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Significance and Impact of the Study: Bioactivated dermal replacement materials using cyanobacteria
have shown promising results in enhancing wound healing. Most importantly, the survival of the micro-
organisms within the replacement material directly affects wound healing capacity. In this proof of
principle study, we describe the development of a new approach that allows the detection of living
cyanobacteria inside the scaffold in vitro and in vivo, based on real-time PCR.
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Abstract

Dermal replacement materials bioactivated with cyanobacteria have shown

promising potential for wound regeneration. To date, extraction of

cyanobacteria RNA from seeded scaffolds has not been described. The aim of

this study was to develop a method to isolate total RNA from bioactivated

scaffolds and to propose a new approach in determining living bacteria based

on real-time PCR. Transgenic Synechococcus sp. PCC 7002 (tSyn7002) were

seeded in liquid cultures or scaffolds for dermal regeneration in vitro and

in vivo for 7 days. RNA was extracted with a 260/280 ratio of ≥2. The small

subunit of the 30S ribosome in prokaryotes (16S) and RNAse P protein (rnpA)

were validated as reference transcripts for PCR analysis. Gene expression

patterns differed in vitro and in vivo. Expression of 16S was significantly

upregulated in scaffolds in vitro, as compared to liquid cultures, whilst rnpA

expression was comparable. In vivo, both 16S and rnpA showed reduced

expression compared to in vitro (16S: in vivo Ct value 13.21 � 0.32, in vitro

12.44 � 0.42; rnpA in vivo Ct value 19.87 � 0.41, in vitro 17.75 � 1.41).

Overall, the results demonstrate rnpA and 16S expression after 7 days of

implantation in vitro and in vivo, proving the presence of living bacteria

embedded in scaffolds using qPCR.

Introduction

In a society where chronic venous insufficiency, periph-

eral arterial disease, obesity and diabetes show a high

prevalence throughout an ageing demographic, chronic

wounds play a growing burden on the individual patient

and healthcare systems worldwide. In the U.S. alone, over

six million people suffer from chronic wounds, account-

ing for an annual healthcare cost of over US$25 billion

(Sen et al. 2009). A recent report found a 6% prevalence

of chronic wounds in Wales constituting up to 5.5% of

all costs to the National Health Service (Phillips

et al. 2016). Hence, there is great interest in improving

treatment. Whilst different approaches have been

explored, both conservative and surgical management of

affected patients remains challenging.

Hypoxia, limited angiogenesis and a lack of regenera-

tive factors are considered major pathophysiological
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mechanisms contributing to stalled wound healing and

the development of chronic wounds (Sen et al. 2009;

Nauta et al. 2014; Heyer et al. 2016; Han and Ceil-

ley 2017; Coalson et al. 2019). As an innovative approach

to target these pathological mechanisms, photosynthetic

micro-organisms have been introduced into dermal

replacement materials (Schenck et al. 2015; Chavez

et al. 2020; Chavez et al. 2021). Recently, our study group

demonstrated the ability of genetically modified

cyanobacteria to release regenerative hyaluronic acid and

provide a constant source of photosynthetic oxygen in

bioactivated scaffolds in vitro (Chavez et al. 2021). Thus,

potentially representing a useful tool to improve wound

healing. However, in order to exert lasting effects on

chronic wounds by reducing tissue hypoxia and increas-

ing regenerative potential, cyanobacteria survival in skin

scaffolds is crucial. A possible method to assess survival is

real-time PCR, for which pure and high-quality bacterial

RNA is required. In addition, real-time PCR analysis pro-

vides the basis for quantitative gene expression analysis

that is needed to assess the molecular impact of bioacti-

vated scaffold transplantation in future in vivo trials. To

date, the extraction of RNA from scaffolds seeded with

cyanobacteria has not been described. Therefore, the aim

of this study was to develop a novel method to obtain

bacterial RNA from bioactivated scaffolds and to identify

stable housekeeping genes that allow the detection of liv-

ing bacteria and future gene expression analysis in vitro

and in vivo. By providing evidence of cyanobacteria sur-

vival within the seeded scaffolds, we lay the groundwork

for potential future clinical applications.

