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Simple Summary: Amino acid positron emission tomography (PET) complements standard magnetic
resonance imaging (MRI) since it directly visualizes the increased amino acid transport into tumor
cells. Amino acid PET using O-(2-['®F]fluoroethyl)-L-tyrosine (['* F]JFET) has proven to be relevant,
for example, for glioma classification, identification of tumor progression or recurrence, or for the
delineation of tumor extent. Nevertheless, a relevant proportion of low-grade gliomas (30%) and few
high-grade gliomas (5%) were found to show no or even decreased amino acid uptake by conventional
visual analysis of PET images. Advanced image analysis with the extraction of radiomic features is
known to provide more detailed information on tumor characteristics than conventional analyses.
Hence, this study aimed to investigate whether radiomic features derived from dynamic ["®F][FET PET
data differ between ['8F]JFET-negative glioma and healthy background and thus provide information
that cannot be extracted by visual read.

Abstract: The purpose of this study was to evaluate the possibility of extracting relevant information
from radiomic features even in apparently ['8F][FET-negative gliomas. A total of 46 patients with a
newly diagnosed, histologically verified glioma that was visually classified as ['®F]JFET-negative were
included. Tumor volumes were defined using routine T2/FLAIR MRI data and applied to extract
information from dynamic [\8F]FET PET data, i.e., early and late tumor-to-background (TBRs5_15,
TBRyg-40) and time-to-peak (TTP) images. Radiomic features of healthy background were calculated
from the tumor volume of interest mirrored in the contralateral hemisphere. The ability to distinguish
tumors from healthy tissue was assessed using the Wilcoxon test and logistic regression. A total
of 5, 15, and 69% of features derived from TBRyy_49, TBR5_15, and TTP images, respectively, were
significantly different. A high number of significantly different TTP features was even found in
isometabolic gliomas (after exclusion of photopenic gliomas) with visually normal ['8F]FET uptake in
static images. However, the differences did not reach satisfactory predictability for machine-learning-
based identification of tumor tissue. In conclusion, radiomic features derived from dynamic ['8F]FET
PET data may extract additional information even in [18F]FET—negative gliomas, which should be
investigated in larger cohorts and correlated with histological and outcome features in future studies.
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1. Introduction

In neurooncology, magnetic resonance imaging (MRI) represents the gold standard
when diagnosing gliomas, monitoring treatment, and assessing treatment response. Due
to its widespread use, high spatial resolution, and good contrast in soft tissue, MRI is
the method of choice. However, the use of MRI has limitations. First, the differentiation
between glioma entities, as well as between neoplastic and other lesions, particularly after
treatment, causes difficulties. Chemo- and radiotherapy can induce post-therapeutic effects,
including radiation necrosis and edema, which are difficult to differentiate from tumor
progression or recurrence [1]. Additionally, MRI can be unreliable when determining
tumor size or growth. Recent studies have shown that when comparing the tumor volume
assessed in positron emission tomography (PET) and MRI, substantial spatial differences
can be found [2]. Therefore, according to the RANO working group, the additional use of
radiolabeled amino acids is recommended [3]. O—(2—[18F]ﬂuoroethyl)—L—tyrosine (['8F]FET)
PET can be used to detect biologically active tumor parts, and the low uptake in normal
brain parenchyma leads to an enhanced tumor-to-brain contrast, thus enabling an accurate
differentiation of tumor from healthy tissue. Previous studies have shown that amino acid
PET can identify the glioma extent more reliably than MRI [4]. However, around 30% of
low-grade gliomas and 5% of high-grade gliomas show indifferent or even decreased amino
acid uptake compared to healthy tissue [5]. The pathomechanism for this phenomenon
is still unclear. Although previous studies suggest that the L-amino acid transporter
1 (LAT1) primarily promotes ['F]FET uptake, ["*FJFET-negative gliomas did not show a
reduced LAT1 expression in immunohistochemistry [6,7]. It remains indistinct whether
['F]FET-negative gliomas have a favorable prognosis or not. One study reported that a
small number of patients with photopenic gliomas, meaning gliomas with lower amino
acid uptake than healthy tissue, even have an inferior prognosis compared to isometabolic
gliomas [8]. However, these findings need to be further validated in larger patient cohorts
also with respect to the underlying biological mechanisms.

