and mean area 24 vol-
ume between patients with schizophrenia and controls and, 
consequently, no statistically significant differences in mean 
neuron density. These findings add to the growing evidence 
of unchanged area 24 neuron density in patients with schiz-
ophrenia [23, 28, 30–32]. Two studies [25, 26] found no 
change in mean pyramidal neuron density as well, and sta-
tistically significant but opposed differences in interneuron 
density. Also consistent with previous work is our finding 
that the mean area 24 total neuron number did not differ 
between patients with schizophrenia and controls [22, 32]. 
Altogether, these results suggest that area 24 as a whole 
is not affected by the pathological process that results in a 
decreased mean CGM total neuron number in schizophrenia.

Lower mean area 24 layer V total neuron number 
and neuron density in patients with schizophrenia

Layer V of area 24 stood out from the overall unaffected area 
24, with statistically significant differences in mean total 
neuron number and mean neuron density between patients 
with schizophrenia and controls. This selective reduction 
of the mean total neuron number in layer V of area 24 was 
not visible in the whole area 24, as the mean total neuron 
number of layer V constituted only 30% of the mean total 
neuron number of area 24.

Our findings replicate an earlier finding [28] of a lower 
neuron density specifically in layer V of area 24 in patients 
with schizophrenia, while neuron densities in all other lay-
ers of area 24 were not affected [28]. Another study [26] 
reported a significantly lower mean interneuron density in 
area 24 layer V in patients with schizophrenia, but no change 
in the mean density of pyramidal neurons. Other studies 
failed to find such differences [23, 25, 30] or described a 
higher layer V neuron density in patients with schizophrenia 
[29]. Our findings suggest that layer V of area 24 plays a 
specific role in the pathophysiology of schizophrenia.

Area 24 is involved in the regulation of emotional and 
cognitive functions [70–72] and is extensively connected 
to many cortical, subcortical and spinal regions [73–77]. A 

large part of the efferent portion of these connections origi-
nate in layer V of area 24 [78, 79]. It is therefore likely that 
a smaller mean total neuron number in this layer impairs 
area 24 functional connectivity output in schizophrenia, as 
suggested by a few functional neuroimaging studies [17–19]. 
There is in fact solid evidence of abnormalities of the cingu-
lum bundle in schizophrenia [80–82], a large fiber tract that 
carries the major portion of connections to and from area 
24 [83]. One important target of efferent area 24 projections 
is the amygdala, and specifically its lateral and basolateral 
nuclei [77, 78, 84]. An earlier investigation [46] of the same 
brains that were analyzed in this study found a significantly 
lower mean total neuron number in the lateral nucleus of the 
amygdala in patients with schizophrenia compared to con-
trols. Indeed, when we included the original data from that 
study [46] in our analysis, we found that the total numbers of 
neurons in layer V of area 24 and in the lateral amygdaloid 
nucleus were equally lowered in patients with schizophrenia 
compared with controls, and that there was a positive (albeit 
weak) correlation between the total number of neurons in 
these two regions in both the control and patient groups. 
This suggests that projections from area 24 to the amygdala 
are impaired in schizophrenia, which is in line with results 
from neuroimaging findings indicating abnormal connectiv-
ity between the amygdala and the ACC [85]. Furthermore, 
connectivity studies demonstrated a trend toward reductions 
in connectivity between brain areas in schizophrenia [18], 
which was also commonly seen in the ACC [19]. Other post-
mortem studies demonstrated potential dysfunction in the 
GABA-ergic and glutamatergic systems, leading to Benes’ 
hypothesis of a disturbed prefrontal cortical—anterior cin-
gulate—lateral amygdaloid nucleus—hippocampal circuit 
[86]. Our results further support this hypothesis that may 
explain key factors of the pathogenesis and clinical features 
of cardinal symptoms of schizophrenia.

Lower mean von Economo neuron number in layer V 
of area 24 in patients with schizophrenia

The significantly lower mean total neuron number in layer V 
of area 24 in patients with schizophrenia was accompanied 
by a lower mean total number of VENs. The mean VEN den-
sity, however, did not differ between patients with schizo-
phrenia and controls.

