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Abstract
Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a
psychological theory of numbers which leads to contradiction. The aim of the paper is
to meet these objections by proposing a reassessment of Cantor’s proposal based upon
the set theoretic framework of Bourbaki—called BK—which is a First-order set theory
extended with Hilbert’s ε-operator. Moreover, it is argued that the BK system and the
ε-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I
will introduce first the axiomatic setting of BK and the definition of cardinal numbers
by means of the ε-operator. Then, after presenting Cantor’s abstractionist theory, I
will point out two assumptions concerning the definition of cardinal numbers that are
deeply rooted in Cantor’s work. I will claim that these assumptions are supported as
well by the BK definition of cardinal numbers, which will be compared to those of
Zermelo–von Neumann and Frege–Russell. On the basis of these similarities, I will
make use of the BK framework in meeting Frege’s objections to Cantor’s proposal.
A key ingredient in the defence of Cantorian abstraction will be played by the role of
representative sets, which are arbitrarily denoted by the ε-operator in the BK definition
of cardinal numbers.

Keywords Georg Cantor · Nicolas Bourbaki · ε-operator · Abstraction · Arbitrary
reference

1 Introduction

Cantor’s (1887) develops a theory of numbers based on the process of abstraction
from an initial set of objects, by which the characteristic properties of these objects are
omitted in order to form a set of pure units. More precisely, Cantor’s (1887) conceives
abstraction as a two-step process: first, abstraction from the characteristic properties of
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the elements of the set, which leads to a set ofwell-ordered units—corresponding to the
ordinal number of the set. Secondly, abstraction from the order of the so-obtained units,
which results in the size (or power) of the initial set—corresponding to the cardinal
number. Cantor’s (1887) further claims that the cardinal set obtained in this way is
equinumerous with the given set. Based on this definition, Cantor’s (1887) proves the
fundamental property of cardinality, namely that equipotent sets are equinumerous, i.e.
two sets have the same cardinal number iff there exists a one-to-one correspondence
between them—see § 1.2 for the comparison with the Hume’s Principle formulated
by Frege’s (1884). In addition to being widespread during Cantor’s time—as Frege’s
(1884) objections show (see § 3)—the abstractionist theory of number described by
Cantor’s (1887) is one of the major influences on Husserl (1891), who analyses the
phenomenological processes to which, he believed, the concept of number owed its
genesis—see Hill (1997).

Nevertheless, Cantorian abstraction has been discredited since Frege’s (1884)made
his criticisms of it as a psychological theory of numbers which leads to contradiction.
For example, Dummett asserts that the sections §§ 29–44 of Frege’s (1884) refute
Cantor’s proposal “brilliantly, decisively and definitively” (Dummett 1991, p. 82).
Even Hallett’s (1984) and Tait (1996)—who’s work will be discussed later in the
defence of Cantorian abstraction—consider Cantor’s proposal as a ill-motivated step
in the development of Cantor’s theory of transfinite numbers. Only Fine advances a
reassessment and defence of Cantorian abstraction, one based on his theory of arbitrary
objects—see Fine (1985)—making use of the assumption that “abstraction, as Cantor
and Dedekind conceive it, is ontologically innovative: it leads to objects which are
genuinely new” (Fine’s 1998, p. 601). Even if Fine’s interpretation of abstraction as
ontologically innovative poses a challenge to the one based on the BK framework-see
§3.2—Fine strongly diverges from Cantor’s assumption concerning ordinal numbers
and the well-ordering principle—see §2.1. That is why I will argue that the present
proposal is closer to the leading motivations behind Cantor’s (1887) abstractionist
theory.

The paper intends to overturn the disaffection for Cantorian abstraction in the
literature. More precisely, the aim of the paper is twofold. On the one hand, the paper
resists Frege’s (1884) objections by arguing for the coherence and plausibility of
Cantorian abstraction. The defence of Cantorian abstraction will be built upon the set
theoretic framework of Bourbaki (1968)—called BK—which is formulated in First-
order Logic extended with the ε-operator. A key element in the defence of Cantorian
abstraction will be played by the notion of arbitrary reference, as formalized by the
ε-operator. On the other hand, the paper argues that the BK framework and the ε-
operator provide a faithful reconstruction of Cantor’s central ideas. Specifically, after
presenting Cantor’s abstractionist theory of ordinal and cardinal numbers, the paper
spells out two leading assumptions in Cantor’s work. Then, using a comparison with
the Frege–Russell and Zermelo–vonNeumann definitions of cardinal numbers, I argue
that both assumptions are met by the BK framework. That is why the BK system is
faithful to the Cantorian framework, even if the ε-operator and the notion of arbitrary
reference were extraneous to Cantor’s thought.

The paper is organized as follows. I will first introduce the axiomatic setting of BK
(§1.1) and the definition of cardinal numbers adopting the ε-operator (§1.2). Then, I
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will present Cantor’s (1887) abstractionist theory, discussing in details the definitions
of ordinal and cardinal numbers (§2). Based on this framework, I will point out two
leading assumptions in Cantor’s work, namely the logicality of the well-ordering prin-
ciple (§2.1) and the representational account of numbers required by his foundational
project (§2.2). I will argue that these assumptions are supported as well by the BK
definition of cardinal numbers, which will be compared to the definitions of Zermelo–
von Neumann and Frege–Russell. On the basis of these similarities, I will adopt the
BK framework to resist the objections originally made by Frege’s (1884) to Cantor’s
(1887) proposal, which we divide into those based on the charge of psychologism
(§3.1) and those based on the charge of incoherence (§3.2). I will argue that abstrac-
tion should be interpreted as arbitrary reference to a representative set, specified in no
other way than being equinumerous to the given set—as for Cantor’s set of pure units.

1.1 Bourbaki’s Theory of Sets

Bourbaki (1968) ‘Theory of Sets’ (BK) has been considered to be as an outdated the-
ory with a cumbersome notations (Mathias, 1992). However, the increasing attention
to the pioneering work of Bourbaki in Category Theory (Heinzmann and Petitot 2020)
and the implementation of BK for automated proof assistant (Grimm, 2010) demands
further attention to their foundational axiomatic system. Yet, a comprehensive evalua-
tion of Bourbaki’s system is beyond the scope of the present discussion—see Anacona
et al. (2014). Instead, I will focus below on the implementation of the ε-operator for
the explicit definition of cardinal numbers, which resembles the one given by Can-
tor’s (1887). It is worth mentioning that Bourbaki’s terminology differs from modern
presentations of axiomatic set theory. That is why I will introduce first the BK system
following Bourbaki’s terminology and then compare it with the well-known system
of Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC).

BK is a first-order set theory with equality that distinguishes between sets and
classes. Every well-formed formula in the language LBK is either a term—which
represents an object of the theory—or a relation—which represents a statement about
these objects, i.e. a proposition. Bourbaki (1968) warns from the start that the word
‘set’ must be considered strictly as a synonym for term. If a and b are terms, then the
well-formed formula a ∈ b is a relation, called the membership relation. Relations
determine classes, namely the class of objects satisfying the given relation—such as
R = {x |x = x}. The sets are obtained from particular relations that comply with
the condition of being collectivizing. Let R be a relation and let y be a variable not
occurring free in R, then the relation ∃y∀x((x ∈ y) ↔ R) is denoted by Collx R. If
Collx R is a theorem of BK, R is said to be collectivizing in x in BK. If this happens,
an auxiliary constant a can be introduced to obtain the relation ∀x((x ∈ a) ↔ R).
Therefore, to say that R is collectivizing in x is to say that there exists a set a such
that the objects x which posses the property R are precisely the elements of a. In
this manner, Bourbaki (1968) prevents the formation of contradictory sets such as the
‘set of all sets that do not belong to themself’. Specifically, Bourbaki shows that the
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relation A = {x |x /∈ x} is not collectivizing in x .1 In other words, ¬Collx A is a
theorem in BK. Therefore, the class A = {x |x /∈ x} does not determine a set, thus
avoiding Russell’s paradox.

The logical framework is First-order Logic, except that Bourbaki (1968) replaces
the classical quantifiers ∀ and ∃ with Hilbert’s (1922) ε-operator.2 The ε-operator is a
variable-binding operator which forms terms from open sentences, like εxϕ(x), which
is interpreted as ‘an arbitrary x such that ϕ(x), if any’. The ε-operator is defined by
two axioms:

Ax.1 ϕ(t) → ϕ(εxϕ(x)) (Critical Formula)
Ax.2 ∀x [ϕ(x) ↔ ψ(x)] → [εxϕ(x) = εxψ(x)] (Extensionality)

Based on the ε-operator, the classical quantifiers are defined as follows:

∃xϕ(x) =D f ϕ(εxϕ(x))

∀xϕ(x) =D f ϕ(εx¬ϕ(x))

Concerning the existential quantifier, if there is an x that satisfies the predicate
ϕ, then there is also a description εxϕ(x) that satisfies ϕ. To look at it the other way
around: if there is a description εxϕ that satisfies ϕ, then theremust be an x that satisfies
ϕ. By contraposition and the interdefinability of ∀ and ∃, we obtain the definition of
the universal quantifier based on the ε-operator.