Radiomics, as a subdiscipline of artificial intelligence, is based on the extraction of
quantitative features from medical images such as MRI, PET, or computed tomography
(CT). Radiomics is increasingly used to noninvasively determine lesion properties such
as the degree of tumor heterogeneity or shape, providing additional information from
routinely acquired images [9-11]. By combining pathomolecular parameters and radiomic
features, prognostic models can be generated, enabling automation of various steps within
the diagnostic routine. Radiomics is of increasing interest, as it often achieves higher
diagnostic accuracy than conventional PET image parameters alone [12,13].

The aim was to evaluate whether ['®F]JFET-negative gliomas contain information that
cannot be extracted by conventional visual read but by radiomic feature analysis and to
what extent radiomics from conventional late static, early static, and dynamic time-to-peak
PET images may help to identify tumor tissue.

2. Materials and Methods
2.1. Patients

For this retrospective study, we included 46 patients with a newly diagnosed, histolog-
ically verified glioma who had undergone a dynamic ['8F]FET PET scan at the Department
of Nuclear Medicine of the University Hospital, LMU Munich, and showed tumoral
['8F]FET uptake equal or below the background activity. Gliomas were visually classified
as ['®F]FET negative by trained nuclear medicine physicians. All patients signed written
informed consent as part of the clinical routine, and the local ethics committee approved
the retrospective analysis of the data (approval number 604-16).

Tissue samples were obtained from stereotactic biopsy or surgery and used for glioma
classification according to the 2021 WHO guidelines [14]. Molecular markers such as isoci-
trate dehydrogenase (IDH) mutation status and codeletion of chromosome arms 1p and
19q (1p/19q codeletion) were obtained in accordance with previous studies [15,16]. Fur-
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thermore, the O%-methylguanine-DNA-methyltransferase (MGMT) promoter methylation
was determined [16].

2.2. ['"8FIFET PET Imaging

Dynamic ['8F]FET PET scans were acquired with an ECAT EXACT HR+ scanner
(Siemens Healthineers, Erlangen, Germany) after intravenous bolus injection of a standard
dose of 185 MBq of ['8F]FET, according to standard protocols [17]. Dynamic emission data
were recorded 0—40 min post-injection (p. i.) in 3D mode with 16 frames (7 x 10s,3 x 30,
1 X 2min, 3 X 5 min, and 2 x 10 min). Image reconstruction and processing, including
motion correction, were performed as described previously [18].

2.3. MR Imaging

All patients underwent routine MRI prior to tissue sampling with a 1.5 T or 3.0 T mag-
net before and after the injection of a gadolinium-based contrast agent (MultiHance, Bracco
Imaging, Milan, Italy). Axial T1- and T2-weighted and FLAIR sequenced were acquired.

2.4. Delineation of Tumor and Background Volumes

All volumes of interest (VOIs) were defined using PMOD View tool (version 3.5,
PMOD Technologies LLC, Zurich, Switzerland). First, PMOD Fusion tool (version 3.5)
was used to coregister and resample each patient’s T2/FLAIR image to the corresponding
['8F]FET PET image. Since for [18F]FET—negative gliomas the VOI cannot be defined within
PET images, manual contouring of signal hyperintensity was performed in the T2 /FLAIR
weighted images. This VOI was then applied to extract information from dynamic ['*®FJFET
PET data.

A crescent-shaped background VOI manually drawn in the contralateral hemisphere
served as reference tissue for the quantification of tumor-to-background ratios (TBR). This
procedure has proven to yield most stable background values for quantification purposes
with the lowest inter- and intra-reader variability [19].

A second background VOI was obtained by mirroring the manually generated tumor
VOI to the contralateral unaffected brain tissue, excluding the ventricle (Figure 1). This
second VOI was chosen as it enables a direct comparison between healthy and tumor tissue
for radiomics analyses.

Tumor VYOI
Mirrored VOI
Backgound VOI for
TBR normalization

Figure 1. Volumes-of-interest used for analyses of [!8]FET-negative gliomas: tumor VOI defined
manually within T2/FLAIR images (red); tumor VOI mirrored to the contralateral site (green);
background VOI for image normalization (blue).

