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Abstract
Background Artificial intelligence (AI) techniques are promising in early diagnosis of skin diseases. However, a precon-

dition for their success is the access to large-scaled annotated data. Until now, obtaining this data has only been feasible

with very high personnel and financial resources.

Objectives The aim of this study was to overcome the obstacle caused by the scarcity of labelled data.

Methods To simulate the scenario of label shortage, we discarded a proportion of labels of the training set. The training

set consisted of both labelled and unlabelled images. We then leveraged a self-supervised learning technique to pretrain

the AI model on the unlabelled images. Next, we fine-tuned the pretrained model on the labelled images.

Results When the images in the training dataset were fully labelled, the self-supervised pretrained model achieved

95.7% of accuracy, 91.7% of precision and 90.7% of sensitivity. When only 10% of the data were labelled, the model

could still yield 87.7% of accuracy, 81.7% of precision and 68.6% of sensitivity. In addition, we also empirically verified

that the AI model and dermatologists are consistent in visually inspecting the skin images.

Conclusions The experimental results demonstrate the great potential of the self-supervised learning in alleviating the

scarcity of annotated data.
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Introduction
Skin diseases have caused an enormous burden to individuals.

Many of them are listed in the most prevalent diseases in various

literature.1–5 To facilitate the early diagnosis of skin diseases, dif-

ferent rules such as the ABCD-rule6,7 and the three-point8 or

seven-point9,10 checklist are developed and widely accepted by

dermatologists. However, it has been shown that there exists a

significant gap in diagnosis sensitivity or specificity between

experienced dermatologists and general practitioners11–13 when

they use tools like dermoscopy or epiluminescence microscopy.

The problem can become more severe in the countries which

face a shortage of dermatologists. This motivates us to assist der-

matologists in skin disease diagnosis using AI techniques, which

are becoming increasingly important in medical imaging, such

as disease classification, pathological findings and quantification

of disease extent.14,15 In dermatology, several works suggest that

AI models can achieve comparable performance as dermatolo-

gists on recognition of skin diseases.16–20 Nevertheless, one

essential prerequisite of these remarkable achievements is large-

scale annotated datasets. Most AI models, for example deep neu-

ral networks (DNNs), are data-driven. In order to learn the pat-

terns from the skin diseases with significant visual variations,

they require to be trained on an extensive collection of skin

images, which need to be annotated by experienced dermatolo-

gists.

Collecting skin images to construct the datasets is expensive,

especially for those diseases with low prevalence. Furthermore,

manually labelling the images is highly time-consuming and

laborious. As a result of a shortage of dermatologists, many clin-

ics can only provide partially labelled datasets. In this case, the

AI models only get little supervision when being trained on the

labelled subset. Consequently, the models often fail to
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capture the actual patterns of diseases and only yield suboptimal

performances.

A solution to this dilemma is to transfer a pretrained model

from a large-scale dataset to a small target dataset. It is to note

that the domains of the two datasets are not necessarily the

same. Since the pretrained model has already learned to capture

low-level features like edges and colours, they can be easily fine-

tuned on the labelled target dataset. A pretrained model is often

trained on a benchmark dataset like ImageNet,21 which contains

over one million images from natural scenes. Another way to

pretrain a model is to perform self-supervised learning,22–27

which has enjoyed huge success recently. One of the most

appealing advantages of self-supervised learning is that it does

not require image labels. Thus, one can use unlabelled images

instead of discarding them when training the model. In addition,

previous works22–27 also suggest a good generalization ability of

self-supervised pretrained models. Moreover, it has been shown

that self-supervised pretrained models suffer substantially less

from the class imbalance of diseases,28 which is considered a

common challenge in the medical field.

Some existing works in the dermatological field have shown

the performance gain from self-supervised learning. Kwasigroch

et al.29 reported that models pretrained with self-supervised

techniques yield higher ROC AUC in binary classification. How-

ever, this work focuses on dermoscopic images. Moreover, in the

benchmark evaluation experiments,22–27 the self-supervised

techniques adopted in their experiments yield suboptimal per-

formance compared to the recently developed ones.22–27 Chaves

et al.30 empirically proved that self-supervised pretraining is par-

ticularly useful in low training data scenarios, but it mainly con-

siders distinguishing melanoma from other diseases. Azizi

et al.31 proposed a novel self-supervised technique called Multi-

Instance Contrastive Learning and demonstrated its effectiveness

on both skin image and chest X-ray classification. Nevertheless,

as its name suggests, this algorithm is specifically designed for

multi-instance learning, which has a quite different problem set-

ting. Specifically, multi-instance learning aims to learn a shared

representation for multiple instances that depict the same object.

