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Human fluid intelligence is closely linked to the sequential solving of complex problems.
It has been associated with a distributed cognitive control or multiple-demand (MD)
network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal
cortex. Previous neuroimaging research suggests that the MD network may orchestrate
the allocation of attentional resources to individual parts of a complex task: in a complex
target detection task with multiple independent rules, applied one at a time, reduced
response to rule-critical events across the MD network in lower fluid intelligence was
observed. This was in particular the case with increasing task complexity (i.e., larger sets
of rules), and was accompanied by impairment in performance. Here, we examined the
early spatiotemporal neural dynamics of this process in electroencephalography (EEG)
source analyses using a similar task paradigm. Levels of fluid intelligence specifically
predicted early neural responses in a left inferiorparietal MD region around 200–300 ms
post stimulus onset. Evoked source amplitudes in left parietal cortex within this early
time window also correlated with behavioural performance measures. Like in previous
research, we observed impaired performance in lower fluid intelligence with increasing
number of task rules. This links fluid intelligence to a process of attentional focus on
those parts of a task that are most critical for the current behaviour. Within the MD
system, our time re-resolved measures suggest that the left parietal cortex specifically
impacts on early processes of attentional focus on task critical features. This is novel
evidence on the neurocognitive correlates of fluid intelligence suggesting that individual
differences are critically linked to an early process of attentional focus on task-relevant
information, which is supported by left parietal MD regions.

Keywords: executive functions (EFs), fluid intelligence, EEG, fronto parietal network, goal directed behaviour

INTRODUCTION

In a complex environment, human behaviour depends to a large extent on the ability to think
logically and to solve problems in the absence of task-specific knowledge (Duncan, 2013).
Those skills are operationalised by fluid intelligence, a core measure of psychometric assessment
(Carpenter et al., 1990). Fluid intelligence can be measured with complex, multistep tasks involving
novel rules (Raven et al., 1988). With lower fluid intelligence, errors increase with the number of
task rules, even if the rules are known and can be remembered correctly (Duncan et al., 2008;
Bhandari and Duncan, 2014), suggesting a broad inability to foreground the correct part of a
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complex rule set. In a complex target detection task with a varying
number of independent rules, applied one at a time in successive
task epochs, it has been shown that although only one rule
was applied at a time, increasing task complexity (i.e., either 2
or 4 rules) impaired performance in participants of lower fluid
intelligence (Tschentscher et al., 2017). This suggests that lower
fluid intelligence is reflected in the inability to focus on the correct
part of a complex rule set. Conversely, achieving focus on the
correct cognitive operation of each task stage is a feature of high
fluid intelligence (Duncan, 2013).

Lesion and functional magnetic resonance imaging (fMRI)
research links fluid intelligence to a specific set of frontal and
parietal regions, here called the multiple-demand (MD) network,
comprising regions of lateral frontal, insular, dorsomedial frontal,
and parietal cortex (Prabhakaran et al., 1997; Duncan et al.,
2000; Gray et al., 2003; Woolgar et al., 2010; Cole et al.,
2015). Using fMRI, a novel-rule paradigm previously specified
this link, showing that lower fluid intelligence is not only
associated with higher error rates when more rules had to be
configured for behaviour, but also reduced responses in MD
regions (Tschentscher et al., 2017).

While similar fMRI response patterns have been observed
across MD regions by some researchers (Duncan and Owen,
2000; Duncan, 2010), others have found highly specific responses
of particular MD regions associated with different levels
of fluid intelligence: during a complex reasoning task, a
stronger upregulation of fMRI responses in posterior regions
was observed for highly intelligent in comparison to average
intelligent adolescents in correlation with task performance
(Lee et al., 2006). In an fMRI based meta-analysis, the dorsal
attention network, which overlaps with the parietal MD network,
represented the most consistent correlate of fluid intelligence
in abstract reasoning tasks (Santarnecchi et al., 2017a). It
has been also claimed that the MD system is divided into
components for introspective processing, related to the default
mode network, and parts for the regulation of attention, related
to the dorsal attention network (Dixon et al., 2018). Since the
allocation of attentional resources to relevant task features is a key
component of high fluid intelligence (Duncan, 2013), individual
differences might be particularly driven by parietal regions of
attentional regulation.

