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Abstract
Knowledge of the physiological endolymphatic space (ELS) is necessary to estimate endolymphatic hydrops (ELH) in 
patients with vestibulocochlear syndromes. Therefore, the current study investigated age-dependent changes in the ELS of 
participants with normal vestibulocochlear testing. Sixty-four ears of 32 participants with normal vestibulocochlear testing 
aged between 21 and 75 years (45.8 ± 17.2 years, 20 females, 30 right-handed, two left-handed) were examined by intravenous 
delayed gadolinium-enhanced magnetic resonance imaging of the inner ear (iMRI). Clinical diagnostics included neuro-
otological assessment, video-oculography during caloric stimulation, and head-impulse test. iMRI data analysis provided 
semi-quantitative visual grading and automatic algorithmic quantitative segmentation of ELS volume (3D, mm3) using a 
deep learning-based segmentation of the inner ear’s total fluid space (TFS) and volumetric local thresholding, as described 
earlier. As a result, following a 4-point ordinal scale, a mild ELH (grade 1) was found in 21/64 (32.8%) ears uni- or bilaterally 
in either cochlear, vestibulum, or both. Age and ELS were found to be positively correlated for the inner ear (r(64) = 0.33, 
p < 0.01), and vestibulum (r(64) = 0.25, p < 0.05). For the cochlea, the values correlated positively without reaching signifi-
cance (r(64) = 0.21). In conclusion, age-dependent increases of the ELS should be considered when evaluating potential 
ELH in single subjects and statistical group comparisons.
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vcHP	� Participants with normal vestibulocochlear 

testing
hTB	� Human temporal bone
IE-Vnet	� Inner ear Vnet
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of the inner ear
MD	� Ménière’s disease
MRI	� Magnetic resonance imaging
PLS	� Perilymphatic space
PTA	� Pure tone audiometry
SPN	� Spontaneous nystagmus
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TFS	� Total fluid space
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Introduction

Delayed gadolinium (Gd) enhanced magnetic resonance 
imaging of the inner ear (iMRI) enables in vivo verification 
of endolymphatic hydrops (ELH, [1, 2]). Before its technical 
development, ELH was thought pathognomonic to Menière’s 
disease (MD). However, up to now, MD diagnosis is based on 
clinical diagnostic criteria [3] and only definitely verifiable 
in post-mortem human temporal bone (hTB) histopathologic 
inquiry [4].

Fittingly, varying degrees of ELH were nearly universally 
present in subjects with a history of MD, with 97–100% in 
post-mortem human temporal bones studies [5, 6] and 80% in 
iMRI studies [7–10]. ELH was further consistently detected 
in other pathologies presenting with episodic vertigo, such as 
in 36–60% in intralabyrinthine schwannoma [11–14], 60% in 
bilateral vestibulopathy [15], 59% in otosclerosis [16], 8–30% 
in vestibular migraine [8, 17, 18], and also in idiopathic intrac-
ranial hypertension [19], spontaneous intracranial hypotension 
[20, 21], or cerebrospinal venous insufficiency [22]. Conse-
quently, ELH's specificity to MD is being revalued, while its 
pathophysiological relevance within the pathologies men-
tioned remains unclear to varying degrees.

It is necessary to be aware of asymptomatic ELH preva-
lence in healthy subjects to assess the relevance of any ELH 
found. Moreover, possible age-dependent physiological ELS 
changes should be considered on a single case or group scale. 
Unfortunately, however, studies on the ELH prevalence within 
the healthy population have been carried out noticeably less. 
Due to the more or less invasive nature of the methods able 
to verify ELH so far, studies on the healthy population to date 
were frequently replaced by patient groups that were thought 
not to be associated with ELH. At the same time, studies 
accompanied by comprehensive vestibulocochlear functional 
testing are scarce (for an overview cp. Tables 3 and 4). hTB 
studies often lack information on age and concurrent refer-
ence of vestibulocochlear function, while most iMRI studies 
are satisfied with the participants' statement that they did not 
perceive any vestibulocochlear malfunction. The comparison 
of the results of these studies is further complicated using dif-
ferent ELS quantification methods in iMRI [7] and different 
fixatives or post-mortem hours in hTB [23].

The current study investigated age-dependent changes in 
the ELS in participants with normal vestibulocochlear function 
(vcHP) and discussed them given previous studies conducted 
on ELS in “healthy” participants.

