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Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by
autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1
and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by
defined hallmarks including a reduction in desmosome number and size, formation of split
desmosomes, as well as uncoupling of keratin filaments from desmosomes. The
pathophysiology underlying the disease is known to involve several intracellular
signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in
which we used transmission electron microscopy to characterize the roles of signaling
pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex
vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be
protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown
to be protective in cell cultures and murine models, was not effective for human skin
explants. The ultrastructural analysis revealed that for preventing skin blistering at least
desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by
PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate
desmosome number, size, and keratin insertion indicating that they control
desmosome assembly and disassembly on different levels. Taken together, studies in
human skin delineate target mechanisms for the treatment of pemphigus patients. In
addition, ultrastructural analysis supports defining the specific role of a given signaling
molecule in desmosome turnover at ultrastructural level.
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INTRODUCTION

Epithelial cells are tethered to one another by different types of
intercellular adhesion complexes. Desmosomes form the core of
these junctional complexes and provide resilience to tissues
that constantly encounter mechanical forces (1, 2). They
consist of members of three protein families, the cadherin
superfamily which comprises two subclasses of Ca2+- binding
transmembrane proteins, the desmogleins (Dsg) and
desmocollins (Dsc), each with distinct isoforms, Dsg1-4 and
Dsc1-3, respectively (3); armadillo protein family including the
plakoglobin and plakophilins 1-3 (Pg and Pkp 1-3); as well as the
plakin family member desmoplakin (Dp) also are among the core
components of desmosomes (4). Besides, plectin, which also is a
member of the plakin family, is involved in desmosome
organization by crosslinking the peripheral intermediate
filament and actin cytoskeleton (5).

The essential function of desmosomes is compromised under
diseased conditions such as pemphigus. Pemphigus is a rare
group of autoimmune diseases affecting the skin and oral mucosa
but less frequently involves mucous membranes of other organs
such as the eyes and genitals (6). Based on immunological and
histological characteristics, three major phenotypes of
pemphigus are recognized; pemphigus vulgaris (PV),
pemphigus foliaceus (PF), and paraneoplastic pemphigus
(PNP) (7). PV is caused by autoantibodies which primarily
target Dsg1 and Dsg3 (8–10). It is characterized by suprabasal
splitting in the epidermis and/or oral epithelia. PF lesions are
confined to the epidermis and are triggered by anti-Dsg1
autoantibodies which results in erosions and flaccid blisters in
the superficial epidermis, mainly in the granular layer (11). PF is
most frequent in some countries in South America and North
Africa due to the presence of an endemic form of the disease
affecting mainly young adults (12). PNP is characterized by
mucocutaneous lesions with diverse clinical presentations
including suprabasal blisters and interface dermatitis (13, 14).
The presence of neoplasms associated with tissue lesions is the
main distinguishing feature of PNP from PV and PF (15). PNP is
caused by autoantibodies directed against a variety of
autoantigens including Dsg1, Dsg3, and also Dsc1and Dsc3
(16) as well as plakin family proteins (17). Other very rare
variants of pemphigus include pemphigus vegetans, pemphigus
erythematosus, and pemphigus herpetiformis (7).

Available treatment options mainly focus on modulation of
the immune system such as depletion of autoantibody-producing
B cells as well as non-specific immunosuppressive agents
including corticosteroids and others with associated side effects
emanating from long-term administration (18). Besides,
chemical inhibitors such as rilzabrutinib, a potent inhibitor of
Bruton tyrosine kinase (BTK) (19), has been reported as a
promising therapeutic strategy at phase II clinical trial (20).
Because of an unmet medical need to treat patients until
autoantibody formation can be suppressed, current research
focuses on devising novel therapeutic approaches including
suppressing specific signaling pathways involved in pemphigus
Frontiers in Immunology | www.frontiersin.org 2
pathogenesis (21). Therefore, in this mini-review we will discuss
the role of signaling pathways, which have been delineated to
ameliorate acantholysis in several models of PV in vitro, in vivo
and ex vivo (22), for the regulation of desmosome ultrastructure
as revealed by transmission electron microscopy. We will
highlight the significance of a human skin organ model as a
useful tool to understand the underlying pathophysiology of
pemphigus diseases by providing a physiological relevant near-
to-patient situation.
DESMOSOMES

Desmosomes are recognized in electron micrographs by spatial
distribution of electron dense plaques of varying densities
identified as outer dense plaques (ODP), inner dense plaques
(IDP), and extracellular core (EC) (23, 24) (Figure 1A). The
components of these plaques were identified using
immunoelectron microscopy (25). A more precise localization of
the terminal domains of the main desmosomal proteins has been
achieved using the quantitative immunogold method (23).
Accordingly, the intracellular core of Dsg and Dsc, Pg and Pkp,
as well as the N terminus of Dp constitute the ODP, whereas the N
domain of Dp forms the IDP (23) and anchors the desmosomal
plaques to the intermediate filament cytoskeleton (26).