For what concerns the other set theoretical axioms, BK comprehends the ZFC
Axioms of Extensionality, Paring, Powerset and Infinity. The Axiom of the Empty set
is deduced in BK as a theorem, namely Bourbaki shows that the relation ∃y∀x(x /∈ y)

is functional, i.e. single-valued. By the Axiom of Extensionality, such set y is unique,
and thus defined as the empty set ∅—see Bourbaki (1968, p. 72). BK also includes
the Axiom schema of Selection and Union, which is formulated as:

∀x∃y∀z(R → (z ∈ y) → ∀x∃w∀z(z ∈ w ↔ ∃y(y ∈ x) ∧ R)),

(Selection and Union)

where R is a relational formula such as R(x1, x2, . . . , xn). If, for any x , there is a set
y, such that R implies z ∈ y then for any x there is a set w whose elements are all z
such that R is true for at least one y ∈ x . Clearly, the Axiom of Selection and Union
resembles the ZFCAxiom of Replacement, which asserts that if the relation R(x, y) is
single-valued in y—i.e. R(x, y) = R(x, y′) implies that y = y′—then the consequent

1 The proof in BK runs as follows. Suppose that the relation x /∈ x is collectivizing, then ∃y∀x((x ∈ y) ↔
(x /∈ x)) is provable. Let a be a term, then we have that ∀x((x ∈ a) ↔ (x /∈ x)). Therefore, the relation
‘((a ∈ a) ↔ (a /∈ a))’ is true, which is a contradiction.
2 More precisely, Bourbaki (1968) introduces the τ -operator as a notational variant of Hilbert’s (1922)
ε-operator. However, given the subsequent literature on the ε-operator, I will adopt the latter to introduce
the BK system.
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of Selection and Union namely.3 However, unlike for the Axiom of Replacement, both
the ZFC Axioms of Union and Separation follow in BK from the Axiom of Selection
and Union—see Anacona et al. (2014, pp. 4078–4079).

Therefore, we are left to discuss the assumption of the Axiom of Choice in BK. It
is remarkable that in BK the Axiom of Choice is presented as a theorem rather than
an axiom. Indeed, the BK Axiom of Selection and Union is not restricted, namely the
formula R might contain ε-terms. Let R be z = εu(u ∈ y) and replace the ε-term in
the consequent of Selection and Union, namely:

∀x∃w∀z(z ∈ w ↔ ∃y(y ∈ x) ∧ z = εu(u ∈ y)). (1)

Which asserts that for any x , there exists a set w whose members are the selected
entities from each member of x . That is why the Axiom of Choice is derivable in BK.
More precisely, by adopting the definition of ordered sets and the ε-axioms (Bourbaki
1968, pp. 152–153) proves the well-ordering theorem, stating that all sets can be well-
ordered—which is logically equivalent to the Axiom of Choice. I shall discuss this
issuemore extensively in §2.1, pointing out that the ε-operator is logically equivalent to
the Axiom of Global Choice. To conclude, all the axioms of ZFC—except the Axiom
of Foundation—are present in BK as either axioms or theorems. Moreover, Anacona
et al. (2014, p. 4080) further proves that the BK Axiom of Selection and Union is
verified in ZFC as a theorem. That is why BK is logically equivalent to ZFC−, namely
ZFC without the Axiom of Foundation.

1.2 The BK definition of cardinal numbers

I will now turn to consider the BK definition of cardinal numbers—or ‘power’ in
Cantor’s terminology—which will be the focus for the rest of the paper. Even if
Bourbaki (1968) makes use of the ε-operator to define cardinal sets, the idea actually
traces back to Ackermann, who motivates the assumption of the ε-operator as follows:

There is a certain vagueness in the assignment of a cardinal number to a set, for
it is not explained how cardinal number and set are to be understood. In order
to fix this vagueness, different ways have been taken. [...] The other possibility
is this, that one understands under the cardinal number a certain set that is
equivalent to the given set. [...] The advantage then is that you do not have
any needs of special axioms of abstraction, but the relevant formulas become
provable. [...] From the axiomatic point of view, the mentioned indefiniteness is
not disturbing, since all properties of the cardinal numbers can also be derived
in this way. Furthermore, the concept of the cardinal number seems to me to be
afflicted with this indeterminacy. (Ackermann 1938, pp. 16–17) [Translation by
the Author4]

3 More precisely, the Axiom of Replacement is formulated as: ∀x∀y∀y′[(R(x, y) ∧ R(x, y′) → y =
y′)] → ∀x∃w∀z(z ∈ w ↔ ∃y(y ∈ x) ∧ R(x, y)).

4 “In dieser Zuordnung von Menge und Kardinalzahl liegt eine gewisse Unbestimmtheit, da nitcht erklärt
wird, was eigentlich unter der Kardinalzahl einer Menge zu verstehen ist. Um diese Unbestimmtheit zu
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I will discuss below what the indefiniteness mentioned by Ackermann corresponds
to. Even if the details of Ackermann’s framework are not relevant to the present
discussion, it is remarkable that both Ackermann (1938) and Bourbaki (1968) can be
seen to define the cardinal of a set based on the resources of the ε-operator, as:

Def .1 Let t be a term denoting a set and x a variable not occurring free in t , then the
cardinal of t is defined as:

|t | =D f εx (x ≈ t).

The idea is that, for any equivalence relation ≈, Def.1 can be used to specify a
representative element from the equivalence class ≈. In order to define cardinal sets,
Bourbaki (1968) takes the equivalence relation ≈ to be the equinumerosity relation,
i.e. one-to-one correspondence between two sets. Ackermann (1938) and Bourbaki
(1968) further agree on the theoretical advantages of assuming Def.1, by which the
fundamental property of cardinality follows. This property—namely that equipotent
sets are equinumerous—was singled out by Cantor’s (1887) as:

∀x∀y(|x | = |y| ↔ x ≈ y), (Cantor Principle)

where x and y range over sets. However, Cantor’s Principle (CP) should not be
confused with the principle introduced by Frege’s (1884)—known as the Hume’s
Principle—by which the number of the F is equal to the number of the G if and only
if F and G are equinumerous, where F and G are monadic second order variables that
range over concepts.5 Clearly, if concepts are constructed as sets, then CP and HP are
logically equivalent—Ternullo and Zanetti (2021) provide a common justification to
both principles. I shall discuss further in §2 the role played by CP in Cantor’s theory
of cardinal numbers. Indeed, Bourbaki (1968, pp. 157–158) proves that:

Th.1 Let≈ be the equivalence relation of equinumerosity, then CP follows fromDef
1.

Proof Let s and t be any two terms (i.e. sets). Since t ≈ t , then ∃z(z ≈ t), and
consequently, εz(z ≈ t) ≈ t , i.e. |t | ≈ t (1). Similarly, we get |s| ≈ s (2). From
(1) and (2) and the fact that ≈ is an equivalence relation we obtain |s| = |t | →
s ≈ t (3). On the other hand, the fact that ≈ is an equivalence relation implies
s ≈ t → ∀z(z ≈ s ↔ z ≈ t) (4). By the EC axiom of Extensionality, we obtain
∀z(z ≈ s ↔ z ≈ t) → εz(z ≈ s) = εz(z ≈ t) (5). Therefore, (4) and (5) yield
s ≈ t → |s| = |t | (6). Consequently, from (3) and (6) we get s ≈ t ↔ |s| = |t |
(7). CP clearly follows from (7). This proof is adapted from Leisenring (1969, pp.
104–105).