Results and discussion

Seeding and RNA extraction of tSyn7002 embedded in

scaffolds in vitro

Bioactivation of skin substitutes using photosynthetic,

transgenic micro-organisms as a novel approach to treat

chronic wounds is still in its infancy. A prerequisite for

potential implementation into clinical practice is micro-

bial survival over time, ensuring constant wound oxy-

genation and tissue regeneration. In addition, gene

expression patterns of the microorganisms and host cells

potentially infiltrating the scaffold provide insight into

molecular and biological mechanisms associated with this

approach. As a first step, it is crucial to extract RNA from

the bioactivated scaffolds. Several protocols exist covering

physical, chemical and thermal approaches for bacterial

cell pellets (Pinto et al. 2009; Kim Tiam et al. 2019), RNA

extraction from prokaryotes (Miskin et al. 1999; Sessitsch

et al. 2002; Robbe-Saule et al. 2017; Zhang et al. 2021) as

well as from cyanobacteria (Pinto et al. 2009; Hood

et al. 2016; Kim Tiam et al. 2019). For eukaryotic cells,

RNA extraction methods from different scaffolds types

like hydrogels (Yu et al. 2013), polysaccharide scaffolds

(Wang and Stegemann 2010) or alginate/gelatin scaffolds

(Yu et al. 2019) are available. However, to our knowledge,

no protocol exists describing the extraction of cyanobac-

terial RNA from dermal replacement materials. To close

this gap and prior to evaluating the capacity of photosyn-

thetic skin substitutes to improve wound regeneration

in vivo, this study sets out to establish a method to

extract bacterial RNA from bioactivated scaffolds. In addi-

tion, one objective was to prove the survival of bacteria

in scaffolds as well as providing evidence of cyanobacte-

rial gene expression in vitro and in vivo. As seen in Fig. 1

a,b, tSyn7002 were homogeneously distributed within the

scaffold. To test whether RNA extraction from scaffolds

seeded with tSyn7002 was feasible under optimal in vitro

conditions, RNA was extracted using a modified protocol

after 7 days of culture under constant illumination at

37°C. No difference in total RNA yield or RNA purity

(ratio 260 nm/280 nm > 2) was detected between positive

controls (tSyn7002 liquid cultures) and bioactivated scaf-

folds (Fig. 1c) demonstrating high and contamination-

free RNA extraction. For negative control scaffolds, RNA

concentration and purity significantly decreased to 7%

and ~80%, respectively, compared to the positive control

(Fig. 1c) as expected.

Housekeeping genes

Reference genes ought to be chosen carefully and their

stability needs to be proven for the individual study

setup. Based on data presented by Szekeres et al. (2014),

real-time PCR was utilized to assess the gene expression

of six different potential housekeeping genes in tSyn7002

liquid cultures, in order to determine the best fit for

future gene expression analysis (Fig. 2a) (Szekeres

et al. 2014). The housekeeping gene 16S showed the high-

est expression with a Ct value of 11.4 � 1.0 whilst all

others were expressed similarly with Ct values ranging

between 16.8 and 17.3 (Fig. 2b). Amongst these, rnpA

showed the lowest Ct value with 16.8, which is why 16S

and rnpA were utilized as reference genes for the follow-

ing experiments (Fig. 2b).