The different desmosome proteins exhibit different
distribution patterns across the different layers of epithelia as a
function of tissue type and differentiation status (27–29)
(Figures 1B, C). In the epidermis, Dsg2 and Dsg3 are
predominantly expressed in basal keratinocytes, whereas Dsg1
and Dsg4 are localised to the differentiated suprabasal layers (27).
Dsg1together with Dsc1 shows an inverse distribution gradient
with Dsg3 and Dsc3 across the suprabasal compartments in
which Dsg1 and Dsc1 are strongly expressed as the cells
differentiate and stratify. Dsg2 and Dsc2 are ubiquitously
present in all desmosomes bearing tissues including the heart
and simple epithelia (30). Dsg2 is present in the basal cell layer of
oral mucosa (31, 32) and neonatal epidermis but restricted to
hair follicles in adult human epidermis (33). Moreover, Dsg3 is
the dominant desmoglein present in mucosa, whereas Dsg1 is
distributed in all layers except the proliferating basal layer but at
low levels (27, 32, 34, 35).

Through their extracellular N- domains, desmosomal
cadherins are known to make cis and trans interactions with
their counterparts on the same or adjacent cells, respectively, to
form knot-like structures with desmosomes (36, 37). Although
cis interactions are thought to be weaker, both mechanisms
synergistically contribute to the formation of a stable adhesion
complex (38). Interaction between similar cadherins
(homophilic) as well as between different cadherin subclasses
(heterophilic) has been reported (4, 39–41). Recent studies using
bead assay identified heterophilic trans-interactions between
Dsg1/Dsc1 and Dsg3/Dsc3 as the strongest and dominant form
of adhesion in desmosomes (42, 43). In line with this, in atomic
force microscopy (AFM) experiments Dsg2/Dsc2 formed a more
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stable dimer with a prolonged bond lifetime (44). In addition,
homophilic interaction of Dsg1, Dsg3, and Dsc3 have been
demonstrated as well (45–49). For Dsg2, it was reported
recently that the interaction modes with desmosomal cadherins
Dsg2 and Dsc2 differ from binding events with classical
Frontiers in Immunology | www.frontiersin.org 3
cadherins E-cadherin and N-cadherin (50). Moreover,
heterophilic interaction of Dsg2, which is up-regulated in PV,
with Dsg3 was proposed as compensatory mechanism because it
was found to be resistant to autoantibody-induced steric
hindrance (51). Taken together, both homo- and heterophilic
A

B

C

FIGURE 1 | (A) Electron micrograph showing single desmosome in a healthy skin with a superimposed schematic representation depicting molecular structure of a
desmosome. Colour coding of each single molecule is the same as those represented in (B, C). A schematic representation of the distribution of desmosomal proteins
along the different layers of (B) epidermis and (C) mucosa. Small schematic desmosomes are colour-coded the same as the bars representing the distribution.
May 2022 | Volume 13 | Article 884067
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interactions of desmosomal cadherins contribute to tissue
integrity in epithelia (52, 53).

Other Desmosome-Related Diseases
Desmosomes have been studied extensively in recent years in
consequence of diverse disease phenotypes including genetic and
acquired diseases as well as autoimmune or microbial-mediated
diseases which weaken intercellular adhesion (54).

Gene mutations involving obligate desmosomal proteins such
as Dsg, Dsc, or Dp may bring about a wide spectrum of genetic
diseases of the skin and other tissues in which the proteins are
strongly expressed (55–57). In the skin, mutations of Dsg1 have
been shown to cause severe dermatitis, multiple allergies, and
metabolic wasting (SAM syndrome), in which loss of Dsg1
besides epidermal splitting causes a profound alteration of the
epidermal barrier as well as the immune system, as shown in
Dsg1-deficient animal models (58–61). In humans, mutations in
desmosomal components are also associated with heart diseases.
Mutations in Dsg2 and Dsc2 are known to cause arrhythmogenic
right ventricular cardiomyopathy whereas those in Pg and Dp
cause cardiomyopathy as well as various cardio-cutaneous
syndromes (62–65). Some aspects in the pathophysiology of
arrhythmogenic right ventricular cardiomyopathy may be
similar to pemphigus due to common aspects in the structure
and regulation of desmosomal contacts in cardiac intercalated
discs and desmosomes of the epidermis (66). Moreover,
mutations in desmosomal proteins have been shown to affect
skin appendages. For example, homozygous and heterozygous
mutations of Dsg4 have been reported to be associated with a
spectrum of disease phenotypes such as hypotrichosis and
monilethrix (67–69). Similarly, genetic alteration in Dsc3 was
identified as the underlying cause for hair loss and vesicle
formation in skin (70). Mutations in Dsg3, although not
known in humans so far, caused diverse clinical features,
including severe skin and mucosal lesions and hair loss as in
squeaking (sqk) phenotype mice (71).