Footnote 4 continued
beheben, hat man verschiedeneWege eingeschlagen. [...] Die andereMöglichkeit ist die, dass man unter der
Kardinalzahl einer Menge eine bestimmte, zu der gegebenen Menge äquivalente Menge versteht. [...] Der
Vorteil ist dann, dass man kaine besonderen Abstraktionsaxiome braucht, sondern die betreffenden Formeln
beweisbar werden. [...] Vom Standpunkt der Axiomatik aus ist die erwähnte Unbestimmtheit nicht störend,
da sich alle Eigenschaften der Kardinalzahlen auch so ableiten lassen. Ferner scheint mir der Begriff der
Kardinalzahl an und für sich mit dieser Unbestimmtheit behaftet zu sein.”
5 Note that for Frege sets and concepts are essentially different entities. While sets are extensional mathe-
matical objects, concepts unlike objects are ‘unsaturated entities’, i.e. intensional ones.
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Before continuing, I should make the reader aware of a possible misunderstand-
ing concerning the interpretation of ε-terms. It should be remarked that this kind of
concerns does not strictly regard BK—which is a formal theory of sets with a fixed
interpretation. However, it is plausible to ask what the arbitrary denotation of ε-terms
amounts to, i.e. what it means for εxϕ(x) to select an arbitrary x such that ϕ(x), if
any. In model theoretic terms, the extensional semantics defined by Ax.1 and Ax.2
above evaluates ε-terms relative to a model M equipped with a total choice function
f : P(|M|) → |M| such that for any non-empty set A ∈ |M|, f (A) ∈ A and
f (A) ∈ |M| if A = ∅—see Zach (2017). However, the crucial point is that any choice
function f : P(|M|) → |M|would do exactly aswell as any other as the interpretation
of ε-terms. Namely, it is semantically indeterminate what the global choice function
should be. That is why I take arbitrary reference to be a primitive form of reference
which should not be glossed in terms of canonical reference. Woods supports this
claim as related to the interpretation of the ε-operator:

The arbitrariness of the intended interpretation of indefinite expressions like
[the ε-operator] is not merely epistemic. We do not understand εx F(x) as being
some particular F whose identity is determined by its domain of application in
some way we are blocked from knowing. Rather, it is essential to understanding
an indefinite expression like εx F(x) that we recognize that its value really is
arbitrary in the sense that facts about the domain do not determine which F , if
any, it denotes. (Woods 2014, p. 290)

In this sense, the cardinal set |t | denoted by εx (x ≈ t) in Def.1 is a representative
set of the equivalence class. Nothing can be said about the cardinal set |t | in Def.1
except that it is equivalent to t and that it equals the cardinal number of any set which is
equivalent to t .More precisely, a representative set is neither a specific yet unknown set
– as for the epistemic account of arbitrariness of Breckenridge and Magidor (2012)—
nor a new object added to the domain—as for the ontological account of arbitrariness
of Fine (1985). I will further discuss belowwhy the epistemic and ontological accounts
of arbitrariness do not provide, respectively, a coherent and faithful reconstruction of
Cantorian abstraction.

Therefore, the semantic function of ε-terms does not involve its referring to an
object in a canonical way. We do not model the referential nature of an ε-term by
assigning it a particular object in a model. It is worth mentioning that there are two
different ways to model arbitrary reference as involved with the evaluation of ε-terms.
According to the first one, ε-terms are evaluated relative to an arbitrary choice function,
thus pushing the arbitrariness back into the metalanguage—see Leitgeb (2022). In this
sense, the denotation of ε–terms is arbitrary because there is no semantic fact which
determines what member of the set denoted by ϕ is ‘chosen’ by the ε–term εxϕ(x)—
unless ϕ denotes a singleton set, in which case εxϕ(x) denotes the only object such
that ϕ(x). According to the second one, we can model arbitrary reference in terms of a
supervaluational semantics where properties had by all individual choices of referent
are had by the denotation of the ε-term—see Woods (2014) and Boccuni and Woods
(2020). Roughly, if every precisification of a model assigning a particular member of
the domain to the ε-term in the formula � agrees that � is true, then � is true and
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false otherwise. While the higher-order account of semantic indeterminacy maintains
classical logic, the supervaluational viewweakens classical logic by adding truth value
gaps. More precisely, while the supervaluational account replaces classical truth with
super-truth—i.e. truth according to all the precisifications of ε-terms—thehigher-order
interpretation states the existence of an arbitrary interpretation which satisfies the ε-
term, thus maintaining classical truth as formalized by Tarskian semantics. However,
choosing between the two interpretations requires a conceptual analysis of arbitrary
reference which goes beyond the scope of the present work—i.e. the reassessment
of Cantorian abstraction. That is why in §3, I will make use of arbitrary reference in
order to resist Frege’s objections without taking a stand on whether arbitrary reference
should be understood in higher-order or supervaluational terms.

2 Cantorian abstraction

The abstractionist theory of numbers is mainly discussed in Cantor’s (1887), which
lays down the groundwork for the last work of Cantor (1895). As I will point out
below, the abstractionist definitions of cardinal and ordinal numbers diverges from
the ones proposed in the early work of Cantor’s (1883). Cantor’s (1887) was first
published in a philosophical journal and it represents the attempt of the author to
provide the epistemological foundation for his theory of transfinite numbers. Indeed,
Cantor regards his abstractionist theory as part of the foundation of his broader work
in transfinite numbers, asserting that the transfinite numbers follow “from the logical
power of proofs, based upon definitions which are neither arbitrary nor artificial, but
which arise naturally and regularly through the process of abstraction” (Cantor et al.
1991, p. 136).

Abstraction is considered by Cantor as a two-step process by which we disregard,
first, the characteristic properties of a set of objects, retaining only their order, and
then also from their arrangement so as to obtain a set of pure units corresponding
to the size of the initial sets. I will explain below how Cantor’s (1887) attempts to
provide a definition of ordinal and cardinal numbers based on the abstractionist theory.
Even if abstraction of cardinal numbers follows the abstraction of ordinal numbers,
Cantor’s (1887) introduces first the definition and properties of cardinal numbers. I
shall motivate Cantor’s choice in §2.1, but for the sake of clarity I will follow Cantor’s
presentation below.

The second step of abstraction, indicated by a double bar ¯̄M , requires one to abstract
from the order of the elements of M̄ so as to obtain a set of pure units corresponding
to the size (or power) of the initial set M . The idea is that pure units, through lacking
any characteristic properties of the objects they correspond to, contribute only to the
size of the set—which is thus defined as the cardinal number. Indeed, Cantor describes
the second step of abstraction as follows:

We denote the cardinal number or power of [a set] M, the result of this twofold

abstraction by ¯̄M . Since each individual element m if we disregard its nature

becomes a ‘one’, the cardinal number ¯̄M is itself a definite set composed of
nothing but ones which exists in our mind as the intellectual image or projection
of the given set M . (Cantor et al. 1991, p. 136) [Italics added]
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It is remarkable that Cantor considers cardinal numbers to be themself sets. Section
§2.2 further discusses Cantor’s assumption behind his reduction of cardinal numbers

to set-sized objects. Moreover, Cantor claims that the cardinal set ¯̄M is equivalent to
the initial set M :

For, as we saw, ¯̄M grows, so to speak, out of M in such a way that from every
element m of M a special unit of M arises. (Cantor’s 1887, p. 88)

The equivalence relation is defined by Cantor as one-to-one correspondence (or

equinumerosity) between the elements of two sets, thus ¯̄M ≈ M . This explains why

Cantor considers the pure units of ¯̄M to be representatives of the elements of M . Con-
cerning the identity condition for cardinal sets, Cantor adopts the criterion endorsed
since Cantor’s (1883)—and presented above as CP—namely that equipotent sets are
equinumerous:

Every well-defined set M has a power, such that two sets have the same power
when it is possible to correlate one to the other according to determinate laws
so that to each element of M belongs an element of N and conversely to each
element of N belongs one of M . (Cantor’s 1883, p. 141)

That is why two sets x and y have the same numbers of elements if and only if
there is a bijective function f : x → y which is one-to-one and onto. Based on the
identity condition for cardinal sets, Cantor’s (1887) goes on to explain the relations
of ‘greater than’ and ‘less than’ for cardinal numbers in terms of the comparability

of their corresponding powers. Given a = ¯̄M and b = ¯̄N , then if there is no proper
subset M ′ ⊂ M such that M ′ ≈ M , and if there is no proper subset N ′ ⊂ N such that
N ′ ≈ N , then either a < b or b > a. However, Cantor’s (1887) further claims that
whenever two sets M and N can be mapped (in a one-to-one fashion) to proper subsets
of each other, so that M ≈ N ′ ⊂ N and N ≈ M ′ ⊂ M , then M and N are necessarily
equivalent. While Cantor had already shown that, given any two cardinal numbers a
and b, only one of the order relations could hold, he was unable to prove that exactly
one is always valid. Consequently, Cantor’s (1887) fails to guarantee the necessary
comparability of all cardinal numbers, finite and infinite. The matter is of critical
importance because, it they are not, it would be impossible to arrange all cardinal
numbers in an ordered sequence. In §2.1, I will point out the ordinal assumption on
which Cantor’s (1887) definition of cardinal numbers relies.

