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Abstract
Strong earthquakes cause aftershock sequences that are clustered in time according to a power decay law, and in space

along their extended rupture, shaping a typically elongate pattern of aftershock locations. A widely used approach to model

earthquake clustering, the Epidemic Type Aftershock Sequence (ETAS) model, shows three major biases. First, the

conventional ETAS approach assumes isotropic spatial triggering, which stands in conflict with observations and geo-

physical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, allowing smaller events to exert

disproportionate trigger potential over an unrealistically large area. Third, the ETAS model assumes complete event

records and neglects inevitable short-term aftershock incompleteness as a consequence of overlapping coda waves. These

three aspects can substantially bias the parameter estimation and lead to underestimated cluster sizes. In this article, we

combine the approach of Grimm et al. (Bulletin of the Seismological Society of America, 2021), who introduced a

generalized anisotropic and locally restricted spatial kernel, with the ETAS-Incomplete (ETASI) time model of Hainzl

(Bulletin of the Seismological Society of America, 2021), to define an ETASI space-time model with flexible spatial kernel

that solves the abovementioned shortcomings. We apply different model versions to a triad of forecasting experiments of

the 2019 Ridgecrest sequence, and evaluate the prediction quality with respect to cluster size, largest aftershock magnitude

and spatial distribution. The new model provides the potential of more realistic simulations of on-going aftershock activity,

e.g. allowing better predictions of the probability and location of a strong, damaging aftershock, which might be beneficial

for short term risk assessment and disaster response.
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1 Introduction

Strong earthquakes are usually observed to cause a pro-

nounced spatio-temporal pattern of aftershocks. More

precisely, according to the Omori-Utsu Law (Utsu et al.

1995), the temporal aftershock rate is subject to a power

law decrease with time t � tmain after the main triggering

event, that is,

gðt � tmainÞ ¼ ðt � tmain þ cÞ�p ð1Þ
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with the delay parameter c[ 0 (usually a few minutes to

hours) and the exponent p (usually in the range between

0:8� 1:2). It means that the temporal pattern of after-

shocks is dominated by events occurring within short time

after the mainshock. Figure 1a demonstrates this temporal

behavior for the Ridgecrest sequence in California, which

produced an M6.4 foreshock on July 4, 2019, followed by

an M7.1 mainshock within 34 hours on July 6, 2019.

The observed spatial patterns of aftershock sequences

stem from their tendency to occur on or close to the

mainshock rupture plane (Marsan and Lengliné 2008). The

larger the length-to-width ratio of this plane gets, the more

elongate the typical aftershock region becomes. In addi-

tion, a higher dip angle reduces the width of the 3D-to-2D

projection of the rupture plain to the earth’s surface and

therefore results in a scatter of two-dimensional aftershock

epicenters that can be increasingly well approximated by a

line segment.

The prevailing continental tectonic regime in southern

California with typically steep, strike-slip faulting favors

such elongated aftershock patterns in this region. With the

exception of the M6.7 1994 Northridge earthquake, all of

the most prominent mainshock-aftershock sequences of the

last 40 years (M6.6 1987 Superstition Hill, M7.3 1992

Landers, M7.1 1999 Hector Mine, M7.2 2010 Baja Cali-

fornia, M7.1 2019 Ridgecrest) demonstrate distinct linearly

elongate scattering of aftershock locations (Hainzl 2021).

In this context, the Ridgecrest sequence is a special case

as the M6.4 foreshock simultaneously ruptured two almost

orthogonal faults, leading to a double pattern of separate

linearly elongate aftershock clouds (Marsan and Ross

2021). Fig. 1b shows that the triggering M6.4 event (yel-

low pentagram) is located close to the intersection of the

two ruptured faults. In contrast, the M7.1 mainshock

(yellow hexagram) ruptured only one fault which appears

to be the extension of one of the faults activated by the

foreshock.

Analyzing and forecasting clustered seismicity is an

established discipline in seismological research. Its goal is

to understand the evolution of large aftershock sequences

and to predict their size, largest aftershock magnitude,

spatial distribution etc. A prominent approach to model

clustered seismicity is the so-called Epidemic Type After-

shock Sequence (ETAS) model, which describes earthquake

records as a superposition of independent background

seismicity and triggered earthquake sequences (Ogata

1988, 1998). The earthquake triggering component is

designed in terms of a branching process and characterized

by the triad of (1) trigger-magnitude dependent aftershock

productivity, (2) a temporal distribution of aftershock times

typically derived from the Omori Law (see Eq. 1), and (3)

an usually isotropic spatial distribution of aftershock

locations (e.g. Zhuang et al. 2002; Jalilian 2019). Particu-

larly, the aftershock productivity (i.e. expected number of

offsprings) for a trigger event with magnitude m is

kA;aðmÞ ¼ A expða ðm�McÞÞ; ð2Þ

where parameters A[ 0 and a[ 0 control the exponential

growth of the trigger potential and Mc is the cut-off mag-

nitude of the analyzed earthquake catalog.

Despite generally producing successful and insightful

estimation and forecast results, ETAS models are known to

be limited by a number of potential biases. In this article,

we present an approach that combines solutions for three

main short-comings of the conventional ETAS model, (1)

the isotropic spatial aftershock distribution, (2) the infinite

extent of the spatial kernel and (3) the short-term incom-

pleteness of earthquake records after strong triggering

events.

1.1 Bias 1: isotropic spatial distribution

The common assumption in ETAS models is that spatial

aftershock locations are distributed isotropically around the

triggering event. It is named as a shortcoming in many

publications because it stands in conflict with the above-

mentioned observation that aftershocks tend to occur close

to the (elongate) rupture plane of the triggering event

(Ogata 1998, 2011; Ogata and Zhuang 2006; Hainzl et al.

2008, 2013; Seif et al. 2017; Zhang et al. 2018). The

assumption of isotropy is reasonably valid for weak

earthquakes with small rupture extensions, but becomes

problematic for larger magnitudes, e.g. see the spatial

pattern of the Ridgecrest sequence in Fig. 1b. It has been

shown that inadequate spatial models can lead to an

underestimation of the productivity parameter a (Eq. 2)

because the numerous small events take over the role of

mimicking the ’’true’’ anisotropic distribution (Hainzl et al.

2008, 2013; Grimm et al. 2021).

1.2 Bias 2: infinite spatial extent

Under the common definition of an inifinite spatial kernel,

aftershock triggering is disproportionately associated with

the more numerous small events, that can more flexibly

mimic anisotropic event alignments than the few strong

mainshocks. This can lead to unrealistically far trigger

impact of small magnitudes and to a substantial underes-

timation of the direct aftershock productivity of strong

events, resulting in a smoothing of temporal event distri-

butions (Grimm et al. 2021).
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1.3 Bias 3: short-term aftershock incompleteness
(STAI)

Strong earthquakes typically cause incomplete aftershock

records immediately after their occurrence, mainly due to

an overlap of coda waves (Hainzl 2016a; de Arcangelis

et al. 2018). Figure 1c and (d) confirms this phenomenon

for the aftershock sequences of the M6.4 and M7.1

Ridgecrest events, respectively. Apparently, records of

smaller sized aftershocks are missing in the first minutes to

hours, somewhat foiling the power law decay of event rates

expected from the Omori-Utsu law (Eq. 1). The short-term

incomplete event records can therefore hide to a large

extent both the ’’true’’ Omori Law decay (Eq. 1) and the

’’true’’ aftershock productivity of the trigger event (Eq. 2)

and lead to an overestimation of Omori parameter c and an

underestimation of productivity parameter a (Hainzl

2021, 2016b; Page et al. 2016; Seif et al. 2017).

Data-driven uncertainties of event locations and cut-off

magnitude as well as the assumption of a time-invariant

seismic background may lead to further inaccuracies in the

parameter estimation (Harte 2013, 2016; Seif et al. 2017).

However, they can be neglected in our study because they

are either expected to be small in southern California

datasets (e.g. location and magnitude uncertainty) or do not

apply in an isolated sequence analysis (background miss-

specification).