Microbial and viral agents are among the extrinsic factors that
alter expression of desmosomal proteins (72). Exfoliative toxin A
produced by staphylococcus bacteria is known to target Dsg1 and
proteolyzes its adhesive ectodomain resulting in a PF-like lesion as
in a bullous impetigo or staphylococcal-scalded skin syndrome (73)
An adenovirus known for affecting the epithelial lining of the
respiratory and urinary tracts was identified to bind to Dsg2
destabilizing cell-cell attachment (74). Studies in other acquired
diseases such as cancer have revealed dysregulation of desmosomal
proteins in tumor cells. For example, Dsg1 is downregulated in
squamous cell carcinoma whereas Dsg3 is upregulated in head and
neck carcinoma (57). Moreover, some molecular mechanisms
underlying desmosome dysregulation in cancer cells have been
reported (75, 76). Finally, alterations in desmosome ultrastructure
have been detected in patients suffering from inflammatory bowel
disease (77, 78). Because animal models deficient for Dsg2, Dsc2,
and Dp have been shown to have intestinal epithelial barrier defects
and disturbed wound healing and are prone to colitis (79–82),
several lines of evidence indicate that disturbed desmosomal
Frontiers in Immunology | www.frontiersin.org 4
adhesion contributes to the pathogenesis of inflammatory bowel
diseases (83). In this respect, a new function of desmosomes has
been elucidated as they control tight junction structure and function
(84, 85).
AUTOANTIBODY PROFILES AND THEIR
ROLES IN PV

Autoantibody profiles in pemphigus patients’ serum dictate the
specific disease phenotype manifested (22, 52, 86). Titers of Dsg-
specific autoantibodies in pemphigus indicate disease activity as well
as progression (87–89). It is known that these autoantibodies consist
of both pathogenic and non-pathogenic forms (90, 91) which
possess distinct epitopes they preferentially bind to (92, 93). It has
been identified that the pathogenic autoantibodies target the EC
subdomains of Dsg3 (EC1-3) and cause cell-cell detachment,
whereas nonpathogenic antibodies bind to membrane-proximal
domains without affecting cell adhesion (94, 95). Skin biopsies
from pemphigus patients were examined to identify the tissue-
and layer-specific binding of IgG from various pemphigus
phenotypes (96, 97). The tissue as well as layer-specific
distribution of lesions has been attributed to differential
expression of desmosomal proteins among various tissues and
across the layers of stratified epithelia (86). According to this
hypothesis, anti-Dsg3 reactive antibodies cause suprabasal
blistering owing to low expression of Dsg1 in deep layers so that
it cannot compensate for Dsg3 as the case in PV. Similarly, anti-
Dsg1 autoantibodies cause depletion of Dsg1 in the superficial layers
where Dsg3 expression is very low as observed in PF (34, 96, 97).
However, this theory has been challenged because it cannot explain
why blister formation in PV is restricted to the basal-suprabasal
interface. Besides, involvement of other non-Dsg autoantibodies in
the disease in some cases or lack of a strong correlation between
anti-Dsg titers and disease manifestation in some patients was
reported (98–100). In light of this, several non-Dsg antigenic
targets, which exhibit a strong autoreactivity to PV sera and with
a potential to cause acantholysis, have been identified. These target
antigens include cholinergic receptors (101), mitochondrial proteins
(102), as well as other desmosomal proteins, such as desmocollins
(16, 103–105) and Pkp3 (105), adherens junction protein E-
cadherin (106), and others (100). However, the fact that Dsg-
specific autoantibodies cause altered distribution followed by
internalization of desmosomal proteins and are sufficient to cause
skin blistering (107–112) underscores the role of anti-Dsg
autoantibodies as a major pathogenic factor in pemphigus. In line
with this, immunoadsorption of pathologic autoantibodies from PV
sera by the entire EC domains of Dsg1 and Dsg3 abolished the
blister-inducing ability of IgG fractions (113, 114).
MODELS FOR STUDYING PEMPHIGUS

