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ITEM RESPONSE THRESHOLDS MODELS: A GENERAL CLASS OF MODELS FOR
VARYING TYPES OF ITEMS

Gerhard Tutz
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A comprehensive class of models is proposed that can be used for continuous, binary, ordered cate-
gorical and count type responses. The difficulty of items is described by difficulty functions, which replace
the item difficulty parameters that are typically used in item response models. They crucially determine the
response distribution and make the models very flexible with regard to the range of distributions that are
covered. The model class contains several widely used models as the binary Rasch model and the graded
response model as special cases, allows for simplifications, and offers a distribution free alternative to
count type items. A major strength of the models is that they can be used for mixed item formats, when
different types of items are combined to measure abilities or attitudes. It is an immediate consequence
of the comprehensive modeling approach that allows that difficulty functions automatically adapt to the
response distribution. Basic properties of the model class are shown. Several real data sets are used to
illustrate the flexibility of the models

Key words: thresholds model, latent trait models, item response theory, graded response model, Rasch
model.

Modern item response theory provides a variety of models for the measurement of abilities,
skills or attitudes, see, for example, Lord and Novick (1968), Van der Linden (2016a), Mair
(2018). The history of its evolution has been traced back carefully by Van der Linden (2016b)
and Thissen and Steinberg (2020).

Essential components of item response theory are that items can be located on the same
scale as the latent trait and that the latent trait accounts for observed interrelationships among
the item responses (Thissen and Steinberg, 2020). In addition, it is essential that the responses
are random and have to be described by a probabilistic model to explain their distributions (Van
der Linden, 2016b). These features distinguish item response theory from classical test theory
(Lord and Novick, 1968), which uses an a priori score on the entire test by assuming an additive
decomposition of an observed test score into a true score and a random error.

Item response models are typically tailored to the type of item. For binary items Rasch
models and normal-ogive models are in common use (Rasch, 1961; Birnbaum, 1986), for ordered
models the graded response model (Samejima, 1995, 2016), the partial credit model (Masters,
1982, Glas & Verhelst, 1989) and the sequential model (Tutz, 1989) have been used. For count
data items, among others, Rasch’s Poisson count model and extensions as the Conway–Maxwell–
Poisson model (Rasch, 1960; Forthmann et al., 2020) have been proposed. Continuous response
models have been considered by Samejima (1973), Müller (1987), and Mellenbergh (2016). For
taxonomies of item response models see Thissen and Steinberg (1986) and Tutz (2020).
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The thresholdmodel proposed here advances a unifying approach.Rather than developing dif-
ferent models for different types of responses a common response model for all sorts of responses
is considered. In the model, each item has its own item difficulty function that determines the
distribution of the response. Since item difficulty functions are item-specific, the form of the dis-
tribution can vary across items. The model class is rather general, it comprises various commonly
used models as the binary Rasch model, the normal-ogive model and the graded response model,
for the latter it offers a sparser parameterization. It also provides a genuine latent trait model
for continuous responses, which can be seen as a latent trait version of classical test theory. In
addition to providing a common framework for existing and novel models, it offers a way to com-
bine different types of items in one test, what has been described as mixed item-formats. Instead
of using linkage methods (Kim and Lee, 2006; Kolen and Brennan, 2014) to combine different
items, the model itself accounts for the different sorts of items.

Major advantages of the approach are:

• The model provides a common framework for several models in common use.
• A genuine latent trait model for continuous responses as an alternative to classical test

theory is contained as a special case.
• The model is very flexible and allows for quite different response distributions.
• Items can have different formats, they can be continuous, binary or polytomous, and the

common model automatically accounts for the distributional differences. The model links
performance on items that can differ in distributional form to person abilities.

The threshold model and basic concepts are introduced in Sect. 1. It is in particular demon-
strated how difficulty functions can be used to model the distribution of responses. In Sect. 2,
the case of discrete responses is considered and it is shown that common binary models and the
graded response model are special cases of threshold models. In Sect. 3, further properties and
alternative modeling approaches are considered. Section 4 is devoted to mixed item formats. In
Section 5, a more flexible way of specifying difficulty functions is given, which allows to let the
data determine which function fits best. The computation of estimates is considered in Sect. 6,
although illustrative applications are given already in the previous sections. In the “Appendix”,
results that are mentioned in the text are given in a more formal way together with proofs.

1. Thresholds Models: Basic Concepts

Let Ypi denote the response of person p on item i (p ∈ {1, . . . , P}, i ∈ {1, . . . , I }) having
support S. The general thresholds model we propose is given by

P(Ypi > y|θp, αi , δi (.)) = F(αi (θp − δi (y))), (1)

where F(.) is a strictly monotonically increasing distribution function, θp is a person parameter,
αi a discrimination parameter, and δi (.) is a non-decreasing item-specific function, called item
difficulty function, which is defined on the support S. The function F(.) is a response function,
which to a degree determines the distribution of the response. Since F(.) is increasing for fixed
threshold y, the probability of a response larger than y increases with increasing person parameter
θp. Thus, θp can be seen as an ability or attitude parameter, which indicates the tendency of a
person to obtain a high score. Higher values of θp are associated with a greater chance of a correct
or affirmative response to each item. The name of themodel refers to themodeling of the threshold
y. It is not a threshold on the latent scale, which are the thresholds that are usually considered in
latent trait modeling but on the observable scale.
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In addition to the link between the latent variables and the observable response specified
in equation (1), conditional independence of observable variables given the latent variables is
assumed, which is a typical assumption in item response theory often referred to as local indepen-
dence, e.g., Lord (1980). Conditional independence together with the latent monotonicity makes
the model a monotone latent variable model in the sense of Holland and Rosenbaum (1986).
Latent monotonicity as defined by Holland and Rosenbaum (1986) means that the probability
P(Ypi > y|θp, δi (.)) is a nondecreasing function of the person parameter for all items. Since the
response function F(.) and the item difficulty functions are monotone, latent monotonicity holds
for the thresholds model.

The specifics of the thresholds model follow from the functions that are chosen. The item
difficulty function δi (.) contains the properties of the item, in particular if it is easy or hard
to score high. It also determines the concrete form of the response distribution, which is only
partially determined by F(.). In the following, it is shown that the model allows for quite different
distributions of responses although the function F(.) is chosen fixed.

Latent trait models have been extensively discussed for binary or other categorical responses.
Nevertheless, we start with the less familiar case of continuous responses and first investigate the
potential of the thresholds model as a latent trait model for continuous responses.

1.1. Linear Item Difficulty Functions

A particular interesting item difficulty function is the linear one, which allows for some
simplifications. Let Ypi be a continuous response variable and the item difficulty be linear, δi (y) =
δ0i + δi y, δi > 0. Then, one has a parametric model with item parameters δ0i , δi . One obtains
that the expectation and variance of Ypi are given by

E(Ypi ) = γiθp − γ0i , var(Ypi ) = cγ 2
i /α2

i , (2)

where γi = 1/δi , γ0i = (δ0i +d/αi )/δi , with constants d, c that are determined by the distribution
function F(.), for the concise form of constants and a proof, see “Appendix”. In addition, for
symmetric response function F(.) the distribution function of Ypi is a shifted and scaled version
of F(.).

It is immediately seen that high ability θp indicates a tendency to high responses. The item
parameter γi is a scaling parameter, and γ0i is the location on the latent scale. It represents the
’basic’ difficulty of the item; if γ0i is large, the expected response is small, and vice versa. The
specific choice γi = 1 (equivalent to δi = 1) and αi = 1 yields the simpler forms E(Ypi ) =
θp − γ0i , var(Ypi ) = c, which means that the response is simply determined by the difference
between ability θp and itemdifficultyγ0i , a property that is familiar from the binaryRaschmodel or
the normal-ogive model without a slope parameter. If F(.) is symmetric, d = 0, which means the
expectation does not depend on the discrimination parameter. It, however, determines the variance
such that large values of the discrimination parameter are associated with small variances of the
response.

1.2. The Person Threshold and the Item Characteristic Function

The link between the person and the difficulty functions can be described and visualized in
several ways. An important function is the person threshold function (PT function), which for
fixed θp is defined by

gi,θp (y) = P(Ypi > y|θp, αi , δi (.)) = F(αi (θp − δi (y))),
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Figure 1.
Left: Person threshold functions, P(Y > y), for values θ = 0 (circles), θ = 2 (dashed), θ = −1 (dotted); right: item
characteristic functions for y = 0 (circles) and y = 1 (dotted)

It shows the probability of an response above y for a specific person with ability θp. It is strongly
related to the distribution function of Ypi , which is simply given by Fpi (y) = 1 − F(αi (θp −
δi (y))). The distribution function is denoted with the subscript pi to distinguish it from the
response function F(.) (which itself is a distribution function).

The second function is the general item characteristic function (IC function). It is an extended
form of the item characteristic function commonly used in binary item response theory, and is
defined by

ICi,y(θp) = P(Ypi > y|θp, αi , δi (.)) = F(αi (θp − δi (y))).