Critically, there is yet little evidence on the spatiotemporal
brain dynamics underlying fluid intelligence across MD
regions. Time-resolved information is needed to tell whether
frontal and parietal parts operate sequentially or in parallel
across time. In combined electroencephalography (EEG)
and magnetoencephalography (MEG) source measurements,
differential activation dynamics have been observed across MD
regions during early stages (200–300 ms) of complex cognition
(Tschentscher and Hauk, 2015, 2016), and evidence from
EEG evoked potentials suggests that N2 and P3 components
are specifically predictive for individual differences in fluid
intelligence (Amin et al., 2015; Luo and Zhou, 2020; Rico-
Picó et al., 2021). More specifically, the P3b component, a
positive wave that peaks around 250–300 ms at parietal cortical
regions, has been associated with individual differences in fluid
intelligence (Amin et al., 2015; Teixeira-Santos et al., 2020).

The P3b has been linked to the allocation of attentional
resources to relevant task features, while the P3a component,
that peaks around 250–280 ms at frontal sources, has been
linked to stimulus-driven involuntary attention mechanisms and
processing of novelty (Polich, 2007).

Here, we examined the spatiotemporal neural dynamics of
fluid intelligence within MD regions in EEG source models.
A similar task paradigm was used as in previous fMRI research
(Tschentscher et al., 2017). Multiple independent rules had to be
applied one at a time in successive task epochs. Participants either
had to memorize 2 or 4 novel rules in different experimental
runs. Thus, while the complexity of each task epoch was held
constant across runs, the demands to configure individual rules
in a mental task model varied. Configuring multiple independent
rules for behaviour at the same time is a key component of
fluid intelligence, and is measured in standardised tests of fluid
intelligence (Cattell and Cattell, 1960; Raven et al., 1988).

We predicted that participants with average fluid intelligence,
in contrast to highly intelligent individuals, show weaker MD
activity for the rule in operation, especially in the more
complex 4-rule context. Furthermore, we hypothesised that
individual differences in fluid intelligence first occur in dorsal
MD regions involved in processes of attentional focus on task-
critical information, as related to the P3b component.

MATERIALS AND METHODS

Participants
EEG was recorded from 43 volunteers after giving written
informed consent. Three participants were excluded from
analyses due to too many blinks, horizontal eye movements,
or incomplete data sets. A power analysis based on effect sizes
observed in a recent fMRI study on individual differences in
fluid intelligence within the MD system (Tschentscher et al.,
2017) suggested that a minimum of 20 subjects per IQ-
group was required (f = 0.20; alpha = 0.05, power = 90%).
Participants were divided into groups of lower and higher fluid
intelligence based on a median-split analysis on the scores of
the cultural-fair intelligence test (Cattell and Cattell, 1960).
The median at IQ-score 109 (raw-score of 35) divided the
sample into a group of participants with lower IQ scores, here
called the “average-IQ group,” (naverage−IQ = 20, mean = 97,
SD = 7), and a group with higher IQ-scores, the “high-IQ
group” (nhigh−IQ = 20, mean = 125, SD = 11). The mean
age of the average-IQ participants was 30 years (SD = 7), the
mean age of the high-IQ participants was 30 years as well
(SD = 8). Five out of 20 average-IQ participants were male
and 15 female, and seven out of 20 high-IQ participants were
male and 13 female.

All participants had normal or corrected to normal vision
and were not affected by neurological or psychiatric disorders.
Right-handedness of all participants was confirmed by the
Edinburgh-Handedness-Scale (Oldfield, 1971) (mean average-IQ
participants = 84, SD = 15; mean high-IQ participants = 88,
SD = 16). The level of education was assessed by using seven
categories: 0 = no school degree, 1 = basic school degree
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(after 10 years of schooling), 2 = apprenticeship, 3 = A-levels,
4 = bachelor’s degree, 5 = master’s degree, 6 = doctoral degree,
and 7 = professorship. The level of education did not differ
significantly between the IQ groups (Mann-Whitney-U-Test:
p = 0.107); median level of education average-IQ = 3, median
level of education high-IQ = 3. Participants were financially
compensated for participation. The study was approved by the
University of Munich Ethics Committee.

Experimental Paradigm
The design of the task was very similar to the one used in
a previous fMRI study (Tschentscher et al., 2017; Figure 1).
For each 4.5 min run of the experiment, participants were
asked to memorize two or four novel associations between
geometric figures (cues) and animate or inanimate objects
(targets) (Figure 1, upper right). The run was then divided into a
series of chunks, each beginning with the appearance of a single
cue from the memorised set, followed by a series of pictures
presented at 1/s (0.7 s on, 0.3 s interstimulus interval). The task
was to press a key with the right hand whenever the specified
target appeared. Within each chunk, the cued target appeared
twice, as did the image associated with the other cue (lure, to be
ignored). Remaining pictures were fillers, which were never used
as targets, with the number of fillers between each critical event
(cue, target, or lure) jittered between two and eight. Each run was
divided into two halves by a 10 s pause in the middle. Each half-
run contained four 29 s chunks, two for each rule (A and B) in
ABAB, BABA, ABBA, or BAAB order (Figure 1).