2.5. Generation of Parametric Images

Static early 5-15 min p. i. and standard 2040 min p. i. summation images were
calculated from dynamic PET data and normalized with the respective mean uptake within
the crescent-shaped background VO], yielding early TBRs_15 and standard TBRyp_49 images.
In addition to quantification using static images, parametric images containing information
on the peak time point (time-to-peak, TTP) of each voxel’s time-activity curve were created
as described previously [12,18].
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2.6. Extraction of Radiomic Features

Different kinds of quantitative features were extracted from medical images. These
were calculated directly from image intensities or intensity histograms (first order), from a
second image obtained by the application of image filters aiming to describe image texture,
or from the tumor label mask yielding shape information on the segmented tumor VOL
These radiomic features were extracted with the open-source Python (version 3.8) package
pyradiomics (version 3.0.1 [18]). The default first order (n = 18) and texture (n = 75) features
were included. Most of the feature definitions implemented in pyradiomics comply with
definitions by the Image Biomarker Standardization Initiative (IBSI) [20].

2.7. Statistical Analyses

Results are provided as mean and standard deviation and /or median and range. Sta-
tistical analysis was performed with IBM SPSS Statistics (version 28). For each radiomic fea-
ture, differences between tumor and healthy tissue were evaluated using Wilcoxon test for
paired non-parametric variables. p-values below 0.05 were considered statistically significant.

Analyses were performed for the entire patient cohort of [**FJFET-negative gliomas
and for the subgroup of only isometabolic gliomas after exclusion of cases with visually
photopenic defects.

2.8. Differentiation of Tumor from Healthy Tissue Using Logistic Regression

In addition to the direct comparison of single radiomic features in [\®F]FET-negative
gliomas and healthy tissue, the ability to differentiate tumors from healthy tissue using
machine learning was addressed. Tumor was distinguished from healthy tissue for the
whole cohort and for isometabolic and photopenic gliomas separately. The respective
classification procedure was implemented using python (version 3.8) and scikit-learn
package (version 1.0.2).

Machine learning was performed using logistic regression (LR) classifiers optimiz-
ing the area under the receiver operating characteristic curve (AUC). LR was applied in
balanced mode, which allows for automatically adjusting sample weights according to
class frequencies and thus reducing the effect of imbalanced input data. Liblinear solver
was applied with L2 regularization, thus allowing for preventing overfitting and handling
multicollinearity. The remaining settings of the LR classifiers were set to the default values
defined in scikit-learn.

The machine learning pipeline included the following steps: (1) standardization of
features by removing the mean and scaling to unit variance, (2) exclusion of features with
zero variance, (3) tuning of the inverse regularization strength C, which adjusts L2 penalty
using cross-validation (CV). In order to report cross-validated scores, this pipeline was
inserted into an outer CV loop of a nested-CV procedure. Inner and outer CV loops were
chosen to have 50 repeats and 5 folds with stratified splits containing equal distributions of
the class labels in each fold. The high number of random splits in repeated CV improves
the robustness of performance estimates.

3. Results
3.1. Patient Characteristics

A total of 46 patients (median age 35 years, range 16-72 years) were enrolled in
this study. A total of 29 gliomas were classified as astrocytoma, IDH mutant (22 WHO
grade two, 6 WHO grade three, 1 WHO grade four), 5 gliomas as an oligodendroglioma,
IDH mutant with 1p/19q codeletion (5 WHO grade two), 11 gliomas as glioblastoma, IDH
wildtype, and 1 glioma as WHO grade one. In three cases, the IDH mutation status could
not be determined due to a lack of tumor tissue for reevaluation (two cases histologically
classified as diffuse astrocytoma WHO grade two, one case as anaplastic astrocytoma WHO
grade three according to WHO 2016 classification). A total of 17 patients presented with
photopenic defects and 29 with isometabolic gliomas, which are not visually identifiable in
['8F]FET PET images.
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3.2. Differences between ['®FJFET-Negative Tumor and Healthy Tissue—Ouverview

The numbers of significant features (p < 0.05) according to the Wilcoxon test for paired
non-parametric variables are given in Table 1. Notably, the largest proportion of significant
features comprised parameters derived from TTP images (> 60%) and was lower in static
early TBR5_j5 and standard TBRy(_49 images, particularly in the subgroup of isometabolic
gliomas. All results from the Wilcoxon test are provided in Supplementary Table S1.