The first step of abstraction brings about a generalisation of the theory of ordinal
numbers presented in Cantor’s (1883). Indeed, Cantor’s (1883) focuses solely on
well-ordered sets such as N , defining ordinal numbers as the numerals representing
the paradigmatic arrangement of a well-ordered set—more on this in §2.1. A set is
said to be well-ordered if all of its elements are ordered by some relation such that,
given any two, one could always be said to precede the other. Cantor’s (1887) realises
that the well-ordered sequence of natural numbers represents but one type of order,
an important yet limited case. That is why Cantor’s (1887) introduces the notion of
order-type, which is defined for a set t if for any a, b ∈ t then either a < b, or a = b,
or a > b. Consider for example the set of all rational numbers Q, which produces
different order-types depending on how the elements are arranged. Indeed, Cantor
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(1887, p. 111) shows that Q can be ordered according to the magnitude of the sum of
the numerator and denominator, thus following the natural order-type of ω. However,
Q could also be arranged in a sequence determined by the sum of each numerator and
denominator. Thus, given two fractions p1

q1
and p2

q2
, the lesser of the two sums p1 +q1,

p2 + q2 determines which is to be taken as the lesser under this particular ordering.
Then, while the order-type of natural numbers is still indicated as ω, the order-types of
rational and real numbers is represented as, respectively, η and θ . Moreover, while for
Cantor’s (1883) numerals are introduced through counting, order-types are obtained
from sets of objects by abstracting from the characteristic properties of its elements,
indicated by a single bar M̄ , as stated by Cantor:

By this [namely, the order-type of M] we understand the general concept which
arises from M when we abstract only from the nature of the elements of M,
retaining the order of precedence among them. [...] Thus, the order type [...] is
itself an ordered set whose elements are pure units. (Cantor’s 1887, p. 297)

Indeed, for finite sets, the ordinal number α is univocally defined as the order-type
of the predecessor of α, since the rearrangement of elements does not affect the type
of order. That is why the cardinal and ordinal numbers of finite sets are isomorphic
and represented by the familiar sequence of 1, 2, 3, . . . Instead, for infinite sets, the
definition is not straightforward, given that one and the same ordinal number β might
correspond to several order-types—as shown by the example above. That is why
Cantor’s (1887) defines ordinal numbers differently from his early work, as classes of
equivalent order-types—denoted as [α]. Two ordered sets have the same order-type if
they can be put into a one-to-one correspondence, as for the cardinal sets discussed
above. Therefore, sets of equal order-type are always of equal cardinality, namely if

M̄ ≈ N̄ then ¯̄M ≈ ¯̄N , though clearly the converse is not generally true.
So far, I have reconstructed Cantor’s (1887) definitions of (in)finite cardinal and

ordinal numbers, as arising from his abstractionist framework. In the next two sections,
I will point out on what assumptions relies Cantor’s (1887) abstractionist theory of
numbers, namely: (i) thewell-ordering assumption, which is required for the definition
of cardinal numbers and (ii) the representational assumption, by which cardinal num-
bers are defined as sets rather than classes. As explained below, these assumptions
are deeply rooted in, respectively, Cantor’s conception of sets and his foundational
program. That is why I will consider the well-ordering and representational assump-
tions as the desiderata for a correct interpretation of Cantorian abstraction. I will
further argue that these desiderata are met by the BK definition of cardinal numbers,
thus providing in this respect a faithful reconstruction of Cantor’s (1887) abstraction-
ism. I will support my claim by comparing the BK definition of cardinal numbers
with the ones of Frege–Russell and Zermelo–von Neumann. While the Frege–Russell
approach defines cardinal numbers as classes of equinumerous sets or concepts,6 the
Zermelo–von Neumann approach defines cardinal numbers as sets equinumerous with
the smallest ordinal number7—see Incurvati (2020). The comparison with Cantor’s

6 I am here disregarding the different constructions of classes as either Fregean concepts or Russellian
propositional functions.
7 I am here disregarding whether ordinal numbers are defined as Zermelo’s or von Neumann’s ordinals.
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proposal is supported as well by the literature. Indeed, while Hallett’s (1984) argues
for the development of Cantor’s work within the axiomatic framework of ZFC as
endorsed by Zermelo–von Neumann, Tait (1996) stresses the differences between the
logicist project of Frege–Russell and the set theoretic one of Cantor.

2.1 The ordinal assumption

Several Cantor’s scholars—such as Hallett’s (1984) and Dauben (2020)—agree that
one of the aims of the abstractionist theory is to free Cantor’s (1887) definition of pow-
ers from ordinal assumptions. Cantor’s aimmight be better appreciated by considering
his early definitions of ordinal and cardinal numbers. For instance, Hallett’s (1984)
describes Cantor’s (1883) work as an ordinal theory of powers, which had a major
influence on the successive development of axiomatic set theory. More precisely, as
mentioned above, in Cantor (1883, p. 168) ordinal numbers are characterized as the
“numerals of a well-ordered set.” However, Cantor’s (1883) offers no proof of the
existence of a numeral for each well-ordered set. As stated by Hallett:

Thus Cantor believes and asserts that the step from the well-ordered set to the
numeral is short and immediate. But he does not say why; we are left with
the vagueness of “obtaining immediate representation in our inner intuition”.
(Hallett’s 1984, p. 54)

Yet, numerals are required by the definition of cardinal numbers, which are repre-
sented by number-classes that gather all ordinal numbers up to a certain point8—more
on this in §2.2. The assumption lying in the background is the Axiom of Choice,
by which the well-ordering theorem follows. Then, it is customary practice in ZFC
to prove that every well-ordered set is isomorphic to a unique ordinal number (Jech,
2013).As explainedbelow,Cantor fails to formulate thewell-ordering principle (which
is logically equivalent to the Axiom of Choice) as an independent assumption because
he considers it as a constitutive principle of the concept of set. By the time of Cantor’s
(1887), missing a proof of the well-ordering theorem, the author intends to provide a
definition of cardinal numbers independent of ordinal assumptions. That is whyCantor
supposes that the abstractionist account of cardinal numbers presented in §2 avoids
such assumption, by being applicable to ordinal numbers as well.

However, Cantor’s (1887) dramatically fails in freeing cardinal numbers from ordi-
nal assumptions. Indeed, as pointed out by Hallett’s (1984), the definition of ordinal
numbers as classes of order-types requires a much stronger assumption than the one
adopted in Cantor’s (1883). In Cantor’s (1883), any number-class contains many sets
determined by an ordinal, that is to say of the form {αα < β} for some ordinal β. Then,
based on the Axiom of Choice, for each number-class we can choose a representative
set determined by the smallest ordinal—as done in ZFC by the von Neumann cardinal
assignment, see Incurvati (2020). However, this is not the case if ordinals themselves
are defined as classes of equinumerous order-types—as for Cantor’s (1887), see §2.
Indeed, in order to choose representative sets for all the isomorphism classes one is

8 Number-classes are sets of ordinal numbers rather than proper classes, i.e.ℵ0 = the set of all finite ordinal
numbers.
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faced with the problem of choosing simultaneously from a class of non-empty sets.
The only knownway of doing this is to assume as given a well-ordering of the universe
V—which is equivalent to the Axiom of Global Choice (AGC). Indeed, AGC implies
that there is a bijection between V and the class of all ordinal numbers.

The implicit assumption of AGC further supports the plausibility of the BK frame-
work for the reassessment ofCantor’s (1887) abstractionist theory. Indeed, as explained
in §1.1, the Axiom of Choice follows in BK from the assumptions of Ax.1, Ax.2 and
the unrestricted Axiom of Selection and Union. Actually, the ε-operator has a greater
inferential power than the Axiom of Choice, as pointed out by Wang, comparing the
BK and ZFC systems:

There are also cases where, although the ε-rule yields the desired result,
the axiom of choice would not. For example, in the Zermelo theory we can
infer ‘∀x R(x, εy Rxy)’ from ‘∀x∃y R(x, y)’ by the ε-rule, but we cannot infer
‘∃ f ∀x R(x, f (x))’ from ‘∀x∃y R(x, y)’ by the axiom of choice, on account of
the absence of a universal set in Zermelo’s theory. (Wang 1957, pp. 66–67)

Indeed, the ε-operator is logically equivalent to a global choice operator, whose
existence is asserted by AGC of the von Neumann–Bernays–Gödel set theory (NBG).
Both operators allow one to choose an arbitrary element x from each non-empty set
t , such that x ∈ t . This can be checked by comparing the ε-axioms presented in §1.1
with the ones for the global choice operator σ introduced by Bernays (1991):

Ax.1*a ∈ C → σ(C) ∈ C

Ax.2*(A ↔ B) → σ(A) = σ(B)

While Ax.1* asserts that for every non-empty set C, the value of σ(C) is a member
of C, Ax.2* states that if two sets A and B are co-extensional, then the values of σ(A)

and σ(B) are the same individual. It is clear that Ax.1* is equivalent to the ε-axiom of
Critical Formulas and Ax.2* to the one of Extensionality. Therefore, the ε-operator of
BK is logically equivalent to the AGC of the NBG system. Given that AGC is required
by Cantor’s (1887) definition of ordinal and cardinal numbers, the equivalence of the
ε-operator with AGC helps to support the plausibility of the BK system as a faithful
reconstruction of the Cantorian framework.

