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Abstract

Corticotroph tumours are primarily sporadic monoclonal neoplasms and only rarely

found in genetic syndromes. Recurrent mutations in the ubiquitin specific protease 8

(USP8) gene are found in around half of cases. Mutations in other genes such as

USP48 and NR3C1 are less frequent, found in less than ~20% of cases. TP53 and

ATXR mutations are reported in up to one out of four cases, when focusing in USP8

wild type or aggressive corticotroph tumours and carcinomas. At present, USP8

mutations are the primary driver alterations in sporadic corticotroph tumours, TP53

and ATXR mutations may indicate transition to more aggressive tumour phenotype.

Next generation sequencing efforts have identified additional genomic alterations,

whose role and importance in corticotroph tumorigenesis remains to be elucidated.
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1 | INTRODUCTION

Cushing's disease is the most common form of endogenous hyper-

cortisolaemia, which develops secondary to ACTH-secreting pituitary

tumours (henceforth referred to as corticotroph tumours). It is mainly

sporadic and is rarely seen in the context of endocrine tumour syn-

dromes (reviewed in1,2). In the last few years, the advancement of next-

generation sequencing technologies have brought a renaissance in the

understanding of the genetic events underlying the pathogenesis of

Cushing's disease. This article is part of a Special Issue on “Update of

Cushing's Syndrome: 100 years after Minnie G" and summarizes the

current knowledge on the genetics of corticotroph tumours.

2 | CUSHING'S DISEASE IN ENDOCRINE
TUMOUR SYNDROMES

Multiple endocrine neoplasia (MEN) syndromes

MEN syndromes present with tumours in more than one endocrine

organ and include MEN1 (loss of function mutation in MEN1 gene

encoding for menin), MEN2 and 2B (mutations in the RET oncogene)