Materials and methods

Setting and institutional review board approval

All data were acquired at the interdisciplinary German 
Center for Vertigo and Balance Disorders (DSGZ) and the 
Munich University Hospital Neurology Department (LMU), 
Germany, between 2018 and 2020. Institutional Review 
Board approval was obtained before the initiation of the 
study (no. 641–15). Furthermore, all participants provided 
informed oral and written consent in accordance with the 
Declaration of Helsinki before inclusion in the study.

Study population

Thirty-two consecutive inpatients (64 ears; 20 females; aged 
21–75 years, mean age 45.8 ± 17.2 years; 31 right-handed, 
two left-handed) of the Neurology Department without 
symptoms or underlying pathologies of the peripheral and 
central vestibulocochlear system underwent MRI with intra-
venous contrast agent as part of their diagnostic workup 
and agreed to undergo additional iMRI sequences after 4 h. 
Ethical considerations did not allow us to include healthy 
volunteers without a medical indication for an iMRI with 
contrast agent (see limitations for more information). The 
reasons for the participant’s admission to the clinic included 
polyneuropathy (n = 5), movement disorders (n = 5), single 
small cortical metastases (n = 3), epilepsy (n = 3), optic 
nerve neuritis (n = 3), spinal inflammatory lesion (n = 3), 
tension headache (n = 3), viral meningitis (n = 2), subdural 
hematoma (n = 2), idiopathic facial nerve palsy (n = 2), and 
decompensated esophoria (n = 1). Cranial MRI findings were 
age-appropriate or did not interfere with the vestibulococh-
lear system. The laterality quotient for right-handedness 
was assessed with the 10-item inventory of the Edinburgh 
test [24]. The inclusion criterion was age between 18 and 
85 years and normal audiovestibular testing to confirm the 
soundness of their peripheral end-organs and the central ves-
tibular system (see Sect. 2.3). The exclusion criteria were 
current cochlear or vestibular disorders, a positive history of 
vertigo, balance, or hearing disorders, any MR- or contrast 
agent-related contraindications [25], poor image quality, or 
missing MR sequences.

Measurement of the auditory, semicircular canal 
and otolith functions

Participants without vestibulocochlear symptoms (vcHP) 
underwent vestibulocochlear testing to confirm the sound-
ness of their peripheral inner ear end-organs. Diagnostic 
workup included a thorough neurological examination (e.g., 
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history-taking, clinical examination), neuro-orthoptic assess-
ment [e.g., Frenzel glasses, fundus photography, and adjust-
ments of the subjective visual vertical (SVV) for acute ves-
tibular graviceptive dysfunction], video-oculography (VOG) 
during caloric and head impulse testing (HIT), and pure tone 
audiometry (PTA).

A tilt of the SVV is a sensitive sign of an acute gravicep-
tive vestibular tone imbalance. SVV was assessed with the 
subject sitting upright in front of a half-spherical dome with 
the head fixed on a chin rest [26]. A mean deviation of > 2.5° 
from the true vertical was considered a pathological tilt of 
SVV [26].

The impairment of the vestibulo-ocular reflex (VOR) 
in higher frequencies was measured by HIT [24] using 
high-frame-rate VOG with EyeSeeCam ([27], EyeS-
eeTech, Munich, Germany). A median gain during head 
impulses < 0.8 (eye velocity in °/s divided by head velocity 
in °/s) was considered a pathological VOR [28].

Furthermore, semicircular canal responsiveness in lower 
frequencies was assessed by caloric stimulation (CS) with 
VOG, which was performed for both ears with 30° cold and 
44° warm water. Vestibular paresis was defined as > 25% 
asymmetry between the right- and left-sided responses [29] 
or the sum of the maximal peak velocities of the slow phase 
caloric-induced nystagmus for stimulation with warm and 
cold water on each side < 25°/sec [30]. The caloric asym-
metry index (AICS) was calculated based on the slow-phase 
v e l o c i t y  o f  t h e  c a l o r i c  n y s t a g m u s 
AICS[%] =
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Audiological tests consisted of pure-tone audiometry 
(PTA) by air conduction at 250 Hz to 8 kHz frequencies. 
PTA was based on both ears’ four-tone average (arithmetic 
mean) of the thresholds at 0.5, 1, 2, and 3 kHz. Hearing 
loss was defined as PTA > 25 dB [31]. In all tests, the con-
tralateral ear was masked by adequate noise. All audiometric 
equipment is regularly recalibrated (every 6 months) accord-
ing to the local university equipment standard.