Therefore both Cantor’s (1883, 1887) theories of cardinal numbers rely on strong
ordinal assumptions, respectively, the well-ordering principle and the well-ordering
of the set theoretic universe V . This assumption further explains why the reassessment
of Cantorian abstraction based on the BK framework is closer to Cantor’s (1887)
insights than Fine’s (1998) proposal, which relies on his theory of arbitrary objects
(Fine, 1985). Even if an accurate presentation of Fine’s proposal is beyond the scope
of the present work, it is interesting to note that in the introduction the author states
that: “I am therefore inclined to think that, if Cantor’s account can be made to work,
then so can an account that takes unordered sets as its starting point” (Fine 1998,
p. 603). Therefore, while Fine’s proposal might be taken to asserts the coherence
of a abstractionist theory of cardinal numbers devoid of ordinal assumptions, the BK
framework provides a more faithful reconstruction of Cantor’s (1887) original system.
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Before continuing, it is worth clarifying the claim at issue here.9 I am not arguing
that, given the logical equivalence of the ε-operator (or, equivalently, AGC) with the
well-ordering of V , the former underlies the definition of cardinal numbers proposed
by Cantor’s (1887). Indeed, the ε-operator belongs to the formal language of the
axiomatic set theoryBK, both ofwhichwere extraneous toCantor’s thought.Moreover,
the intuitions behind these two assumptions are different. While the well-ordering of
V concerns the arrangement of the elements into a well-ordered set, the ε-operator
concerns the choosability of an element as representative of the set. Rather, I am
claiming that, given the leading role of the well-ordering principle in Cantor’s thought,
Def.1 provides a faithful reconstruction of Cantor’s (1887) insights on the definition of
cardinal numbers. I will supportmy claim through a comparisonwith the Zermelo–von
Neumann definition of cardinal numbers. I have already explained above why both
Cantor’s (1883, 1887) definitions of cardinal numbers rely on ordinal assumptions.
The assumption of the well-ordering principle constitutes the structure providing the
arithmetical scale for the comparability of powers. Even if Cantor fails to explicitly
formulate such an assumption, he realizes that the well-ordering principle is tied up
with the concept of set:

The concept ofwell-ordered set is fundamental for thewhole theoryofmanifolds.
It is a basic law of thought, rich in consequences and particularly remarkable for
its general validity, that it is possible to bring any well-defined set into the form
of a well-ordered set. (Cantor 1883, p. 169)

Cantor’s remarks on the well-ordering principle had a major influence on the later
development of axiomatic set theory, particularly on thework of Zermelo. Indeed, Zer-
melo (1908) complains about Cantor’s psychological description of the well-ordering
principle, which rests on how we conceive sets and what operations we perform on
them. In order to avoid the intrusion of psychological notions within mathematics,
Zermelo (1908) formulates the Axiom of Choice, which states that for every set x
of non empty sets there exists a choice function f which maps each set of x to an
element of that set. On the assumption of the Axiom of Choice, the well-ordering the-
orem follows, stating that every set can be well-ordered. Then, for any well-ordered
set t , the von Neumann cardinal assignment defines its cardinal number |t | to be the
smallest ordinal number equinumerous with t . In this sense, the definition and proper-
ties of cardinal numbers as specified by the Zermelo–von Neumann account follows
from the assumption of the Axiom of Choice—which is logically equivalent to the
well-ordering theorem. That is why Hallett’s (1984) concludes that, even if the Axiom
of Choice was not anticipated by Cantor, the Zermelo–von Neumann definition is
an accurate reconstruction of Cantor’s ordinal theory of powers—see also §2.2. But
then a similar conclusion can be made concerning Def.1: even if the ε-operator is
extraneous to the Cantorian framework, Def.1 rests on the same ordinal assumption
underlying Cantor’s (1887) definition of cardinal numbers. Therefore, the BK frame-
work provides a faithful reconstruction of Cantor’s central ideas concerning ordinal
and cardinal numbers.

9 Thanks to one of the anonymous reviewers for pointing this out.
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2.2 The representational assumption

As for ordinal numbers, also Cantor’s (1887) definition of cardinal numbers departs
from the precedent one ofCantor’s (1883). Indeed, as explained above, Cantor’s (1883)
considers cardinal numbers to be represented by number-classes of well-ordered sets
(or ordinals) having a strictly smaller power. While Cantor’s (1883) remains vague
about the actual definition of cardinal numbers—claiming that number-classes only
represent cardinal numbers—Hallett’s (1984) proposes to identify cardinal numbers
with number-classes, thus stressing the similarities with the ZFC ordinal theory of car-
dinalities. Instead, Cantor’s (1887) explicitly states that cardinal numbers (or powers)
are themself sets, as clearly expressed by the following example:

For the formation of the general concept ‘five’ one needs only a set (for example
all the fingers of my right hand) which corresponds to this cardinal number.
(Cantor et al. 1991, p. 418)

In order to better understand Cantor’s reduction of cardinal numbers to set-sized
objects, it is useful to compare it with the Frege–Russell proposal—which will high-
lights also the similarities with the BK definition. Indeed, Hallett’s (1984) suggests to
distinguish the definitions of cardinal numbers between the representational one of
Cantor (as further develop by Zermelo–von Neumann) and the non-representational
account proposed by Frege–Russell. Roughly, an account of the types of some kind is
representational if each type of the given type is of that very type. More precisely, a
definition of cardinal numbers is representational if and only if the number set or class
is itself the cardinal number—and non-representational otherwise. Following Hallett’s
(1984), this distinction can be better appreciated by pinning down the conditions for
the definition of cardinal numbers. There are two minimal requirements:

(i) The operation |t | is defined for all sets t.
(ii) ∀x∀y(x ≈ y ↔ |x | = |y|).

Conditions (i) and (ii) are the ones adopted by the Frege–Russell account of cardinal
numbers, where condition (ii) is clearly (CP).10 However, Hallett’s (1984) stresses that
the Zermelo–von Neumann account – namely, the ZFC definition adopting the von
Neumann cardinal assignment (see §2)—endorses two further conditions, which were
first introduced by Cantor’s (1887):

(iii) For every set t , |t | is a set.
(iv) For every set t , |t | ≈ t .

Namely, not only cardinal numbers are sets, but they are also equinumerous with the
set they number. Conditions (iii) and (iv) were informally stated by Cantor’s (1887),
while discussing the abstractionist definition of cardinal numbers—see §2. Then, the
comparison with the Frege–Russell proposal is straightforward. As explained above,
according to the Frege–Russell account, the cardinal number of a set (or concept in
Frege’s terminology) is the class of all sets or concepts equinumerous to it. More pre-
cisely, while Frege’s (1884) takes the cardinal number belonging to a concept F to be

10 Or, equivalently, HP if we assume that concepts are defined as sets.
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the extension of the concept equinumerous with F, Russell andWhitehead (1910) take
the cardinal number associated with a set a to be the class of all sets equinumerous
with a. In both cases, the whole equivalence class is taken as the definiens of cardinal
number. Therefore, it is clear why the Frege–Russell account is non-representational:
every cardinal number (except 0) is way bigger than the set they number. Instead, the
account of cardinal numbers given by Zermelo–von Neumann is representational in
this sense: each cardinal number is the power of that number. The merit of the von
Neumann cardinal assignment is precisely to explain how the conditions (iii) and (iv)
can be met without appealing to Cantor’s abstractionist theory. Moreover, Hallett’s
(1984) distinction between representational and non representational accounts of car-
dinal numbers further supports the similarity between the BK definition and Cantor’s
(1887) proposal. Indeed, Def.1 is clearly representational because it satisfies condi-
tions (iii) and (iv). More precisely, Def.1 is specified for any set t—as for condition
(iii)—which is assumed to be equinumerous with the cardinal set |t |—as for con-
dition (iv). I take this as further evidence supporting the reassessment of Cantorian
abstraction based on the BK framework.