and MEN4 (mutations in the CDKN1B gene encoding for the cell

cycle inhibitor p27/Kip1) (reviewed in3). Cushing's disease is rarely

reported in paediatric or adult MEN1 patients3–7 (reviewed in3). In a

multicentre study, corticotroph tumours were found in 6/136 MEN1

patients presenting with pituitary tumours.8 MEN2 (or MEN2A) and

2B rarely present with pituitary tumours and two cases were

reported to present with Cushing's disease: an adult MEN2A and a

paediatric MEN2B patient.9,10 MEN4 is very rare, accounting for

�2% of MEN cases that do not carry MEN1 mutations.11–14 Most

studies did not detect germline CDKN1B mutations in patients with

corticotroph tumours6,12,15,16; Germline CDKN1B mutations were

reported in two female patients with Cushing's disease, who also

presented with primary hyperparathyroidism.12,17 A recent study

focusing on paediatric Cushing's disease patients with no known

MEN history, reported heterozygous germline CDKN1B potential

pathogenic variants in five out of 190 cases.14 An association

between p27 rs2066827 (V109G) polymorphism and corticotroph

tumours was observed in a large Brazilian cohort of 447 patients

who presented with different endocrine tumours, but no CDKN1B

gene mutations.18
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AIP

Germline mutations in the aryl hydrocarbon receptor (AHR) -interacting

protein (AIP) are found in �20% of families associated with non-

syndromic familial isolated pituitary adenomas (FIPA).19 Germline AIP

mutations were found in one paediatric patient with an ACTH-secreting

microadenoma6 and in a 50-year-old male patient presenting with an

aggressive corticotroph tumour.20 Overall, germline AIP mutations in

patients with Cushing's disease are very rare (1/7421 and 3/4422). A

germline mutation in the AHR gene was found in a male patient who

presented with a giant corticotroph tumour.23

DICER1

Cushing's disease occurs in patients with DICER1 syndrome with very

low penetrance. DICER1 syndrome is caused by germline heterozy-

gous loss-of-function mutations in the gene encoding for the cyto-

plasmic endoribonuclease type III that is essential in microRNA

biogenesis, and characterized by early-onset tumours that include

among others pituitary blastoma.24 Most patients with pituitary

blastomas are younger than 3 years old and suffer from severe Cus-

hing's disease and high mortality due to clinical complications.24–29 In

these cohorts, germline DICER1 mutations were detected in 12 out of

13 patients. Germline heterozygous missense DICER1 variants were

also identified in seven unrelated paediatric patients with isolated

Cushing's disease and no history of DICER1 syndrome.30 Recently, a

young adult patient with Cushing's disease was reported as having

germline DICER1 mutation inherited from her father.31

Carney complex

Carney complex (CNC) is a hereditary tumour syndrome, caused in

the majority of cases by inactivating mutations in PRKAR1A gene that

encodes for type 1 alpha regulatory subunit of the cAMP-dependent

protein kinase A (PKA). CNC is characterized by myxomas, skin pig-

mentation, schwannomas as well as endocrine tumours, and although

ACTH-independent Cushing's syndrome is a frequent manifestation

of the disease especially in female patients,32 Cushing's disease was

not reported. At present, there are two case reports with germline

PRKAR1A mutations: a male patient with Cushing's disease and clinical

phenotype of CNC33 and a male paediatric Cushing's disease patient

with germline PRKAR1A mutation and LOH on the corticotroph

tumour.34 No germline PRKAR1A mutations were detected in the

remaining 97 paediatric Cushing's disease patients included in the

study, indicating that they are very rare in pituitary-dependent Cus-

hing's syndrome.34

Lynch syndrome

Lynch syndrome results from germline mutations in mismatch repair

genes such as MSH2, MLH1, MSH6, PMS2 and EPCAM, and is

associated with a hereditary cancer-predisposition disorder. An inva-

sive corticotroph tumour was reported in a Lynch syndrome patient

with germline mutation in MLH1 gene, which also carried somatic

mutations in the MEN1 and MSH6 genes.35 In addition, germline

MSH2 mutations were detected in two patients with an invasive cor-

ticotroph macroadenoma and a corticotroph carcinoma.36,37

3 | SPORADIC

Corticotroph tumours are mainly sporadic neoplasms that are mono-

clonal in origin.38,39

Corticotroph cell physiology relies on trophic signals from the

hypothalamus, in the form of corticotrophin-releasing hormone (CRH)

and vasopressin, and inhibitory glucocorticoid feedback from the

adrenals. In addition, autocrine/paracrine loops that involve cytokines,

growth and developmental factors control corticotroph cell growth

and ACTH synthesis (reviewed in40–42). As discussed below, muta-

tions in genes encoding for prominent - in corticotroph physiology -

regulatory factors are uncommon. Instead, whole-exome sequencing

efforts revealed previously unsuspected genetic events in sporadic

corticotroph tumours.

3.1 | Trophic hypothalamic regulation

CRH and vasopressin receptors were found to be highly expressed in

corticotroph tumours, but no mutations were found in the coding

regions of the CRHR1 and V3R genes.43–47 CRH stimulates ACTH syn-

thesis upon binding to a stimulatory G protein coupled receptor

downstream to the cAMP/PKA signalling pathway in a crosstalk with

the MAPK pathway.48 As mentioned above, Cushing's disease is

almost never seen in CNC and PRKAR1A mutations are extremely rare

in corticotroph tumours. Somatic mutations in GNAS gene are rare in

corticotroph tumours, and have previously been reported in 2/32

cases and in one paediatric patient with Cushing's disease.49,50

3.2 | Negative glucocorticoid feedback

Partial resistance to negative glucocorticoid feedback is a hallmark of

Cushing's disease.51 Initial reports suggested that mutations in the

nuclear receptor subfamily 3 group C member 1 (NR3C1) gene that

encodes for the glucocorticoid receptor are rare (reviewed in52). A

somatic missense NR3C1 mutation was found in a patient presenting

with Nelson syndrome.53 More recent whole-exome sequencing stud-

ies identified NR3C1 mutations in a few more cases, with a meta-

analysis calculating their presence in 6.2% of corticotroph tumours.54

A study comprised of 49 Cushing's disease patients revealed NR3C1

mutations in three patients with no differences regarding clinical

parameter observed between the mutant and wild-type groups.55

Therefore, although NR3C1 mutations are not frequent in Cushing's

disease, they are also not as extremely rare as previously

considered.56
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Search on the mechanisms facilitating glucocorticoid response,