There was a brief period (15 s) of filler pictures before the
first chunk of each 2-rule half-run, again presented at 1/s, which
the participant simply watched while awaiting the first cue (for
example, a sequence of a run was “15s-A-B-B-A-15s-B-B-A-A”).
For 4-rule runs, two extra rules were used only once each, one
for the 15 s period at the start of the first half-run, the other for a
similar period at the start of the second half-run. In 4-rule runs,
these 15 s periods consisted of the cue, 12 fillers, and, randomly
placed within these, a single target and a single lure. To ensure
the comparability of 2- and 4-rule data, analysis focused just on
the eight main chunks of each run, discarding the initial period of
each half-run (fillers for 2-rule runs; the two extra rules for 4-rule
runs). Thus, analyses of 2- and 4-rule runs focussed only on the
task execution of either two rules. However, 2- and 4-rule runs
differed in the number of potentially relevant rules that people
had to consider for behaviour.

Across the whole experiment there were 12 runs: six 2-
rule runs and six 4-rule runs. Different cues and targets were
used for each run. Within each run, half of the targets were
animate and the others were inanimate. Half of the filler items
on each run were animate, the others were inanimate. Before
the beginning of each run, two slides were presented. The first
slide indicated the cue–target associations, and stated “please
memorize the following associations.” The second slide asked
participants to recall the images associated with the previously
learned cues. The order of cues presented for the memory check
was randomised and did not match the order of presentation on
the initial instruction slide. Participants stated their responses
during the memory check verbally and were allowed to see the

initial instruction slide again in case they were not confident. At
the end of each run, another memory check slide was presented,
asking participants to recall the images associated with the
randomly presented cues.

Stimuli and Visual Display
Stimuli were presented using MATLAB Psychtoolbox-31,
which was synchronised with the BrainVision Recorder 2.0.4
(BrainProducts R©), on a 22-inch Samsung S22C450 monitor
with a resolution of 1280 × 1024 and a 75 Hz refresh rate.
The monitor was placed centrally at 80 cm distance from the
observer. Stimuli were colour images of animals and objects
drawn from multiple open-source visual image databases with a
visual angle ranging from 3◦ to 4.7◦. The visual display included
a white background and a black fixation cross that was presented
in the 0.3 s inter-stimulus interval.

Electroencephalography Data
Acquisitions
EEG was recorded while participants performed the task. EEG
was registered from 60 scalp locations with Ag–AgCl electrodes
arranged in an electrode cap (Easycap) according to the extended
10-10-system, using a BrainAmp DC amplifier (BrainProducts).
The EOG was recorded through electrodes placed above the left
eye (vertical EOG) and at the outer canthi (horizontal EOG).
As a recording reference, a ring-electrode was placed on the
tip of the nose. The ground electrode was placed at position
FPz. Electrode impedances were kept below 15 k�. EEG data
were digitised at 1,000 Hz in a frequency range between 0.016
and 250 Hz. A notch filter was applied at 50 Hz. EEG data
were inspected visually, and interpolation of EEG channels was
applied. Eye movement artifacts in EEG data were removed by an
independent component analysis, run in MNE Python software
v0.21.0 (Gramfort et al., 2013). This was applied to continuous
data to identify and subsequently remove components with
a time course correlating with eye movement artefacts. Data
were offline band-pass filtered between 0.1 and 40 Hz before
averaging. For each condition (targets, lures, and fillers of 2-
and 4-rule runs, respectively) epochs from −300 to 800 ms after
onset of the stimulus were averaged by using the MNE Python
software v0.21.0. Trials were rejected during averaging using the
“autoreject” algorithm implemented in MNE Python (Jas et al.,
2017). EEG data were re-referenced to average reference, and the
mean amplitude of the 100 ms baseline interval was subtracted
at all time points on each channel. Only trials including a correct
response, given within the 1,000 ms interval after stimulus onset,
were retained. On average, 84 target trials per participant were
retained in 2-rule runs (SD = 14.8), and 82 target trials per
participant were retained in 4-rule runs (SD = 14.2). For lures, 94
trials per participant were retained in 2-rule runs (SD = 2.3), and
94 trials per participant were retained in 4-rule runs (SD = 1.8).
For filler, 1,148 trials per participant were retained in 2-rule runs
(SD = 8.9), and 1,147 trials per participant were retained in 4-rule
runs (SD = 9.4).