Delayed intravenous gadolinium‑enhanced MRI 
of the inner ear

Data acquisition

Participants received a standard dose (0.1 mmol/kg body 
weight) of gadobutrol (Gadovist®, Bayer, Leverkusen, Ger-
many) once and were scanned in a whole-body 3 Tesla MRI 
scanner (Magnetom Skyra, Siemens Healthcare, Erlan-
gen, Germany) with a 20-channel head coil twice; first 
directly after intravenous injection, as part of their diag-
nostic workup, and a second time after 4 h for the iMRI 
sequences. A T2-weighted, 3D-FLAIR (three-dimensional 
fluid-attenuated inversion recovery) sequence was used to 

differentiate endolymph from perilymph and bone, and a 
spin-echo 3D-SPACE (three-dimensional sampling perfec-
tion with application-optimized contrasts using different 
flip angle evolutions) sequence delineated the total inner 
ear fluid space from the surrounding bone according to the 
method suggested by Ref. [2].

The T2-weighted, 3D-FLAIR was characterized by the 
following parameters: TR 6000 ms; TE 134 ms; TI 2240 ms; 
FA 180°; FOV 160 × 160 mm2; 36 slices; base resolution 
320; averages 1; slice thickness 0.5 mm. The high-resolu-
tion, strongly T2-weighted, spin-echo 3D-SPACE sequence 
of the temporal bone had the following parameters: TR 
1000 ms; TE 133 ms; FA 100°; FOV 192 × 192 mm2; 56 
slices; base resolution 384; averages 4; slice thickness of 0.5.

Semi‑quantitative (visual) grading of the endolymphatic 
space

ELH was observed as enlarged negative-signal spaces inside 
the labyrinth and cochlea on the 3D-FLAIR images [2]. 
Semi-quantitative (SQ) visual grading of the ELS (sqELS) 
was performed independently by an experienced head and 
neck radiologist (SSt) and a neurologist (JG, VK) who were 
blinded to the clinical patient data. The ELS’s characteriza-
tion in the vestibulum and cochlea was based on a previously 
described 4-point [7, 32] ordinal scale classification.

3D‑(volumetric) quantification of the endolymphatic space.

3D- or volumetric quantification of the ELS (vELS) was 
achieved in two steps: First, segmentation of the total fluid 
space (TFS) was based on IE-Vnet [33], a recently proposed 
and pre-trained volumetric deep learning algorithm with 
V-net architecture. IE-Vnet was deployed via the TOMAAT 
module [34] into the 3D–Slicer toolbox (version 4.11, [35]).

Second, ELS and perilymphatic space (PLS) were dif-
ferentiated within the TFS using volumetric local threshold-
ing (VOLT, [36]) that uses ImageJ Fiji [37], including the 
“Fuzzy and artificial neural networks image processing tool-
box” [38] and the “MorphoLibJ Toolbox” [39]. The result-
ing 3D volume included ELS and PLS classifications for 
cochlea and vestibulum (cutoff 6). The ELS ratio, 
ER[%] =

ELS

TFS
× 100 , was calculated analogously to Ref. [40]. 

ELS symmetry between both inner ears was assessed using 
the absolute value of the asymmetry index AI 
[%] = (ELSright−ELSleft)

(ELSright+ELSleft)
× 100.

Statistics and validation parameters

Statistical analyses were performed using the Statistical 
Package for Social Sciences software (SPSS, Inc, Chicago, 
IL, USA). Categorical values are reported as the number 
of cases that fit the category/number of participants with 
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normal vestibulocochlear testing [%]; ordinal or scalar val-
ues are presented as (mean ± standard deviation). Results 
were reported at a significance level of p < 0.05 and p < 0.01. 
In addition, the linear agreement between parameter pairs 
was calculated using two-sided Pearson’s correlation 
coefficient.

Results

A detailed clinical and neurophysiological characterization 
of the group of participants with normal vestibulocochlear 
testing (vcHP) is provided in Table 1. No participant needed 
to be excluded due to vestibulocochlear dysfunction.