Several experimental models have been established to explore the
underlying pathomechanisms of pemphigus. These diverse
May 2022 | Volume 13 | Article 884067
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setups have allowed the characterization of the immunological
and molecular mechanisms involved in autoimmune blistering
diseases by reproducing some features of the disease as
manifested in patients. Moreover, it enabled testing the efficacy
of some therapeutic agents in a physiological setup which
otherwise would be difficult to undertake in humans (115).
The models include cell culture, organotypic tissue culture,
animal models mainly mice, and ex vivo human skin model.

Cell and tissue cultures
Isolated cell lines from humans and murine sources have been
utilized to investigate the pathogenic effects of pemphigus
autoantibodies in vitro. The most extensively used epidermal
cells are immortalized human keratinocyte (HaCaT cells: Human
adult high Calcium low Temperature) (116) and primary human
or mouse keratinocytes. Both cells were utilized mainly as
monocultures but were also used to construct a three-
dimensional (3D) organ culture model representing a stratified
and differentiated epidermis (117). Both cell types have pros and
cons in terms of originality, reproducibility, cost, and so on
(118). The models are vital to assess the level of pathogenicity of
autoantibodies derived from PV patients through various
functional dissociation assays as well as to determine the effects
of different pharmacological mediators in response to the
autoantibodies (119–121).

Mouse model
Animal models are used extensively in medical research. Several
mouse models have been developed which rendered great
insights into PV pathogenesis (122). Based on the method in
which the disease is induced and persistence of clinical features,
the models can be identified as active or passive. Passive animal
model refers to administration of pemphigus autoantibodies into
a healthy animal which results in production of a transient
disease phenotype (123, 124). The active models represent the
generation of animals which manifest the disease through genetic
modification as in Dsg3 or Dsg1 knockout mice (9, 125) or
immunization in which the mice actively produce antibodies
against Dsg3 (90, 126). In the latter, splenocytes from Dsg3
knockout mice, following immunization with recombinant Dsg3,
were transferred into Rag2 knockout mice expressing Dsg3 (126–
128). This model is more relevant as it involves active production
of anti-Dsg3 autoantibodies similar to the situation in PV
patients, whereas Dsg3 knockout mice produce a disease
phenotype which is an ultrastructural correlate of only the
acute phase of the disease (129).

Ex vivo model
Organ culture has been an important experimental model for
studying pemphigus since the pioneer work done by Schiltz and
Michel (130) in which they placed a skin biopsy on a lens paper
floating on a liquid medium containing unpurified PV sera. This
model is of paramount importance because of the viability of the
tissues at optimal time point, 24 h, as well as the potential of the
method to reproduce all the major histological and clinical
features of the disease. This model stands out to be better than
Frontiers in Immunology | www.frontiersin.org 5
animal models since it enables overcoming the genetic and
immunological differences which otherwise would elicit
respective species-specific autoreactions (120). Furthermore, it
favors the assessment of the pathogenicity of a given
autoantibody and helps to correlate to disease activity in
patients to develop more specific therapeutic strategies (120,
121). Although organ culture models are not best suited for
biochemical studies, they provide a physiologically relevant setup
to investigate mechanisms causing altered expression of
desmosomal proteins and the resulting acantholysis (131, 132)
which closely reflects the human in vivo situation (115). Thus,
the model is ideal to conduct experiments under controlled
conditions with sizeable samples which otherwise are not
feasible to apply to human subjects. Therefore, we employed a
human skin organ culture model as well as a novel mucosa ex
vivo model to investigate the role of various signaling molecules
in PV pathogenesis (32, 59, 133–136). Large blisters with
associated ultrastructural changes in desmosomes including
reduction in desmosome density and size as well as formation
of split desmosomes and keratin filament uncoupling from
desmosomes was observed in samples treated with PV-IgG
(Figures 2A–C) (135) which shows that the skin model reflects
the ultrastructural hallmarks known from pemphigus patients’
lesions (137, 138). Interestingly, the outer and inner plaque could
not be differentiated after treatment with PV-IgG, an observation
which requires further attention, especially because it has
recently been shown that reorganization of the desmosomal
plaque occurs during desmosome maturation and it is
conceivable that these events may be reverted in pemphigus
pathogenesis (139). Also, it must be noted that PV-IgG
containing both autoantibodies against Dsg1 and Dsg3 were
required for acantholysis whereas mucosal-dominant PV-IgG
with autoantibodies against Dsg3 but not against Dsg1 similar to
AK23, which is specific for Dsg3, were not sufficient (135). Taken
together, the model better reflects the situation in patients
compared to mice where high concentrations of anti-Dsg3-
specific IgG are sufficient to cause skin blisters (114, 140).
Mechanisms Causing Acantholysis
Although not fully unraveled, steric hindrance and signaling
have been proposed as the major overarching pathomechanisms
that drive loss of intercellular contacts downstream of PV-IgG
binding to keratinocytes (52, 141). Both mechanisms are believed
to be involved, but not strictly independent of each other (57),
and the exact chronology of events as well as contribution of each
remains unknown.