Someone could then wonder why a representational theory of cardinal numbers
is considered by Cantor as a desideratum. As explained below, this requirement is
motivated by the set theoretic foundational program started by Cantor himself. More
precisely, by defining powers as sets, Cantor aims to prove that the arithmetical oper-
ations on numbers can be represented as operations on sets, thus stressing also the
uniformity between finite and infinite numbers. But if natural numbers can be rep-
resented as sets, then also all the other mathematical objects can be reduced to set
theoretic constructions too. Indeed, all the domains which one normally uses in math-
ematics are embeddable in a higher domain, e.g. the natural numbers in the rational
numbers, the rational numbers in the real numbers, the real line in the real plane, and
so on. That is why Cantor (1885) assumes that every well-determined set has a power,
either a finite number or an infinite cardinal.11 Then, the representational assumption
for cardinal numbers is part of the broader project endorsed by Cantor—and radi-
cally different from the Frege–Russell logicist program12—according to which pure
mathematics should be reduced to set theory, as clearly expressed by himself while
discussing his theory of ordinal numbers:

It forms a large and important part of pure set theory, thus also of pure mathe-
matics, since this latter according to my conception is nothing other than pure
set theory. (Grattan-Guinness 1970, p. 84)

Based on Cantor’s reductionist program, the representational account of cardinal
numbers has a heuristic advantage concerning the arithmetical operations on num-
bers. Indeed, for both Cantor’s (1887) and the Frege–Russell definition, the relation
of precedence between numbers pins down to the relation of cardinal comparabil-

11 I set aside the issue of what, according to Cantor, distinguishes determinate from indeterminate sets.
While Hallett’s (1984) argues that the theological beliefs of Cantor brought him to distinguish sets from col-
lections that are too big to form a set, Ebert and Rossberg (2009) complains that this an ex post interpretation
of Cantor’s remarks, based on the later development of the set theoretic paradoxes.
12 In the most general terms, the logicist program aims to ground mathematical knowledge on a purely
logical basis only.
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ity between sets. However, as pointed out by Hallett’s (1984), in the Frege–Russell
definition the whole class |t | is detached from the set t , in the sense that |t | is not a
direct replacement for t . Instead, Cantor remarks that any set from the equivalence
class would work as a representative of the cardinal number, since by definition it
is equinumerous to any other set in the class. Therefore, according to the reduction-
ist program, Cantor considers the representational account of cardinal numbers as a
heuristic desiderata, by which the operations on cardinal numbers can be carried out
on the representative sets themselves. The same requirement is met as well by the
BK system, where the cardinal arithmetic is developed from the representative sets
introduced byDef.1. Moreover, it is worth mentioning that Bourbaki (1968) is the first
volume of a series of books entitled ‘Elements of Mathematics’, which lays down the
logical and set theoretical framework required for the subsequent foundation of the
whole body of mathematics, from arithmetic up to algebraic topology. That is why the
work of Bourbaki (1968) might be considered as the fulfilment of the foundational
project first advocated by Cantor himself, by which all mathematics should be reduced
to set theory.

3 Frege’s objections

After presenting Cantor’s (1887) abstractionist theory of cardinal and ordinal num-
bers, I have pointed out two assumptions deeply rooted in Cantor’s work, namely
the logical status of the well-ordering principle and the representational account of
numbers required by his foundational project. Based on the reconstruction of Cantor’s
(1887) work, I have argued that the BK definition of cardinal numbers meets these two
desiderata, proposing a representational account of cardinal numbers which relies on
the logical resources of the ε-operator (equivalent to AGC). That is why Def.1 repre-
sents a faithful reconstruction of Cantor’s (1887) insights on the definition of cardinal
numbers.

I will now move to consider the objections made by Frege’s (1884) to Cantor’s
(1887) abstractionism, which as explained above constitutes an essential part of his
definition of ordinal and cardinal numbers. As mentioned in §1, Frege’s objections
have been considered in the literature—especially by Dummett (1991)—as a knock-
out argument against Cantorian abstraction. Frege’s objections can be summarized as
a dilemma: either the abstractionist process is a psychological process which does not
provide an objective definition of numbers, or the theory of pure units composing the
set-sized numbers obtained by abstraction is incoherent. It should be remarked that
Frege does not state the objections as a dilemma. However the author claims that, even
if we grant the psychological account of abstraction, the theory of pure units would
still be incoherent:

We cannot succeed in making different things identical simply by operating with
concepts. But even if we did, we should then no longer have things in the plural,
but only one thing [...]. (Frege 1884, p. 46)

Therefore, Frege seems to suggest that the opponent has to choose between two
unfavourable alternatives. I will consider both horns of the dilemma in turn. The
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reconstruction and defence of Cantorian abstraction will rely on the notion of arbitrary
reference described in §1.2—adopted for the interpretation of ε-terms.More precisely,
I will argue that the abstractionist process should be replaced by the arbitrary reference
to representative sets as formalized by the ε-operator inDef.1.Moreover, I will account
for Cantor’s compelling theory of pure units based on the featureless elements com-
posing the representative set denoted by the ε-operator inDef.1. However, it should be
remarked that my defence of Cantorian abstraction will partially depart from Cantor’s
(1887) philosophical insights. Indeed, both the ε-operator and the notion of arbitrary
reference were clearly extraneous to Cantor’s work. Nevertheless, I have argued above
that the BK framework is a faithful reconstruction of Cantor’s leading ideas. That is
why the reassessment of Cantorian abstraction based on BK will be evaluated accord-
ing to its coherence and plausibility, rather than its fidelity to Cantor’s philosophical
insights. For instance, given that Frege’s (1884) objections concern solely Cantor’s
definition of cardinal numbers, I will disregard the distinction between the first act
of abstraction M̄ from the properties of the elements of the set and the second act of

abstraction ¯̄M from the order of the so-obtained pure-units—see §2.

3.1 The psychologism objection

Frege (1884, Sects. §34–35) and Frege’s (1890) review of Cantor’s (1887) mainly
focus on the process of abstraction as a mental activity, which claims to provide
the cardinal number starting from a given set of objects—as presented in §2. Before
evaluating Frege’s complaints, it should be remarked that abstractionist theories of
numbers were widespread among philosophers and mathematicians of the nineteenth
century—such as Dedekind and Husserl. The leading idea is that through abstraction
from the properties of a set of objects we get the number corresponding to its size.
Frege’s psychologism objection can be summarized as follows: abstraction from the
properties of the elements of a set does not provide the cardinal of the set, but only
a more general property characterizing the elements of the set. Therefore, abstrac-
tionism is a psychological process which fails to provide an objective definition of
numbers. As stressed by Dauben (2020), Cantor held an ambivalent stance over the
psychological characterization of mathematics. On the one hand, he praises Frege’s
(1884) for omitting psychological considerations from the foundation of arithmetic.
On the other hand, he explicitly describes the abstraction process presented in §2 in
psychological terms, asking:

Are not a set and the cardinal numbering belonging to it quite different things?
Does not the first stand to us as an object, whereas the latter is an abstract image
in our intellect? (Cantor 1887, p. 416)

That is why, in order to resist Frege’s psychologism objection, I will depart from
Cantor’s characterization of abstraction as a psychological process, relying instead on
the logical resources of the ε-operator. Frege starts by questioning whether removing
the properties from a set of objects through abstraction would end up with a set of
pure units corresponding to its size:
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For suppose that we do, as Thomae demands, “abstract from the peculiarities of
the individual members of a set of items”, or “disregard, in considering separate
things, those characteristics which serve to distinguish them”. In that event we
are not left, as Lipschitzmaintains, with “the concept of the Number of the things
considered”; what we get is rather a general concept under which the things in
question fall. The things themselves do not in the process lose any of their special
characteristics. If, for example, given a white cat and a black cat, I disregard the
properties which serve to distinguish them, then I get presumably the concept
‘cat’. Even if I proceed to bring them both under this concept and call them, I
suppose, units, the white one still remains white just the same, and the black
black. (Frege 1884, p. 45)

Therefore, abstraction fails to transform a set of objects into a set of pure units,
corresponding to the cardinal number. Instead, according to Frege, abstraction from the
characteristic properties of a set of objects would only result in a more general concept
under which these objects fall. Moreover, abstractionism as a mental process does not
meet the intersubjective standard required for an objective definition of numbers.More
precisely, Frege points out that, given a set of objects, there is no guarantee that the
abstraction process as carried out by different subjects would end up with the same
general concept:

So let us get a number of men together and ask them to exert themselves to the
utmost in abstracting from the nature of the pencil and the order in which its ele-
ments are given. After we have allowed them sufficient time for this difficult task,
we ask the first “What general concept have you arrived at?” Non-mathematician
that he is, he answers “PureBeing”. The second thinks rather “Pure nothingness”,
the third - I suspect a pupil of Cantor - “The cardinal number one”. [...] Now
why shouldn’t one man come out with the answer and another with another?
(Frege 1890, p. 71)

The standard of intersubjectivity for mathematical knowledge is dictated by Frege’s
logicist program, according towhich a theory can be considered as part ofmathematics
only by explicit definitions of the basic concepts and step-by-step logical deductions.
Given that abstraction rests on the subject’s mental abilities, Frege concludes that
Cantorian abstraction jeopardizes the objectivity of the definition of numbers.