Table 1. Number of significant features (p < 0.05) according to Wilcoxon test for paired non-parametric
variables. The total number of included features per image was 93 (pyradiomics default excluding
shape features). Numbers are provided as absolute values and percentages.

Image Whole Cohort (n = 46) Isometabolic (n =29)  Photopenic (n =17)
TBRyg-40 5 (5%) 11 (12%) 19 (20%)
TBR5_15 14 (15%) 3 (3%) 25 (27%)

TTP 64 (69%) 64 (69%) 24 (26%)

3.3. Differences between Isometabolic Tumor and Healthy Tissue

In standard TBRyp 49 images, 8 out of 11 significant features were first-order features
quantifying the magnitude of voxel values, which was higher in tumors compared to
healthy tissue. Among texture features, for example, the size-zone non-uniformity, a feature
measuring the variability of size zone volumes, presented with significantly lower mean
values in healthy tissue, indicating that tumor tissue, although visually ['®F]JFET-negative,
shows more heterogeneity.

In early TBRs_15 images, only three features presented with a p-value < 0.05: skewness,
cluster shade, and small area high gray level emphasis. For all features, the tumor showed
higher mean values, indicating, e.g., a higher asymmetry of the intensity distribution or the
gray level co-occurrence matrix in the tumor.

When analyzing the TTP images, the tumor VOI showed higher homogeneity and
higher TTP values than the healthy tissue. A total of 14 out of 18 first-order features (78%)
and 50 out of 75 texture features (67%) presented significant differences supporting these
findings. This is exemplarily visualized in Figure 2 for an isometabolic glioma.

3.4. Differences between Photopenic Tumor and Healthy Tissue

In standard TBRyg_49 images, in the case of photopenic gliomas, most of the significant
features were also first-order parameters (10/18, 55%). As expected, the features indicated
a lower magnitude of voxel intensities and lower uniformity within the photopenic gliomas
compared to healthy tissue.

The early TBR5_;5 images showed comparable findings. Significant first-order features
(10/18, 56%) included, for example, simple mean and median values, which were decreased
within photopenic gliomas. Texture features such as dependence non-uniformity also
indicated a lower uniformity of early TBR5_;5 images in the tumor.

In TTP images, only the following first-order features were significant (4/18, 22%):
energy, total energy, 10 percentile, and variance. Overall, the tendency of radiomic features
derived from TTP images suggested a higher TTP and a lower variance in the tumor.

3.5. Differentiation of Tumor from Healthy Tissue Using Logistic Regression

Classification results using logistic regression are provided in Table 2. Despite signifi-
cant differences between tumor and non-tumor, the AUC values for the direct differentiation
between both groups remained low. Better results were obtained for univariate analyses.
Here, an AUC of 0.72 % 0.14 could be reached for isometabolic gliomas using the feature
high gray level run emphasis derived from TTP images and an AUC of 0.86 £ 0.15 for pho-
topenic gliomas using the first order feature 10 percentile derived from TBR5_;5 images. In
univariate analyses, texture features derived from TTP images and a few first-order features
derived from TBR images yielded the highest scores for differentiation of isometabolic tu-
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mors from healthy tissue. In the case of photopenic tumors, first-order parameters derived
from TBRs_;5 and TBRyg 49 images yielded the highest univariate AUC values. Results
from univariate analyses are provided in Supplementary Table S2.

Isometabolic
(a) T2 MRI . (¢) TBRyg.40 (d) TTP overlay (e} Idmn overlay

ol M
A
¥

*

Photopenic
HTZ2MRI ’ (i) TTP overlay (i} Idmn overlay

,x""- ?:'"‘;’\ ,

2 ]

A

<15 min p.i.
15-20 min p.i.
20-30 min p.i.
>30 min p.i.