Gene expression of tSyn7002 embedded in scaffolds

in vitro

To study bacterial survival, tSyn7002 were cultured in

scaffolds for 7 days and real-time PCR analysis was con-

ducted for 16S and rnpA gene expression. RnpA expres-

sion did not differ significantly between liquid cultured

cells and bioactivated scaffolds under constant light
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illumination whereas 16S showed significantly higher

expression (Fig. 2c,d). The proliferation of cyanobacteria

during cultivation could be a possible explanation for this

finding. However, RNA yield showed no elevation as

would be expected if the absolute bacterial number had

increased (Fig. 1c). Instead, gene expression could be

altered by the scaffold itself, inducing mRNA transcrip-

tion. Negative control scaffolds showed a decreased gene

expression of more than 90% for rnpA and ~75% for 16S

as expected. Since the overall RNA yield was significantly

lower in negative controls compared to liquid cultures

and scaffolds that were seeded under optimal conditions,

this points toward a reduction in the number of viable

bacteria, rather than a downregulation of gene expression.

Overall, these results provide evidence that real-time PCR

is a helpful tool to analyse the presence of living bacteria

embedded in scaffolds quantitatively. Providing evidence

of cyanobacterial survival within the scaffold is a necessity

for any future clinical application in vivo, as regenerative

factors and oxygen can only be supplied by the living

microorganisms.

RNA extraction and gene expression of tSyn7002

embedded in scaffolds in vivo

Recently, data have shown that tSyn7002 bioactivated

scaffolds produce O2 and release lymphoproliferative hya-

luronic acid in vitro (Chavez et al. 2021). Before investi-

gating the potential wound healing properties of this

novel bioactivated scaffold in a murine full-skin defect

model in vivo, evidence of living bacteria within the trans-

planted scaffold is required. Therefore, bilateral skin

defects in mice were covered with bioactivated or negative

control scaffolds for 7 days and bacterial survival was

analysed by real-time PCR. RNA extraction from har-

vested scaffolds showed high concentration and purity

(Fig. 3a).

The results clearly demonstrate the feasibility of the

experimental approach, by successfully demonstrating

rnpA and 16S expression after 7 days of implantation

in vivo. Whilst gene expression of 16S was comparable to

expression in liquid cultures, rnpA was significantly

downregulated (Fig. 3b,c), despite high RNA yield and

purity.

Interestingly, different gene expression patterns were

found when comparing in vitro to in vivo experiments. In

vivo, a decrease in gene expression was detected, in both

16S and rnpA compared to in vitro (Fig. 4a). This

decrease is probably caused by suboptimal culture condi-

tions when implanted in a living species (i.e. no constant

illumination, nutrient deficiency, temperature) which

results in a decreased number of viable bacteria.

However, Ct values were still within an acceptable

range (16S: in vivo Ct value 13.21 � 0.32, in vitro

12.44 � 0.42; rnpA in vivo Ct value 19.87 � 0.41, in vitro

17.75 � 1.41) and in accordance with the literature

reporting Ct values between 10–18 (Szekeres et al. 2014;

Luo et al. 2019), thus still pointing towards substantial

survival of cyanobacteria in vivo.

As depicted in Fig. 4, 16S and rnpA did not show the

same degree of relative gene expression decrease when

comparing in vivo to in vitro. 16S and rnpA are both con-

sidered as housekeeping genes. Hence, a similar decrease

in gene expression would be expected, if the reduced

Figure 1 Scaffold seeding and RNA extraction. (a) Represents scaffolds seeded with (left) and without tSyn7002 (right). (b) Depicts a cross-section

of a scaffold after seeding with tSyn7002. (c) Shows RNA concentration and RNA purity in vitro. ns = not significant, ****P ≤ 0�0001.
Ctrl.+ = liquid culture of 109 tSyn7002. Ctrl.− = Scaffold with 109 tSyn7002 cultured without illumination and under starvation conditions. The

scale bar represents 200 μm. n = 3.
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quantity of microorganisms present within the scaffold

were the only contributing factor. Therefore, the differ-

ences in gene expression between in vivo and in vitro

samples are probably related to two factors, namely

reduced bacterial numbers due to suboptimal culture con-

ditions, as well as direct gene regulation, which is likely

to be stress related (Szekeres et al. 2014, Luo et al. 2019).