Following a 4-point ordinal scale [7, 32], a mild ELH 
(grade 1) was found in 21/64 (32.8%) ears uni- or bilaterally 
in either cochlear, vestibulum, or both ( sqELSHC

cochlea
 : grade 

0.2 ± 0.4, sqELSHC
vestibulum

 : grade 0.3 ± 0.5, sqELSHC
innerear

 : grade 
0.2 ± 0.3, range: 0–1). This means that the extent of ELH 
was low ( vELSHC

cochlea
 : 2.8 ± 1.1 mm3, vELSHC

vestibulum
 : 6.6 ± 2.1 

mm3, vELSHC
innerear

 : 9.4 ± 2.3 mm3). A detailed description 
of the ELS quantification results can be viewed in Table 2.

Age and vELS were found to be significantly positively 
correlated for the inner ear, r(64) = 0.33, p = 0.008, and 

vestibulum, r(64) = 0.25, p = 0.045. For the cochlea, val-
ues correlated positively without reaching significance, 
r(64) = 0.21, p = 0.100. The corresponding scatter plots are 
depicted in Fig. 1.

Table 1   Clinical and neuro-otological characterization of vestibuloc-
ochlear healthy participants

AI =  asymmetry index; CS =  caloric stimulation; HIT =  head 
impulse test; vcHP =  participants with normal vestibulocochlear test-
ing; LH =  left-handed; OT =  ocular torsion; PTA =  pure tone audi-
ometry; RH =  right-handed; SPN =  spontaneous nystagmus; SVV =  
subjective visual vertical; TN =  triggered nystagmus (by head shak-
ing, and/or hyperventilation)

vcHP
Participants n = 32

Age [in years] 45.8 ± 17.2
Age range [years] 21–75
Gender 20 females
Handedness 30 RH, 2 LH
TN 0/32
SPN 0/32
OT 0/32
SVV deviation 0/32
HIT pathological 0/31 (0%)
HIT mean gain 1.0 ± 0.05 (0.9–1.1)
HIT AI [%] 4.0 ± 2.7 (0–11.1)
CS pathological 0/32 (0%)
CS mean [°/s] 17.8 ± 6.7 (8.2–33.8)
CS AI [%] 10.6 ± 7.1 (1.2–25.5)
PTA pathological 2/32 (6.3%)
Presbycusis 2/32 (6.3%)
PTA mean [dB] 24.8 ± 10.1

Table 2   Semi- and 3D-quantification of the endolymphatic space

AI  =  asymmetry index; ELH =  endolymphatic hydrops; ELS =  
endolymphatic space; ER =  endolymphatic ratio  =  ELS/TLS [%]; 
sqELS =  semi-quantitative or visual quantification of the ELS follow-
ing a 4-point ordinal scale classification [7]; vELS =  volumetric or 
3D quantification of the ELS [mm3]; vcHP =  participants with normal 
vestibulocochlear testing; TFS =  total fluid space

vcHP
Ears n = 64

Cochlea
 ELH 10/64 (15.6%)
 Side
  Unilateral 4/32 (12.5%)
  Bilateral 3/32 (9.4%)

 sqELS [grade] 0.2 ± 0.4 (0–1)
 vELS [mm3]
  Mean 2.8 ± 1.1 (0.3–6.6)
  AI 20.2 ± 12.9 (1.0–54.4)
  ER 3.1 ± 1.0 (0.6–5.1)

 TFS [mm3] 89.5 ± 12.0 (59.4–126.9)
Vestibulum
 ELH 16/64 (25%)
 Side
  Unilateral 4/32 (12.5%)
  Bilateral 6/32 (18.8%)

 sqELS [grade] 0.3 ± 0.5 (0–2)
 vELS [mm3]
  Mean 6.6 ± 2.1 (2.4–11.7)
  AI 15.2 ± 10.5 (1.0–33.1)
  ER 3.7 ± 0.8 (1.9–5.4)

 TFS [mm3] 180.7 ± 21.2 (140.4–233.9)
Inner ear
 ELH 21/64 (32.8%)
 Side
  Unilateral 4/32 (12.5%)
  Bilateral 9/32 (28.1%)

 sqELS [grade] 0.2 ± 0.3 (0–1)
 vELS [mm3]
  Mean 9.4 ± 2.3 (4.5–13.4)
  AI 12.7 ± 7.6 (1.6–25.4)
  ER 3.5 ± 0.6 (2.4–4.7)