Ultimately, I will claim that Frege’s objection does not apply to the BK frame-
work. Indeed, by replacing Cantor’s psychological account of abstraction with the
logical one of Def.1, the BK framework is immune from Frege’s psychologism objec-
tion because it dispenses with the very aspects of Cantor’s theory that Frege objected
to.13 However, before continuing, it is worth questioning Frege’s interpretation of
Cantorian abstraction. These clarifications will be adopted below to characterize the
semantic conception of abstraction involved with Def.1—as opposed to both Cantor’s
and Frege’s proposals. Indeed, as remarked by Hallett’s (1984), Cantor does not con-
ceive abstraction as a gradual process bywhich each object is separately removed from
its characteristic properties and then assembled into a set of pure units. Rather, Cantor

13 Thanks to one of the anonymous reviewers for stressing this point.
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considers abstraction as an immediate shift from the given set to the cardinal set of
pure units. This point is clearly expressed by Cantor himself, who criticizes Leibniz’s
definition of numbers by stating that:

The addition of ones, however, can never serve for a definition of a number,
since here the specification of the main thing, namely how often the ones must
be added, cannot be achieved without using the number itself. This proves that
the number is to be explained only as an organic unity of ones achieved by a
single act of abstraction. Cantor (1887, p. 381) [Italics added]

We see that for Cantor the pure units composing the cardinal set |t | are obtained by
a single act of abstraction over the set t .14 It should be remarked that this seems much
more like the use of a classically conceived functional operation on sets rather than
mental reflection. However, bearing on the interpretation of abstraction as a single
act, a further question remains: are we abstracting from the property determining the
set or simultaneously from the members of the set? Cantor neither answers this ques-
tion, nor provides an explanation of the grounds on which we should accept without
demonstration the existence of a set equinumerous with the given set t . Resembling
Frege’s objection above, Russell notes that Cantor’s description of abstraction “is
merely a phrasing indicating what is to be spoken of, not a true definition” (Russell
and Whitehead 1910, pp. 304–305).

Both concerns can be addressed in the BK framework as follows. More precisely,
I will argue that the BK framework is immune from Frege’s objections and Def.1
answers the ambiguities left by Cantor’s work. First of all, there is a straightfor-
ward difference between the BK framework and Cantor’s abstractionist theory. While
the latter conceives abstraction as a psychological process, according to the former
abstraction is logically defined by Def.1. That is why the reassessment of Cantorian
abstraction based on BK will be evaluated according to its coherence and plausibility,
rather than the fidelity to Cantor’s philosophical insights—as remarked in §3. Then,
it is clear why Frege’s psychologism objection does not apply to the BK framework:
Def.1 is an explicit definition of cardinal numbers by which the fundamental law of
CP can be deduced. The cardinal set |t | is the definiendum specified by the definiens
containing the ε-operator. The explicit definition guarantees the existence of a rep-
resentative set |t | equinumerous with the given set t . Moreover, CP and the ε-axiom
of Extensionality (Ax.2) determine the identity conditions for cardinal sets. That is
why the BK definition of cardinal numbers meets the desiderata of logical foundation
advocated by Frege. Therefore, if the BK system is considered as the foundation of
mathematics, as argued at length by Bourbaki (1968), then no ambiguities could arise
concerning the definition of cardinal numbers—thus debunking Frege’s psychologism
objection.

Even if the BK framework provides a logical definition of cardinal numbers accord-
ing to Frege’s guidelines, Def.1 should not be regarded as a definition by abstraction
in the sense of the Hume’s Principle (HP) mentioned in §1.2. The recent resurgence of
interest in definition by abstraction follows theNeologicist program,which attempts to

14 As explained above, I am here ignoring the distinction between the two steps of abstraction introduced

by Cantor’s (1887)-namely M̄ and ¯̄M-see §2.
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establish the analicity of arithmetic by deriving the Peano axioms from Second-order
logic extended with the abstraction principle of HP—see Wright (1983). Accord-
ing to the Neologicist program, abstraction principles implicitly define mathematical
objects by specifying their identity conditions—for instance, HP is taken to implicitly
define cardinal numbers. Instead,Def.1 explicitly defines cardinal sets bymeans of the
ε-operator, which is axiomatically defined by Ax.1 and Ax.2. If Def.1 does not cor-
respond to a definition by abstraction,15 then we are left to explain what corresponds
to the abstraction process in the BK framework. I suggest that we should understand
the process of abstraction in terms of the semantic function of the ε-operator. More
precisely, the ε-operator is a variable-binding operator which forms terms from open
sentences. For instance in Def.1, given any set t , εx (x ≈ t) assigns the representative
set equinumerous with t . That is why the ε-term ‘εx (x ≈ t)’ is functional in the sense
hinted by Cantor’s single act of abstraction—namely, a direct operation moving from
the base set to its cardinal set. Moreover, when evaluating the denotation of εx (x ≈ t),
we disregard fromall the properties of the elements of t except from the property ‘being
equinumerous with t’. Indeed, the equivalence relation can be thought of as capturing
a common feature among the entities standing in the ≈ relation—as in (x ≈ t). Then,
one ignores any individual features of the objects except whether they stand in the ≈
relation, thereby abstracting away from any other feature distinguishing the elements
so related—as in εx (x ≈ t). Therefore, while deriving εx (x ≈ t) from (x ≈ t), we
are ‘abstracting’ from the elements composing t rather than from the property ‘being
equinumerous with t’—thus answering the aforementioned question concerning Can-
tor’s proposal. That is why in the context of BK the process of abstraction should be
understood in terms of the semantic function of the ε-operator in Def.1—i.e. arbitrary
reference to the representative set equinumerous with the given set.

3.2 The incoherence objection

Frege (1884, Sects. 36–39) focuses on the result of the abstractionist process, namely
the theory of pure units which is supposed to compose cardinal sets. The leading
motivation of the theory is that pure units, by lacking any characteristic properties
apart from their unicity, contribute only to the size of sets—thus representing cardinal
numbers. The theory of numbers as composed by units has a long-standing pedigree.
Indeed, it should be remarked that the objections of Frege’s (1884) are actually directed
to Leibniz and Locke—among the early writers—and Thomae, Lipshitz, Jevons and
Schröder amonghis contemporaries. Cantor’s (1887) is not directlymentioned because
he presented his abstractionist theory only after the publication of Frege’s work. How-
ever, Hallett’s (1984), Dummett (1991) and Dauben (2020) unanimously agree that
Frege’s objections apply as well to Cantor’s (1887). Frege’s (1884) advances two
main objections to the theory of units, which undermine the consistency of Cantor’s
definition of cardinal numbers. After presenting Frege’s objections, I will claim that
the sets of pure units corresponding to cardinal numbers should be understood as the

15 Woods (2014) adopts a Second-order version of the ε-operator in order to define the abstraction operator
‘the number of’ based on according to the equivalence relation of equinumerosity. Boccuni and Woods
(2020) further discuss how to make use of arbitrary reference in the context of the Neologicist program.
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representative sets denoted by the ε-operator in Def.1. Indeed, the representative set
is arbitrarily picked out, namely any other set from the equivalence class of ≈ would
work as well. That is why the elements of the representative sets could be conceived
as featureless, contributing only to the size of the set—as for Cantor’s pure units.

Frege’s (1884) first objection amounts to a proof that according to Cantor’s (1887)
abstractionist account there can be only two numbers, namely 0 and 1. If cardinal sets
are composed by pure units which correspond to the members of the given set, and if
two identical cardinal sets have identical units, then the units of any cardinal set bigger
than 2 would be equal to that of 1! Frege sums up the objection by saying that Cantor
ascribes two contradictory properties to units, namely identity and distinguishability.
Therefore, as clearly summarized by Fine’s (1998), we must explain how a cardinal
set can result from abstracting on the elements of a set even though no units of it can
be uniquely associated with each element of the base set.

However, by making use of the notion of arbitrary reference introduced in §1.2,
it is possible to resist Frege’s incoherence objection as follows. The ε-term ‘εx (x ≈
t)’ in Def.1 refers to a representative set x which is arbitrarily picked out from the
equivalence class. But if the cardinal set |t | is arbitrarily determined, then there is
no fact of the matter regarding the internal composition of |t |, namely what are the
elements of |t |. More precisely, being arbitrarily determined means that any other set
from the equivalence class would work as well as a representative for the definition
of cardinal sets. Therefore, asking for the internal composition of the cardinal set |t |

is beside the point, as noted by Tait: “The cardinal set corresponding to ¯̄M should
not be a set of points or of numbers or of apples or of sets (as in the case of the
initial von Neumann ordinals)” (Tait 1996, p. 27). That is why, according to the BK
framework, the cardinal set of pure units described by Cantor should be replaced by
the representative set arbitrarily picked out from the equivalence class ≈ in Def.1. As
pointed out by Leisenring:

This definition of cardinal number is an essentially indeterminate one since
nothing can be said about the set |t | in [Def.1] except that it is equivalent to t and
that it equals the cardinal number of any set which is equivalent to t . (Leisenring
1969, p. 105)

As remarked in §1.2, arbitrary reference can bemodelled—though not reduced—in
terms of a supervaluational semantics where properties had by all individual choices of
referent are had by the denotation of the ε-term. Then, the supervaluational semantics
clarifies why the elements of the representative set |t | are identical to each other and yet
distinguishable—as for Cantor’s pure units. Indeed, every precisification of a model
assigning a particular set to εx (x ≈ t) agree that the elements of the set have a definite
self-identity. This follows from the fact that sets are extensional entities—more on
this below. Then, the elements of the representative set |t | in Def.1 have also a definite
self-identity. However, the precisifications would not agree on any other property
characterizing the elements of a particular set. Indeed, the property would fail to be
shared by all the elements of the individual sets in the equivalence class of ≈. That
is why the elements of the representative set |t | in Def.1 are qualitatively identical in
all respects and yet distinguishable—contra Frege’s incoherence objection.Moreover,
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the supervaluational interpretation of ε-terms highlights why the epistemic account
of arbitrariness advocated by Breckenridge and Magidor (2012) fails to account for
Cantor’s theory of pure units.16 According to the epistemic interpretation, the ε-term
‘εx (x ≈ t)’ refers to a specific set from the equivalence class ≈, even if we do not and
cannot know which one. However, if this was the case, then the elements of |t | would
retain their specific characteristics—contrary to the featureless pure units. That is why
the epistemic interpretation of arbitrary terms provides an incoherent reconstruction
of Cantor’s pure units.