Finally, in order to test whether the proposed real-time

qPCR methodology truly only detected RNA from living

microorganisms, excluding non-viable ones, we performed

colony-forming units (CFUs) of cyanobacteria and

extracted RNA after treatment with gentamycin (Fig. 5).

The CFU assay indicated strong sensitivity of tSyn7002

towards gentamycin. Even the lowest concentration of

0.02% resulted in the death of tSyn7002. Subsequent

RNA analysis of gentamycin treated cyanobacteria then

revealed low RNA quantity, insufficient for qPCR analysis.

Hence, the results support that the RNA isolated from

seeded scaffolds and used for qPCR analysis belonged to

living cyanobacteria predominantly. In addition, this sup-

ports the use of the proposed negative control (7 days of

exposure in dark without nutrition) as a suitable experi-

mental setup to distinguish between living and dead

cyanobacteria, as RNA concentration was similarly

reduced under these conditions.

Material and methods

Cyanobacteria strain and culture conditions

Transgenic Synechococcus sp. PCC 7002 (tSyn7002) was

used for all experiments (Zhang et al. 2019). This trans-

genic strain overexpresses the Pasteurella multocida hya-

luronic acid synthase, which enables hyaluronic acid

Figure 2 Housekeeping, 16S and rnpA gene expression in vitro. (a) Relative gene expression of six tSyn7002 housekeeping genes in liquid culture.

Gene expression was normalized to ppC. (b) Ct values for the different housekeeping genes are shown. Whiskers represents the minimum and

maximum. The line indicates the median. Box shows the 95% confidence interval. ns = not significant, ****P ≤ 0.0001. (c) Relative gene expres-

sion of 16S and rnpA in tSyn7002 embedded scaffolds cultured for 7 days in vitro. Gene expression was normalized to positive control. (d) Repre-

sents the corresponding Ct values for rnpA and 16S. Whiskers represents the minimum and maximum. The line indicates the median. Box shows

the 95% confidence interval. ns = not significant, **P ≤ 0.01, ****P ≤ 0.0001. Ctrl.+ = liquid culture of 109 tSyn7002. Ctrl.− = Scaffold with

109 tSyn7002 cultured without illumination and under starvation conditions. = rnpA. = 16S.
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production and secretion when induced with the com-

pound isopropyl β-D-1-thiogalactopyranoside. Detailed

culture conditions have been described previously (Cha-

vez et al. 2021). tSyn7002 were cultured in A-D7 medium

supplemented with 1 g l−1 glucose at 37°C under constant

illumination with light intensity being 32.5 μE*m−1*s−1

(LED, Sebson, Dortmund, Germany). Cell numbers were

determined using light-microscopy (Primover; Zeiss,

Oberkochen, Germany) and a Neubauer cell chamber.

Scaffold generation and embedding of tSyn7002

Integra bilayer matrix wound dressing (IM; Integra Life

Science Corporation, Plainsboro, NJ) was used as a

scaffold. Bacterial seeding was performed as described

previously (Schenck et al. 2014, 2015; Chavez

et al. 2021). In brief, for all experiments, scaffolds with

a diameter of 12 mm were used. The scaffolds were cut

using a biopsy punch (Acuderm Inc., Fort Lauderdale,

FL). For bacteria seeding into the scaffolds, 1 × 109

tSyn7002 bacteria were transferred into a 50 ml tube

and centrifuged at 4000 g for 5 min. Thereafter, the

supernatant was discarded and bacteria were washed

with 50 ml PBS and the suspension was centrifuged at

4000 g for 5 min. Subsequently, the pellet was resus-

pended in 100 μl medium. Next, 50 μl Fibrin (Baxter

Duplojet Combi, ref No. 3400667 Baxter Healthcare SA,

Switzerland) were added, and the solution was pipetted

Figure 3 Expression of 16S and rnpA in vivo: (a) depicts the RNA concentration and RNA purity extracted from in vivo samples. (b) Gene expres-

sion of 16S and rnpA from mouse-explanted scaffolds embedded with 109 tSyn7002 after 7 days of implantation is shown. Gene expression was

normalized to positive control. (c) Displays the corresponding Ct values for rnpA and 16S. Whiskers represents the minimum and maximum. The

line indicates the median. Box shows the 95% confidence interval. ns = not significant, ****P ≤ 0.0001. Ctrl.+ = liquid culture of 109 tSyn7002.