It shows the probability for an response above a fixed value y for varying abilities. In contrast
to binary models where only the value y = 0 is interesting, for responses with more than two
possible values one has more than one function. If the response is continuous any value y can
occur. Thus, the functions depend on the item i and y.

For illustration we first consider the simple case of linear difficulty functions (αi = 1).
The left picture in Fig. 1 shows the person threshold function for three values of θ if F(.) is
the normal distribution function and the threshold function is linear, δ(y) = y. It is seen that
a person with θ = 2 (dashed lines) has higher probability of a response above y than a person
with θp = 0 (circles) for all values y. The right picture shows the IC function for two values
of y, y = 0 (circles) and y = 1 (dotted). It is seen that the probability of a response above y
is strictly increasing with ability θ . In this simple case, the IC functions for different y are just
shifted versions of the same basic normal distribution function. This changes with the parameters
of the item difficulty function.

Therefore, let us consider the parameters of the difficulty function in more detail. The first
parameter δ0i in the difficulty function δi (y) = δ0i + δi y determines the location of the item.
The corresponding mean of Ypi is −δ0i/δi (for θp = 0 and symmetric function F(.)). Thus, the
PT function is shifted to the left for large location parameter δ0i > 0, which represents the basic
difficulty. The second parameter determines the variance of Ypi , large δi means that the variance is
small. The left picture in Fig. 2 shows the PT functions for the simple function δi (y) = y (circles)
and δi (y) = 2 + 3y (dashed). It is seen that for the latter difficulty function the PT function is
shifted to the left and the variance is much smaller, which is seen from the steep decrease of the
dashed function. The right picture shows the corresponding item characteristic functions.

If the item discrimination parameter is the same for all items, the IC functions have the same
form for all items, namely that of the distribution function F(.). This is immediately seen from
the definition of the function ICi,y(θp) = F(αi (θp − δi (y))) since for fixed value y the value of
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Figure 2.
Left: Person threshold functions, P(Y > y), for value θ = 0.5 and δi (y) = y (circles), δi (y) = 2 + 3y (dashed); right:
item characteristic functions for the two items for y = 1

δi (y) is fixed. It is an important aspect regarding interpretation. For any y the item characteristic
functions are increasing, and never do cross. That means a person with larger θp than another
person has always a larger probability of a response above threshold y. This property, which is
well known from binary Rasch models, also holds for the continuous thresholds model with fixed
αi . It holds in spite of the scaling of the person parameter in the term γiθp of Eq. (2). If the
binary Rasch model is extended to the 2PL model, often referred to as Birnbaum or 2PL model,
item characteristic functions typically cross, as they do in the general thresholds model with a
discrimination parameter.

The simplicity of the IC functions for fixed discrimination parameters has an additional
advantage. Since all IC functions are just shifted (and possibly scaled) versions of the same
function, they showwhich items are harder, and which are easier to solve. One obtains an ordering
without having to investigate the item parameters.

The essential properties of the model, which hold for all sorts of responses to be considered
later, can be described by the following functions, which refer to different aspects of the model.

• The item difficulty function, which characterizes the difficulty of the item over the whole
range of possible outcomes.

• The person threshold function, which represents the distribution of the responses. The
concrete form of the distribution as well as the support (see below) depend on the difficulty
functions. The distributionsmay take quite different forms for different difficulty functions.

• The form of the item response function is kept fixed, for all items the probability of scoring
above the threshold y increases in the same way with the ability. However, it depends
on the threshold y, respectively, the corresponding δi (y), how large the probability of an
response above y is.

It is essential to distinguish between two specifications regarding the complexity of the
difficulty function. Let, more general, the difficulty functions be given by δi (y) = δ0i + δi g(y),
where g(.) is a monotonically increasing function. Then, a simplifying assumption is that the
difficulty functions have common slopes, that is, δ1 = · · · = δI = δ. Without this restriction
slopes may vary across items. For linear difficulty functions and αi = 1 the assumption of
common slopes simply means that for all responses one assumes the same variance.

If difficulty functions have the form δi (y) = δ0i +δi g(y)with fixed function g(.), themodel is
parametric with αi , δ0i , δi , i = 1, . . . , I , representing the item parameters, and θp, p = 1, . . . , P ,
representing the person parameters. To obtain identifiability, some restrictions are needed. One
can, for example, choose fixed values for one discrimination parameter and one person parameter
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(e.g. α1 = 1, θ1 = 0). In general, restrictions can depend on the support of the response, see
Proposition 8.2.

Difficulty functions of the form δi (y) = δ0i + δi g(y) contain the slopes δi . The concept of
slopes should be distinguished from the concept that is sometimes used in binary and polytomous
models. In binary models as the 2PL model, P(Ypi = 1) = F(αi (θp − δi )), the parameter αi is a
discrimination parameter, but is also often referred to as slope parameter. It has a quite different
meaning than the slope in thresholds models. Large discrimination parameters have the effect
that the increase in probability is stronger when θp increases than for smaller discrimination
parameters. For fixed θp, δi larger values of αi mean that response probabilities are more extreme
than for smaller values (closer to 1 if θp − δi > 0, closer to 0 if θp − δi < 0). The slopes in
the difficulty functions of thresholds models have a different effect, they refer to the difficulty of
items. As seen from equation (2) in the case of linear difficulty functions if the slope δi increases
the expectation of responses decreases. Larger slopes means smaller expected responses, although
also the variance changes. To keep the two concepts apart, we always refer toαi as a discrimination
parameter, and the notion of “slope” refers to the slope of the difficulty function.

As in other IRT models, alternative parameterizations can be used. The predictor ηpi =
αi (θp −δ0i −δi g(y)) can also be given in the form ηpi = αiθp − δ̃0i − δ̃i g(y), where δ̃0i = αiδ0i ,
δ̃i = αiδi . In the alternative parameterization, only the first term contains the person parameter, the
intercept and slope are built from the item discrimination parameter and the original intercept and
slope. The parameterization is helpful to clarify the role of slopes and discrimination parameters.
The expectation of the response given in equation (2) suggests that the item slope (of the original
parameterization) is the essential scaling parameter that acts as a discrimination parameter or factor
loading, and αi seems superfluous. But for linear difficulty functions (and symmetric response
function) one obtains in the alternative parameterization E(Ypi ) = (αiθp − δ̃0i )/δ̃i , which shows
that θp is weighted by αi/δ̃i . Thus, the expectation is determined by αi and δ̃i if one uses the
alternative parameterization. The original parameterization αi , δ0i , δi has the advantage that it
is closer to parameterizations that are typically used in traditional binary and multi-categorical
models. The alternative parameterization is useful in extensions to multi-dimensional structures
to be considered later.

1.3. Links to Classical Test Theory

The thresholds model for continuous responses is a genuine latent trait model. It has all the
attributes of a latent trait model, items are located on the same scale as the latent ability, the
latent variable accounts for observed interrelationship among the item responses and responses
are described by a probabilistic model to explain their distribution. In contrast, classical test
theory, which is often used for continuous data, is not a latent trait model in this sense. It is a
regression type model, in which an a priori score on the entire test is chosen by assuming an
additive decomposition of an observed test score into a true score and a random error; it can be
traced back to Spearman (1904), an extensive presentation is found in Lord and Novick (1968).

A similar decomposition is obtained for the thresholds model with linear difficulty functions.
If it holds one has

Ypi = E(Ypi ) + Epi ,

where E(Ypi ) = γiθp − γ0i , var(Epi ) = cγ 2
i /α2

i and Ypi has distribution function F(.). Random
sampling of individuals yields

Y∗i = E(Y∗i ) + E∗i ,
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which corresponds to the decomposition into a true-score and an error-score random variable
(see Section 2.6 Lord and Novick, 1968) with the true score depending only on the measurement
instrument. The error-score Epi follows distribution function F(.), and has expectation 0 and
variance cγ 2

i /α2
i . In classical test theory, the variance of the error-score is often assumed to be

the same for all responses, which means that in addition γi = γ, αi = α holds for all i .

Models for continuous responses have also been considered byMellenbergh (2016) including
Spearman’s one factor model and the model for congeneric measurements and Noel and Dauvier
(2007),who proposed a beta item responsemodel. Themodels considered there are, as the classical
test theory, rather restrictive since the response is assumed to be a linear function of the latent
traits.

1.4. Alternative Item Difficulty Functions

If difficulty functions are linear, the responses follow the distribution function F(.). However,
responses come with quite different distributions. They can be strictly positive, for example if the
response time is an indicator of the ability of a person, or they are restricted to specific intervals,
for example if a person scores in a given interval continuously or approximately continuously
by using numbers, say 1, 2, . . . , 100. In both cases a normal distribution is inadequate, although
in the latter case with numbers 1, 2, . . . , 100 investigators typically use a normal distribution in
spite of the problems that occur at the boundaries of the interval.

A strength of the thresholds model is that it allows to account for the support of the response
by using specific difficulty functions. Let the response function F(.) again be the standard normal
distribution and the item difficulty be given by δ(y) = log(y). Figure 3 (left, first row) shows
the person threshold functions (α = 1) for persons with parameters θ = 0 (circles), θ = 1
(dashed) and θ = −1 (dotted). Although a normal distribution is assumed for the response
function, the response is strictly positive, and definitely not normally distributed, as is seen from
the corresponding densities (right, first row).