1.4 Scope of this article

In this article, we combine an ETAS approach accounting

for short-term incomplete event records with the applica-

tion of a generalized, anisotropic spatial model that

restricts the spatial kernel to the local surrounding of the

trigger source. We demonstrate the functionality and

superiority of our approaches over the conventional,

Fig. 1 a Magnitudes versus event times of Ridgecrest Mw6.4 (red

dots) and Mw7.1 (blue dots) aftershock sequences. Event times are

denoted in days before/after Mw7.1 mainshock, the dashed black line

represents the time origin (M7.1 event time). Light blue and light red

dots mark aftershocks with magnitudes larger than 5. Yellow

pentagram symbolizes the Mw6.4 foreshock, and yellow hexagram

marks the Mw7.1 mainshock. b Aftershock locations of the

Ridgecrest Mw6.4 and Mw7.1 sequences. Legend as in a. c
Magnitudes versus logarithmic event times of Ridgecrest Mw6.4

sequence. The dashed red line represents a manually fitted estimate of

the empirical completeness function McðtÞ. d Magnitudes versus

logarithmic event times of Ridgecrest Mw7.1 sequence. The dashed

red line represents a manually fitted estimate of the empirical

completeness function McðtÞ
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isotropic ETAS model by means of forecasting experi-

ments for the Ridgecrest sequence.

We utilize the generalized anisotropic and locally

restricted spatial kernel suggested by Grimm et al. (2021),

which assumes uniform trigger density along an estimated

rupture line segment, with power-law decay to the sides

and at the end points of the rupture. Zhang et al. (2018)

pursued an even more detailed approach, which assumed

constant trigger rate in the entire rupture plane, with

power-law decay outside of it. Different versions of elliptic

Gaussian distributions were introduced and discussed by

Ogata (1998, 2011) and Ogata and Zhuang (2006). The

latter approaches successfully modeled spatial aftershock

patterns, however, they require a new set of parameters and

are therefore not flexibly combinable with the conven-

tional, isotropic functionality. In contrast, the kernel of

Grimm et al. (2021) represents a generalization of the

isotropic function and therefore allows simultaneous ani-

sotropic modeling of some events (e.g. above a certain

magnitude threshold) and isotropic modeling of the rest. In

order to address the abovementioned particularity of the

M6.4 Ridgecrest foreshock, rupturing two almost orthog-

onal faults, we further generalize the approach by allowing

a spatial kernel composed by a weighted superposition of

two distinct rupture line segments.

Additionally, we accounts for STAI by applying an

ETAS model version that incorporates rate-dependent

incompleteness of event records. Recognizing alternative

approaches that will be briefly described in the Methods

section, we choose for the ETAS-Incomplete (ETASI)

model as recently suggested by Hainzl (2021). For sim-

plicity and to sharpen its focus on the incompleteness

detection, Hainzl (2021) neglected the space dimension in

his model. As this article combines the ETASI time model

of Hainzl (2021) with an adequate, anisotropic spatial

kernel it can be seen as the space-including extension of the

latter. The focus of this study, however, is on the benefit of

modeling the spatial aftershock distribution by a general-

ized anisotropic spatial kernel, rather than the benefit of the

ETASI model.

This article is structured as follows. In the Methods

section, we introduce the conventional ETAS model and its

ETASI extension and define the anisotropic, locally

restricted spatial kernel. This section includes a description

of the estimation procedures for strikes and rupture posi-

tions and the spatial integral over anisotropic kernels. Next,

the Application section explains the three forecasting

experiments, introducing the data and time-space windows

for the parameter estimation and forward simulations.

Finally, we interpret and discuss our forecasting results and

draw our conclusions. Source codes for model estimation

and simulation are freely available in a Github repository

(see Data and resources).

2 Methods

The ETAS model, first introduced by Ogata (1988, 1998),

is a branching-tree type model which describes clustered

earthquake occurrences by consecutive triggering evolving

over multiple parent-child generations (i.e. allowing sec-

ondary aftershocks). The triggered seismicity is overlaying

a time-invariant background process.

In this section, we will first introduce the conventional,

isotropic ETAS model approach. Next, we will extend the

model to obtain a time-space version of the ETASI model

suggested by Hainzl (2021), which involves STAI into

parameter estimation. Mostly, notations are consistent with

Hainzl (2021). We will then define the anisotropic gener-

alization of the spatial kernel, which is compatible with

both the ETAS and ETASI model, and introduce the local

restriction of the kernel. Finally, we explain the fitting

algorithm for the strike angle and rupture position of ani-

sotropic trigger events and the methods for spatial integral

estimation.

2.1 ETAS-model

In the conventional ETAS model approach, the occurrence

rate of an earthquake with magnitude m, occurring at time t

and at location (x, y) is modeled by an inhomogeneous

Poisson process with a time-space-magnitude dependent

intensity function

kðt; x; y;mÞ ¼ f0ðmÞR0ðt; x; yÞ

where

f0ðmÞ ¼ b e�bðm�McÞ ð3Þ

is the ’’true’’ probability density function (pdf) of the fre-

quency-magnitude distribution (FMD) with Gutenberg-

Richter parameter b ¼ b=lnð10Þ (Gutenberg and Richter

1944), and

R0ðt; x; yÞ ¼ l uðx; yÞ

þ
X

i:ti\t

kA;aðmiÞ gc;pðt � tiÞ hD;c;qðriðx; yÞ;mi; liÞ ð4Þ

is the ’’true’’ occurrence rate of events with magnitude

m�Mc, at time t and at location (x, y). The ’’true’’ event

rate is modeled by a superposition of the time-invariant

seismic background rate l uðx; yÞ with parameter l[ 0

and a sum of the trigger rate contributions of all events i

that occurred prior to current time t. kA;aðmiÞ and gc;pðt �
tiÞ denote the aftershock productivity and Omori-Utsu Law

decay functions as defined in Eqs. (1) and (2), respectively.

hD;c;qðriðx; yÞ;mi; liÞ models distribution of aftershock

locations triggered by event i, with parameters D; c and
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q. The precise inputs and shape of the spatial kernel are

discussed later.

The term ’’true’’ means that the (physical) relationships

are expected to be observed with perfect earthquake

records. The main assumption of the conventional ETAS

model is that STAI does not significantly distort the ‘‘true’’

magnitude distribution and the ‘‘true’’ event rates.

2.2 ETASI model

2.2.1 Rate-dependent iIncompleteness

The concept of rate-dependent earthquake record incom-

pleteness assumes that the ’’true’’ relationships underlying

f0ðmÞ and R0ðt; x; yÞ are not accurately identifiable in

available earthquake catalogs because especially events

with small magnitudes are detected with lower probability

in periods of high seismic activity. In these periods, the

detection ability is limited typically due to overlapping

seismic waves (Hainzl 2016a, 2021).

Fitting the ’’true’’ relationships to incomplete data

records may therefore lead to significantly biased param-

eter estimates (Hainzl 2016a, b; Page et al. 2016; Seif et al.

2017; Hainzl 2021).

In recent years, there has been growing research interest

in how to account for short-term incomplete datasets. For

instance, Zhuang et al. (2017) developed a replenishment

algorithm to fill up likely incomplete time intervals by

simulated events, in order to obtain artificially complete

pseudo-records. Other authors, particularly mentionable

Omi et al. (2013, 2014), Lippiello et al. (2016),

de Arcangelis et al. (2018), Mizrahi et al. (2021) and

Hainzl (2021), tried to incorporate STAI directly into the

ETAS model fit. A rather simple workaround approach is

to remove likely incomplete time periods from the fitted

time interval using empirical completeness functions, such

as performed in Hainzl et al. (2013) and Grimm et al.

(2021). A comprehensive discussion and comparison of

various ETASI models is not in the scope of this article.

The choice for the ETASI model proposed by Hainzl

(2021) was made for rather practical reasons, mainly

because of its compatibility with existing code.