Steric Hindrance
Passive transfer of IgG from PV patients or anti-Dsg3
monoclonal antibodies to a healthy neonatal mouse has been
shown to induce epidermal blisters (90, 94) which has been
reproduced in human skin organ culture, as well (142). These
pathogenic immunoglobulins were shown to preferentially target
the EC1 and EC2 adhesive regions of Dsg3 (90, 92, 94, 143). The
latter has been indicated to predominatly contain epitopes
May 2022 | Volume 13 | Article 884067
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recognised by PV autoantibodies (92, 144, 145). As a result, it has
been suggested that PV-IgG autoantibodies directly interfere
with the adhesive interaction of Dsg, thereby triggering the
initial events leading to acantholysis (90, 127). AFM studies on
cell-free surfaces (45, 46, 146) or on living keratinocyte cell
surfaces, combined with bead assays, demonstrated direct
inhibition of Dsg interaction for Dsg3 but not for Dsg1 (45,
53, 146), but suggested that direct inhibition is not sufficient to
cause complete loss of keratinocyte adhesion. In addition, a
recent study using bead assays under cell-free conditions
showed that PV-IgG and PF-IgG blocked the heterophilic
interaction between Dsg3/Dsc3 and Dsc1/Dsc1, respectively
(43, 106).

Role of Signaling
The first signaling pathway to be triggered by pemphigus
autoantibodies was PLC-mediated influx of Ca2+ (147). Along the
years, several studies have shown that steric hindrance alone does
not adequately account for acantholysis (45, 111, 146, 148–150),
which indicated the involvement of other mechanisms underlying
the pathogenic effect of PV-IgG. Phosphorylation and activation of
signaling cascades downstream of PV-IgG binding to target
antigens in keratinocyte both in vitro and in vivo has highlighted
the crucial role of signaling in PV pathogenesis (151–154). As a
result, a great number of signaling molecules that are implicated in
Frontiers in Immunology | www.frontiersin.org 6
PV have been identified and characterized (22, 155). These include
mitogen-activated kinases (MAPKs) such as p38MAPK, protein
kinase C (PKC), extracellular signal-regulated kinases (ERK1/2),
Rous sarcoma-related kinases (Src), phospholipase C (PLC),
Epidermal growth factor receptor (EGFR), and other cellular
responses that alter adhesive interactions (22, 48, 59, 110, 112,
131, 147, 151, 156–162). For several years, the plethora of signaling
mechanisms appeared to be triggered without recognizable hirarchy
upon binding of autoantibodies. However, it was shown that
signaling molecules such as p38MAPK, PI4K, PLC, and PKC
directly bind to desmogleins and that Dsg1 and Dsg3, together
with Pg, organize overlapping yet distinct signaling hubs (136, 140,
163). These findings help to explain why autoantibodies against
Dsg3 and Dsg1 were observed to cause different sets of signaling
responses (48) and led us to propose that the different clinical
phenotypes of pemphigus with respect to mucosal and skin
involvement, as well as suprabasal versus superficial epidermal
blistering, may at least in part be caused by the different signaling
profiles observed in PV and PF (22).

p38MAPK Regulates Autoantibody-
Mediated Ultrastructural Alteration
of Desmosomes
p38MAPK has been thoroughly characterized due to its essential
role in pemphigus pathophysiology. The different isoforms (a, b,
A B C