In practice, test data are always restricted to specific finite values. A prominent case is Likert-
type responses on 5 or 7-point scales. Although values are definitely discrete, often they are
considered as continuous and common distributions as the normal distribution are assumed. The
problem that responses at the boundary cannot follow a normal distribution is typically ignored.
For truly continuous response, scales represented by continuous line segments Samejima (1973)
extended the graded response model to responses to an open line segment, and Müller (1987)
extended the rating scale model to responses to a closed line segment. Both extensions are derived
as limiting cases of discrete response models.

The thresholds model offers an alternative way to account for the fact that data are restricted
to a fixed interval, and specify a proper distribution for which the support is the interval in which
responses are observed. Without loss of generality, one can choose the interval [0, 1] because
data can always be transformed into that interval. Then, an attractive difficulty function that can
be used is the inverse function δ(y) = aF−1(y) with some constant a. The second row of Fig. 3
shows the person threshold functions and the corresponding densities if the response is restricted
to the interval [0, 1], and a = 1. It is seen that densities have support [0, 1] and are not normally
distributed although the normal response function F(.) generates the distribution. For large θp the
distribution is shifted to the right, but still within support [0, 1]. There is no mis-specification of
the distribution for very large or small values of θp, as occurs if one assumes a normal distribution
for the response itself (instead of using a normal response function and appropriate difficulty
functions in the thresholds model).
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Figure 3.
In the first row the item difficulty is δ(y) = log(y) (for non-negative responses), in the second row the item difficulty is
δ(y) = F−1(y) ( responses in [0, 1]). Left column shows P(Y > y) for values θ = 0 (circles), θ = 1 (dashed), θ = −1
(dotted); right column shows the corresponding densities

1.5. Illustrative Application: Cognition Data

For illustration, we use the data set Lakes from the R package MPsychoR (Mair, 2018). It
is a multi-facet G-theory application taken from Lakes and Hoyt (2009). The authors used the
response to assess children’s self-regulation in response to a physically challenging situation.
The scale consists of three domains, cognitive, affective/motivational, and physical. We use the
cognitive domain only. Each of the 194 children was rated on six items on his/her self-regulatory
ability with ratings being on a scale from 1 to 7. Mair (2018) used the data to illustrate concepts
of classical test theory implicitly assuming a metric scale level.

We fit a thresholds model with linear difficulty functions, normal response function and fixed
discrimination parameters (αi = 1). The first row of Fig. 4 shows the person threshold functions
for θp = 0, under the assumption of common slopes in the difficulty functions (left) and with
possibly varying slopes (right). The numbers in the curves denote the items. It is seen that items
3 and 4 are hardly distinguishable, items 2 and 6 are harder and items 1 and 5 easier. It is seen
from the right picture (varying slopes) that the variance of responses is smaller for items 2 and
6 when compared to the other items, which corresponds to the large estimated slopes of items 2
and 6 in Table 1. The second row of Fig. 4 shows the corresponding IC functions. It is seen that
the distance between the pairs of items {3, 4} and items {2, 6} is larger if the model allows for
varying slopes. The last row shows the difficulty functions. They are strictly parallel in the case of
a common slope. For varying slopes the pairs of items are still close to each other but the items 2
and 6 have larger slopes. Table 1 shows the estimated parameters, standard errors for the intercept
were between 0.152 (item 3) and 0.329 (item 1), for the slope between 0.043 (item 3) and 0.052
(item 5) in the model with varying slopes.

Since one has nestedmodels, it is of interest if themodel with varying slopes can be simplified
to themodel with common slopes in the difficulty functions. The corresponding log-likelihood test
is 108.34 on 5 df, which clearly indicates that the simplified model is not adequate. As mentioned
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Figure 4.
First row: person threshold functions, P(Y > 1), for cognition data (θp = 0) and linear difficulty functions; second row:
IC functions for y = 3; left: common slopes are assumed, right: varying slopes; third row: difficulty functions

before, testing that slopes are constantmeans testing if the variances of the error score are constant,
which seems not to be the case. We focused on the model with fixed discrimination parameters
since varying discrimination parameters did not improve the fit. More concise, the log-likelihood
for the model with varying discrimination was -1445.832, which is the same value as for the
model with fixed discrimination parameter. The AIC for the latter is 2917.664, for the model with
varying discrimination parameter one obtains 2927.664, which clearly favors themodel with fixed
discrimination parameters. With the exception of item 2, for all items the parameter estimates for
the more general estimates were the same as for the model with fixed discrimination parameter.
For item 2 the estimates of the intercept and slopewere -2.236756 and 0.9694296, and the estimate
of the discrimination parameter was 1.630, for all other items the estimate was 1.

2. Discrete Responses

In the following, first it is shown that classical models for binary and ordered responses can
be represented as thresholds models. Then, models with infinite support are considered.
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Table 1.
Estimated parameters for cognition data

Item Common slope Varying slopes
Intercept Slope Intercept Slope

1 −5.935405 1.123857 −6.302662 1.1934046
2 −2.592028 1.123857 −3.646508 1.5804284
3 −3.452920 1.123857 −2.635715 0.8577245
4 −3.407838 1.123857 −3.149895 1.0391432
5 −6.269576 1.123857 −5.747873 1.0304311
6 −2.451351 1.123857 −3.367810 1.5432459

Log-lik −1500.006 −1445.832

2.1. Binary and Ordered Categorical Responses

Let us start with the simplest case of a binary response variable Ypi ∈ {0, 1}. Then, the
only relevant value of the function δi (y) is δi (0) = δ0i because P(Ypi > 0) = P(Ypi = 1),
and if P(Ypi = 1) is known, all response probabilities are known. The thresholds model yields
immediately the binary response model

P(Ypi = 1|θp, αi , δi (.)) = F(αi (θp − δ0i )).

Thus, if F(.) is chosen as normal distribution one obtains the normal-ogive model, if F(.) is
the logistic distribution function one obtains the 2PL model, which simplifies to the binary Rasch
model if αi = 1 (Rasch, 1961).

The binary case makes it clear why the difficulty function is defined on the support S of Ypi

rather than on the whole field of real numbers. For Ypi ∈ {0, 1} one has to consider only δi (0)
and δi (1). For the latter one has δi (1) = ∞ since P(Ypi > 1) = 0. For the general case see
Proposition 8.2 in the “Appendix”.

Let now Ypi ∈ {0, . . . , k} be a response variable with ordered categories, and let the difficulty
functions δi (y) be restricted only by the assumption that it is a strictly monotonically increasing
function. Let parameters be defined by δir = δi (r − 1). Then, one obtains the thresholds model

P(Ypi ≥ r |θp, αi , δi (.)) = F(αi (θp − δir )), r = 1, . . . , k,

which is a well-known model, namely Samejima’s graded response model (Samejima, 1995,
2016).

To obtain the graded response model without further constraints, it is essential that the form
of the difficulty functions is restricted by the monotonicity assumption only. The monotonicity
assumption itself is indispensable because otherwise the thresholds model would not be defined.
Nevertheless, it is again interesting to consider the model with a pre-specified threshold function.
If δi (y) = δ0i + δi y holds, one obtains that differences between adjacent item parameters are
constant, δir − δi,r−1 = δ̄i . In this simplified version of the graded response model, each item is
characterized by just three parameters, the item discrimination, the location δ0i and the slope δi .
It reduces the number of parameters in a similar way as the Rasch rating scale model (Andrich,
1978, 2016) reduces the number of parameters in the partial credit model. Simplified versions
also result from using alternative fixed difficulty functions, for example, the log function δi (y) =
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δ0i + δi log(y), which has been used above to obtain Ypi ≥ 0, or the inverse function, which can
been used to restrict responses to fixed intervals.

In particular, if the number of categories is large or medium sized, as for example in a 9-
point rating scale, it is tempting to assume that responses are (approximately) continuous and
use corresponding modeling approaches, a strategy that is often found in applied research, see
also Robitzsch (2020). The graded response model takes the support seriously, it is a model that
explicitly assumes that the response is discrete and therefore follows a multinomial distribution.
The thresholds model, which contains the graded response model as a special case, is quite
flexible concerning the assumption of the support. In the general model formulation, P(Ypi >

y|θp, αi , δi (.)) = F(αi (θp − δi (y))), only the effect of the ability and the item difficulty function
on the probability of a response above threshold y is fixed. It applies to continuous as well as
discrete data. Of course, when estimating bymaximum likelihoodmethods, one has to distinguish
between the discrete and the continuous case since the densities have to be specified. However,
in practice the estimated difficulty functions are very similar (see next section), the crucial part is
indeed the specification of the response function F(.) and the difficulty function.

The thresholds model can be seen as bridging the gap between continuous and discrete
responses. The bridging can be made more explicit in the case of the graded response function.
As shown in the “Appendix”, there is a strong link between the continuous thresholds model and
the graded response model since the thresholds model P(Ypi > y) = F(αi (θp − δi (y))) holds
for continuous response Ypi if and only if the graded response model holds for all categorizations

Y (c)
pi = r ⇐⇒ Ypi ∈ (τr , τr+1],

where τ1 < · · · < τk are any ordered thresholds. Since the graded response model itself is a
thresholds model, this means that thresholds models are stable under categorization, that is, they
also hold if one considers categorized versions of the response. It should be noted that observable
responses are considered, the result differs from the usual result that the graded response is a
categorized version of a latent variable.