2.2.2 Model formulation

The working assumption of the ETASI model described

here is that an earthquake with magnitude m and occurring

at time t can only be detected by the operating seismic

network if no event of equal or larger magnitude occurred

within the blind time ½t � Tb; t�, where Tb is typically in the

range of some seconds to few minutes (Hainzl 2021).

Similar assumptions have formerly been formulated by

Lippiello et al. (2016), de Arcangelis et al. (2018) and

Hainzl (2016a).

Let N0ðtÞ be the expected number of events occurring

within the entire spatial window S during blind time

½t � Tb; t�,

N0ðtÞ ¼
Z t

t�Tb

ZZ

S

R0ðt; x; yÞdx dy dt � Tb

ZZ

S

R0ðt; x; yÞ dx dy;

where the approximation holds under the assumption that

event rates are approximately constant during the blind

time (Hainzl 2021). According to the ’’true’’ FMD (Eq. 3),

each of the N0ðtÞ events has a probability of e�b ðm�McÞ to
exceed magnitude m. We define the detection probability

pdðm; tÞ of an earthquake at time t with magnitude m as the

probability that no equal or larger event occurred during

blind time Tb, i.e.

pdðm; tÞ ¼ e�N0ðtÞ e�b ðm�McÞ
:

Following the derivations in Hainzl (2016b, 2021), we

obtain the ’’apparent’’, incompleteness-biased FMD

f ðm; tÞ : ¼ f0ðmÞN0ðtÞ
pdðm; tÞ

1� e�N0ðtÞ

and the ’’apparent’’ event rate

Rðt; x; yÞ :¼ R0ðt; x; yÞ
N0ðtÞ

1� e�N0ðtÞ
� �

:

The term ’’apparent’’ signalizes that the functions f and R

do not represent the ’’true’’, but the observable relation-

ships that are possibly distorted by rate-dependent record

incompleteness. In periods of high seismic activity, the

’’apparent’’ FMD exhibits a larger relative frequency of

strong events (because they are more likely to be detected)

and an event rate lowered by detection capacity. We obtain

the ETASI intensity function

kðt; x; y;mÞ ¼ f ðm; tÞRðt; x; yÞ

¼ f0ðmÞR0ðt; x; yÞ pdðm; tÞ

The two underlying, simplifying assumptions in the ETASI

model are that (1) the blind time Tb is magnitude-inde-

pendent, which Hainzl (2021) justifies by typically shorter

source durations than travel times of coda waves, and (2)

that the seismic network is equally occupied for blind time

Tb by any event in the entire investigated spatial window.

The second assumption is reasonable for a small spatial

window, e.g. when analyzing an isolated sequence. When

fitting the ETASI model over a larger region, it needs to be

checked that relevant clusters do not evolve at the same

time but at distinct locations as they would be assumed to
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simultaneously occupy the entire seismic network. A rea-

sonable approach to prevent undesired biases is to choose a

larger cut-off magnitude.

2.2.3 Log-likelihood optimization

The parameter vector h ¼ fl;A; a; c; p;D; c; q; b; Tbg of

the ETASI model is estimated by maximizing its log-

likelihood function LL ¼ LL1 � LL2 with

LL1 ¼
X

events j

ln f0ðmjÞR0ðtj; xj; yjÞ pdðmj; tÞ
� �

;

LL2 ¼
Z 1

Mc

Z T2

T1

ZZ

S

kðt; x; y;mÞ dx dy dt dm

� T2 � T1
Tb

� 1

Tb

Z T2

T1

e
�Tb
RR

S
R0ðt;x;yÞ dx dydt

ð5Þ

where the sum in LL1 goes over all target events in the

magnitude-time-space window ½Mc;1Þ � ½T1; T2� � S and

LL2 integrates over this model space. In our study we

optimized the parameter vector h using the gradient-based

Davidson-Fletcher-Powell algorithm (Ogata 1998; Zhuang

et al. 2002; Jalilian 2019).

2.3 Generalized anisotropic spatial kernel

2.3.1 Conventional isotropic kernel

The spatial kernel hD;c;qðri;mi; liÞ in Eq. (4) models the 2D-

distribution of aftershocks locations. In conventional ETAS

model approaches, the triggering event is assumed to be a

point source, distributing its offsprings isotropically around

its epicenter. A classical definition of an isotropic kernel

(see Ogata 1998; Grimm et al. 2021; Jalilian 2019) is

hisoD;c;qðriðx; yÞ;miÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

where riðx; yÞ denotes the point-to-point distance between a
potential aftershock location (x, y) and the coordinates

ðxi; yiÞ of the triggering event i, and mi is the magnitude of

the event i. The kernel is constrained by the parameters D

and c that control the magnitude-dependent width of the

kernel, and parameter q that describes the exponential

decay of the function with growing spatial distance.

2.3.2 Anisotropic generalization

Here we use the anisotropic generalization of the spatial

kernel that was first introduced by Grimm et al. (2021),

hD;c;qðriðx; yÞ;mi; liÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ 2 li riðx; yÞ þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

:

In this spatial model, the distance term riðx; yÞ denotes the
point-to-line distance between the potential aftershock

location (x, y) and the estimated rupture segment of trig-

gering event i with length li. That is, the kernel assigns

constant density along the rupture line segment, with a

power-law decay to the sides. Note that

hD;c;qðriðx; yÞ;mi; 0Þ ¼ hisoD;c;qðriðx; yÞ;miÞ;

i.e. the anisotropic kernel is a generalization and collapses

to the isotropic model if the triggering location is assumed

to be a point source with rupture extension li ¼ 0. There-

fore, the generalized spatial model can be used for mixing

approaches of both kernels, e.g. applying anisotropy to

events i with magnitudes mi �Maniso:

li ¼
0; for mi\Maniso; (isotropic trigger)

10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð6Þ

The scaling relationship for anisotropic events is taken

from the estimate of subsurface rupture lengths for strike-

slip faulting events, provided in Wells and Coppersmith

(1994). Alternative relationships can be applied, too, but

are not expected to impact results.

2.3.3 Local spatial restriction

Both the conventional isotropic and the generalized ani-

sotropic kernels are defined in terms of a probability den-

sity function (pdf) over infinite space. Realistically,

however, small earthquakes should exert only a locally

restricted trigger influence. Grimm et al. (2021) showed

that an infinite spatial extent may lead to an underestima-

tion of the aftershock productivity parameter a because it

overestimates the triggering power of smaller events at the

cost of the larger events. A manual analysis of the spatial

aftershock patterns of the six Californian mainshocks

named in the introduction shows that the cloud of potential

aftershocks typically lies within one estimated rupture

length (by Wells and Coppersmith 1994) from the epi-

center. In case of an anisotropic shape of the kernel, the

area of half a rupture length around the extended rupture

segment seems sufficient. According to this observation,

we choose a spatial restriction Ri for event i according to

Ri :¼
10�2:57þ0:62mi ; for mi\Maniso; (isotropic trigger)

0:5 � 10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð7Þ
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where again we use the strike-slip faulting subsurface

rupture length scaling from Wells and Coppersmith (1994).