1http://psychtoolbox.org/
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FIGURE 1 | The experimental paradigm. Top, before each experimental run, participants learned two or four novel cue-target associations (rules). Middle, in each
task chunk (29 s), a cue preceded a sequence of animate and inanimate objects. The cue indicated the target in the current chunk. Other images were fillers and
lures (images associated with a different cue). Bottom, sequence of task chunks in 2- and 4-rule runs.

Source Analyses
Source estimates were derived from EEG data by using the
MNE Python software v0.21.0 package in combination with
FreeSurfer (Version 6).2 A minimum norm estimation (MNE)
method (Hämäläinen and Ilmoniemi, 1994; Hauk, 2004) was used
that makes minimal a priori assumptions on the distribution of
cortical sources. EEG sensor configurations were co-registered
with a high-resolution structural T1-weighted MRI image
implemented in the MNE Python software, using digitizer points
from a standard montage template. The scalp surface of the MRI
image was reconstructed by using the automated segmentation
algorithms of the FreeSurfer software. By using the traditional
method for cortical surface decimation, the original triangulated
cortical surface (consisting of several hundred thousand vertices)
was down-sampled to a grid with an average distance between
vertices of 5 mm, which resulted in approximately 1,000 vertices.
The boundary element model was created with three layers for
scalp, outer skull surface, and inner skull surface. Dipole sources
were assumed to be almost perpendicular to the cortical surface,
with some variation in the tangential plane (one fifth of the
radial dimension). Note that source distribution time courses are
unaffected by the choice of EEG reference electrode. This is one of
the advantages of source space compared with scalp EEG analysis.

Source estimates were computed for each participant and
condition (targets, lures, fillers, and cues for 2- and 4-rule runs,
respectively). Time windows of interest for statistical analyses

2surfer.nmr.mgh.harvard.edu/

on EEG source estimates were defined based on the peaks in
mean EEG source activity across all vertices and conditions
of interest (targets, lures, and filler). Cues were excluded from
the main analysis due to their small number of trials. Only
correct responses were included in data analyses. Responses
to targets were considered correct if they occurred within
1,000 m following target onset (i.e., before onset of the following
stimulus); responses to cues, lures, and fillers were considered
correct if there was no keypress in this time period. To eliminate
chunks where participants may have missed a cue or searched
for the wrong target, all targets and lures for a particular chunk
were removed if no response was given to either of the two
targets, an equal number of responses were given to targets and
lures, or more responses were given to lures than to targets
(Tschentscher et al., 2017).

Signal from predefined regions of interest (ROIs) of the MD
network (Duncan, 2010; Tschentscher et al., 2017) was extracted
using two bilateral frontal and two bilateral parietal parcellations
of the cortical surface created by the neuroanatomical labels of the
Freesurfer software. We aimed for the ROIs capturing executive
control effects in regions of the MD network (Duncan, 2010),
as observed in the fMRI study by Tschentscher et al. (2017),
which used a very similar task design and observed individual
differences in fluid intelligence in a frontal-parietal network
including the ventro-lateral and orbito-medial prefrontal cortex,
as well as the posterior superior parietal lobule and angular gyrus.
These regions were covered by our frontal and parietal ROI labels,
respectively. However, we cannot be absolutely certain that the
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peaks of activity we see in our EEG source estimates correspond
exactly to peaks in fMRI activation from previous studies. For
this reason, whole-brain distributions of MNE source estimates
were obtained for those contrasts that showed significant effects
in ROI analyses, to explore those putative effects outside of our
pre-defined ROIs.

Time windows for statistical analyses (200–300 and 300–
500 ms) were defined based on mean signal intensity across all
vertices in source space for the average across all conditions of
interest (targets, lures, and fillers), as well as based on previous
EEG sensor level studies that reported early effects of individual
differences in executive functions and fluid intelligence from
200 ms post stimulus onset (Brumback et al., 2004; Rueda-
Delgado et al., 2019; Luo and Zhou, 2020).

RESULTS

Behaviour
Data from 40 participants entered the analysis. For all
participants rule learning, as measured by the retrieval-task in
the beginning and end of each run, reached 100% accuracy.
Our primary behavioural analyses concerned just the eight
main chunks of each run, examining misses to targets (no
key-press within 1,000 ms of stimulus onset) and false alarms
to lures (key-press in corresponding interval). The impact of
task complexity and IQ was assessed by applying an ANOVA
with the factors “complexity” (2- vs. 4-rules) and “IQ group”
(high-IQ vs. average-IQ). For misses, the Kolmogorow-Smirnow-
Lilliefors test was used to test for normality assumption in
each of the four conditions (high-IQ and average-IQ groups
on each complexity level). The data of each condition was log-
transformed for statistical analyses due to violation of normality
assumptions in two of the four conditions. Statistical analyses
were performed on averages over trials within each condition.
There was a significant main effect of complexity [F(1,38) = 17.25,
p < 0.001, η2 = 0.312], as well as a significant complexity × IQ
group interaction [F(1,38) = 5.79, p = 0.021, η2 = 0.132], which
was driven by highest percentages of misses in the average-IQ
group during 4-rule runs (mean percentage of misses = 2.45), and
lowest percentages of misses in the high-IQ group during 2-rule
runs (mean percentage of misses = 1.64) (Figure 2A). The main
effect of IQ group was not significant (p = 0.133).