2.2. Political Fears

As an illustrating example, we consider data from the German Longitudinal Election Study
(GLES), which is a long-term study of the German electoral process (Rattinger et al., 2014). The
data we are using originate from the pre-election survey for the German federal election in 2017
and are with political fears. The participants were asked: “How afraid are you due to the ...”—(1)
refugee crisis?—(2) global climate change?—(3) international terrorism?—(4) globalization?—
(5) use of nuclear energy? The answers were measured on Likert scales from 1 (not afraid at all)
to 7 (very afraid). The model is fitted under the assumption that fear is the dominating latent trait,
which is considered as unidimensional. We use 200 persons sampled randomly from the available
set of observations.

Figure 5 shows the person threshold functions obtained when using logarithmic difficulty
functions, varying slopes and discrimination parameters. The left picture shows the fitted functions
when assuming a discrete, multinomial distribution, the right picture when assuming a continuous
distribution. It is seen that the fitted person threshold functions are rather similar. In both cases,
varying slopes are needed (likelihood ratio test yields 39.66 for discrete distribution, 32.14 for
continuous distribution on 4 df). Also varying discrimination parameters seem more appropriate
(likelihood ratio test 8.844 for continuous distribution, 9.536 for discrete distribution on 4 df).
Table 2 shows the estimates for themodel with varying slopes and fixed discrimination parameters
and the model with varying discrimination parameters.
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Figure 5.
PT functions for political fear data with logarithmic difficulty functions, varying slopes and discrimination parameters,
left: discrete distribution, right: continuous distribution

Table 2.
Estimated parameters for fears data

Item Fixed discrimination Varying discrimination
Intercept Slope αi Intercept Slope αi

1 −4.840 3.056 1 −4.353 2.749 1.086
2 −6.661 3.807 1 −5.399 3.086 1.225
3 −7.569 4.093 1 −4.730 2.557 1.868
4 −4.571 3.040 1 −3.661 2.434 1.241
5 −5.716 3.400 1 −5.424 3.226 1.000

Log-lik −1979.395 −1974.973

2.3. Discrete with Infinite Support: Count Data

Measurement of cognitive abilities often uses count data, for example, the number of remem-
bered stimuli (Süß et al., 2002), or the number of generated ideas in afixed time interval (Forthmann
et al., 2017), for an overview see also Forthmann et al. (2020). In all these cases, the responses
are counts with Ypi ∈ {0, 1, 2, . . . }. A classical model that has been used for this kind of data is
Rasch’s Poisson count model Rasch (1960), which has been extended to the Conway–Maxwell–
Poisson model by Forthmann et al. (2020).

The thresholds model is a flexible alternative to these models. An attractive choice of a fixed
difficulty function is the log-function in the form δi (y) = log(y + 1). Figure 6 shows the person
threshold functions and the densities for two values of person parameters, θ = 1 (bold) and θ = 0
(gray), where F(.) is the standard normal distribution function. It is seen that the PT function for
θ = 1 is always larger than the PT function for θ = 0 . The densities show that the persons with
θ = 1 tend to score higher than persons with θ = 0. The IC functions are not shown since by
construction they have the form of a normal distribution.

The flexibility of the count thresholds model is comparable to the Conway–Maxwell–Poisson
model if the difficulty functions are specified by δi (y) = δ0i + δi log(y + 1) since the slope δi
allows for additional variability of the response across items.

2.4. Verbal Fluency Data

Forthmann et al. (2020) used a data set with four commonly used verbal fluency tasks, which
they were so kind to let us use for illustration. The data set includes two semantic fluency tasks,
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Figure 6.
Left: P(Y > y) for values θ = 1 (bold), θ = 0 (gray) for count data with item difficulty function δi (y) = log(y + 1); on
the right-hand side the corresponding probability mass functions are shown

Figure 7.
Person threshold functions, P(Y > y), for value θ = 0 and δi (y) = δ0i + δi log(1+ y) for verbal fluency data assuming
a discrete distribution; left: common slope, right: varying slopes

namely animal naming (item 1) and naming things that can be found in a supermarket (item 4)
and two letter fluency tasks, words beginning with letter f (item 2) or letter s (item 3). The 202
participants had one minute to complete each of the verbal fluency tasks.

Figure 7 shows the person threshold functions for common slope (left) and for varying slope
(right) if count data are considered as discrete (loglik = -2065.42, σθ = 1.04 for common slope,
loglik = -2038.58, σθ = 1.09 for varying slopes). It is seen that under the assumption of a common
slope items 3 and 4 have virtually the same threshold function, item 1 allows for higher responses,
item 2 is harder, and counts tend to be lower. If slopes are allowed to vary over items, the order of
items remains the same, but items 3 and 4 have slightly different functions. Item 3 shows a more
distinct decrease indicating smaller dispersion than item 4. We also fitted the model with varying
discrimination parameters, but there is no indication that they are needed (loglik = -2036.004,
σθ = 0.92).

The functions given in Fig. 7 are obtained by explicitly using the support {0, 1, 2, . . . }, and
therefore assuming a discrete distribution. Thus, the curves should be interpreted only at values
{0, 1, 2, . . . }, only for simplicity of presentation they were shown as continuous functions.

Since counts are on a metrical scale one could also think of fitting a model that assumes a
continuous response, and consider it as an approximation. We fitted the corresponding thresholds
model and obtained virtually the same functions as given in Fig. 7, which are therefore not shown.
Of course the likelihood values differ from the values obtained by using a discretemodel. However,
inference yields similar results. The likelihood ratio test that compares the model with common
slopes in the difficulty functions to the model with varying slopes is 53.68 for the discrete model
and 54.08 for the continuous model (on 3 df). Thus, in both cases the model with varying slopes
turns out to be more appropriate.
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The thresholds model is an alternative to more classical approaches to model count data as
Rasch’s Poisson count model (Rasch, 1960). In additive parameterization, the model specifies the
expected responseμpi for person p on item i byμpi = exp(θp−δi ), where θp is the person ability
and δi the item difficulty. For the distribution, a Poisson distribution is assumed. Fitting of the
model yields the log-likelihood -2072.40 and for AIC 4154.58. Comparison with the thresholds
model with varying slopes (log-likelihood -2038.06 and AIC 4094.11) shows that the thresholds
model shows superior fit.

3. Further Properties and Alternative Modeling Approaches

3.1. Choice of Difficulty Functions

Item responses can be continuous or discrete, in the latter case the number of categories can
be finite or infinite. As has been illustrated in the previous sections, in particular the difficulty
function determines the range of the response. It therefore has to be adapted to the item type.
Table 3 gives an overview of possible combinations of item types and difficulty functions, where
it is assumed that the response function F(.) is symmetric and continuous with support R.

If there is reason to assume that responses follow a specific continuous distribution function
Fresp(.), for example the normal distribution, the thresholds model with response function F(y) =
Fresp(y) and linear difficulty functions is a natural choice. Then, the distribution of Ypi has
distribution function Fresp(.) with the mean and the variance determined in a simple way (see
Sect. 1.1). For the density, one obtains the simple form f ((y−μpi )/σpi )/σpi , where f (.) = F ′(.)
is the density of the response, and μpi , σ 2

pi are the mean and variance of Ypi (Proposition 8.1 in
“Appendix”). Although the form of the density reminds of the normal distribution, it holds for
any symmetric distribution.

For items with responses Ypi > 0, difficulty functions should be chosen such that
limy→0 δi (y) = −∞ to ensure that Ypi > 0 holds. As an example, the logarithmic function
is given in Table 3. If responses are from a known interval (a, b), difficulty functions should
fulfill limy→a δi (y) = −∞, limy→b δi (y) = ∞. After a transformation of the responses into the
interval (0, 1), natural choices are inverse distribution functions, for example, g(y) = aF−1(y)
or the logit transformation g(y) = log(y/(1 − y)).

In general, for continuous responses the difficulties determine the distributions of the
response. They do not necessarily follow classical response distributions. However, some clas-
sical distributions can be obtained by choosing specific difficulty functions. If one chooses the
linear difficulty function, one obtains the distribution that is assumed for the response function. In
particular, if the response function is the normal distribution, responses are normally distributed.
A combination that also yields a classical distribution is the normal response function together
with the logarithmic difficulty function. Then, one obtains for the responses the log-normal dis-
tribution with density 1/(y

√
2πσ̄i ) exp(−(log(y) − μ̄pi )

2/(2σ̄ 2
i )), where μ̄pi = (θp − δ0i )/δi ,

σ̄i = 1/(αiδi ). In other combinations of response and difficulty functions, one specifies the
difficulty function instead of choosing a response distribution as in more traditional modeling
approaches.