In other words, the spatial kernel for event i is only

defined in the restricted area

SiðRiÞ :¼ fðx; yÞ 2 R2jriðx; yÞ�Rig

and set to 0 outside of it. Note that the restricted area SiðRiÞ
can assume isotropic and anisotropic shapes, depending on

the point-to-point or point-to-line definition of the distance

term riðx; yÞ. In order to retain the property of a pdf, we

need to rescale the kernel within the restricted area by its

analytical integral

HD;c;qðRi;mi; liÞ : ¼
ZZ

SiðRiÞ
hD;c;qðriðx; yÞ;mi; liÞ dx dy

¼ 1� 1þ 2 li Ri þ pR2
i

D expðcðmi �McÞÞ

� �1�q

:

ð8Þ

The integral term holds true for both isotropic (li ¼ 0) and

anisotropic triggers (li [ 0). We obtain the generalized,

restricted and anisotropic spatial kernel

hrestrD;c;qðriðx; yÞ;mi; liÞ ¼
hrestrD;c;qðriðx; yÞ;mi; liÞ
HD;c;qðRi;mi; liÞ

; if riðx; yÞ�Ri;

0; if riðx; yÞ[Ri:

8
><

>:

ð9Þ

2.4 Estimation of strike and epicenter location

The restricted, anisotropic spatial kernel in Eq. (9) requires

a strike angle to define the orientation of the extended

rupture for anisotropic triggers with li [ 0. In retrospect,

the strike angle could be taken from one of the numerous

publications about the Ridgecrest sequence or from focal

mechanism datasets such as the Global Moment Tensor

Catalog, the ISC-GEM Global Instrumental Earthquake

Catalog or from local datasets of the Southern California

Earthquake Data Center (SCEDC). In order to perform a

realistic forecasting test case, however, we should build

upon instantaneous strike estimates such as from local

agencies (e.g. the United States Geological Survey), which

are typically available within several minutes to hours.

Here, we used the strike estimation algorithm proposed

by Grimm et al. (2021), that optimally fits the rupture

segment through the cloud of early aftershock locations by

maximizing the contributed spatial rate under initial spatial

parameter guesses. To be more precise, we ran through

possible strikes in 1	 steps (i.e. f1	; :::; 180	g where we can
neglect all strikes larger than 180	 because we do not

account for dip direction in our model). We also moved the

rupture along each strike angle in order to test different

positions of the rupture segment relative to the fix epi-

center. Here, we go through possible relative positions in

0.01-steps (i.e. f0; 0:01; 0:02; :::; 0:99; 1g), where 0 and 1

means that one of the ends of the rupture segment coincides

with the epicenter, and 0.5 denotes the situation where the

rupture embeds the epicenter directly in its center. Among

all combinations, we searched the orientation and rupture

position that maximizes the forward trigger contribution of

the anisotropic event i to subsequent events j within a fixed

duration Dt ¼ 1 hour, i.e. with ti\tj\ti þ Dt. The for-

ward trigger contribution of event i is computed as
X

t:ti\tj\tiþDt

hrestD;c;qðriðxj; yjÞ;mi; liÞ: ð10Þ

In order to avoid that the rupture orientation and position is

dominated by single events that occurred very close to the

segment candidate, we applied a minimum distance of 0.2

kilometers.

Here, we use the initial spatial parameters D ¼ 0:0025,

c ¼ 1:78 and q ¼ 1:71 derived from the results of an iso-

tropic ETAS model for a long-term California dataset,

locally restricted to R ¼ 2:5 rupture lengths, by Grimm

et al. (2021). Tests have shown that modified initial

parameters changed the level of the sum of forward rate

contributions, but led to similar strike and epicenter loca-

tion estimates. We also tested multiple durations Dt up to

30 hours and found that the estimation procedure provided

very similar estimates for strike and rupture position. It

shows that the rupture orientation and position can be

appropriately identified soon after the trigger event

occurred.

In the Application section we present the strike and

rupture position estimation for the example of the M6.4

and M7.1 Ridgecrest events.

2.5 Estimation of spatial integral

The computation of the log-likelihood function in Eq. (5)

requires the estimation of the spatial integral of R0 and

therefore hrestrD;c;q.

In the isotropic case, the integral can be estimated semi-

analytically by the radial partitioning method suggested by

Ogata (1998) and applied in the R package ETAS (Jalilian

2019). It uses the property, that the isotropic spatial kernel

can be integrated analytically over circular areas SiðRÞ,
according to Eq. (8). As Fig. 2a illustrates, the polygon

defining the spatial window S is partitioned into a fine grid,

with two neighboring boundary grid points having

approximately equal distances ~R to the point source coor-

dinate of event i. The integral of hrestrD;c;q over each of these

thin segments of a circle can then be approximated by the

analytical full integral, weighted by the ratio of the circle
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segment /=360	, where / is the angle enclosed by the

circle segment (Jalilian 2019; Ogata 1998).

Similarly, an anisotropic spatial kernel can be integrated

analytically over an anisotropic region Sið ~RÞ with maxi-

mum distance ~R to the extended rupture. Due to the non-

circular shape of region SiðRÞ for anisotropic triggers,

radial partitioning can be only performed at both ends of

the rupture segment. As Fig. 2b illustrates, in a similar way

we use ’’bin partitioning’’ in the space orthogonal to the

rupture. Unfortunately, in the anisotropic case, the weights

/=360	 of the circle segments at both ends of the rupture

only relate to the part of the integral that is estimated by

radial partitioning. Similarly, the weight of a bin of size D l

is D l
2 li

relative to only the orthogonal space on both sides of

the rupture segment. In each iteration of the parameter

estimation, the shares of the radial and the orthogonal

integral parts change and need to be determined numeri-

cally before each iteration. This comes at the computa-

tional cost of approximately doubled run-time, given that

only the minority of strong earthquakes with magnitude

M�Maniso are modelled anisotropically.

3 Application

We carry out three forecasting experiments to check the

quality of the previously defined models in predicting the

observed Ridgecrest M6.4 and M7.1 sequences. Each

forecasting experiment consists of three main steps, rep-

resented as blue boxes in Fig. 3:

• Parameter Estimation: Estimate model parameters for

a specified event sub-set of southern Californian

earthquake data

• Forward Simulation: Use the fitted model parameters

to conduct 10,000 forward simulations of the Ridge-

crest M6.4 or M7.1 sequence, respectively.

• Evaluation: Analyze simulated sequences and compare

to the observation.

In the following, we first introduce the basic earthquake

event set for California underlying this study, and define

the time-space windows used to obtain the event sub-sets

applied for parameter estimation. Next, we describe the

three forecasting experiments, rigorously defining the

magnitude-time-space windows applied for parameter

estimation and forward simulations. Each forecasting

experiment is repeated for five versions of the models

introduced in the Methods section, which are defined in

detail. Finally, we specify the forward simulation process

and attributes and measures to assess the quality of the

forecasts. Here, we also give an example of the estimation

of strike angles and rupture positions for the Ridgecrest

M6.4 and M7.1 events.

3.1 Data

As our basic event set, we downloaded the earthquake

catalog from the Southern California Earthquake Data

Center (SCEDC, Hauksson et al. 2012). The entire dataset

comprises 699,175 event occurrences between January 1,

1981, and December 31, 2019. Because magnitudes seem

to be clustered at values with one decimal, we round all

Fig. 2 Visualization of the spatial integral estimation needed for

computing the log-likelihood function (Eq. 5) for a isotropic triggers

and b anisotropic triggers. The box represents the boundary of the

spatial target region (polygon), gridded into small intervals. Red

crosses symbolize the epicenters of the triggering events. In a, the red

circle around the event represents the contour lines of an isotropic

spatial kernel and the shaded segments illustrate the radial partition-

ing method. In (b), the red box and semi-circles symbolize the contour

lines of the anisotropic spatial kernel, and the shaded segments

illustrate the radial and bin partitioning method
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magnitudes to one decimal and use the cut-off magnitude

Mc ¼ 2:05 (Hutton et al. 2010; Hainzl 2021). We remove

events at depths larger than 40 km to avoid completeness

issues.

3.2 Forecasting experiments

Here, we describe in detail the design of the forecasting

experiments, summarized in Fig. 3.

3.2.1 Experiment 1

We estimate generic, long-term California model parame-

ters within the hexagonal polygon of southern California

defined in Hutton et al. (2010). In order to mitigate com-

putational costs, we restrict the time window to the period

between January 1, 1987, and December 31, 2018,

including the five prominent earthquake sequences before

Ridgecrest as named in the Introduction section, and

choose the larger cut-off magnitudeMc ¼ 2:95. The cut-off

magnitude is a trade-off between too large and too small

event record sizes that ensures reasonable run-time and

statistical robustness of parameter estimates. Additionally,

it avoids potentially biased estimates of the blind time

parameter Tb in large spatial areas due to simultaneous

clustering. The magnitude-time-space window contains

7,215 fitted target events. We account for external trig-

gering impact by including complementary events that

occurred after January 1, 1986, and in the surrounding of

0.5	 geographical degrees of the fitted area.