For example, the instances of an object can be pictures taken

from different perspectives. However, each object is associated

Unlabeled  Skin Images Skin Images

Labels of Skin Images

Self-supervised  
Pre-training

ImageNet  
Pre-training Images of ImageNet

Labels of ImageNet

Skin Images

Labels of Skin Images

Train from Scratch
Skin Images

Labels of Skin Images

Dermatology Datasets ImageNet Datasets

Stage 1

No Pre-training

Stage 2

Figure 1 Training strategies. Blocks in the diagram denote the data sources used for training. The labelled images used at the second
stage are sampled from the training set, and the sampling process is described in Section 2. The unlabelled images used by self-
supervised pretraining are the full training set.
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with only one instance (i.e., one image) in our skin image data-

sets. Hence, the algorithm proposed in Azizi et al.31 does not

apply to our task.

In this work, we aim to use self-supervised learning tech-

niques to enhance the model’s performance in skin disease clas-

sification, on the condition that only a limited amount of skin

images is labelled. The rest of the paper is structured as follows:

Subsection 2.1 demonstrates three training strategies used in the

experiments. Next, in Subsection 2.2, we show the datasets of

skin images that we have collected. We then demonstrate the

classification performance in Subsection 3.1. In Subsection 3.2,

we visualize the samples using their features extracted by the

model and show how the model’s discrimination ability changes

with the size of the labelled train set. In Subsection 3.3, we

explain the model using saliency maps. In the end, we present

our conclusion in Section 4.

Training
Validation
Test

Figure 2 Class distribution in the skin image datasets. Training, validation, and test set contain 20 926, 6829 and 6910 samples, respec-
tively. Numbers above the bars denote the number of samples of the corresponding disease.

Figure 3 Accuracy, precision and sensitivity on the test set. The error bars denote �1 standard deviation of the results from three trials.
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Materials and methods

Training strategies
We attempt to overcome the data shortage with the help of self-

supervised learning. We consider three training strategies for

comparison, as shown in Fig. 1.

(a) Self-supervised pretraining: This strategy consists of two

stages: we perform self-supervised learning on the unlabelled

skin images at the first stage. After that, we transfer the pre-

trained model to the labelled dataset of skin images.

(b) ImageNet pretraining: This strategy is also composed of

two stages: We pretrain the model in a supervised manner on

ImageNet. After that, we transfer the pretrained model to the

labelled dataset of skin images. There are two key differences

between the strategy (a) and (b). Firstly, the dataset (ImageNet)

for pretraining in (b) is from a different domain. Secondly, class

labels are used during pretraining in (b).

(c) Train from scratch: We do not perform pretraining in this

strategy. Instead, we skip the first stage and directly train the

model on the labelled dataset of skin images.

We use EfficientNet-B432 as the classification model in all the

experiments because this model is small but accurate. For self-

supervised pretraining, we adopt MoCo-V223 due to its com-

pelling performance. After making a trade-off between training

time and accuracy, we train the classification model for 27 000

iterations in all the experiments.

Datasets of skin images
A total of 34 665 skin images was collected from the photogra-

phy laboratory at the Department of Dermatology and Allergy,

University Hospital, LMU Munich. For all images used, written

informed consent was obtained from the patient. Additionally,

we anonymized all the images by manually erasing biometric

features to preserve privacy. The spatial resolution of the raw

photographs is 3840 by 2160. The locations of skin lesions were

annotated with rectangular bounding boxes. Then, the skin

lesions in the bounding boxes were cropped from the raw

images and used as input for classification. Considering that

the computation resources are limited, we re-scaled all the

cropped images such that their longest side is maximal 512-

pixel. During training, the images are randomly cropped,

flipped and rotated. Next, the images are resized to 512 by 512

and fed into the neural network.

The classes of lesions considered in this study include: (1)

acne vulgaris, (2) atopic dermatitis, (3) erysipelas, (4) furun-

cle, (5) granuloma anulare, (6) herpes zoster, (7) larva

migrans, (8) psoriasis vulgaris, (9) rosacea, (10) urticaria. It

is to note that the morbidity rates of these diseases are much

different, and they are not equally frequently documented in

the clinic. Thus, the number of collected samples varies

widely. As shown in Fig. 2, the dominant class: psoriasis

vulgaris has 17 487 samples, while the least frequent class:

furuncle has only 192 samples. We partitioned the images

into training, validation and test set with approximate per-

centages of 60%, 20% and 20%, respectively. We also kept

the class distributions in each set as close as possible. Fur-

thermore, we ensured that no images from the same patient

appeared in two different sets. To enhance the reliability of

our experiments, a board-certified dermatologist with over

30-year professional experience validated and curated all

images in the test set. All the images with incorrect or uncer-

tain diagnoses were removed.