If responses are discrete and have finite support, the response distribution is always the
multinomial distribution. The only values of the difficulty function that enter the model are
g(0), . . . , g(k − 1) (for Ypi ∈ {0, 1, . . . , k}). In the binary case, the choice of the difficulty
function is irrelevant since δ0i + δi g(0) can always be condensed into one intercept parameter
δ̃0i = δ0i + δi g(0). A simple function that has been used in applications is the logarithmic func-
tion g(y) = log(1 + y), which is evaluated at 0, 1, . . . , k − 1. However, alternative functions
could be constructed. One alternative is the adapted logit function g(y) = log((1+ y)/(k − y)).
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Table 3.
Item types and difficulty functions

Item type Support Difficulty function, δi (y) = δ0i + δi g(y)

Continuous Ypi ∈ R Linear g(y) = y
Ypi ≥ 0 Logarithmic g(y) = log(y)
Ypi ∈ (0, 1) Inverse g(y) = aF−1(y)

Discrete Ypi ∈ {0, 1, . . . } Logarithmic g(y) = log(1 + y)
Ypi ∈ {0, 1, . . . , k}, k > 1 Logarithmic g(y) = log(1 + y)

Logit g(y) = log((1 + y)/(k − y))
Ypi ∈ {0, 1} g(y) not used

It is symmetric around m = (k − 1)/2, such that g(m + a) = −g(m − a) and is steeper than
log(1+ k) for large values of y. The symmetry makes it attractive since it entails more symmetric
distributions, for example, one obtains P(Ypi = 0) = P(Ypi = k) for θp = δ0i . It extends more
naturally to values beyond the support. While for both functions limy→−1 g(y) = −∞ holds, at
the right boundary one has limy→k g(y) = ∞ for the transformed logit function while log(1+ k)
is a finite value. For count data there is no right boundary and there is no need for symmetry,
which means that symmetric functions have no advantage over the logarithmic function.

3.2. Item Information

In traditional IRT models, item information is considered a useful concept. In general item
information (or Fisher information) for item i can be defined as the expectation

I (θp) = E

(
−∂2li (Y ; θp)

∂θp∂θp

)
,

where li (Y ; θp) is the log-likelihood for item i and observation Y . For discrete Y ∈ {0, 1, . . . },
the log-likelihood is given by li (Y ; θp) = ∑

r Yr log(πir (θp)), where Yr = 1 if Y = r , Yr = 0
otherwise, and πir (θp) = P(Y = r |θp, αi , δi (.)) is the probability of a response in category r on
item i . One obtains

I (θp) =
∑
r

π ′
ir (θp)

2 − πir (θp)π
′′
ir (θp)

πir (θp)
,

where π ′
ir (θp) and π ′′

ir (θp) are the first and second derivatives of πir (θp) with respect to θp.
For example, for the Rasch model one obtains the simple form I (θp) = πi0(θp)πi1(θp) =
(1 − πi1(θp))πi1(θp). The information in more general binary models has been considered, for
example, by Lord (1980), Magis (2013).

If the number of categories is finite, Y ∈ {0, . . . , k}, a simpler form can be derived, in which
second derivatives are not needed. By using πi0(θp) = 1− πi1(θp) − · · · − πik(θp) one obtains

I (θp) =
k∑

r=1

π ′
ir (θp)

2

πir (θp)
+ (π ′

i1(θp) + · · · + π ′
ik(θp))

2

1 − πi1(θp) − · · · − πik(θp)
.
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Figure 8.
Information functions for three items with intercepts δ0i = −3, item 1: dotted line, item 2: drawn line, item 3: dashed
line; left: varying item slopes, (δ1, δ2, δ3) = (1.2, 1.0, 0.8), item discrimination fixed, αi = 1; right: varying item
discrimination, (α1, α2, α3) = (1.2, 1.0, 0.8)

For illustration, Fig. 8 shows the information functions for three items with 10 response categories
and logarithmic difficulty functions. Since varying intercepts yield just shifted versions of the
information function we let all the intercepts be the same (δ0i = −3). The left picture shows the
information functions for item slopes (δ1, δ2, δ3) = (1.2, 1.0, 0.8) and αi = 1 for all items (item
1: dotted line, item 2: drawn line, item 3: dashed line). Since item one is the hardest its peak is
at larger θ -values than for the other two items. The right side shows the information function if
in addition the αi s vary, (α1, α2, α3) = (1.2, 1.0, 0.8). The discrimination parameter changes the
range of the information function. Item 1, which has the largest discrimination parameter, yields
the largest values. As has been shown for linear difficulty functions large values of αi are linked
to small variances of the response, an effect which is also present for nonlinear functions and
explains why information is larger for large discrimination parameters.

For continuous responses, one obtains a closed form for the observed information only. It is
given by Iobs(θp,Y ) = −∂2li (Y ; θp)/∂θp∂θp = α2

i (( f
′(ηi pY )/ f (ηi pY ))2 − f ′′(ηi pY )/ f (ηi pY )),

where ηi pY = αi (θp − δi (Y )), f (.) is the derivative of F(.), and f ′(.), f ′′(.) the first and
second derivatives. The expected observation can be obtained by numerical integration. For normal
distribution function F(.), it can be computed explicitly, yielding I (θp) = Iobs(θp,Y ) = α2

i .
Then, the information depends on the discrimination parameter only.

3.3. Differential Item Functioning

Differential item functioning (DIF) is the well-known phenomenon that the probability of a
correct response among equally able persons differs in subgroups. For example, the difficulty of an
itemmay depend on themembership to a racial, ethnic or gender subgroup. Then, the performance
of a group can be lower because these items are related to specific knowledge that is less present
in this group. Various methods have been developed to avoid the potential measurement bias and
discrimination, see, for example, Millsap and Everson (1993), Zumbo (1999), Rogers (2005),
Osterlind and Everson (2009) and Magis et al. (2010).

For thresholds models, DIF can be investigated in a similar way as in approaches that have
been used for the Rasch model, namely by including covariates in the model. Let x p a person-
specific vector of covariates that contains, for example, gender, race, but also metric covariates
like age. In a generalized thresholds model, the person parameter θp is replaced by θp + xTpγ i
yielding the differential item functioning thresholds model

P(Ypi > y|θp, αi , δi (.)) = F(αi (θp + xTpγ i − δi (y))).
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The parameter γ i is item-specific and indicates the presence of DIF if it is unequal zero. The
hypothesis H0 : γ i = 0 can be tested by using likelihood ratio test, which is easy to do in
particular if one considers DIF in items one at a time. For Rasch models, which are special
cases of the thresholds model, DIF detection of this type has been considered, for example, by
Paek and Wilson (2011), however restricted to binary covariates, which distinguish between a
focal and a reference group. If x p is vector-valued, and one wants to model DIF in all items
simultaneously, simple marginal estimates will be hard to obtain for a larger number of items.
More recently, penalty approaches have been proposed that also work for a larger number of items
in Rasch models (Tutz and Schauberger, 2015). In penalty approaches, the likelihood is replaced
by penalized likelihood with penalty terms that enforce selection of covariates. They work in a
similar way as the penalty methods considered in Sect. 5 but with different penalty terms. The
penalty terms used in these approaches can also be used in the estimation of thresholds models
yielding a general concept of DIF modeling in thresholds models.

The differential item functioning thresholdsmodelmodelsDIFwithin a specific item response
model as does the Rasch differential item functioning model considered by Paek and Wilson
(2011). The approach has advantages over more traditional DIF detection approaches as Lord’s
χ2 test (Lord, 1980) and the logistic regression method (Swaminathan and Rogers, 1990; Magis
et al., 2015). The latter approach uses the test score of respondents to act as matching variable
and as a proxy for respondent’s ability. It assumes that test scores do represent the respondent’s
ability, which might hold in special models but certainly not in general.

3.4. Alternative Modeling Strategies

3.4.1. Nonparametric ItemResponseModels Aflexible class ofmodels are nonparametric item
response models (Mokken, 1971; Junker and Sijtsma, 2001; Sijtsma and Molenaar, 2016). The
binary nonparametric homogeneity model assumes only local independence, unidimensionality,
and monotonicity and therefore encompasses binary thresholds models. Thresholds models are
more restrictive since they assume a fixed response function F(.), while in the homogeneity
model the response functions can have any form provided they do not decrease. The flexibility of
thresholds models refers to the distribution of the responses. In particular in models with more
general difficulty functions to be considered later, the form of the distributions is hardly restricted.
For binary responses, this flexibility is not exploited since the form of the response distribution
is fixed to be a Bernoulli distribution.

One strength of the thresholds model is that it preserves the essential components of IRT
models, but let distributions take various forms. It is able to not only fit binary responses but also
count data and continuous responses, and, crucially, link it to the same latent construct. While
nonparametric models provide maximal flexibility in characterizing the relationship between
latent construct and item score, thresholds models do not aim at the item score, they aim at linking
various possible distributions in a flexible way to person abilities.

3.4.2. Multidimensional IRT Models Multidimensional IRT models provide an alternative
extension of more classical response models, see, for example, Swaminathan and Rogers (2018);
Chalmers (2012). The R packagemirt (Chalmers, 2012) allows to fit binary and multi-categorical
models as the graded response model with a multi-dimensional structure. The basic concept is to
replace the unidimensional trait θp by anm-dimensional trait (latent factors) θT

p = (θp1, . . . , θpm).