The estimated models are then applied to forecast the

Ridgecrest M6.4 foreshock sequence above cut-off

Table 1 Overview of the model

variants tested in this paper
Name Model version Maniso Ri Ri

(isotropic triggers) (anisotropic triggers)

ETAS conventional ETAS - 1 -

ETAS iso-r ETAS - 1RLi -

ETAS aniso-r ETAS 6.0 1RLi 0:5RLi

ETASI iso-r ETASI - 1RLi -

ETASI aniso-r ETASI 6.0 1RLi 0:5RLi

Non applicable cases are filled with ’’-’’. Spatial restrictions Ri of event i are denoted in terms of the

estimate rupture length (RLi)

Fig. 3 Summary of the forecasting experiments (from left to right):

The five model versions, listed in Table 1, are fitted to a long-term

California event sub-set (Experiments 1 and 2) and to the local M6.4

Ridgecrest sequence (Experiment 3). The estimated parameters are

applied to forward simulations of the Ridgecrest M6.4 sequence

(Experiment 1) and the Ridgecrest M7.1 sequence (Experiments 2 and
3). The predicted sequences are compared to the observed ones with

respect to three attributes, further described in the Attributes and
Measures section
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magnitude Mc ¼ 2:05, within a circular polygon with

radius 40 km centered in the M6.4 event location. The

simulated time window starts in the moment of the M6.4

event (July 4, 2019) and ends at the M7.1 mainshock event

time (July 6, 2019), thus it has a duration of approximately

34 hours. We initialize triggering seismicity by the event

history from June 1, 2019.

3.2.2 Experiment 2

In the second experiment, we use the same set of generic,

long-term California parameters, but apply it in a forecast

of the Ridgecrest M7.1 mainshock sequence above cut-off

magnitude Mc ¼ 2:95, starting at the M7.1 event time for a

duration of ten days. The spatial simulation window is

defined by a disk with radius of 75 km, centered in the

M7.1 event location. Again, we initialize triggering seis-

micity by the event history from June 1, 2019, here until

the M7.1 event time.

3.2.3 Experiment 3

In the third experiment, we simulate Ridgecrest M7.1

sequences with the same settings as for Experiment 2, but

based on parameter estimates fitted over the immediately

preceding M6.4 foreshock sequence. For the parameter

estimation, we use the same magnitude-time-space target

window as for the M6.4 sequence simulations in Experi-

ment 1. We account for external triggering by including

complementary events that occurred after June 1, 2019, and

within a disk with increased radius of 50 km.

3.3 Fitted models

Each forecasting experiment is carried out for five different

versions of the model introduced in the Methods section,

summarized in Table 1. The ’’ETAS conventional’’ model

serves as our benchmark and uses the most standard set-up

of an ETAS model (e.g. Ogata 1998; Zhuang et al. 2002;

Jalilian 2019). It applies an isotropic spatial kernel with

infinite spatial extent to all triggers. The ’’ETAS iso-r’’

model applies an isotropic kernel, but restricts the spatial

extent to one rupture length for all events, according to

Eq. (7). In the ’’ETAS aniso-r’’ model, all events with

magnitudes mi �Maniso ¼ 6:0 are modeled as an aniso-

tropic trigger source with a spatial restriction to half a

rupture length (Eqs. 6 and 7). The other events are modeled

as isotropic triggers, restricted to one rupture length. The

’’ETASI iso-r’’ and ’’ETASI aniso-r’’ models combine the

spatial kernel settings of the latter models with the ETASI

approach accounting for STAI.

3.4 Simulation process

For each forecasting experiment and model version, we

carry out 10,000 realizations of synthetic sequences to

obtain statistically stable results. At the beginning of each

simulation, we distribute the Poisson-sampled number of

background events, scaled by the size of the spatial area,

uniformly over space and time. The assumption of an

uniform spatio-temporal background event distribution

appears plausible within the short and small space-time

simulation windows.

Next, we sample the numbers of offsprings for the ini-

tiating event history and the background events. The

number of offsprings, depending on trigger magnitude m, is

drawn from a Poisson distribution with expected value

NðmÞ ¼ kðmÞ 1

1� p
ðT þ cÞ1�p � c1�p
� �

: ð11Þ

where k(m) is the aftershock productivity function in

Eq. (2) and the latter term is the integral from t ¼ 0 to a

maximum trigger duration t ¼ T (in days) over the Omori-

Utsu function in Eq. (1). We need to rescale the aftershock

productivity to obtain the expected number of offsprings

within T days, because the Omori-Utsu law is not nor-

malized (no pdf) and, therefore, typically does not integrate

to one. Thus, it interacts with the scaling parameter A of the

productivity function.

Each triggered event is then assigned an event time and

location according to inversion sampling from the

(rescaled) Omori-Utsu law and the spatial kernel. The

magnitude is sampled by the inversion method from the

estimated FMD in Eq. (3), applying a maximum magnitude

of 7.5 for California. The aftershock sampling routine is

repeated for every newly triggered event in the simulated

time-space window until no more events are sampled.

In order to make fair comparisons of simulated

sequences with the observed ones, we need to consider the

implications of STAI in the forecasts. The ETASI models

account for incomplete records in the parameter estimation

and therefore forecast the ’’true’’, i.e. complete, aftershock

sequence. According to its definition of event detectability,

we would need to delete all events that occurred within the

blind time Tb of an earlier event with larger magnitude.

For the sake of transparency and consistency with the

observations, we used an alternative approach and manu-

ally fitted empirical magnitude completeness functions

McðtÞ ¼
�1:4 log10ðtÞ þM �Mc � 4:75; (Ridgecrest M6.4);

�0:99 log10ðtÞ þM �Mc � 3:75; (Ridgecrest M7.1):

�

ð12Þ

to the logarithmic event time-magnitude scatter data of the

observed Ridgecrest M6.4 and Ridgecrest M7.1 sequences

in Fig. 1c and d.
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In the forecasts generated by the ETASI iso-r and aniso-

r models, we delete all events that fall in the supposedly

undetected range below the line of the simulated sequence.

In contrast, ETAS models estimate STAI-biased aftershock

productivities and therefore lead to predictions of the

incomplete, rather than the ’’true’’ size of the sequence.

Therefore, in forecasts generated by these models we do

not delete events.

3.4.1 Attributes and measures

For each model version and experiment, we want to assess

the quality of the forecasts with respect to three attributes,

in comparison with the observed sequence evaluated over

the same magnitude-time-space window.

We compute the predicted cumulative distribution

function (cdf) of the number of aftershocks and the pre-

dicted pdf of the largest aftershock magnitude out of the

10,000 forecasted sequences. As a quantitative measure of

the fit, we determine the exceedance probability that the

predicted distribution would forecast a larger or the

observed value. Extreme exceedance probabilities, either

close to 0 or 1, indicate an inadequate prediction of the

attribute.

To test the spatial distribution of aftershock locations,

we define a 1km � 1km spatial grid over the spatial sim-

ulation window of the forecasting experiment and count the

number of aftershocks in each simulation run, that occurred

closest to the respective grid points. We determine the

spatial distribution Dij of the i-th simulation run by divid-

ing the number of events occurred at each grid point j, Nij,

by the number of events in the i-th simulation run, Ni, i.e.

Dij ¼ Nij=Ni:

By repeating the same procedure for each simulation run,

we obtain 10,000 simulated spatial distributions Dij for

each model version. Finally, we average the individual

simulated distributions to obtain the predicted probability

Pj that an event occurs at grid point j.