Figure 2. Example of an isometabolic glioma which cannot be identified visually in static TBR images
(b,c) and a photopenic glioma with decreased signal in static TBR images (g,h). Tumor volumes were
defined in T2-weighted MRI images (a,f). Dynamic analyses reveal differences between tumor and
the mirrored volume in healthy tissue with predominantly late TTP (blue in TTP overlay, (d,i)) and
higher uniformity of TTP values according to the feature inverse difference moment normalized
(Idmn, (e,j)) in the tumor volume. For visualization, the 3D feature map for Idmn was calculated on a
voxel-wise basis, taking into account a volume of 5 X 5 x 5 voxels around the centering voxel.

Table 2. Mean and standard deviation of AUC values obtained using logistic regression classification
with 50-repeated 5-fold CV.

Included features Whole Cohort Isometabolic Photopenic
TBR20_40 0.54 £0.14 0.55 £0.15 0.66 = 0.20
TBRs5_15 0.65 £0.13 0.56 £ 0.13 0.79 £0.17
TTP 0.61 £0.12 0.64 £0.14 0.55 £0.20
All 0.64 £0.13 0.67 £0.15 0.80 £ 0.20
Univariate 0.69 £0.12 0.72 £0.14 0.86 = 0.15

4. Discussion

The characteristics of [\®F]JFET-negative gliomas are not yet clarified. This study sys-
tematically evaluates the radiomic characteristics of [{*FJFET-negative gliomas within a
group of newly diagnosed gliomas who had undergone a dynamic ['®F]FET PET scan
and were visually classified as ['F]FET-negative. Recent studies showed the usefulness
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of radiomic features derived from ['F]FET PET images for improved tumor classifica-
tion [12,13,21], differentiation of treatment-related changes from tumor progression [9]
or local relapse [22,23], or for survival prediction [24]. These studies show that radiomic
analyses enable the extraction of additional clinically relevant information from images
complementing simple VOI statistics and thus improve diagnostic and prognostic per-
formance. However, radiomic analyses have not yet been applied to [\®F]FET-negative
gliomas. Hence, the aim of this study was to investigate if radiomic analyses can provide
more information in ['8F]FET-negative gliomas than is visually possible for a physician
and if differences are found between tumor tissue and healthy background. For this pur-
pose, radiomic features were extracted from standard 20-40 min p. i. TBR images, from
early 5-15 min p. i. TBR images and TTP images were derived from dynamic analysis
and were then compared between the T2-hyperintense tumor and its mirrored VOI in
healthy background.

The largest fraction of significantly different features were obtained for features de-
rived from TTP images. Similar results were found for isometabolic gliomas upon exclusion
of photopenic gliomas, i.e., [\®F]JFET-negative gliomas, which cannot be visually identified.

Interestingly, only a small fraction of significantly different features derived from static
TBR images were found for isometabolic gliomas. Surprisingly, the first-order features
derived from TBRyg 49 images quantifying the magnitude of voxel values were significantly
increased in tumors compared to healthy tissue, although this could not be identified
visually. Further, features quantifying heterogeneity, for example, size zone uniformity,
showed a higher variability of size zone volumes implying that the uptake pattern in tumor
tissue is more heterogeneous than in healthy tissue. Such heterogeneity is not directly
obvious when inspecting static TBR images and could, for example, reflect the presence of
small sub-volumes that exhibit either slightly increased or decreased uptake. In the case of
TBRs_;5 images, only three of all radiomic features were significantly different, reflecting
an increased asymmetry of the intensity histogram in tumor tissue. Even more important
for the differentiation of isometabolic tumors from healthy tissue were features derived
from TTP images. A large fraction of significantly different features (64%) was observed,
indicating not only higher homogeneity in tumor but also larger TTP values compared
to healthy tissue. Both observations may be related to the inhibition of vasculo- and
angiogenesis signaling pathways and, thus, a reduced blood volume fraction in IDH mutant
gliomas, which represents the majority of our patient cohort, while normal vasculature is
present in healthy tissue [25,26]. Since blood time-activity curves are characterized by an
early peak after radiotracer bolus injection, the reduced tumor vascularization and thus
lower blood volume result in a decreased number of voxels with an early peak, which
corresponds to an increased number of voxels with TTP above 30 min p. i. The predominant
assignment of voxels to the group with an ascending kinetic (TTP > 30 min p. i.) directly
leads to a more homogeneous distribution of TTP values within the tumor. When using
univariate classification, the texture features derived from TTP images reached the highest
AUC scores.