Then, in the simple binary model one uses P(Ypi = 1) = F(αi0 + αT
i θ p), where αi0 is an

item-specific intercept and αi an item-specific parameter vector. In multi-categorical models, the
intercepts are category-specific, and the model contains more than one threshold.

It is straightforward to use multi-dimensional structures in thresholds models. Instead of the
predictor ηpi = αi (θp − δi0 − δi g(y)) = αiθp − δ̃i0 − δ̃i g(y), where δ̃i0 = αiδi0, δ̃i = αiδi ,
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one uses ηpi = αT
i θ p − δ̃i0 − δ̃i g(y). Then, if g(.) is kept flexible, for example by using basis

functions, one obtains for categorical responses the multi-dimensional models used by Chalmers
(2012). An advantage is that within this framework one also obtains multi-dimensional models
for count data and continuous responses, and mixed item formats can be used within a test.

A caveat is that multi-dimensional models can yield paradoxical results (Jordan & Spiess,
2012),whichmight also be the case inmulti-dimensional thresholdsmodels.Nevertheless, specific
multi-dimensional models turned out to be very useful, for example to model response styles, see
Johnson and Bolt (2010),Wetzel and Carstensen (2017), Plieninger (2016), Henninger andMeiser
(2020).

4. Mixed Item Formats

Tests often contain a mixture of different item formats. When measuring proficiency, the
efficiency of tests can be increased by including binary items, polytomous items, continuous ones
as well as count data items. The formats of items in a mixed-format test are often categorized into
two classes: multiple choice (MC) and constructed response (CR). As Kim and Lee (2006) noted,
typically, MC items are dichotomously scored (DS) and CR items are polytomously scored (PS).

There is a considerable body of methods of scale linking for mixed-format tests. The methods
are inspired by the linkage methods for data obtained from two groups of examinees through
common items (Kim&Lee, 2006).Commonmethods aremean/mean,mean/sigma, andStocking–
Lord linkage, see, for example, (Hanson&Béguin, 2002;Ogasawara, 2001;Kim&Hanson, 2002;
Kolen & Brennan, 2014).

The thresholds model addresses the problem of different item formats in a quite different
way. By construction, it assumes that there is a common latent trait that determines the outcome
for all items. The model itself does not distinguish between continuous, polytomous or binary
items. The only implicit assumption is that it contains order information.

The difference in item formats is captured in the difficulty functions. They determine which
responses can be expected given a fixed ability parameter, and what distributional form the
responses have. In the mixed formats case, it is not sensible to assume a common slope in the
difficulty functions, instead slopes should vary freely, then item difficulty functions automati-
cally adapt to the item. Resulting item functions can be quite different for, say, a dichotomous
item and an item with five categories. The interpretation has to account for the type of item.
For the dichotomous item, only the value δ(0) is relevant, while for a five-categories item the
set δ( j), j = 0, . . . , 4 determines the response. For continuous functions, the whole difficulty
function is interpretable. In contrast to the case of homogeneous item-types, it is less instructive
to look at the corresponding item characteristic functions since when considering P(Ypi > y)
the value y has quite different meaning for different items.

For illustration of mixed item-formats, we consider the cognition data, in which responses
range between 1 and 7. We changed the formats of two items, item 1 and item 5, to make them
three-categories items by using the thresholds 4 and 6. More precisely, for the items the response
is 0 if Ypi ≤ 4, 1 if 4 < Ypi ≤ 6, and 2 if Ypi > 6. Figure 9 shows the estimated difficulty
and PT functions. It is seen that the difficulty functions of the other items (left picture) remain
virtually the same as for the original items shown in Fig. 4 (lower right picture). As expected the
difficulty functions for items 1 and 5 have changed since now different values of y are relevant.
Therefore, they are given separately (right picture). Figure 9 also shows the corresponding person
thresholds functions. Again the curves for item 1 and item 5 are quite different from the curves
in Fig. 4 because for these items the support is different, namely 0,1,2 (corresponding to 0,4,6 on
the original y-scale), but for the other items the curves are almost the same.
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Figure 9.
Cognition data with items 1 and 5 as three-categories items. First row: difficulty functions, below: person threshold
functions for θ = 0

A similar experiment was made for the verbal fluency data which have support 0, 1, . . . .
Items 2 and 3 have been changed to three-categories items with support 0,1,2 by using thresholds
9 and 14. Figure 10 shows the difficulty and PT functions for the mixed-formats case. As for the
cognition data the PT functions for the unchanged items are very similar to the fits for the original
items (see Fig. 7, right picture), but the PT functions for the items 2 and 3 have distinctly changed
since the new y-values are 0,1,2, which correspond to 0,9,14 on the original response scale.

5. More General Models: Flexible Difficulty Functions

The choice of the difficulty function determines the response distribution beyond the choice
of the response function. As shown before, it can in particular be used to restrict the support
of the response. A fixed choice, for example by using linear difficulty functions, assumes that
items differ only by intercepts and slopes (of the difficulty function). A fixed choice has the
advantage that each item is determined by just two parameters δ0i , δi , a disadvantage is that the
true difficulty function and the distribution of the responses, which depends on the difficulty
function, are typically unknown.

A more flexible approach that avoids that one has to choose a specific type of function,
and lets the data themselves decide is obtained by letting difficulty functions be determined by
basis functions, an approach that has been extensively used in statistics and machine learning
(Vidakovic, 1999; Wood, 2006a; 2006b; Ruppert et al. 2009; Wand, 2000). Let us assume that the
difficulty functions are given by

δi (y) =
M∑
l=0

δil�il(y), (3)
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Figure 10.
First row: difficulty functions for fluency datawith items 2 and 3 changed to three categories items, below: person threshold
functions for θ = 0

where�il(.), l = 0, . . . , M are chosen basis functions. The simple choice�i0(y) = 1,�i1(y) =
y, M = 1 means that the item difficulty functions are linear. Much more flexible models are
obtained by alternative functions as radial basis functions or spline functions. A particular attrac-
tive choice is B-splines as propagated andmotivated extensively by Eilers andMarx (1996, 2021).
They are very flexible and can closely approximate a variety of functions. In the literature, they
were typically used to approximate functions of observable variables; here they are used to specify
the unobservable difficulty functions. If difficulty functions are expanded in basis functions, they
have to fulfill that they are non-decreasing, which typically calls for some restrictions. In the case
of B-splines, a restriction that ensures that functions are non-decreasing is that δi0 ≤ · · · ≤ δiM .

If a basis, for example, B-splines have been chosen, there are two basic strategies to select
the number of basis functions. One is to choose a relatively small number of basis functions, say
6 or 8, which often is enough to provide the needed flexibility. An alternative strategy is to choose
a relatively large number, say 30 to 40 basis functions. Then, the number of coefficients to be
estimated increases strongly, and simple log-likelihood fitting is no longer appropriate since it
typically yields overfitting. Instead of fitting by maximizing the log-likelihood, one has to use
penalization methods, that is, one maximizes a penalized log-likelihood, in which the differences
between coefficients of adjacent basis functions are restricted to not vary too strongly, see Eilers
andMarx (1996, 2021). Disadvantages are that one has to choose a tuning parameter, for example,
by cross-validation, and that one has to deal with a penalized log-likelihood instead of the usual
likelihood. Therefore, we use the former strategy in the examples. There is one case where
penalization can not be avoided, namely when fitting flexible functions that are supposed to be the
same for all items (see Sect. 6). For more general regularization methods that could be adapted
to the smoothing of difficulty functions, see also Eilers and Marx (1996), Hastie and Tibshirani
1986) and Bühlmann and Van De Geer (2011).
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Figure 11.
Fitted PT (left) and difficulty (right) functions with B-spline-based difficulty functions for fluency data

If difficulty functions have the form (3), the model is parametrized by αi , δi1, . . . , δiM ,
i = 1, . . . , I , as item parameters, and θp, p = 1, . . . , P , as person parameters.

Although computation is more demanding, flexible difficulties can be used as a diagnostic
tool to investigate if a fixed difficulty function is appropriate. It can also be used to investigate if
single items have quite different distributions.One should distinguish between two cases, difficulty
function as specified in Eq. (3), which vary freely across items, and a slightly more restrictive
approach, which assumes that only the location varies across items. The latter uses the simpler
expansion

δi (y) = δ0i +
M∑
l=0

δl�l(y). (4)

It assumes that the location δ0i is item-specific, but the form of the function is the same for all
items.

Figure 11 shows the PT functions and the fitted difficulty functions for the verbal fluency data
if difficulties are not restricted (6 cubic spline functions). It is seen that the obtained PT functions
are very similar to the functions obtained for fixed logarithmic difficulty functions (Fig. 7, right
picture). The difficulty functions deviate somewhat from logarithmic functions but are not far
away in the middle range where observations are located (not shown). Nevertheless, the AIC
criterion suggests that the more flexible model should be preferred (4039.59 for the splines fit,
4094.11 for the model with logarithmic difficulty functions). However, the correlation between
posterior estimates of person parameters obtained for the splines and the logarithmic model was
0.991, and estimates were very similar. Thus, one might conclude that there is no substantial
improvement over the model with logarithmic difficulty functions.