To evaluate the proportion of correct responses (hits) in
relation to false alarms, we also calculated the sensitivity or
d’ index [referring to d’ = Z(hit rate) − Z(false alarm rate);
Macmillan and Creelman (2005)]. This is a measure of overall
performance accuracy (i.e., how well participants distinguished
between the two critical stimulus events; targets and lures).
The Kolmogorow-Smirnow-Lilliefors test was used to test for
normal distribution in each of the four conditions (i.e., high-
IQ and average-IQ groups on each complexity level). No
significant deviation from normal distribution was observed
in any condition. The analysis confirmed the main effect of
complexity [F(1,38) = 16.65, p < 0.001, η2 = 0.304] as well as the
complexity × IQ group interaction [F(1,38) = 6.68, p = 0.013,
η2 = 0.149], which was driven by the lowest d-prime score

in the average-IQ group during 4-rule runs (mean d-prime
score = 3.84), and the highest d-prime score in the high-IQ group
during 2-rule runs (mean d-prime score = 4.65). The main effect
of IQ group was not significant (p = 0.087; Figure 2B). The overall
percentages of misses and false alarms were low, ranging between
10 and 15 percent across participants, indicating good overall
ability to follow task instructions.

We also explored the percentage of false alarms to filler items.
The data of each condition was log-transformed for statistical
analyses due to violation of normality assumptions in three of the
four conditions. The overall number of false alarms to filler items
was below one percent in both average-IQ and high-IQ groups.
There was a significant main effect of complexity [F(1,38) = 6.68,
p < 0.014, η2 = 0.149], but no significant interaction with IQ
group (p = 0.088) and no significant main effect of IQ group
(p = 0.068).

To ensure that all participants adequately considered all four
rules in the 4-rule condition, we also examined misses and false
alarms in the brief task periods devoted to the 3rd and 4th rules
(Figure 1). The number of misses was low, and did not differ
significantly between IQ groups [mean number of misses for
average-IQ = 1.8, SD = 2.0; mean number of misses for high-
IQ = 1.2, SD = 1.15; t(38) = 0.921, p = 0.362]. There were no false
alarms to lures in the brief task periods devoted to the 3rd and
4th rule. The absence of significant IQ group effects might reflect
the lack of statistical power inherent in analyses of the 3rd and
4th rules, since those rules only appeared twice within each 4-
rule run. Overall, the results confirm that 3rd and 4th rules, like
the two rules in the main chunks that were used for comparisons
of 2- and 4-rule runs, were learned and followed.

Electroencephalography
We assessed the recruitment of the MD network during
performance of the task by extracting mean evoked source
estimates from four predefined ROIs within each hemisphere
based on parcellations of the Freesurfer software (supramarginal,
inferiorparietal, rostralfrontal, and caudalfrontal, see Figure 3A)
using the Desikan-Killiany Atlas (Desikan et al., 2006). Our main
interest concerned the impact of IQ and task complexity on the
processing of targets and lures. Two time windows were defined
based on mean signal intensity across all vertices in source space
for the average across target, lure, and filler conditions, and in line
with early effects of individual differences in executive control
and fluid intelligence from previous EEG sensor level studies
(Brydges et al., 2014; Amin et al., 2015; Luo and Zhou, 2020;
Figure 3B): 200–300 and 300–500 ms.

Average source estimate amplitudes were computed within
time windows and across vertices inside each of the ROIs. These
were subjected to an ANOVA with the factors “complexity” (2-
vs. 4-rules), “IQ group” (average-IQ vs. high-IQ), “condition”
(targets, lures, and fillers), “time window” (200–300 vs. 300–
500 ms), and “ROI” (caudalfrontal L/R, rostralfrontal L/R,
supramaginal L/R, and inferiorparietal L/R). For significant
interactions between the factors “condition,” “complexity,”and
“IQ group”, post-hoc ANOVAs were conducted including the
factors “complexity” (2- vs. 4-rules) and “IQ group” (average-IQ
vs. high-IQ). The Kolmogorow-Smirnow-Lilliefors test was used
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FIGURE 2 | Behavioural results from the eight main chunks of all experimental runs for high-IQ and average-IQ participants. (A) Percentages of misses for targets.
(B) Sensitivity index (d-prime) reflecting the proportion of correct responses (hits) in relation to false alarms.

to test for normality assumption in each of the four conditions
(high- and average-IQ groups on each complexity level). The data
of each condition was log-transformed for statistical analyses due
to violation of normality assumptions.