 TFS [mm3] 270.2 ± 29.0 (216.3–329.9)
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Discussion

The current study investigated age-dependent changes in 
the endolymphatic space (ELS) in 32 participants with 
normal vestibulocochlear testing (Table 2). Mild ELH 

(grade 1) was found in 15.6% in the cochlea (thereof 12.5% 
unilateral and 9.4% bilateral), 25% in the vestibulum 
(thereof 12.5% unilateral and 18.8% bilateral), and 32.8% 
when considering the inner ear (thereof 12.5% unilateral 
and 28.1% bilateral). None of the participants’ semi-
quantitative ELH classification grades (sqELS) exceeded 
grade 1 (mild ELH) following a 3-point [41] and 4-point 
[7] ordinal scale. Mean ELS volume (vELS) was 2.8 µl 
for the cochlea, 6.6 µl for the vestibulum, and 9.4 µl for 
the inner ear. ELS ratio (ER = ELS

TFS
× 100 ) remained below 

5% in cochlea (3.1%), vestibulum (3.7%), and inner ear 
(3.5%). Asymmetry index remained beneath 25% in coch-
lea (20.2%), vestibulum (15.2%), and inner ear (12.7%). 
ELS volume showed age-dependent significant changes 
for the inner ear, r(64) = 0.33, p = 0.008, and vestibulum, 
r(64) = 0.25, p = 0.045 (cp. Fig. 1). For the cochlea, val-
ues correlated positively without reaching significance, 
r(64) = 0.21, p = 0.100.

In the following, the mentioned results will be discussed 
given previous studies conducted on ELS in “healthy” 
participants.

ELH prevalence in “healthy” participants

The results of the current study fit well with the findings in 
the literature. An overview of ELH prevalence in studies 
on the “healthy” population to date is shown in Table 3. 
Notably, even excluding studies using the non-affected ear 
in unilateral Meniere's disease (uMD) as a healthy control 
group, a relatively high ELH prevalence was found. In 
iMRI studies (see Table 3b) using semi-quantitative three-
point visual grading [41], mild ELH was reported to lie 
between 3.3 and 28.6% of participants in the cochlea [10, 
42], 6.7–25% in the vestibulum [7, 43], and 7.5–10% in the 
inner ear [7, 43]. Significant ELH was reported between 
9.5 and 13.3% in the cochlea [10] and up to 30% in the 
vestibulum [42]. In contrast, in hTB studies' adult popula-
tion (see Table 3a), including participants with MD, ELH 
prevalence was found to be around 9% [44], and without 
MD, around 4.5% [6].

In summary, the overlap of the 3-point sqELH grading 
system of Schuhknecht et al. [45] for the hTB studies and 
of Nakashima et al. [41] for the iMRI helps to compare 
their results, a direct transfer of the results should be done 
with caution. After all, while iMRI can only indirectly 
verify ELH, it provides in-vivo longitudinal ELS visu-
alization with multi-slice 3D-quantification in addition to 
contemporary measurement of vestibulocochlear function. 
hTB studies, on the other hand, provide direct identifica-
tion of the distension of Reissner's membrane and further 
histopathologic evidence for MD.

Fig. 1   Scatter plot for age and 3D quantification of the endolym-
phatic space. Correlation results for cochlea (top), vestibulum 
(middle) and inner ear (bottom) of participants with normal ves-
tibulocochlear testing: age and 3D-(volumetric)-quantification 
(vELS) of the endolymphatic space (ELS) were found to be mod-
erately strong positively correlated for the cochlea, r(64) = 0.21, 
p = 0.100 (linear slope = 0.043), vestibulum, r(64) = 0.25, p = 0.045 
(linear slope = 0.063), and inner ear, r(64) = 0.33, p = 0.008 (linear 
slope = 0.109). Significant linear agreements are marked (*) for a sig-
nificance level p < 0.05 and (**) for a significance level p < 0.01
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ELS volume in “healthy” participants

The current study's ELS volume was low in the cochlea 2.8 
± 1.1 mm3, vestibulum 6.6 ± 2.1 mm3, and inner ear 9.4 ± 
2.3 mm3 compared to volumes in the previous literature, 
especially across methods in both hTB [23, 46, 47] and high-
resolution CT [48–50]. A detailed description of the ELS 
2D-(area) and 3D-(volumetric) quantification in previous 
hTB and iMRI studies on the “healthy” population to date 
can be viewed in Table 4.