FIGURE 2 | Electron micrographs showing an overview (top) and zoomed in to a single desmosome (bottom) of (A) healthy skin injected with IgG from healthy
volunteers. (B, C) skin injected with PV-IgG showing suprabasal blistering, interdesmosomal widening and altered desmosomes: (B) reduced keratin insertion (red
arrow head) into a damaged plaque. Note that the distinction between the outer and inner desmosomal plaque is lost after incubation with PV-IgG; violet arrow
heads indicate the basement membrane, (C) a split desmosome with half plaque (green arrow head), red asterisk indicates blister cavity. Scale bars: 2 µm (top) and
250 nm (bottom).
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g, d) display a species-specific expression pattern (164–166)
among which the a subtype is the most commonly expressed
isoform in adult tissues (165, 167). Activation of p38MAPK was
detected in keratinocyte cell cultures treated with PV-IgG and in
mouse skin (151). Moreover, p38MAPK was phosphorylated in
perilesional skin of PV patients (153, 168) as well as in the skin of
Dsg3-deficient mice (169). This signaling molecule has also been
shown to be associated with Dsg3 (33, 112, 136, 140), Dsc3 (169),
and Dsg1 (136). p38MAPK-mediated Dsg3 internalization
followed by depletion from endosomes was also detected in
keratinocyte cultures and patient skin (108, 112, 170).
Interstingly, previous studies have shown that pharmacologic
inhibition of p38MAPK was sufficient to avert cell dissociation in
vitro (33, 48, 151, 171), rescue membrane-bound as well as
cytoskeletal fractions of Dsg3 (112, 172, 173), and reorganize
keratin cytoskeleton (49, 140, 151). Moreover, it sufficiently
abolished blister formation after passive transfer of PV-IgG
(152, 171) or PF-IgG (174, 175) in mice.

There are strata of protein kinase cascades functionally
subordinate to p38MAPK (176). Mitogen-activated protein
kinase 2 (MK2) regulates several cellular activities such as actin
remodeling (177), an event which can be correlated to PV
pathogenesis. Phosphorylation of MK2 has been detected upon
p38MAPK activation by PV-IgG (173), the inhibition of which
was protective both in vitro and in vivo. Rho A is crucial to
maintain a strong keratin association with desmosomes, enhance
cortical actin filaments, stabilize cytoskeletal bound Dsg1 and
Dsg3, and was found to be inactivated following PV-IgG and PF-
IgG in p38MAPK-dependent manner (131). Besides, toxin-
mediated inhibition of Rho GTPases recapitulated the PV-IgG-
induced suprabasal blistering in human skin (132).

We employed human organ culture models to assess the role
of p38MAPK in mediating the ultrastructural changes of
desmosomes in PV pathogenesis and found that inhibition of
p38MAPK abolished blister formation in epidermis but not in
mucosa, indicating that p38MAPK is crucial for the mechanisms
causing epidermal blisters but not mucosal erosions (32, 135).
Interestingly, loss of desmosomes as well as all ultrastructural
alterations of desmosomes, including reduction in size, splitting,
and keratin filament dissociation, were averted by inhibition of
p38MAPK (Figures 3A–D).

These results suggest that modulation of this signaling pathway
would be effective in treating pemphigus patients. However, a
clinical trial using a p38MAPK inhibitor was terminated because
of dose-limiting hepatotoxicity and did not show therapeutic
benefits (178). This observation is important because it reveals
that not all signaling pathways that are sufficient to stabilize
desmosomal adhesion are druggable in patients.

ERK But Not PKC or Src Partially
Regulates Desmosome Ultrastructure
The MAP kinase ERK, a downstream signal effector of EGFR,
was phosphorylated upon activation by PV-IgG and specific
inhibition of which prevented acantholysis in cell cultures (48,
158, 161). Interestingly, ERK was activated in the presence of
Frontiers in Immunology | www.frontiersin.org 7
Dsg1 autoantibodies only (48, 162) and its specific inhibition was
protective against PV-IgG or PF-IgG in cultured keratinocytes
(48). Dsg1 is required to suppress ERK1/2 signaling to promote
keratinocyte differentiation in the suprabasal epidermis where it
is strongly expressed (159) by interacting with ErbB2 binding
protein (Erbin2) (179). Mek1 inhibition, an upstream target of
ERK, was sufficient to avert epidermal blistering in human skin
ex vivo (21, 134) and reduce in number of desmosomes primarily
along the basal-suprabasal interface but did not prevent
desmosome split t ing and keratin detachment from
desmosomes (Figures 3A–D) (134).