The more events of the observed sequence have occur-

red at grid points with high predicted probabilities Pj, the

better is the forecast. Therefore, we quantify the goodness

of the spatial fit with the likelihood Lspace ¼
Q

grid points j P
Nobs
j

j where Nobs
j is the number of observed

events at grid point j with corresponding log-likelihood

LLspace ¼
X

grid points j

Nobs
j lnðPjÞ:

We compute the information gain of the models’ spatial

predictions relative to the ETAS conventional model by

IG ¼
LLspace � LL0space

Nobs

where LL0space is the benchmark result for the ETAS con-

ventional model (Hainzl 2021; Rhoades et al. 2014).

3.4.2 Strike and rupture position estimates

For anisotropic models, both the parameter estimation and

the forward simulations of the Ridgecrest M6.4 and M7.1

sequences require estimates of the strike angle and rupture

position of all events with magnitude M[ 6:0.

Figure 4a demonstrates the methodology, described in

the Methods section, for the Ridgecrest M6.4 foreshock.

The forward trigger rate contribution (y axis) from Eq. (10)

is plotted against the strike sample (x axis) and the sample

of relative rupture positions (red lines). The curves clearly

show a bi-modal shape, with peaks at strikes 34	 and 132	

and relative rupture positions 0.76 and 0.77. Fig. 4c visu-

alizes the optimized rupture orientation and position as a fit

through the cloud of potential aftershocks within the first

hour (red) or within 30 hours (yellow). It confirms the

earlier mentioned particularity of two almost orthogonally

ruptured faults. The strike 34	 rupture segment does not

perfectly fit the aftershock alignment, as segment must go

through the fixed M6.4 epicenter location which seems to

be slightly off the ruptured fault. Apparently, later after-

shocks have a very similar spatial distribution as the events

occurred within the first hour. For larger Dt, the M6.4 strike

estimates would vary by only 1	 or 2	, respectively.
Figure 4b shows the analogous analysis for the M7.1

Ridgecrest mainshock. Here, the maximizing properties are

strike 142	 and a relatively central rupture position 0.55.

The M7.1 event ruptured a single fault, resulting in an uni-

modal shape of the forward trigger contribution curves.

4 Results and discussion

In this section, we analyze and discuss the results of the

three forecasting experiments, summarized in Fig. 3. We

use the attributes and measures presented in the Applica-

tion section to evaluate the quality of the forecasts, com-

pared to the observed sequences. The model parameter

estimation results of both the generic California and the

Ridgecrest M6.4 sequence parameter fits are listed in

Table 2 and will help us to understand and explain features

in the forecasts. After a rigorous discussion of the fore-

casting results, we will mention some sensitivity tests that

we applied to check the robustness of our findings.
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4.1 Forecasting experiment 1

In the first forecasting experiment, we simulated the

Ridgecrest M6.4 sequence, starting at the time of the M6.4

earthquake occurrence, based on generic parameters, fitted

on a long-term and spacious Californian event set. The

simulation period covers the 34 hours until (but non-in-

cluding) the occurrence of the M7.1 mainshock.

4.1.1 Predicted aftershock productivity

Figure 5a shows the predicted cdfs of the number of

aftershocks for each model, compared to the observed

M6.4 sequence, which produced 633 events in the same

time-space window. Evidently, the ETAS conventional

model (with isotropic, unlimited spatial kernel) provides a

very inappropriate estimate, as it does not reach the

observed number in any of the 10,000 simulations.

According to the ETAS iso-r and ETAS aniso-r models, the

observed number of events would be a possible, but rather

unlikely scenario, with approximately 2.4 and 3.7% prob-

ability to exceed the observed value. The ETASI models

tend to only moderately (ETASI iso-r) or slightly (ETASI

aniso-r) underestimate the observed number.

To explain this observation, we consider that the size of

this relatively short sequence is predominantly influenced

by the amount of direct aftershocks of the initial M6.4

trigger event. According to the model parameter estimates

in Table 2 and Eq. (11), the M6.4 trigger event would only

produce approximately 17 direct aftershocks in the ETAS

conventional model, compared to 46 (ETAS iso-r), 49

(ETAS aniso-r), 66 (ETASI iso-r) and 74 (ETASI aniso-r)

Fig. 4 Strike and relative rupture position optimization using initial

ETAS parameter guesses D ¼ 0:0025; c ¼ 1:78; q ¼ 1:71. a, b: Sum
of forward trigger rate contributions to events within one hour against

strike sample (x axis) and relative rupture position sample (curves) for

a the M6.4 Ridgecrest foreshock and b the M7.1 Ridgecrest

mainshock. Text boxes show strike and relative rupture position

estimates at the curve maxima. c, d: Fitted rupture segments through

cloud of aftershocks after c the M6.4 Ridgecrest foreshock and d the

M7.1 Ridgecrest mainshock. Darker red and blue points represent

aftershocks within the first hour after the respective trigger event,

yellow and lighter blue points represent aftershocks within the first 30

hours. Yellow pentagram symbolizes Mw6.4 foreshock, and yellow

hexagram marks Mw7.1 mainshock. Thick black lines represent

estimated rupture locations according to the strikes and relative

rupture positions estimated in a and b.
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in the other models. The larger the parameter a, the more

direct aftershocks are expected for the M6.4 event.

As argued in the Methods section, the local restriction of

the spatial kernels prevents a disproportionate triggering

power of small events and in return increases the direct

aftershock productivity of the stronger events, character-

ized by a considerable increase of the parameter a in the

non-conventional models (Grimm et al. 2021). Besides, the

application of the ETASI model accounts for missing

aftershock records after strong trigger events and corrects

for the biased, underestimated aftershock productivity,

leading to an additional increase of a (Hainzl 2021).

Finally, we note that the majority of the M[ 6 mainshocks

included in the estimation time window from 1987 until

2018, are characterized by anisotropic aftershock patterns.

Consequently, more events are associated as direct after-

shocks of the strong mainshocks when we estimate the

parameters with the ETAS aniso-r or the ETASI aniso-r

model.

4.1.2 Predicted largest aftershock magnitude

Figure 5b shows the predicted pdfs of the largest after-

shock magnitude in the synthetic sequences, assuming that

the Gutenberg-Richter distribution holds over the entire

magnitude range up to the largest values. For each of the

five models, a kernel density function was computed for the

10,000 largest magnitude samples. In all models, the

observed M7.1 event would have been an extremely rare

case, with exceedance probabilities

Pðlargest magnitude� 7:1Þ� 0:43%. Even the second

largest, observed aftershock magnitude (M ¼ 5:4) was not

reached in approximately 75% of the simulations of the

best model (ETASI aniso-r).

To interpret this result, think of the largest aftershock

magnitude as the largest order statistic of the sample of

simulated events in a simulation run. Then, the expected

value of the sample maximum (i.e. the largest aftershock)

increases if (1) the sequence size becomes larger or (2) if

the magnitudes in the sample are distributed in a way that

they favor high values.

The underestimations of the observed sequence size,

shown in Fig. 5a and discussed earlier, cannot sufficiently

explain the miss-match of the predicted largest aftershock

magnitudes. Even the observed sample size (633 events)

would produce a M7.1 event with a probability of less than

1%, given the generic California estimates for the FMD

with b ¼ 0:98 (ETAS models) or b ¼ 1:01 (ETASI models;

see Table 2). If b ¼ 1, then each magnitude increment by 1

leads to a 10 times smaller probability of occurrence.

Therefore, one M7.1 event is only obtained, on average, for

a sequence with 100,000 aftershocks.

According to the results in Table 2, all models estimated

significantly smaller values b\0:8 for the observed

Ridgecrest M6.4 sequence, which favors the occurrence of

strong events. Note that the b estimates of the three ETAS

models are biased, because they are fitted for the ’’true’’

FMD using the evidently short-term incomplete M6.4

sequence event record (see Fig. 1c). The ETASI models

account for the missing smaller magnitudes and therefore

lead to corrected, larger b values.