In order to simulate the scenarios where only a limited

number of images is labelled, we randomly sample a subset

of the training set and only provide this subset to the model

at the second stage of all training strategies. The size of the

sampled subset is controlled by a parameter α ranging from

10% to 100%. For example, α = 100% means the subset

contains the entire training set, while α = 10% means the

Table 1 Class-wise classification performance

(a) α = 100% α = 50% α = 10%

Disease IN SS FS IN SS FS IN SS FS

Acne Vulgaris 0.95 0.94 0.87 0.92 0.92 0.84 0.82 0.87 0.61

Atopic Dermatitis 0.96 0.95 0.89 0.90 0.92 0.86 0.73 0.83 0.57

Erysipelas 0.95 0.89 0.76 0.97 0.88 0.77 0.80 0.80 0.01

Furuncle 0.86 0.88 0.61 0.88 1.00 0.99 0.59 0.76 0.00

Granuloma
Anulare

0.92 0.93 0.81 0.82 0.94 0.77 0.68 0.74 0.67

Herpes Zoster 0.94 0.95 0.83 0.89 0.88 0.75 0.67 0.77 0.00

Larva Migrans 0.88 0.81 0.78 0.91 0.90 0.53 0.73 0.80 0.00

Psoriasis
Vulgaris

0.98 0.97 0.94 0.95 0.96 0.91 0.88 0.90 0.79

Rosacea 0.92 0.92 0.85 0.88 0.92 0.86 0.77 0.83 0.53

Urticaria 0.95 0.93 0.90 0.86 0.88 0.89 0.77 0.87 0.59

(b) α = 100% α = 50% α = 10%

Disease IN SS FS IN SS FS IN SS FS

Acne Vulgaris 0.94 0.93 0.89 0.89 0.91 0.84 0.69 0.80 0.37

Atopic Dermatitis 0.95 0.95 0.81 0.91 0.92 0.86 0.80 0.83 0.63

Erysipelas 0.85 0.88 0.71 0.64 0.80 0.40 0.35 0.49 0.01

Furuncle 0.91 0.85 0.47 0.68 0.79 0.15 0.29 0.55 0.00

Granuloma
Anulare

0.87 0.86 0.70 0.76 0.79 0.60 0.40 0.65 0.11

Herpes Zoster 0.89 0.87 0.74 0.77 0.81 0.64 0.55 0.59 0.00

Larva Migrans 0.88 0.85 0.73 0.85 0.82 0.24 0.32 0.47 0.00

Psoriasis Vulgaris 0.98 0.99 0.96 0.97 0.97 0.96 0.93 0.96 0.86

Rosacea 0.97 0.97 0.94 0.94 0.94 0.91 0.88 0.90 0.92

Urticaria 0.89 0.92 0.86 0.82 0.87 0.73 0.58 0.62 0.35

(a) Class-wise precision; (b) Class-wise sensitivity. For compactness of the
tables, we abbreviate ImageNet pretraining to ‘IN’, self-supervised pretraining
to ‘SS’, and training from scratch to ‘FS’, respectively. Note that the accuracy is
defined over all the samples and cannot be computed in a per-class manner.
For alpha = 50%, the IN and SS are both 92%, therefore they are both high-
lighted with bold font.
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subset contains only 10% of the training set. In addition,

we approximately maintain the class distribution when sam-

pling the subset.

The study followed the Declaration of Helsinki and was

approved by the Ethical Committee of the Ludwig Maximilian

University (LMU), Munich, Germany (reference no: 21–0257).

Figure 4 Visualization of the embedding vectors produced by the EfficientNet-B4. Each scatter point denotes a sample from the test
set. Clusters of different diseases are shown in different colours. If each cluster of disease is compact and the clusters are distant from
each other, it then suggests that the classifier is discriminative.
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Results

Classification performance
For an imbalanced data set, merely using accuracy to assess the

classification model is often misleading and not sufficient.

Therefore, we also adopt precision along with sensitivity for per-

formance evaluation. To encounter uncertainty introduced by

randomly sub-sampling the train set, we perform cross-

validation for three times and report the standard deviation in

the evaluation results. As shown in Fig. 3, when using 100% of

the train set at the second stage, the ImageNet pretrained model

yields 95.5% accuracy, 93.1% precision and 91.3% sensitivity.