On the other hand, for PKC and Src, the human ex vivo skin
model yielded results different from what was found in cultured
keratinocytes in vitro or for in vivo mouse models. PKC has been
shown to be involved in signaling, Dsg3 depletion, loss of cell
adhesion, and blister formation in cultured keratinocytes as well as
in mice (48, 110, 147, 156, 180). Nevertheless, PKC inhibition did
not ameliorate skin blistering in the human skin model and failed
to modulate ultrastructural alterations (181) (Figures 3A–D). This
discrepancy may be caused by the fact that several PKC isoforms
exist which might be involved differently in both desmosome
assembly and disassembly (22, 64). Src regulates desmosome
assembly via interaction of Dsg3 with E-cadherin (169, 182).
Reduced phosphorylation of Src was detected along with
decreased Dsg3 expression in basal keratinocytes surrounding
blister cavities, linking this pathway to PV pathogenesis (182).
Inhibition of Src prevented cell dissociation (48, 59, 183, 184) and
abrogated manifestation of skin lesions in mice but not in human
skin culture where it was also not sufficient to modulate
ultrastructural alterations of desmosomes (Figures 3A–D) (59).
Since Src, similar to PKC, appears both to participate in
desmosome assembly, a process which may require cortactin
(59, 162), and to cause loss of desmosome adhesion in response
to PV-IgG, this may explain the discrepancy between in vivo data
in mice and ex vivo studies in human skin. Alternatively, the role
of Src in PV pathogenesis may depend on the autoantibody profile
of patients because the PV-IgG fraction used in human skin
included higher levels of antibodies targeting Dsg1. It was
shown that Src-mediated EGFR activation is associated with
anti-Dsg3 autoantibody-mediated signaling rather than with
signaling caused by autoantibodies against Dsg1 or Dsc3 (162,
185). Therefore, it is possible that Src inhibition may be effective in
treating some PV patients but not others.

However, for all studies using electron microscopy evaluation of
human epidermis, the limitation is that they are feasible by using a
very limited number of patients’ IgG fractions only. Thus, no
preliminary dose-response characterization is possible, and it
cannot be ruled out that, with autoantibody samples from other
patients or using higher concentrations of pharmacological
inhibitors, a protective effect may be found for other signaling
molecules as well. Therefore, negative data must be taken with
extreme care. On the other hand, if a protective effect under all
conditions and in all models, including human skin, is observed for
modulation of a specific signaling pathway, this is a strong
indication for a potentially interesting treatment paradigm.
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A B

DC

FIGURE 3 | Ultrastructural quantification of desmosomes. (A) Desmosome density expressed in number of desmosomes per µm membrane length. Only desmosomes
along clearly delineated cell borders of basal cells were considered. (B) Desmosome size measured along the linear length of the plaques and expressed in nm. (C)
Percentage of split desmosomes both in acantholytic and non acantholytic areas. (D) Percentage of keratin dissociation from desmosomal plaques. Each data point
represents individual desmosomes for (B), and the average per electron micrograph for (A, C and D) (n= 3-5 for each pathway. *p < 0.05 vs. control, #p < 0.05 vs. PV-
IgG). Inhibitors used: SB202190 – p38MAPK inhibitor, Pp2 – Src inhibitor, Bim-X – PKC inhibitor, UO126 MEK (upstream of Erk1/2) inhibitor, U-73122 – PLC inhibitor,
Xest (xestospongin) – IP3R inhibitor.
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PLC Mediates Desmosomal Adhesion
by Maintaining Keratin Anchorage
to Desmosomes
PV-IgG augments intracellular Ca2+ and inositol 1,4,5-
t r i sphosphate (IP3) leve ls (186) v ia act ivat ion of
Phosphoinositid-Phospholipase C (PLC) (147) leading to cell
dissociation. IP3, via activation of IP3 receptor (IP3R), causes
Ca2+ release, which in turn activates PKC (187). Inhibition of
PLC was protective against the dyscohesive effect of PV-IgG in
cell culture (147), in vivo (157), and in human skin explant (133,
136). Interestingly, specific inhibition of PLC and Ca2+ signaling
significantly ameliorated keratin dissociation and desmosome
splitting (Figures 3A–D) (133).

Signaling Pathways Regulate
Desmosome Turnover
It is well established that pemphigus is a desmosome turn-over
disease (188) because the signaling pathways involved interfere
with different steps of desmosome assembly and maturation on
one hand, and desmosome internalization and disassembly on the
other. The interesting question is whether the ultrastructural
analyses as outlined above allow to allocate signaling pathways
to specific steps of desmosome turnover. Loss of desmosomes,
which was caused by mucocutaneous PV-IgG but not by mucosal
dominant PV-IgG and AK23, is the ultimate consequence of a
dysbalance between assembly and disassembly. Thus, depletion of
extradesmosomal Dsg molecules, which serve as a pool for
incorporation into existing desmosomes, may account for this
phenomenon (109, 189). Similarly, it was shown that following
depletion of Triton-soluble extradesmosomal Dsg3, Triton
insoluble Dsg3 was reduced as well (109). This brings up the
important question of whether the latter Dsg3 molecules were
derived from desmosomes, which would be characterized best as
desmosome disassembly, or whether this is just the consequence of
impaired assembly. Experiments showing that Dsg3
internalization following autoantibody binding is a coordinated
process involving endocytosis are compatible with both
interpretations (111, 170, 171, 190–193).