If we would simulate the Ridgecrest M6.4 sequence

using its own estimation results (note that this is not a valid

forecasting experiment, but used for illustration purposes),

Table 2 Overview of model

results for generic (long-term)

California and Ridgecrest M6.4

parameter estimation

Parameter Generic California Estimates Ridgecrest M6.4 Estimates

ETAS ETASI ETAS ETASI

conv iso-r aniso-r iso-r aniso-r conv iso-r aniso-r iso-r aniso-r

l 1
days

0.16 0.21 0.21 0.21 0.21 0.11 0.30 0.29 0.18 0.30

A 0.027 0.012 0.011 0.010 0.009 0.052 0.024 0.022 0.022 0.019

a 1
mags

1.30 1.87 1.92 1.98 2.05 1.13 1.71 1.75 1.76 1.83

c 1
days

0.004 0.010 0.010 0.005 0.005 0.008 0.015 0.014 0.010 0.007

p 1.06 1.08 1.08 1.09 1.09 1.16 1.09 1.06 1.07 1.04

D Km2 0.085 0.037 0.110 0.037 0.107 0.135 0.085 0.469 0.080 0.399

c 1
mag

1.60 1.86 2.09 1.88 2.10 1.15 1.43 1.55 1.44 1.57

q 1.51 1.03 2.14 1.07 2.20 1.93 1.73 8.98 1.72 8.79

Tb sec 112.8 114.0 18.1 21.1

b 0.98 0.98 0.98 1.01 1.01 0.72 0.72 0.72 0.77 0.79

LL 20,806 17,478 18,209 16,321 17,107 6524 6322 6433 6013 6131

mbranch 0.73 0.60 0.59 0.61 0.60 1.38 1.76 1.89 1.54 1.52
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we would obtain an M� 7:1 event with 10.0% (ETAS

conventional), 25.9% (ETAS iso-r), 53.7% (ETAS aniso-r),

15.6% (ETASI iso-r) and 25.3% (ETASI aniso-r) chance.

4.1.3 Criticality

The branching ratios mbranch, i.e. the average number of

direct aftershocks per event, clearly exceed 1 in each model

Fig. 5 Predicted cdfs of the number of aftershocks (a, c, e) and

predicted pdfs of the largest aftershock magnitude (b, d, f) for

Experiment 1 (a, b), Experiment 2 (c, d) and Experiment 3 (e, f). Each
predicted distribution is based on 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), using the models indicated in the legend in the top left figure.

Vertical gray lines show the value of the observed sequence
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(see Table 2). According to these models, an earthquake

would trigger more than one direct aftershock on average,

which would cause the sequence to be unstable, with

exponentially increasing activity. The large branching

ratios are mainly driven by the small b values, which

substantially increase the occurrence probability of the

more productive, strong earthquakes.

The instability of the M6.4 sequence could be inter-

preted as an indication of an imminent, strong mainshock.

On the other hand, it is unlikely that the instability is based

on a model error, e.g. due to a substantial misfit of the

b-value due to few magnitude outliers. First, the FMD is

estimated accounting for all earthquakes at equal weights,

regardless of their magnitude. Therefore, the b value

Fig. 6 Predicted spatial event distributions for Experiment 1 (a, b),
Experiment 2 (c, d) and Experiment 3 (e, f). Each predicted

distribution is averaged over 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), based on the ETASI iso-r model (a, c, e) and the ETASI aniso-r

model (b, d, f) . The color bar indicates the predicted, logarithmic

probability that an event occurs at the respective grid point
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estimate is primarily controlled by the more numerous,

small magnitudes. Secondly, the M7.1 event magnitude

was not included in the b value estimation.

In summary, the generic California parameters are fitted

to a long-term catalog mainly consisting of

stable earthquake sequences and seismically quiet periods.

Therefore, it cannot adequately predict the magnitude

distribution of the M6.4 foreshock sequence, which is

characterized by instability due to a particularly flat FMD.

4.1.4 Spatial distribution

Figure 6a and b show the predicted spatial event distribu-

tions, averaged over the 10,000 simulation runs and eval-

uated on the 1 km � 1 km grid described in the Application

section, for the ETASI iso-r model (in (a)) and the ETASI

aniso-r model (in (b)). We overlay the observed event

locations to the logarithmic heat map of grid cell proba-

bilities. At first glance, the anisotropic spatial forecast in

(b) fits the observed, and clearly non-isotropical event

distribution much better than the isotropic counterpart in

(a).

In the isotropic model, all direct aftershocks are dis-

tributed point-symmetrically around the M6.4 trigger

event. Subsequent secondary triggering then takes place

around the new initiators. In the anisotropic model, the

direct aftershocks are distributed around the fitted rupture

segments of the two orthogonal faults (see Fig. 4). Sub-

sequent trigger generations then spread isotropically (if

M\Maniso) or anisotropically (if M�Maniso) around their

new initiators. In both plots, we can see a pronounced

boundary from green to blue color, indicating the spatial

restriction to one rupture length (isotropic model) and half

a rupture length (anisotropic model) around the trigger

source, according to Eq. (7). Spatial grid cells outside of

this boundary can only be activated by secondary trigger-

ing or background seismicity.

To quantify the quality of the spatial forecasts, we

computed the information gains relative to the ETAS

conventional model as described in the Application sec-

tion. Figure 7c shows the results for Experiment 1 in the

left group of bars. Both anisotropic models lead to a pro-

nounced improvement, which confirms the visual impres-

sion in Fig. 6a and b. The ETAS and ETASI iso-r models,

which differ from the conventional approach in terms of

the local spatial restriction, show a small information gain.

As we can see in Fig. 6a, none of the observed events

occurred outside of the spatial restriction. Therefore, the

restriction leads to a slightly more pronounced accumula-

tion of simulated event locations closer to the M6.4 trigger,

which coincides better with the observation.

4.2 Forecasting experiment 2

In the second forecasting experiment, we simulated the

Ridgecrest M7.1 sequence for a duration of 10 days based

on the same generic California parameters as used for

Experiment 1.

4.2.1 Predicted aftershock productivity

Figure 5c compares the number of aftershocks, predicted

by the five models, to the observed number of 3,273 events.

The forecasts show a very similar setup of curves as in

Experiment 1 (see Fig. 5a). The ETAS conventional model

clearly underestimates the observed number of events. The

ETAS iso-r and aniso-r models reach the observation in

Fig. 7 Summary plots of forecasting results. Predicted probabilities

per model that a the number of aftershocks exceeds the observation

(633 for Ridgecrest M6.4; 3,273 for Ridgecrest M7.1) and b the

largest aftershock magnitude exceeds the observation (7.1 for

Ridgecrest M6.4; 5.5 for Ridgecrest M7.1). Dashed horizontal lines

represent 2:5% and 97:5% quantiles. c Spatial information gains

relative to the ETAS conventional model prediction for the same

experiment. Legend in a holds for all plots
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about 6.5 and 14.1% of the simulation runs. Again, the

ETASI models provide the best approximations.

According to Eq. (11), the M7.1 trigger event would on

average trigger only roughly 53 direct aftershocks in the

ETAS conventional model, compared to 219 in the ETAS

iso-r, 242 in the ETAS aniso-r, 328 in the ETASI iso-r and

387 in the ETASI aniso-r model. As explained in detail for

Experiment 1, the reason is found in the parameter estimate

for a.

4.2.2 Predicted largest aftershock magnitude

Figure 5d shows the predicted pdfs for the largest after-

shock magnitude of the Ridgecrest M7.1 sequence. In

contrast to Experiment 1, all but the conventional model

provide very good forecasts, indicating that the generic,

long-term California estimates of the FMD with b � 1

coincide well with the FMD of the Ridgecrest M7.1

sequence and the instability of the sequence ended with the

occurrence of the M7.1 mainshock. The moderate under-

estimation by the ETAS conventional model can be

explained by the underestimated sequence size, which

substantially reduces the sample size of event magnitudes.