It is noticeable that the lower volumetric values or 
ratios occur in the studies with participants that were con-
trolled for vestibulocochlear testing. In addition, the abso-
lute values of both ELS quantification methods (although 
2D- more than the 3D- ELS quantification method) are 
variable across the different studies, and relative size ELS 
are less variable (with ELS-Ratio being most constant, 
also across methods).

Table 3   Literature overview of ELH prevalence in "healthy" participants

This table has no claim to be exhaustive. Inclusion criteria for this table were the investigation of “healthy” controls and the usage of an estab-
lished, comparable method for the semi-quantitative classification of the endolymphatic hydrops (sqELH). For the hTB studies, the 3-point 
sqELH grading system of Schuhknecht et al. [45] was used. For the iMRI studies, the 3-point sqELH grading system of Nakashima et al. [41] 
was used. Here, “healthy” control includes patients without audiological or vestibular problems and excludes studies using the non-affected ear 
in unilateral Meniere's disease as a healthy control group
 +  = including patients with Morbus Meniere, MD; ■ = significant ELH following sp3 [41]; ☐ = mild ELH following sp3 and sp4; ∆ = using the 
human temporal bone collection at the Massachusetts Eye and Ear Infirmary; A = adult population including normal ears and cases with oto-
logical diseases (for more detail see [6]); cHP = participants with nonotological diseases (for more detail, see [10]) without audiological, vestibu-
lar or neurological problems; vcHP = participants with neurological diseases (for more detail, see [7]) with normal vestibulocochlear testing; c/
oVEMP = ocular/cervical vestibular evoked myogenic potential; CS = caloric stimulation; HP = healthy participants with no history of audiologi-
cal, vestibular, or neurological problems (for more details, see [43]); HIT = head-impulse test; I = infant population including congenital anoma-
lies (51.4%), infectious diseases (17.1%), non-infectious diseases (18.6%), and tumors (12.9%); N = newborn mainly premature population; n. 
s. = not specified; PTA = pure tone audiometry; sq3 = semi-quantitative following 3-point classification in cochlea and vestibulum following [41]; 
sq4 = semi-quantitative following 4-point classification in cochlea and vestibulum following [7], sqh = semi-quantitative following 3-point histo-
logical classification of the cochlea following [45]; SVV = subjective visual vertical; TFS = total fluid space; V = visual assessment

Study Year [refer-
ence]

Kind of 
subjects

Nr. Of sub-
jects

Age [years] Vestibuloc-
ochlear test-
ing

Method of 
quantifica-
tion

ELH

Cochlea Vestibulum Inner ear

(a) Human temporal bone 
studies

Bachor and 
Karmody

1995 [57] I 70 0–10 No sqh, V 16.9% – –

Belal and 
Atunel

1980 [44] A+ 357 0–98 No sqh, V 9% – –

Buch 1966 [56] N 73  < 0 No sqh, V 0.7% – –
Merchant 2005 [6] A∆ 963 Cases: 6–91, 

rest: n.s
No sqh, V 4.5% – –

(b) iMRI, intravenous
Attyé 2017 [42] HP 30 58.7 ± 10.9 

(range: > 40)
No sq3, V 13.3%, ■ 30%, ■ n.s.

Boegle 2021 [7] vcHP 33 46.4 ± 15.6 
(range: 
21–75)

Neuro-
orthoptic 
assess-
ment, 
SVV, VOG 
during CS 
& HIT, c/
oVEMPs, 
PTA

sq3+4, V 9%, ☐ 25%, ☐ 7.5%, ☐

Ito 2016 [43] HP 15 57.7 ± 17.9 
(range: 
20–76)

No sq3, V 3.3% 6.7% 10%

Yoshida 2018 [10] cHP 21 56.1 ± n.s. 
(range: 
24–79)

PTA sq3, M 9.5■–28.6☐ 
%

0■–7.1☐ % n.s.
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ELH laterality and ELS symmetry