brought attention to regulatory factors such as heat shock protein

90 (HSP90), BRG1, HDAC2 and CABLES1. HSP90 is a chaperone that

influences the folding of ligand-bound GR. BRG1 mediates the tran-

scriptional repressor action of GR on the POMC promoter, while tes-

ticular receptor 4 (TR4 nuclear receptor subfamily 2, group C, member

2) blocks it. The loss of BRG1 and overexpression of HSP90 and TR4

observed in corticotroph tumours may be responsible for the impaired

physiological response to the negative glucocorticoid feedback.57–59

In corticotroph cells, glucocorticoids mediate their anti-

proliferative action by inducing CABLES1 (CDK5 and ABL1 enzyme

substrate 1). CABLES1 protein is downregulated/lost in more than

half of corticotroph tumours.60 Germline missense CABLES1 variants

were found in four out of 182 Cushing's disease patients (including

116 paediatric), all of which had large corticotroph tumours with high

Ki67 and difficult to manage disease.61

In addition to regulating the inhibitory glucocorticoid action

on POMC promoter, both BRG1 and CABLES1 affect the cell

cycle proteins cyclin E and p27/Kip1. Both are deregulated in cor-

ticotroph tumours, with cyclin E being overexpressed and p27 being

downregulated/lost at protein level.62,63 No somatic CDKN1B muta-

tions and no LOH or deregulated transcription were reported in spo-

radic corticotroph tumours.64 BRG1 downregulates cyclin E

transcription and low BRG1 levels are concomitant to increased

cyclin E and loss of p27/Kip1 protein in corticotroph tumours.57 We

may therefore hypothesise that BRG1 loss releases cyclin E, which

can trigger CDK2-induced p27/Kip1 phosphorylation marking it for

proteasomal degradation. In parallel, CABLES1 stabilizes p27/Kip1,

so its loss in corticotroph tumours may also contribute to reduction

in p27/Kip1 protein levels.60

3.3 | Genes mutated in sporadic corticotroph
tumours

3.3.1 | Ubiquitin specific protease 8 (USP8)

Whole-exome sequencing revealed a single mutational hotspot in the

USP8 gene in 40%–60% of corticotroph tumours.65,66 Subsequent

sequencing efforts in Caucasian and Asiatic populations identified

USP8 mutations in 35%–60% of cases as well as in �50% of cases of

progressive corticotroph tumour growth after bilateral adrenalectomy

(Nelson's syndrome).67–77 A somatic USP8 mutation was found in the

corticotroph tumour of a patient that presented with both adrenal

Cushing's syndrome and central Cushing's disease and additionally

carried somatic mutation in NR3C1 in the corticotroph tumour and

CTNNB1 in the adrenal tumour.78 A somatic USP8mutation was found

in an adult patient with Cushing's disease, who also suffered from

growth hormone deficiency due to GH1 mutation.79

USP8 mutations were also detected in 13/45 paediatric patients

with Cushing's disease, but not in a single centre study of 18 paediatric

patients.70,80 All USP8 mutations reported are somatic, but a case of

heterozygous germline USP8 hotspot mutation in a paediatric patient

with Cushing's disease has recently been reported.81

Exome sequencing reported USP8 mutations exclusively in cor-

ticotroph tumours and not in other pituitary tumour types.65,66,75,76,82

In addition, no mutations were found in ectopic ACTH producing

tumours indicating a corticotroph tumour specific event.83

USP8 encodes for a deubiquitinase that removes ubiquitin mole-

cules from client proteins, usually rescuing them from lysosome and

changing their subcellular localization.84 The USP8 mutational hotspot

is located in exon 14 in the 14-3-3 binding motif. One recently found

mutation is also located in exon 14 upstream to the 14-3-3 binding

motif.85 In the wild-type protein, 14-3-3 binding causes conforma-

tional changes that enable USP8 to block its own catalytic activity.86

Loss in the 14-3-3 binding motif in the USP8 mutants enhances their

deubiquitinase activity and enables access to proteases that cleave it

to a C-terminal 40-KD fragment with high catalytic capacity.65,87

Indeed, USP8 mutants show loss of 14-3-3 binding and higher

deubiquitinase activity in vitro compared to wild-type protein.65

The best characterized USP8 client is the epidermal growth factor

receptor (EGRF).88,89 EGF stimulates ACTH secretion without

exerting a strong mitogenic action on corticotroph cells (reviewed

in90). EGFR is highly expressed in corticotroph tumours and its over-

expression stimulates POMC transcription and ACTH synthesis.91,92

USP8 mutants rescue the receptor from lysosome and potentiate

EGFR-induced POMC promoter activity.65 In patients with Cushing's

disease, USP8 mutant tumours have higher POMC expression com-

pared to wild-type.69,93

USP8 mutant tumours are more frequent in women and they tend

to be smaller and noninvasive.66,67 On the other hand, they are

accompanied by higher postoperative cortisol levels and are more

likely to recur after surgery.67,71 USP8 mutant tumours were observed

to have increased expression of somatostatin receptor 5 (SSTR5) and

O6-methylguanine DNA methyltransferase (MGMT), indicating

favourable response to the SSTR5 ligand pasireotide and

temozolomide.69,76,94 In fact, a recent consensus suggested that the

USP8 mutational status may be useful as predictor of pasireotide

response in patients with Cushing's disease.95 Finally, USP8 could be

a promising treatment target with small molecule inhibitors showing

antiproliferative and antisecretory efficacy in vitro.96–98

3.3.2 | Ubiquitin specific protease 48 (USP48)