4.2.3 Spatial distribution

Figure 6c and d show the predicted spatial distributions of

aftershock locations, again for the ETASI iso-r and aniso-r

model. The visual impression, that the anisotropic model

provides a substantially better forecast, is confirmed by the

bar plot in Fig. 7c. The information gain by the anisotropic

models is more pronounced for the Ridgecrest M7.1

sequence, because it has a longer rupture extension

(
 68km by Wells and Coppersmith 1994) than the M6.4

event and it did not rupture two orthogonal faults, which

can be approximated more easily by an isotropic kernel.

4.3 Forecasting experiment 3

In the third forecasting experiment, we simulated the 10-

days Ridgecrest M7.1 sequence based on the parameters

fitted to the local Ridgecrest M6.4 foreshock sequence.

Since the instability of the sequence would lead to

exploding forecasts, we assumed the long-term estimated

FMD with b ¼ 1.

4.3.1 Predicted aftershock productivity

Figure 5e shows that the number of aftershocks is predicted

much more similarly by the five models than in Experi-

ments 1 and 2. It suggests that the particular features of the

model versions play a smaller role in the estimation over a

closed, local sequence than in the generic fit over a long-

term catalog with several sequences and seismically quiet

periods in between. The ETAS conventional model reaches

the observation in 4.4% of the simulation runs, the ETASI

aniso-r even overestimates the size of the sequence in

94.1% of the simulations. The other models show very

good predictions.

4.3.2 Predicted largest aftershock magnitude

According to Fig. 5f, our manual choice of b ¼ 1 led to

very realistic predictions of the largest aftershock magni-

tude. Together with the results for the number of after-

shocks, it shows that the Ridgecrest left the unstable state

after the M7.1 event by returning to the generic FMD,

while retaining a similar structure of aftershock

productivity.

4.3.3 Spatial distribution

Finally, Fig. 6e and f suggests that, compared to Experi-

ment 2, the spatial kernels fitted over the Ridgecrest M6.4

sequence are much narrower than those coming from the

generic, long-term model fit. This is confirmed by the

larger estimates of q and the smaller estimates of c in

Table 2. Figure 7c shows that the narrower spatial distri-

bution leads to a more pronounced information gain by the

local restriction and the anisotropy, relative to the ETAS

conventional model.

Note that, to some extent, the predicted spatial distri-

butions show traces of late or secondary aftershocks trig-

gered along the orthogonal M6.4 Ridgecrest fault, in

contrast to very few observed events in that area. This

might be an indication of an underestimated Omori

parameter p or an overestimated c, favoring pronounced

triggering over a longer time period.

4.4 Summary of forecast quality

Figure 7 shows a summary of the quality measures for the

three experiments, with respect to the predicted number of

aftershocks in Fig. 7a, largest aftershock magnitude in

Fig. 7b and spatial aftershock distribution in Fig. 7c. The

conventional model scores worst in each category. It con-

firms the results in Grimm et al. (2021), who argued that

the isotropic and unlimited spatial kernel assumes an

implausibly far trigger reach and leads to underestimated

cluster sizes.

According to Fig. 7a, the ETASI models seem to pre-

dominantly estimate more realistic aftershock productivties

than the ETAS models when fitted over the long-term

Californian catalog (see Experiments 1 and 2). When fitted

over the specific Ridgcrest M6.4 sequence, the bias of an

underestimated aftershock productivity seems to be
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balanced out by not cutting out undetected events. Aniso-

tropic models always lead to larger predicted sequence

sizes, in the case of Experiment 3 even to a substantial

overestimation.

The predictions of the largest aftershock magnitude,

shown in Fig. 7b, are reasonable for all but Experiment 1.

Apparently, the short-term incompleteness bias in the

ETAS models is of much less consequence for the FMD

than for the aftershock productivity.

According to Fig. 7c, as expected, the anisotropic

models predict more realistic spatial event distributions.

The spatial restriction leads to a much smaller

improvement.

4.5 Sensitivity of results

As a sensitivity study, we forecasted the Ridgecrest M7.1

sequence over a duration of 50 days. In a longer time

window, direct aftershock productivity has less dominance,

and is being displaced more and more by secondary trig-

gering. The underestimation of direct aftershock produc-

tivity (e.g. in the ETAS conventional model) typically goes

along with more pronounced secondary triggering, char-

acterized by larger estimates of the productivity constant A,

see Table 2. Therefore, we observed that the ETAS con-

ventional model caught up the missing events over time.

On the other hand, this indicates a temporal distribution of

aftershocks which is not in agreement with the observa-

tions. Other sensitivity tests, such as the model estimation

with varying cut-off magnitudes Mc or different time

windows for the generic California estimates showed

generally stable results.

5 Conclusion

In this article, we combined an ETAS approach with

generalized anisotropic and locally restricted spatial ker-

nels (Grimm et al. 2021) with the ETASI time model of

Hainzl (2021). The new features have the objective to solve

the three major biases of the conventional ETAS model,

which are the isotropic and spatially unlimited kernel as

well as the neglection of short-term incompleteness in the

fitted event records.

We estimated five different versions of the new ETASI

time-space model to a generic, long-term Californian event

set and to the specific Ridgecrest M6.4 foreshock sequence.

Then, we applied the fitted model parameters to generate

synthetic forecasts of the Ridgecrest M6.4 and the M7.1

sequences, which we analyzed regarding the predicted size

of the sequence, largest aftershock magnitude and spatial

aftershock distribution.

The results indicate that the ETAS conventional model

leads to a substantial underestimation of the number of

aftershocks due to its disproportionately small estimates of

the direct aftershock productivity for the M6.4 and M7.1

trigger events. The locally restricted ETAS models without

ETASI-extension provide more realistic, but still underes-

timated predictions, as they are affected by the bias of

short-term incomplete event sequences in the fitted event

set. The combination of ETASI model with locally

restricted spatial kernel seems to solve the bias and pro-

vides the most robust predictions in the forecasting

experiments. The anisotropy of the spatial kernel has a

positive impact on the model estimation, however, shows

its strength more clearly in the prediction of the spatial

event distribution of aftershocks.

More as a by-product, we find that the Ridgecrest M6.4

foreshock sequence showed instable behavior, favoring

strong aftershocks by a small Gutenberg-Richter parameter

b\0:8. The instability of the foreshock sequence can be

interpreted as an indication of an imminent strong main-

shock. In consequence, models fitted on the long-term,

stable Californian event records cannot adequately predict

the magnitude distribution of this sequence.

The new model provides a better understanding of

spatio-temporal earthquake clustering and solves three

major biases of the conventional ETAS model at once.

Particularly, it leads to better estimates of the aftershock

productivity and to improved forecasts of the size of a

sequence and the spatial distribution of aftershocks. These

improvements may be of major interest for short-term risk

assessment during an on-going aftershock sequence, par-

ticularly for the risk of a second, damaging earthquake

following the initial trigger event. The anisotropic spatial

forecast of aftershock locations enables desaster response

managers to take actions in areas at risk where particularly

high aftershock activity is expected.

Future work should test the forecast quality for other

earthquake sequences. It would be interesting to address

the question whether the ETASI time-space model can be

used to reliably detect the instability of a live sequence,

which could have positive impacts on emergency man-

agement during on-going sequences. An evaluation of the

goodness of fit for the temporal event distribution should

be included into such analyses.

6 Data and resources

The earthquake event set for California has been down-

loaded from the Southern California Earthquake Data

Center (https://scedc.caltech.edu/data/alt-2011-dd-hauks

son-yang-shearer.html, last accessed on October 25, 2021).

Results and figures were produced using Matlab

2150 Stochastic Environmental Research and Risk Assessment (2022) 36:2133–2152

123

https://scedc.caltech.edu/data/alt-2011-dd-hauksson-yang-shearer.html
https://scedc.caltech.edu/data/alt-2011-dd-hauksson-yang-shearer.html


software. The source code for model estimation and sim-

ulation is made freely available by the first author in

the Github repository https://github.com/ChrGrimm/

ETASanisotropic.
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