= rnpA. = 16S. n = 3 with three technical replicates.
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onto the scaffold. Lastly, to ensure fixation of seeded

bacteria within the scaffold, 50 μl of Thrombin (Baxter

Duplojet Combi, Ref No. 3400667 Baxter Healthcare SA)

were added onto the scaffold to seal the bacteria within

it. Afterwards, scaffolds were cultured at 37°C in A-D7

medium supplemented with 1 g l−1 glucose under con-

stant illumination. As a negative in vitro control group,

we used scaffolds seeded with 109 tSyn7002 bacteria cul-

tured under starvation conditions (room temperature

without illumination and without medium supply) for

7 days. Liquid-cultured bacteria under constant illumina-

tion were used as positive controls in vitro. Empty scaf-

folds (i.e. without integration of tSyn7002) served as

negative controls for in vivo experiments.

Figure 4 Gene expression comparison between in vitro and in vivo. (a) Comparison of rnpA and 16S Ct values between in vitro and in vivo con-

ditions after 7 days culture time relative to positive control. (b) Displays the corresponding Ct values. Whiskers represents the minimum and maxi-

mum. The line indicates the median. Box shows the 95% confidence interval. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. = rnpA. = 16S. n = 3

with three technical replicates.

(a) (b) (c)

a b

c d

e f

a b

c d

e f

Figure 5 CFU assay and RNA isolation: CFU assay of tSyn7002 treated with different gentamycin concentrations (a = 20%, b = 2%, c = 0.2%,

d = 0.02%, e = 0%, f = 10%DMSO) for 1 h (a) and 24 h (b). (c) shows the RNA amount of tSyn7002 treatedwith gentamycin at 1 h ( ) and 24 h ( ).
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Implantation and excision of scaffolds in mice

The experimental procedure of the present study was

approved by the District Government of Upper Bavaria

(ROB-55.2-2 532.Vet_02–19-96). Experiments were per-

formed on female SKH1 hairless mice aged 6–8 weeks

and with body weights between 20 and 25 g (Charles

River, Sulzfeld, Germany). Mice were kept in the Central

Animal Facility at the Medical Faculty of the Ludwig-

Maximilian-University Munich under 12 h light/dark

cycles, with constant temperature, in individually venti-

lated cages. To allow photosynthetic growth, illumination

was enforced using LED light sources (light intensity 32.5

μE*m−1*s−1, LED; Sebson) fixed around cages. Scaffold

implantation in mice was previously published in detail

(Schenck et al. 2014, 2015). At 7 days after implantation,

mice were euthanized by cervical vertebrae dislocation.

The skin from the back, including the scaffolds, was

excised for further analysis. Subsequently, scaffolds were

fast frozen in liquid nitrogen and stored at −80°C until

RNA extraction.

RNA extraction

RNA from liquid cultures and scaffolds seeded with

tSyn7002 was extracted using Roche high pure RNA isola-

tion Kit (Cat. No. 11828665001). Extraction is described

in detail, as it was modified from the manufacturer’s pro-

tocol.

For liquid cultures, 1 × 109 bacteria were resuspended

in 200 μl 10 mmol Tris (pH = 8). 4 μl of 50 mg ml−1

lysozyme (Merck KGaA, Darmstadt, Germany; Cat. No.

L6876) was added to disturb the bacterial cell wall. After

incubation at 37°C for 10 min on a thermoshaker, 400 μl
lysis buffer was added. The sample was transferred to a

high pure filter tube and centrifuged for 15 s at 8000 g.