Figure 12 shows the PT functions and the fitted difficulty functions for the fear data if B-
splines (6 cubic spline functions) generate the difficulty functions, and a discrete distribution
is used. For comparison, the second row shows the PT and difficulty functions for logarithmic
difficulty functions. Though the order of the items remains the same, the form of the difficulty
functions changes if splines are used instead of the logarithmic function. Also the AIC (3484.07)
is distinctly smaller than the value obtained for logarithmic difficulty functions (3980.79). The
correlation between posterior estimates of person parameters obtained for the splines and the
logarithmic model was 0.959, and therefore smaller than for the fluency data.

Figure 13 shows the PT functions and the fitted difficulty functions for the cognition data
if B-splines (6 cubic spline functions) generate the difficulty functions. It is seen that difficulty
functions differ from functions obtained for linear functions (see Fig. 4) though the grouping in
pairs of items is quite similar. It suggests that the response distributions deviate from the normal
distribution, which is implicitly assumed by using linear difficulty functions. AIC for splines
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Figure 12.
Fitted PT (left) and difficulty (right) functionswith B-spline-based difficulty functions for fear data; for comparison second
row shows the difficulty functions for logarithmic difficulty functions

Figure 13.
Fitted PT (left) and difficulty (right) functions with B-spline-based difficulty functions for cognition data

was 2803.62, for varying coefficients with fixed difficulty function was 2917.66, the correlation
between posterior estimates of person parameters obtained for the splines and the fixed model
was 0.956.

6. Obtaining Estimates and Inference

In the following,marginalmaximum likelihoodmethods for the estimation of itemparameters
and posterior estimation of person parameters are considered under the usual assumption of
conditional independence of observable variables given the latent variables.
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6.1. Marginal Maximum Likelihood Estimation

Let the general thresholds model hold. Then, the distribution function for observation Ypi

has the form:

Fpi (y) = P(Ypi ≤ y) = 1 − F(αi (θp − δi (y))).

For continuous responses, one obtains the density by building derivatives yielding

f pi (y) = ∂Fpi (y)

∂y
= f (αi (θp − δi (y)))αiδ

′
i (y),

where f (.) is the density corresponding to F(.), and δ′
i (y) = ∂δi (y)/∂y is the derivative of the

threshold function.
For discrete responses Ypi ∈ {0, 1, . . . }, the probability mass function is obtained by building

differences. Then, one has the discrete density function

f pi (0) = 1 − P(Ypi > 0) = 1 − F(αi (θp − δi (0))),

f pi (r) = P(Ypi > r − 1) − P(Ypi > r)

= F(αi (θp − δi (r − 1))) − F(αi (θp − δi (r))), r = 1, 2, . . .

where
∑

r f pi (r) = 1. For simple binary responses, one obtains

f pi (0) = 1 − F(αi (θp − δi (0))) f pi (1) = F(αi (θp − δi (0))),

where δ0i = δi (0) is the familiar difficulty parameter.
If difficulties are expanded in basis functions, they have the form:

δi (y) =
M∑
l=0

δil�il(y) = �i (y)
T δi ,

where �i (y)T = (�i0(y), . . . , �iM (y)), δTi = (δi0, . . . , δiM ). The corresponding derivative is
given by

δ′
i (y) =

M∑
l=0

δil�
′
il(y) = �′

i (y)
T δi ,

where �′
i (y)

T = (�′
i0(y), . . . , �

′
iM (y)) is the vector of derivatives of basis functions.

Let now observations be given by ypi , i = 1, . . . , I, p = 1, . . . , P . The estimation method
that is used is marginal likelihood by assuming that person parameters are normally distributed,
θp ∼ N (0, σ 2

θ ). Maximization of the marginal log-likelihood can be obtained by integration
techniques. We use numerical integration by Gauss–Hermite integration methods. Early versions
for univariate random effects date back to Hinde (1982) and Anderson and Aitkin (1985).

Let δi denote the vector of all parameters linked to the difficulty function of item i . For
fixed difficulty functions, it has length two, for expansions in basis functions it is, more generally,
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M + 1. The vector αT = (α1, . . . , αI ) collects the item slopes. With δT = (δT1 , . . . , δTI ,αT , σθ )

denoting the set of all item parameters and f0,σθ (.) denoting the density of the normal distribution
N (0, σ 2

θ ), the marginal likelihood has the form:

L(δ) =
P∏

p=1

∫ I∏
i=1

f pi (ypi ) f0,σθ (θp)dθp,

yielding the log-likelihood

l(δ) = log(L(δ)) =
P∑

p=1

log

(∫ I∏
i=1

f pi (ypi ) f0,σθ (θp)dθp

)
.

The score function s(δ) = ∂l/∂δ, which takes on the value of 0 for maximum likelihood
estimates, has components

∂l

∂δi j
=

P∑
p=1

∫
∂ f pi (ypi )

∂δi j

∏
l 
=i

f pi (ypl) f0,σθ (θp)dθp/cp,

∂l

∂αi
=

P∑
p=1

∫
∂ f pi (ypi )

∂αi

∏
l 
=i

f pi (ypl) f0,σθ (θp)dθp/cp,

∂l

∂σθ

=
P∑

p=1

∫ I∏
i=1

f pi (ypi )
∂ f0,σθ (θp)

∂σθ

dθp/cp,

where cp = ∫ ∏I
i=1 f pi (ypi ) f0,σθ (θp)dθp. The derivation uses that the order of integration and

differentiation can be interchanged, which holds if densities are continuous and continuously
differentiable, in particular it holds if F(.) is the normal distribution function.

The form of the derivatives depends on the distribution of the responses. For continuous
responses, one obtains

∂ f pi (ypi )

∂δi j
= αi�

′
i j (ypi ) f (αi (θp − δi (ypi ))) − α2

i f
′(αi (θp − δi (ypi )))�i j (ypi )�

′
i (ypi )

T δi ,

∂ f pi (ypi )

∂αi
= �′

i (ypi )
T δi { f (αi (θp − δi (ypi )) + αi (θp − �i (ypi )

T δi ) f
′(αi (θp − δi (ypi )))},

with f ′(.) denoting the derivative of f (.). For discrete responses, one has

∂ f pi (ypi )

∂δi j
= −αi f (αi (θp − δi (ypi − 1)))�i j (ypi − 1) + αi f (αi (θp − δi (ypi )))�i j (ypi ),

∂ f pi (ypi )

∂αi
= (θp − δi (ypi − 1)) f (αi (θp − δi (ypi − 1))) − (θp − δi (ypi )) f (αi (θp − δi (ypi ))),

where �i j (−1) is defined by �i j (−1) = 0 and δi (−1) = −∞.
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For simple difficulty functions, the score functions simplify accordingly. For example, when
the difficulty functions are linear, one has �i (y)T = (1, y), and �′

i (y)
T = (0, 1). An approx-

imation of the covariance of the estimate, cov(δ̂), is obtained by the observed information
−∂2l/∂δ∂δT .

Some caution is needed when fitting the model (4) with a common difficulty function
expanded in B-splines. Since B-splines sum up to 1 at any given value, the parameters in model
(4) are not identified. This can be fixed by choosing a fixed value for one of the parameters δ0i , for
example, δ01 = 0.One can also use the general form (3) and use a tailored penalty. Instead ofmaxi-
mizing the log-likelihood, onemaximizes the penalized log-likelihood l({δi }) = l({δi })−Pλ({δi })
with penalty term

Pλ({δi }) = λ

I∑
i=2

M∑
l=2

[(δil − δi,l−1) − (δi−1,l − δi−1,l−1)]2.

The choice of λ determines the estimates. For λ = 0, one maximizes the usual log-likelihood.
For λ −→ ∞, the differences of adjacent parameters become the same for all items, that is,
δil − δi,l−1 = δi−1,l − δi−1,l−1, otherwise the penalty term would also go to infinity. Then, the
levels of the functions can differ but not the form of the function. Therefore, using a large value
of λ automatically yields shifted difficulty functions.

For the computation of estimates, we used Gauss–Hermite integration, which works rather
well since all integrals are unidimensional. The written R program uses the computation of deriva-
tives in combination with the R function optim.

6.2. Illustrative Simulation

For illustration, we show the results of a small simulation study. Figure 14 shows the estimates
for count data with varying slopes for I = 5, P = 200 and σθ = 1. The dots show the true
values of the parameters. The first row shows estimates if there is no variation in discrimination
parameters, αi = 1, which is also assumed when estimating parameters. The second and third row
shows estimates for varying discrimination parameters. It is seen that the parameters are estimated
rather well if discrimination parameters are fixed. If they are varying, estimation becomes less
accurate but is able to separate discrimination parameters from intercepts and slopes. There is no
variation in the last discrimination parameter since it was fixed (α5 = 1).