No significant interaction between the factor “condition”
(target, lures, and filler) and the factors “complexity” and “IQ
group” was observed, suggesting a similar response pattern

FIGURE 3 | Regions and time windows of interest for EEG source analyses.
(A) Bilateral frontal and bilateral parietal parcellations of the cortical surface
created by neuroanatomical labels of the Freesurfer software based on the
Desikan-Killiany Atlas (Desikan et al., 2006). (B) Overall activation time
courses in evoked source estimates averaged across all vertices and task
conditions of interest (targets, lures, and fillers). Gray areas indicate the time
windows used for statistical analyses.

for targets, lures, and fillers. A significant IQ group × ROI
interaction [F(7,266) = 4.97, p < 0.001, η2 = 0.116], a significant
complexity × IQ group × ROI interaction [F(7,266) = 2.11,
p = 0.043, η2 = 0.052], a significant time window × IQ group
× ROI interaction [F(7,266) = 2.71, p = 0.010, η2 = 0.066],
and a significant complexity × ROI × time window interaction
[F(7,266) = 3.75, p = 0.001, η2 = 0.090] was observed,
suggesting that an interaction between the factors “IQ group”
and “complexity” varied for time windows as well as ROIs.
The responses for targets, lures, and fillers were averaged and
ANOVAs with the factors “complexity” and “IQ group” were run
for each time window as well as ROI separately.

For the 200–300 ms time window, significant main effects
of IQ group were observed in left inferioparietal cortex
[F(1,38) = 5.03, p = 0.031, η2 = 0.116], right inferiorparietal cortex
[F(1,38) = 11.53, p = 0.001, η2 = 0.232] and right supramarginal
cortex [F(1,38) = 7.74, p = 0.008, η2 = 0.169]. No significant
effect of complexity or interaction with IQ group was observed.
Source estimates for each of these ROIs were averaged across
complexity conditions and subjected to brain-behaviour analyses:
Bonferroni corrected correlations between source estimates from
these ROIs and measures of performance accuracy (d’ indices
averaged across levels of complexity) revealed that higher source
amplitudes in left inferiorparietal cortex were associated with
better task performance (r = 0.401, p= 0.030 Bonferroni corrected
by three ROIs) (Figure 4A).

For the 300–500 ms time window, a significant main
effect of IQ group was observed in left caudalfrontal cortex
[F(1,38) = 4.28, p = 0.044, η2 = 0.101], and in right inferior
parietal cortex [F(1,38) = 7.31, p = 0.010, η2 = 0.161]. A main
effect of complexity occurred in right inferiorparietal cortex [IQ
F(1,38) = 11.23, p = 0.001, η2 = 0.228]. In order to address
putative effects of lateralization in frontal ROIs, we additionally
performed a Bayesian Repeated Measure ANOVA with the
factors “complexity” (2- vs. 4-rules), “IQ group” (average-IQ vs.
high-IQ) on source current extracted from the right caudalfrontal
cortex in the 300–500 ms time window. A BF01 of 1.54 suggested
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FIGURE 4 | Region of interest analyses in pre-defined time windows. (A) The plot shows EEG source current indicating the significant main effect of IQ group in left
inferiorparietal cortex in the 200–300 ms time window, and the significant correlation between EEG source current and task performance (d’ scores). (B) EEG source
current indicating the significant main effect of IQ group in left caudalfrontal cortex in the 300–500 ms time window, and the significant correlation between EEG
source current and task performance (d’ scores).

weak evidence for the null hypothesis concerning the main
effect of “IQ group.” Again, sources estimates for each of
these two ROIs were averaged across complexity conditions
and subjected to brain-behaviour analyses: Bonferroni corrected
correlations between source estimates from these ROIs and
measures of performance accuracy (d’ indices averaged across
levels of complexity) revealed that higher source amplitudes
in left caudalfrontal cortex were associated with better task
performance (r = 0.377, p = 0.048 Bonferroni corrected by three
ROIs; Figure 4B).

Exploratory analyses of the cue trials did not reveal any
significant effect in ANOVAs with the factors “complexity” and
“IQ group” within the pre-defined ROIs and time windows.