In healthy participants, cochlear and vestibular ELH later-
ality (bi- or unilateral) and ELS symmetry (when using 2D 
or 3D quantification) were omitted. Investigated hTB and 
iMRI studies either only have one ear at their disposal [46, 
51–53], limit information on laterality to the patient cohort 
[6, 10, 42–44, 54, 55], or do not discuss ELH laterality as 
a category [40, 56–58]. The current study showed 12.5% 
unilateral mild ELH in the cochlea and vestibulum, 9.4% 
showed a mild bilateral ELH in the cochlea, and 18.8% a 
mild bilateral ELH in the vestibulum, while the asymmetry 
index remained < 25% (cochlea: 20.2%, vestibulum 15.2%, 
inner ear: 12.7%). Laterality and symmetry add to the char-
acteristic pattern in “healthy” participants, alongside volu-
metric extent and maximally mild ELH in semi-quantitative 
ELS quantification.

Therefore, ELS studies should include semi-quantitative 
(SQ) grading and 3D quantification. SQ grading should 
include the 3-point grading scale by Nakashima et al. [41] as 
it is the most commonly used grading system and can serve 
as a calibration point. Reported 3D-quantification values 
should include symmetry parameters, such as asymmetry 
indices for un-normalized data and the relative size of the 
ELS for normalized data.

ELS age‑dependency

Age and vELS were found to be significantly positively cor-
related for the inner ear (r(64) = 0.33, p = 0.008), and vestib-
ulum (r(64) = 0.25, p = 0.045). For the cochlea, values corre-
lated positively without reaching significance (r(64) = 0.21, 
p = 0.100)(Fig. 1). These results seem plausible because 
of the increased vestibulocochlear dysfunction with age 
[59–62], including the frequent cases without the patient 
noticing the vestibular dysfunction occurred [63–65]. Con-
trary, two published studies by Inui et al. [40, 58] showed 
that participants < 60 years had significantly larger TFS and 
ELS/TFS volume ratios in the inner ear and significantly 
larger ELS/TFS volume ratios in the vestibulum in compari-
son to the participant group ≥ 60 years. The differing results 
between the current study and the latter might be explained 
by the difference in methods or the selection of participants 
(Table 4b).

The overall mild degree in ELS increase without symp-
toms and (in general) normal audiovestibular testing results 
also further question the current definition of ELH. The 
word hydrops implies an excessive pathologic accumula-
tion of endolymphatic fluid within the ELS. However, the 
current results imply that a mild ELH might not necessar-
ily be a pathologic sign but can represent a physiological 
norm, especially with increasing age and when unaccom-
panied by audiovestibular symptoms or (diagnostic) signs 

of audiovestibular dysfunction. An objective description 
of different ELS distention grades without statement on its 
pathogenicity (± ELH) would be preferable. An easy solu-
tion would be to simply retain all previous suggestions of 
semi-quantitative ELH grading as ELS grading, and discard 
the statement referring to no, mild, moderate or severe ELH.

Methodological limitations of the study

Two major limitations of the current study need to be consid-
ered: first, the limited number of subjects included, and sec-
ond, the circumstance that iMRI imaging could only be done 
in patients with other (neurological) pathologies. A repre-
sentative ELS study with a higher number of completely 
healthy subjects, ideally of 20 participants per decade, rang-
ing between 20 and 90 years of age, would be desirable and 
is still pending. Second, influences of the participants' under-
lying neurological pathologies on the ELS appear unlikely 
(view inclusion and exclusion criteria, Sect. 2.2.) but cannot 
entirely be excluded. In addition, two of our participants 
showed signs of presbyacusis in our audiometric testing, and 
we do not know if hearing performance influences the ELS. 
However, ethical considerations did not allow us to include 
healthy volunteers without a medical indication for an iMRI 
with contrast agent. The decision to avoid unnecessary con-
trast agent application was based on prior findings of signal 
intensity increases in the dentate nucleus and globus pal-
lidus on T1-weighted MR images after applying MR con-
trast agents that are still under investigation [66–68]. Third, 
the study lacks histological confirmation of endolymphatic 
hydrops since the in-vivo acquisition of histological speci-
mens is currently not possible.

Conclusion

Age-dependent increases of the ELS should be considered 
when evaluating potential ELH in single subjects and statis-
tical group comparisons.
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