The results are close to the self-supervised pretrained model’s

performance, which is 95.7% accuracy, 91.7% precision and

90.7% sensitivity. However, the model trained from scratch

shows substantially lower performance (90.4% accuracy, 82.5%

precision and 78.1% sensitivity).

The advantages of the self-supervised pretrained model

become more apparent with the decrease of α. When α = 10%,

we can still achieve 87.7% accuracy, 81.7% precision and 68.6%

sensitivity with the self-supervised pretrained model. In addi-

tion, we also show the class-wise precision and sensitivity in

Table 1. Although the self-supervised pretrained model also suf-

fers from great performance degradation when α drops, it still

outperforms the other two models by a large margin on the

minor classes when α = 10%. In short, the classification metrics

nicely demonstrates the effectiveness of the self-supervised pre-

training.

Visualization of the feature vectors
An accurate classification model can often extract discriminative

features from the input images. Discriminative features have two

critical characteristics. Firstly, feature vectors of the same disease

class are clustered together. Secondly, the feature vector clusters

of different diseases are distant from each other. We exploit the

t-SNE33 technique to visualize the feature vectors of images in

the test set, as demonstrated in Fig. 4. When using the entire

training set (i.e. α = 100%), both ImageNet pretraining and

self-supervised pretraining strategies can produce highly dis-

criminative feature vectors, for which the boundaries between

different diseases are clear. As α decreases, the feature vectors of

different diseases tend to overlap, making it increasingly difficult

for the model to determine the boundaries to classify the dis-

eases. This phenomenon is very conspicuous when α = 10%.

The feature vectors of atopic dermatitis extracted by the Ima-

geNet pretrained model are overlapped with the clusters of other

diseases. However, this problem is much alleviated by exploiting

the self-supervised pretraining. The visual observation is well

aligned with the classification performance on atopic dermatitis:

73.1% of precision and 80.0% of sensitivity yielded by ImageNet

pretraining, while 83.3% of precision and 83.1% of sensitivity by

self-supervised pretraining. In contrast, the model trained from

scratch cannot distinguish the dominant disease (psoriasis vul-

garis) from others when α is low (10%). In this case, the model

predicts the most images as psoriasis, indicating that it fails to

learn the deep features of the diseases. As shown in Fig. 5, we

also make a similar observation when experimenting with

another model architecture: ResNet50,34 one of the most widely

used architectures in computer vision. Although there is a clear

margin between the psoriasis vulgaris embeddings and other dis-

ease embeddings, it is still difficult to distinguish between the

embeddings of the rare diseases.

Explanation of the model
Recent years have seen a surge in research activity in explaining

neural networks. For image classification, the saliency maps are

widely used for visualizing the explanation results. They are two-

dimensional heat maps, in which each pixel value indicates the

amount of information that the corresponding pixel provides to

the model. Recently, a novel explanation approach35 for neural

networks has been proposed to explain at the input image level,

which is more suitable for dermatology. We utilize this tech-

nique to generate the saliency maps and explore how consistent

the neural network’s vision is with the dermatologists.

We illustrate the saliency maps along with the skin images in

Fig. 6. We have the following findings by visual inspection:

Firstly, the neural network might exploit information only from

a part instead of the entire area of lesions. Because the informa-

tion from that part is sufficiently discriminative. For instance, if

we look closely at the psoriasis vulgaris examples in Fig. 6, we

find that only a representative part of lesions on the skin is high-

lighted. Secondly, the neural network might also utilize the aux-

iliary information from the non-lesion area. In particular, the

edges of extremities, lips and faces can help the model recognize

the body location, which is highly informative when making a

diagnosis. As shown in Fig. 6, the model recognizes human faces

from the lips, and it classifies the images as rosacea by combin-

ing the information from the rosacea lesions with this auxiliary

information. In other words, it has learned the high co-

occurrence between the human faces and rosacea.

Conclusion
In this study, we applied self-supervised learning to classification

of dermatological diseases. We showed that self-supervised pre-

training can alleviate the shortage of labelled data. We also

demonstrated that the neural network’s vision is well aligned

with dermatologists. These empirical findings held great promise

for deploying the AI techniques to clinics to assist dermatologists

with early diagnosis of skin diseases and decision making. How-

ever, there is still much room for improvement and future work.

For example, the datasets can be extended to include more

images and pathologies. In addition, techniques tackling the

class imbalance can be adopted to improve the model’s perfor-

mance on the diseases that are more challenging to diagnose.
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