Recently, it was reported in Madin–Darby canine kidney
(MDCK) cells that hepatocyte growth factor (HGF) induces
internalization of intact desmosomes with no alteration in
desmosome size and composition, which was interpreted as
desmosome internalization (194). As outlined above, the situation
in pemphigus is different and more complex. PV-IgG cause
significant shrinkage of remaining desmosomes (Figure 3B). In
addition, transmission electron microscopy and structured
illumination microscopy investigations have revealed that
desmosomes in neonatal mice were split prior to internalization
(124) and were present at cell surfaces surrounding blister cavities in
patients’ lesions (129, 138, 195–198) and human ex vivo skin
(Figure 3C) (181). These data show that desmosome splitting
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occurs when desmosomes are weakened due to an imbalance of
desmosome assembly and disassembly which is facilitated by
mechanical stress (198). In parallel to desmosomes with reduced
size, double-membrane structures together with desmosomes which
were uncoupled from keratin filaments were also observed (135),
indicating that desmosome internalization in skin occurs similar to
MDCK cells, which represent a single-layer epithelium. However,
internalized desmosomes were rare and thus could not be evaluated
in quantitative terms.

These results show that desmosome disassembly and
internalization may be dependent on both cell type and stimulus.
For both events, uncoupling of Dsg molecules from the cytoskeleton
was shown (Figure 3D) (32, 133, 181, 194). It remains unclear to
which extent mechanical destabilization of desmosomes resulting in
desmosome splitting under force results from desmosome
shrinkage or keratin filament dissociation. The data from
ultrastructural evaluation of desmosomes indicate that inhibition
of p38MAPK was the only pharmacologic intervention to rescue
desmosome size (Figure 3B). On the other hand, both p38MAPK
and PLC/Ca2+ were effective to modulate keratin dissociation and
splitting of desmosomes, which can be interpreted that cytoskeletal
anchorage is sufficient to prevent desmosome splitting. The data are
in line with experiments showing that phosphorylation of Dp by
PKC, which is activated downstream of PLC/Ca2+, in PKP1-
dependent manner regulates intermediate filament anchorage, and
thereby causes desmosome hyperadhesion by trapping of
desmosome components (199–201). In response to PV-IgG,
PKC-mediated Dp phosphorylation reverts the hyperadhesive
state and causes loss of desmosome adhesion (180, 202). Another
conclusion is that steric hindrance alone cannot explain these
ultrastructural alterations observed in patient lesions and ex vivo
skin model because this mechanism would cause split desmosomes
with intact size and keratin filament anchorage.

Taken together, p38MAPK and PLC/Ca2+/PKC were shown
to be involved in depletion of Dsg1 and Dsg3 (110, 112, 136), as
well as in keratin filament dissociation (133, 135), indicating that
these signaling pathways are important for disturbed desmosome
assembly as well as for desmosome disassembly and
internalization in pemphigus pathogenesis. For Src and ERK, it
remains less clear which mechanisms are involved in loss of
keratinocyte adhesion. It is likely that they contribute to the same
mechanisms impairing desmosome turnover like p38MAPK and
PLC-mediated signaling but may be less central for these events.

Concluding Remarks
The ultrastructural analysis in human epidermis revealed that for all
signaling pathways where pharmacologic modulation was protective,
an ultrastructural correlate in desmosomes was found (Table 1).
Based on this, we conclude that investigations on desmosome
composition are helpful to advance our understanding of the
regulation of desmosome turnover and to ultimately decipher a
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signaling pathway which may be druggable in patients as an
additional line of therapy until depletion of pathogenic
autoantibodies is effective and to reduce potential side effects.

Electron microscopy is a gold standard method to define
ultrastructural alterations of desmosomes in pemphigus patient
lesions (138) and to investigate the underlying mechanisms of a
given signaling molecule in human skin, the role of which has been
suggested by studies in cultured keratinocytes or mouse models. By
this approach, mechanisms occurring in cell culture and mouse
skin, but not in human epidermis, such as apoptotic cell death, also
can be evaluated (138, 203). In the long run, super-resolution
microscopy will be applied to study the pathogenesis of
pemphigus in more detail as has been started already (170).
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