To check for activity outside of a-priori defined ROIs for
the observed main effects of IQ group, we ran a whole-brain
non-parametric two-sample cluster-level test for spatio-temporal
data (Maris and Oostenveld, 2007) on EEG minimum norm
estimates, including the conditions of targets, lures, and fillers.

After correction for multiple comparisons, no significant IQ
group effect was observed at the whole-brain level. To make sure
our initial approach of a priori selecting ROIs did not lead us
to miss any important effects, whole-brain analyses were re-run
at a lenient threshold of p(un-corrected) = 0.030, which was the
significance level of the earliest IQ group effect in ROI analyses.
Effects of IQ group only appeared within or adjacent to regions
of the MD network, as used in our ROI analysis (Figure 5). The
result confirms that MD network regions were most affected by
our experimental manipulations, and it indicates that the selected
a priori defined ROIs captured any IQ effects well.

DISCUSSION

This study addressed the spatio-temporal neural dynamics of
human fluid intelligence. The results link individual differences
in fluid intelligence to an early process of attention focus
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FIGURE 5 | Distribution of test statistic values for the contrast between IQ
groups (high-IQ – average-IQ) from the whole-brain non-parametric
cluster-level test for spatio-temporal data, displayed for the two windows of
200–300 and 300–500 ms, respectively. The highlighted left-hemispheric
parcellations indicate ROIs in which higher source amplitude levels in the
high-IQ group were associated with better task performance, in contrast to
the average-IQ group (cf. correlation analyses of Figure 4).

on task-critical information, supported by dorsal MD network
regions. In our paradigm, novel rules have been instructed across
experimental runs (either 2 or 4 rules). Within each run, only
one rule was cued at a time in a continuous sequence of stimuli.
Within 4-rule runs, only 2 out of 4 rules were cued at those
chunks that were used for comparisons of 2- and 4-rule runs.
Thus, although the number of instructed rules varied across
runs, the complexity of each task period remained constant.
Knowledge of rules was assessed in the beginning and end of
each run. Participants from average-IQ and high-IQ groups were
instructed to respond to the cued target and to ignore the images
associated with a different cue (lure), as well as those never
associated with any cue (fillers).

First individual differences in fluid intelligence emerged in
evoked EEG source estimates in bilateral inferiorparietal cortices
in early time-windows of task processing from 200 ms onward, as
well as in left caudalfrontal cortex at a slightly later time window,
from 300 ms onward. Participants of higher fluid intelligence
showed stronger neural signal in these regions. Whole-brain
source analyses confirmed the localization of these effects within,
or adjacent to, regions of the MD network: early individual
differences in fluid intelligence were observed in bilateral parietal
MD regions in the 200–300 ms time window. Subsequent
individual differences in fluid intelligence were observed in left-
hemispheric frontal MD regions in the 300–500 ms time window.
This indicates that MD regions do not operate in parallel across

time, as it might have been discussed based on fMRI research,
but rather show a differential activation pattern in early and
later phases of cognitive processing. For the first time, this study
provides spatio-temporal neural signatures of fluid intelligence
from MD regions, with a millisecond temporal resolution and
good anatomical precision within centimetre-range. Crucially,
individual differences in fluid intelligence did emerge already in
early phases of rule selection from 200 ms onward, in which the
rule in operation had to be foregrounded from the memorised
task set. However, concerning the putative lateralization of
frontal MD region effects in the 300–500 ms time window, it is
important to note that the absence of individual differences in
fluid intelligence in right frontal MD region might be due to lack
of statistical power rather than hemispheric-asymmetries within
the MD network. Furthermore, we cannot rule out that any
other cognitive mechanism related to fluid intelligence, or even
unrelated to fluid intelligence, i.e., salience or attention (Friston,
2009), has contributed to the discussed neural activation pattern
in the MD network.

In brain-behaviour correlation analyses, earliest neural
differences of intelligence groups in left inferiorparietal cortex
also predicted participants’ performance in rule use, i.e., their
ability to foreground the correct rule at a given point in
time from the memorised task set. This indicates the specific
role of this brain region in fluid intelligence, as it seems
to support an early process of attentional focus on critical
task rules. Thus, our results on the spatio-temporal neural
dynamics specify the role of left-hemispheric parietal MD
regions in early cognitive processes underlying fluid intelligence.
This highlights the importance of analysing time-resolved
neural correlates of individual differences in fluid intelligence,
while previous fMRI studies reported spatially indifferent
responses as a function of fluid intelligence across the whole
MD network (Duncan and Owen, 2000; Tschentscher et al.,
2017).