Next-generation sequencing in USP8 wild-type tumours identified a

second mutational hotspot in another deubiquitinase encoding gene,

the USP48.99,100 USP48 mutations concentrate on a single amino acid

(Met415) and are found in 4%–23% of USP8 wild-type tumours.77,85

USP48 mutant tumours are more frequent in female patients and

smaller compared to wild-type tumours.99,100 One study suggested

that they may be more invasive to the cavernous sinus.77

The USP48 mutant has higher deubiquitinase activity.99,100

In vitro experiments showed that the USP48 mutant does not affect

basal, but it enhances CRH-induced POMC promoter activity.100 One

of the USP48 clients is the transcription factor GLI1 that belongs to

the sonic hedgehog (SHH) pathway, which plays an important role in

pituitary development and tumorigenesis.101–104 In vitro evidence
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suggests that mutant USP48 acts via GLI1 to sensitize corticotroph

tumour cells to the trophic action of CRH on ACTH synthesis.100

3.3.3 | Tumour protein P53 (TP53)

TP53 is the most commonly mutated tumour suppressor gene in

human cancers. TP53 mutations are assumed to be rare in cor-

ticotroph tumours with only a few reported cases.105–107 Next-

generation sequencing revealed that in selected populations

(i.e., USP8 wild-type macroadenomas, aggressive corticotrophinomas)

they are not as rare as previously thought with studies reporting

somatic TP53 mutations in up to 33% of cases.100,108

3.3.4 | Alpha thalassemia/mental retardation
syndrome X-linked (ATXR)

A small fraction of TP53mutant corticotroph tumours were also found

to carry somatic loss of function mutations in the ATRX gene.100,109

ATRX mutations were observed more frequently (7/25) in cor-

ticotroph tumours including carcinomas compared to aggressive pitui-

tary tumours and carcinomas of other histological subtypes (3/26110).

Two corticotroph tumours from this study also carried mutations in

the PTEN and NF2 genes. Furthermore, two cases were reported of

ACTH-secreting carcinomas with TP53 and ATXR mutations, as well

as PTEN.109,111,112

3.3.5 | Other

Whole-exome sequencing identified the V600E mutation of the BRAF

proto-oncogene in 16% of USP8 wild-type corticotroph tumours in a

Chinese patient cohort.99 Studies in other Caucasian and Asiatic

cohorts showed this mutation to be either very rare (1/91100;) or

totally absent.77,85

Another whole-exome sequencing study reported missense muta-

tions in the CDH23 gene that encodes for a calcium dependent cell–cell

adhesion glycoprotein member of the cadherin superfamily in four

patients with sporadic corticotroph tumours.113 It should be noted that

the same study detected these mutations, which potentially affect pro-

tein folding or calcium binding, also in 0.8% of the control population.

Mutations in the PIK3CA proto-oncogene that encodes for the

PI3K p110α catalytic subunit, which belongs to the PI3K survival

pathway, were reported in one invasive corticotroph tumour,114 as

well as in a noninvasive ACTH-secreting microadenoma.115

4 | CONCLUSION

We have come a long way since the first report of Minnie G and char-

acterization of “basophil adenomas of the anterior lobe of the pitui-

tary” as the cause of Cushing's disease.116 In the decades that

followed, the mutational landscape of Cushing's disease remained

empty, with genes involved in corticotroph physiology and tumorigen-

esis found to be rarely mutated. The advent of fast and high through-

put technologies brought previously unsuspected genes like USP8 and

USP48 into the spotlight. In addition, it prompted us to revisit genes

that were previously considered to be extremely rarely mutated in

Cushing's disease, like NR3C1 and TP53, and reconsider their potential

role in distinct corticotroph tumour populations. At present, USP8

mutations are the primary driver alterations in sporadic corticotroph

tumours. As we have seen, exome sequencing efforts have identified

additional genomic alterations, whose role and importance in cor-

ticotroph tumorigenesis remains to be elucidated.75,76,82

This article is part of an update series on the diagnosis and treat-

ment of Cushing's syndrome.117–133
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