Prior research on the neuropathology of VENs in schizo-
phrenia is sparse. One study [42] discovered more lysosomal 
aggregations in VENs in patients with schizophrenia com-
pared to controls, suggesting aberrations at the single cell 
level. Consistent with our results, Brüne et al. [21] found no 
difference between patients with schizophrenia and healthy 
controls when comparing the mean density of VENs in layer 
V of area 24, but reported a significantly lower mean VEN 
density specifically in the right ACC of four patients with 
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early-onset schizophrenia. Because a design-based stereo-
logic approach was not applied by Brüne et al. [21], a pos-
sible difference in the mean total VEN number between the 
groups was not assessed. Rigorous, design-based stereol-
ogy on tissue sections sampled systematically and randomly 
from the entire extent of the ROI produces the most valid 
and reliable estimates of ROI volume and total neuron num-
bers, and should be used as a standard in quantitative neuro-
histology [59, 87]. There is evidence for selective reduction 
in the mean ACC VEN number in neuropsychiatric disorders 
characterized by severe deficits in social cognition such as 
frontotemporal dementia [41], agenesis of the corpus cal-
losum [40] and autism spectrum disorder [33, 88], while 
no such selective reduction occurs in other conditions in 
which social cognitive defects do not play a central role, 
such as Alzheimer’s disease [41]. Such findings have led to 
the concept that the VENs in the ACC may play a critical 
role in social cognitive functioning [33], further supported 
by substantial evidence for a role of the ACC in social cogni-
tion [89, 90]. Deficits in social cognition are a well-known 
symptom of schizophrenia as well [91], and as such altera-
tions in the number of VENs may play a substantial role in 
the pathophysiology of schizophrenia [33]. While definite 
conclusions certainly cannot be drawn due to a scarcity of 
data, the results of this study lend further support to this 
hypothesis.

Limitations

While the effects of a number of important extraneous vari-
ables were controlled for, our results were not adjusted for 
antipsychotic medication exposure because such data were 
not available. The same applied to other clinical character-
istics such as IQ and other medication.

As most neuropathologic studies, this study is constrained 
by a small sample size, leading to large confidence inter-
vals on effect sizes. Furthermore, determining subgroups in 
patients with schizophrenia was not possible as this would 
have resulted in too small sample sizes (e.g., three of twelve 
patients with schizophrenia committed suicide).

Another limitation is the fact that our study only 
included males and did not address possible sex differ-
ences. In fact, sex differences were reported for several 
variables in schizophrenia, including incidence, age of 
onset, symptoms and brain structure. Overall, males show 
a higher incidence than females (male/female incidence 
1.4:1) [92]. Furthermore, males tend to have an earlier 
onset and worse negative symptoms compared to females 
[93]. There are reports about sex-specific effects on brain 
development and, although inconsistent, about sex-spe-
cific structural brain differences in schizophrenia, with 
males showing overall greater structural abnormalities 

than females [66, 93, 94]. Different sex differentiation of 
the brain may be linked to sex-specific abnormalities in 
schizophrenia. Women may be more protected against the 
development of schizophrenia than men because of the 
hypothesized protective effect of estrogen on the brain 
of women [93, 94]. Neuropathologic studies with larger 
sample sizes, considering both sexes, will fill the gap of 
knowledge regarding sex differences at the cellular level 
in schizophrenia.

We did not perform separate subanalyses of regions 24a, 
24b and 24c. The latter would require ideal perpendicular 
sections through the cingulate gyrus since cytoarchitectonic 
parcellation is based on subjective estimation of neuronal 
cell size, density, shape and relative laminar thickness of 
cortical layers, and tangential sections would inevitably 
distort parcellation. Ideal perpendicular sections to the pial 
surface are rarely encountered in serial coronal sections of 
whole human brain hemispheres and complicate a thorough 
subdivision of area 24.

Finally, the fact that all brain hemispheres in our sample 
of postmortem brains of patients with schizophrenia and 
controls were cut into complete series of coronal sections 
precluded testing of the hypothesis of impaired projections 
from area 24 to the amygdala. The latter would require trac-
ing experiments that are not possible anymore after cutting 
entire hemispheres into tissue sections [86].

Conclusion and future directions

Our data indicate a global disease process affecting cortical 
neurons in schizophrenia. Area 24 taken as a whole is appar-
ently not affected by this disease process. However, within 
area 24, layer V showed specific deficits in total neuron and 
VEN numbers, which likely contribute to an impaired ACC 
connectivity in schizophrenia. Future postmortem studies 
could focus on the hypothesis of an impaired ACC connec-
tivity in context with other regions such as amygdala and 
provide further insight.

There is evidence of [49] multiple biological subtypes 
of schizophrenia with differing neuroanatomic presenta-
tions [95–97], which could partly explain the discrepancy 
of results from neuropathologic studies. Accordingly, analy-
ses of group-level differences in brain structure reporting 
averages might not capture the complexity of the disorder 
and should be supplemented with assessment of individual 
patterns of brain pathology [98]. This can be realized by 
repeated analyses of the same postmortem whole-brain sam-
ples at many anatomic sites, resulting in a more compre-
hensive microscopic evaluation of pathology. Neuropathol-
ogy can, in this way, complement psychiatric neuroimaging 
research with critical information at cell-level resolution.
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