On the behavioural level, our results are consistent with
previous research reporting a phenomenon of goal neglect
in individuals with lower fluid intelligence (Duncan et al.,
2008; Bhandari and Duncan, 2014). In goal neglect, task
requirements are repeatedly ignored during performance,
although participants accurately describe them before and after
testing. We observed a main effect of complexity (2- vs. 4-rule
runs) in task accuracy, as well as an interaction between fluid
intelligence (average-IQ vs. high-IQ groups) and complexity.
This behavioural interaction effect reflects the particular difficulty
of average-IQ participants in foregrounding and implementing
the specific rule of the current task period, when the rule was to
be drawn from a larger overall set.

We here add crucial information on the spatio-temporal
neural dynamics of fluid intelligence to the results from our
recent fMRI study using the same task paradigm (Tschentscher
et al., 2017): in both studies we observed higher percentages of
errors in behavioural performance for average-IQ participants
during 4-rule runs. Moreover, we replicated the weaker neural
responses of average-IQ participants for task-relevant stimuli
in regions of the MD system, confirming our previous claim
that weak recruitment in lower-ability individuals reflects poor
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attentional focus, or poor discrimination of critical events from
the ongoing task background (cf. Tschentscher et al., 2017).
Interestingly though, in the current study we did not observe a
significant effect of task complexity on the neural level, in contrast
to the previous fMRI study, while we replicated effects of task
complexity in behavioural performance measures. The absence of
task complexity effects on the neural level might be due to overall
differences in mean IQ scores across studies, which were higher
in the current study in both average-IQ and high-IQ groups. It
might be also due to the precise temporal resolution of neural
responses in the current study, which was able to differentiate
between individual stages of cognitive processing, i.e., between
early processes of attentional focus and later rule execution, in
contrast to the previous fMRI research.

Our data suggest that individual differences in fluid
intelligence are linked to a process of attentional focus on
task-critical information in early time windows from 200 ms
onward. As such, these results are related well with previous
evoked EEG analyses at the sensor level, suggesting that early
individual differences within 200–300 ms time windows are in
particular predictive for levels of executive control and fluid
intelligence in children and adult populations (Wronka et al.,
2013; Brydges et al., 2014; Amin et al., 2015; Luo and Zhou,
2020). These studies reported stronger amplitudes about 300 ms
post stimulus-onset during an oddball task in adult participants
with higher scores on the Raven’s Advanced Progressive Matrices
test (Wronka et al., 2013), as well as during a learning and
memory task in higher-intelligent adult participants (Amin
et al., 2015). Higher amplitudes and a shorter latency of effects
were also observed in 200–300 ms windows during a working
memory task in highly intelligent children (Luo and Zhou,
2020). Moreover, our results are consistent with previous EEG
studies linking individual differences in fluid intelligence to
a parietal component of the P3-family (P3b component) that
has been associated with rule learning and the allocation of
attentional resources to task relevant features (Amin et al.,
2015; Teixeira-Santos et al., 2020). We here replicate individual
differences in fluid intelligence in EEG sources analyses within
the same time windows, and for the first time link these effects
to specific neural responses in left parietal and left caudalfrontal
regions, respectively.

In our data, the left inferiorparietal cortex is linked with
earliest cognitive processes underlying individual differences in
fluid intelligence. The inferiorparietal cortex is part of the dorsal
attention network, as well as the MD system (Yeo et al., 2011;
Santarnecchi et al., 2017b). It has been previously associated
with visual-spatial attention and attentional orientation, as well
as with the core processes underlying executive control (Clark
et al., 2017). By using graph theory and meta-analytic functional
profiling, it has been claimed that the frontoparietal executive
control network may exert top-down control over the dorsal
attention network to ensure that attention remains focused on
task-relevant information instead of distracting stimuli (Dixon
et al., 2018). This might explain why earliest effects as a
function of fluid intelligence occurred in parietal regions in the
current study: the complex target detection task required the
foregrounding and implementation of a specific rule (the target

in operation) over the course of a task chunk, while distracting
information (lures, i.e., the targets not in operation) had to
be cancelled out. Our data suggest that in particular the left
dorsal part of the MD network - putatively in interaction with
the dorsal attention network - is crucial for this process, by
linking stronger early neural responses in this region to high
fluid intelligence, and a process of attentional orientation to
task-relevant features.

To conclude, this study provides novel evidence on the specific
neural signatures of individual MD regions across the time-
course of complex cognitive processing. Specifically, we here
show that, amongst all MD system regions, the left parietal
cortex is in particular crucial for earliest processes underlying
individual differences in fluid intelligence: the allocation of
attentional resources to those parts of a task that are most
critical for behaviour.
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