For photopenic gliomas, the percentages of significantly different features were compa-
rably low for all three image types. The radiomic data derived from standard TBRy_40 and
early TBR5_;5 showed, as expected, a lower magnitude of voxels. This finding can also be
visually identified. Whether the overall decreased uptake can be attributed to a generally
reduced vascularization and thus a low tracer availability in tumor tissue, an increased
wash-out, or to some other phenomenon needs to be evaluated further. In accordance with
the results of isometabolic gliomas, radiomic features derived from TBR images insinuate
an increased heterogeneity of uptake patterns in photopenic tumor tissue. Consistent with
the findings in isometabolic gliomas, the TTP was found to be longer in photopenic tumor
tissue than in healthy tissue, and the variance was decreased. The first-order TBR features,
using univariate classification, showed the highest AUC scores.

Several limitations of the study need to be addressed. Differentiation of tumor
from healthy tissue has been performed in this study by defining tumor volumes within
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T2/FLAIR MRI images, which itself is already indicative of the presence of a tumor lesion.
Furthermore, unlike the Wilcoxon test, the classification does not consider the paired nature
of the tumor and the corresponding mirrored background VOI of each patient. Further-
more, the robustness of statistical analyses and machine learning might be affected by the
small number of patients. Before a potential application for clinical patient assessment,
data pooling also from different centers in combination with feature harmonization tech-
niques should be used to improve model generalizability. Of further interest might be
a voxel-based classification of tumor and healthy tissue using voxel-wise radiomic and
parametric maps derived from dynamic ['F]FET PET data alone. Moreover, it might
be interesting to compare ['®F]FET-negative gliomas with non-neoplastic lesions such as
Multiple Sclerosis lesions or after ischemia. For a classification of [18F]FET—negative lesions
using tumor and non-neoplastic lesions as comparison groups, ratios of radiomic features
derived from the lesion VOI and the mirrored VOI in healthy tissue might be considered. In
this context, it might be interesting to compare results from dynamic PET with results from
radiomic analyses performed on sophisticated MRI sequences such as diffusion-weighted
imaging, dynamic susceptibility contrast, or dynamic contrast-enhanced MRI [27]. These
sequences might also provide further insight into the underlying differences between
['8F]FET-negative and ['®F]FET-positive gliomas by quantifying, for example, blood vol-
ume or diffusion properties of the tumor. Another limitation resulting from the use of a
mirrored background VOI for comparison is that the shape of the tumor and healthy tissue
VOIs were identical; thus, shape features had to be excluded from analyses.

While dynamic PET imaging is time-consuming and kinetic analysis may require
dedicated software solutions, it has huge potential for increasing clinical performance,
which might be further enhanced by the application of total-body PET/CT devices [28].
The increased sensitivity due to the long axial field-of-view enables the acquisition of
shorter time frames, i.e., improved temporal resolution, and thus, e.g., the reduction of
motion artifacts and the extraction of more precise information for the diagnosis, but also
for targeted therapy. Furthermore, there is conceivable clinical utility in the ability to extract
high-quality information even from very late time points after radiotracer injection. More-
over, it will be interesting to evaluate the relevance of total-body PET/CT for noninvasive
pharmacokinetic modeling utilizing an image-derived input function derived from the
ventricle or aorta [29].

5. Conclusions

Several radiomic features which allow for differentiating ['®F]JFET-negative tumor
tissue from healthy tissue using dynamic ['®F]FET PET information could be identified. A
decreased ['8F]FET PET signal in tumors visually classified as photopenic gliomas could be
confirmed using radiomic analyses, where first-order features from static images presented
the highest significance. Even visually not recognizable differences could be observed in
the time-dependent uptake pattern of isometabolic gliomas, where texture features derived
from TTP images were most relevant. Yet, the underlying pathophysiological mechanisms
and the clinical applicability of dynamic ['®F]JFET PET information for diagnostic purposes
in [18F]FET-negative gliomas need to be further addressed in future studies.
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