However, one could object that this reassessment of pure units diverges in a funda-
mental aspect from Cantor’s insights on abstraction. More precisely, someone could
argue that while for Cantor’s (1887) abstraction is a process which introduces a new
kind of entities—namely the pure units composing the cardinal sets—according to
the BK definition a cardinal number is a representative set arbitrarily denoted by the
ε-operator, which is on a par with any other set from the equivalence class ≈. Indeed,
some of Cantor’s scholars have interpreted abstraction as ontologically innovative—
see Fine’s (1998) quote in §1. Roughly, Fine’s (1998) defines pure units as arbitrary
objects, which are introduced through extension of the domain and ordered by a depen-
dence relation. However, it should be pointed out that the interpretation advocated by
our objector is not straightforward. For instance, Ternullo and Zanetti (2021) argue that
Cantor’s theory of pure units should be considered as a purely descriptive, ontologi-
cally non-committal, medium to convey the explanation of what numerical abstraction
consists in. More precisely, the authors point out that the key notion of CP (see §1.2)
is the one-to-one correspondence between the elements of two sets. Given that any
bijective function is as good as any other for the abstraction process, then the nature of
the elements of the sets involved is entirely irrelevant. So, according to Ternullo and
Zanetti (2021), Cantor’s theory of pure units can be paraphrased away: whenever the
set M is paired with any other set equinumerous to it, then it may practically come to
be ‘seen’ as a set composed of units. This interpretation debunks the claim made by
Fine’s (1998) concerning Cantor’s ontological commitment to pure units. I will not
take a stance in this debate. Indeed, in order to resist the objection, it is sufficient to
show that the ontological interpretation of Cantor’s pure units is not straightforward.
That is why I will here restrict myself to the coherence of the interpretation of pure
units as the elements of the representative sets arbitrarily picked out byDef.1, without
questioning whether this interpretation is faithful to Cantor’s philosophical insights.

Frege’s (1884) second objection concerns the internal composition of cardinal sets,
which according to Cantor’s (1887) are made up by pure units. More precisely, we
must explain how the units within a cardinal set are indistinguishable from one another
even though the units from different cardinal sets are not. Based on the interpretation
of pure units as the members of the representative set denoted by the ε-operator in
Def.1, it is possible to face this second objection as follows.

I have already explained above why the members of a cardinal set are identical
to each other. This bears on the fact that according to Def.1, the cardinal set |t | is a
representative set arbitrarily picked out from the equivalence class of ≈. This means
that there is no fact of thematter concerningwhat are the elements of |t |, except that they

16 Thanks to the anonymous reviewers for stressing this point.
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are equinumerous with the given set t . That is why the members of |t | contribute only
to the size of the cardinal set and they can be thus regarded as featureless. Therefore,
we are left to explain how the units of different cardinal sets can be nonetheless
distinguished from one another. This issue can be addressed based on the Ax.2 of
Extensionality. More precisely, pure units are individuated by the only property of
being members of the representative set picked out by the ε-operator. Moreover, co-
extensional sets have the same members. Then, based on Def.1, a representative set
x equinumerous to t is co-extensional with a representative set y equinumerous to
s, if and only if t and s are equinumerous. But this is not the case for different
cardinal sets, which explains why the elements of their respective representative sets
are distinguishable.

Someone could object to the assumption of Ax.2, on which this second argument
rests. According toAx.2, the ε-terms of co-extensional sets denote the same represen-
tative object. Roughly, the objector complains that if I imagine picking an arbitrary
creature with a heart, and an arbitrary creature with a kidney, why must I pick the
same one each time? Dropping Ax.2 would require an intensional interpretation for
the ε-operator, by which ε-terms containing co-extensional sets might refer to dif-
ferent objects—see Zach (2017). However, this concern should be addressed in the
BK framework here at issue, which is an axiomatic theory of sets. Indeed, once the
predicates and relations of the logical language are interpreted as sets—as done in the
BK system—then the assumption of Ax.2 is beyond doubts. For instance, the identity
conditions of sets are specified by the Axiom of Extensionality, by which two sets
are identical if and only if their members are the same. This is a very uncontroversial
assumption, deeply rooted in our understanding of set theory, as expressed by Boolos:
“A theory that did not affirm that the objects with which it dealt were identical if they
had the same members would only by charity be called a theory of sets alone” (Boolos
1971, p. 28). Therefore, if the predicates and relations of the logical language are
defined as sets, then also the indefinite descriptions formalized by the ε-operator will
be conceived extensionally. More precisely, as sets are determined uniquely by their
members, so the meaning of ε-terms is determined solely by the extension of their
descriptive component. That is why the extensional interpretation of the ε-operator
is forced upon us by the theory of which is part, namely BK. This argument should
convince the objector of the plausibility of Ax.2 within the BK framework, without
undermining the usefulness of intensional interpretation of the ε-operator for natural
language semantics—see Meyer Viol (1995).

4 Conclusion

The present paper aimed to achieve two separate goals. On the one hand, I argued that
the BK framework and the ε-operator provide a faithful reconstruction of Cantor’s
insights on ordinal and cardinal numbers. I pointed out two assumptions underlying
Cantor’s (1887) abstractionist theory. First, the implicit assumption of the well-
ordering principle, which constitutes the structure providing the arithmetical scale
for the comparability of powers. Secondly, the assumption that cardinal numbers have
to be represented as sets, rather than classes. As explained above, these assumptions
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are deeply rooted in, respectively, Cantor’s conception of sets and his set theoretic
foundational program—so they are the desiderata for a correct interpretation of Can-
torian abstraction. That is why, using a comparison with the Zermelo–von Neumann
and Frege–Russell definitions of cardinal numbers, I argued that both desiderata are
met by the BK framework. Specifically, concerning the ordinal assumption, I proved
that the ε-operator is logically equivalent to the AGC and thus to the well-ordering
of the set theoretic universe V , which is the assumption required by Cantor’s (1887)
definition of cardinal numbers. Therefore, I concluded that, even if the ε-operator is
extraneous to the Cantorian framework, Def.1 is an accurate reconstruction of Can-
tor’s ordinal theory of powers—as for the assumption of the Axiom of Choice in the
Zermelo–von Neumann definition of cardinal numbers. Instead, concerning the rep-
resentational assumption, I spelled out the conditions for a representational account
of cardinal numbers, arguing that they are met by the BK definition, contrary to the
Frege–Russell one. Given that both Cantor and Bourbaki pursue the same foundational
project, by which all mathematics should be reduced to set theory, I concluded that
the BK system is a faithful reconstruction of the Cantorian framework.

On the other hand, I resisted Frege’s (1884) objections, by proposing a reassessment
of Cantorian abstraction based upon the BK framework and the notion of arbitrary
reference as formalized by the ε-operator. More precisely, Frege’s objections—which
have been considered by Dummett (1991) as a knock—out argument for the Cantor’s
proposal-are divided into two types. On the one hand, the psychologism objection
complains the subjectivity of the abstractionist process, which fails to provide an
objective definition of numbers. I resisted this objection by pointing out that Def.1
is an explicit definition of cardinal numbers, by which the fundamental law of CP is
deduced.Moreover, I proposed to replace the process of abstraction with the particular
semantic function of the ε-operator in Def.1, namely that of arbitrary reference to a
representative set equinumerous with the given set. Indeed, by arbitrarily picking out
a representative set x , we are abstracting from the properties of the elements of t ,
except from the one contained in the ε-term of Def.1, namely ‘being equinumerous
with t’—as for Cantor’s single act of abstraction. On the other hand, the incoherence
objection focuses on the pure units composing the cardinal set, claiming that Cantor
ascribes two contradictory properties to pure units, namely identity and distinguisha-
bility. I suggested to understand pure units as the elements of the representative set
arbitrarily picked out by the ε-operator in Def.1. Indeed, given that any other set from
the equivalence class of ≈ would work as well, there is no fact of the matter about the
nature of the elements composing |t |, which contribute only to the size of the cardi-
nal set. I supported my claim by making use of the supervaluational interpretation of
arbitrary reference, which clarifies why the elements of the representative set |t | are
identical to each other and yet distinguishable—as for Cantor’s pure units.
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