Subsequently, the flowthrough liquid in the collection

tube was discarded, and 100 μl DNA-DNase buffer (1/10)

was pipetted onto the filter tube and incubated for

60 min at room temperature. Then, 500 μl of wash buffer

I was added to the filter tube and the sample was cen-

trifuged for 15 s at 8000 g. The flow-through liquid was

discarded, and a second wash step was performed by add-

ing 500 μl wash buffer II followed by centrifugation for

2 min at 12000 g. Finally, the flow-through liquid and the

collection tube was discarded, and the filter tube was

placed in a clean sterile 1.5 ml microcentrifuge tube. The

RNA was eluted by adding 30 μl elution buffer to the fil-

ter tube followed by two centrifugation steps for 1 min at

8000 and 12000 g, respectively. Subsequently, the eluate

was transferred into a sterile LoBind 1.5 ml microcen-

trifuge tube. RNA samples were stored at −80°C until

further analysis.

For RNA extraction of tSyn7002 cultured in scaffolds,

the scaffold was halved, and the silicon layer was carefully

removed. Next, the scaffold was dissected into smaller

units and transferred to a 2 ml microcentrifuge tube with

200 μl 10 mmol Tris (pH = 8). Subsequently, a 7 mm

stainless steel bead (Qiagen, cat. no. 69990, Venlo, the

Netherlands) was added to the microcentrifuge tube and

the scaffold was crushed using a Tissue Lyser (Qiagen,

LT). Afterwards, the sample was transferred into a 1.5 ml

microcentrifuge tube and centrifuged for 1 min at

12000 g. The supernatant was transferred into a new

1.5 ml microcentrifuge tube and 4 μl lysozyme

(50 mg ml−1) was added. Further RNA isolation steps

were performed as described for liquid cultures.

RNA yield and purity

The amount and purity of RNA were determined photo-

metrically by measuring the ratio at 260/280 nm using a

Tecan Infinite TM plate reader equipped with a Nano-

Quant plate (Tecan, Tecan Group Ltd., Maennedorf,

Switzerland).

cDNA synthesis

Total RNA, 500 ng, was used for cDNA synthesis, which

was conducted according to the manufacturer’s protocol

(Roche, Transcriptor First Strand cDNA Synthesis Kit,

Cat. No. 04897030001, Basel, Switzerland).

Real-time PCR

All primers were purchased from Eurofins (Eurofins

Genomics Germany GmbH, Ebersberg, Germany). Real-

time PCR conditions are described in Table S1. The

sequences are provided in Table S2. In addition, the

innuMix real-time PCR DsGreen Standard kit (Analytik

Jena, Jena, Germany) containing dNTP’s, hot-start DNA

polymerase, and SYBR Green was used for analysis. To

confirm that in vivo samples contain mice RNA, β-actin,
and GAPDH (glyceraldehyde 3-phosphate dehydrogenase)

expression were investigated. β-actin expression was nor-

malized to GAPDH expression (data not presented).

Normalization to a positive control

CT values were transformed into fold change using the

Eq. 2^(-CT value). From this data, a mean control value

was calculated for 16S and rnpA. Afterwards, the follow-

ing equation was used to normalize gene expression:

Fold change value of measured gene

Fold change value of control gene
� 1
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CFU assay

tSyn7002 were resuspended in A-D7 medium to a final

concentration of 1×106 bacteria per ml. 1 ml of this bac-

teria solution was seeded per Agar plate and exposed to

different gentamycin concentrations for 1 h and 24 h

(0.02; 0.2, 2, 20, 10%, DMSO). Subsequently, RNA isola-

tion was performed as described above.

Statistical analysis

All data are shown as mean � standard deviation. All

experiments were performed in biological and technical

triplicates. Differences between groups were analysed

using Student’s t-test. Analyses were performed using

GraphPad Prism 9.1.1 software (GraphPad Software, LLC,

San Diego, CA) and differences were considered statisti-

cally significant at a probability level of P ≤ 0.05.
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