6.3. Estimating Person Parameters

If estimates of item parameter are found, posterior mode or mean estimation yields estimates
of person parameters. For given item responses yT = (y1, . . . , yI ), the posterior is given by

f (θ | y, δ) =
∏I

i=1 f (αi (θp − δi (yi )))αiδ
′
i (yi ) f0,σθ (θp)∫ ∏I

i=1 f (αi (θp − δi (yi )))αiδ
′
i (yi ) f0,σθ (θp)dθp

.

Replacing the parameter δ by its estimate δ̂ allows to compute the mode of the posterior θ̂m or the
posterior mean

θ̂m = E(θ | y, δ) =
∫

θ f (θ | y, δ)dθ.
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Figure 14.
Estimates for simulated count data; first row: fixed discrimination parameters (αi = 1); second and third row: varying
discrimination parameters, which are also estimated

Figure 15 illustrates that posterior estimates are close to true values. Data were generated for
10 items with linear difficulty functions. The intercepts were chosen as δi0 = −2.25+ (i −1)0.5,
i = 1, . . . , 10, yielding −2.25,−1.75, . . . , 2.25. The slopes of the first four items were δi = 1,
for the next four items δi = 2, and for the remaining two items δi = 3. For P = 50 and P = 100
with θp drawn randomly from N (0, 1), one obtains the plots of true person parameters against
estimated parameters shown in Fig. 15.

7. Concluding Remarks

The comprehensive class of thresholds models has been introduced and illustrated in exam-
ples. Also basic properties of the model class have been shown. Future research might be devoted
to extensions of the model class and further investigations of its properties. As already mentioned,
it is straightforward to include explanatory variables by using the additive term θp + xTpβ − δi (y)
instead of the simple term θp − δi (y), where x p is a person-specific explanatory variable and β



1264 PSYCHOMETRIKA

Figure 15.
True person parameters plotted against fitted values for simulation data for P=50 (left) and P=100 (right)

the corresponding weight. The latter can also be item-specific. The incorporation of explanatory
variables can be useful to investigate sources of heterogeneity in a response scale, and has been
propagated, for example, by Jeon and De Boeck (2016). Also the extension to multidimensional
models is a possible topic of further research. Various general methods of model checking for
categorical responses have been proposed (Swaminathan et al., 2006; Maydeu-Olivares, 2013;
Haberman et al., 2013). They can also be applied to thresholds models, which, in the case of cate-
gorical responses are specific graded responsemodels. Similar approaches might be developed for
continuous responses and count data taking the specific distributions into account. It might also
be useful to exploit that all thresholds models become simply structured, familiar binary models
if responses are dichotomized. Then, model checking for binary models can be used, but one has
to find ways how to combine the results obtained for the dichotomizations.

We restricted consideration to symmetric response functions F(.). The use of a normal or a
logistic response function yields very similar results, although the scaling is different. However,
the use of non-symmetric distributions as, for example, the extreme value distribution might make
a difference. In principle also discrete response functions could be used, the extreme case being
a zero-one function as in the Guttman model; however, they include jumps that might be less
realistic when assuming a continuous latent trait.

Software for the computation of marginal maximum likelihood estimates will be made avail-
able on Github.
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Appendix

Proposition 8.1. If the itemdifficulty function in the thresholdsmodelwith continuous distribution
function F(.) and corresponding density f (y) = ∂F(y)/∂y is linear, δi (y) = δ0i + δi y, δi ≥ 0
one obtains for the expectation and the variance

μpi = E(Ypi ) = (θp − δ0i − EF/αi )/δi , (5)

σ 2
pi = var(Ypi ) = varF/(αiδi )

2, (6)

where EF = ∫
y f (y)dy is the expectation corresponding to distribution function F(.), and

varF = σ 2
F = ∫

(y − EF )2 f (y)dy is the variance linked to F(.)

If, in addition, F(.) is symmetric the distribution function of Ypi is a shifted and scaled version
of F(.) and the density is given by σF f (σF (y − μpi )/σpi )/σpi , which simplifies to f ((y −
μpi )/σpi )/σpi if σF = 1.

Proof. For linear item function, the thresholds model has the form P(Ypi > y|θp, αi , δi (.)) =
F(αi (θp − δ0i − δi y)). The corresponding distribution function is

FYpi (y) = P(Ypi ≤ y) = 1 − F(αi (θp − δ0i − δi y)).

The density is given by

fYpi (y) = ∂FYpi (y)

∂y
= f (αi (θp − δ0i − δi y))αiδi ,

yielding the expectation

E(Ypi ) = αiδi

∫
y f (αi (θp − δ0i − δi y))dy.

With η = αi (θp − δ0i − δi y) and dη/dy = −αiδi one obtains

E(Ypi ) = −
∫ −∞

∞
θp − δ0i − η/αi

δi
f (η)dη = θp − δ0i − EF/αi

δi

where EF = ∫
y f (y)dy is a parameter that depends on F but not on i .

http://creativecommons.org/licenses/by/4.0/
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The variance is given by

var(Ypi ) =
∫ (

y − θp − δ0i − EF/αi

δi

)2

f (αi (θp − δ0i − δi y))αiδidy =
∫

(
η − EF

αiδi
)2 f (η)dη

= varF /(α2
i δi

2),

where varF = ∫
(η − EF )2 f (η)dη.

If F(.) is symmetric, EF = 0 and therefore μpi = (θp − δ0i )/δi . With σF = √
varF , one obtains

fYpi (y) = f (αi (θp − δ0i − δi y))αiδi = f (αiδi (μpi − y))αiδi = σF f (y − μpi )/σpi )/σpi .

For standardized response function (σF = 1), one obtains the simple form fYpi (y) = f ((y −
μpi )/σpi )/σpi . ��
Proposition 8.2. For the thresholds model with continuous response function F(.), let the diffi-
culty functions be defined on the support S taking values from R ∪ {∞}.

(1) Person parameters and item functions are identifiable if one discrimination parameter
and one person parameter are fixed, for example, α1 = 1, θ1 = 0.

(2) Person parameters and item functions are identifiable if one discrimination parameter
is fixed, for example α1 = 1, and δi (y0) is fixed for one value y0 ∈ S̃, where S̃ = S if S
is infinite and S̃ = {m1, . . . ,mk−1} for finite support S = {m1, . . . ,mk}. In the latter
case, δi (mk) = ∞ holds for all items.

Proof. Since the response function is strictly increasing, one has

αi (θp − δi (y)) = α̃i (θ̃p − δ̃i (y)) (7)

for all items and values y ∈ S.
Let now for two parameterizations θp, δi (.) and θ̃p, δ̃i (.) one discrimination parameter and one
person parameter be fixed by α1 = α̃1 = 1, θ1 = θ̃1 = 0. If one chooses θ1 = 0, and accordingly
θ̃1 = 0 one obtains αiδi (y) = α̃i δ̃i (y) for all items and values y ∈ S. For item 1 one obtains
δ1(y) = δ̃1(y), and therefore θp = θ̃p. Using δ̃i (y) = (αi/α̃i )δi (y) in (7) yields αiθp = α̃i θ̃p and
therefore αi = α̃i , from which δi (y) = δ̃i (y) follows.
Let now α1 = α̃1 = 1 and δi (y0) = δ̃i (y0) = 0 for one value y0 ∈ S for infinite support S. Then,
one obtains from (7) for item 1 and y = y0 that θp = θ̃p holds for all persons. Equation (7) yields
(αi − α̃i )θp = αiδi (y)− α̃i δ̃i (y), which for y = y0 yields (αi − α̃i )θp = 0 and therefore αi = α̃i .
Then, one also has δi (y) = δ̃i (y) .
If the support is finite, one has to choose δi (y0) = 0 for y0 ∈ {m1, . . . ,mk−1} since for δi (mk)

one always has δi (mk) = ∞ because 0 = P(Ypi > mk) = F(θp − δi (mk)) has to hold for any
θp. If δi (y0) = 0 is chosen accordingly (and α1 = α̃1 = 1), the derivation is the same as in the
case of infinite support. ��
Proposition 8.3. The thresholds model P(Ypi > y) = F(αi (θp − δi (y))) holds for continuous
response Ypi iff the graded response model holds for all categorizations

Y (c)
pi = r ⇐⇒ Ypi ∈ (τr , τr+1],

where τ1 < · · · < τk are any ordered thresholds.
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Proof. Let the thresholds model P(Ypi > y|θp, αi , δi (.)) = F(αi (θp − δi (y))) hold for con-
tinuous response Ypi for some increasing function δi (y). Let a categorized version be defined
by

Y (c)
pi = r if Ypi ∈ (τr , τr+1].

for any partition τ0 = −∞ < τ1 < · · · < τk .
One obtains P(Ypi > τr |θp, αi , δi (.)) = F(αi (θp − δi (τr ))) and therefore with δir = δi (τr )

P(Y (c)
pi ≥ r) = F(αi (θp − δir )), (8)

which is the graded response model for discrete response Y (c)
pi .

Let now the discretized version (8) hold for all discretizations. Let us consider the discretization
τ1 < · · · < τk with response Y (c)

pi and parameters δir , and the discretization τ1 + � < · · · < τk

with response Y (c�)
pi and parameters δ

(c�)
ir , where � < τ2 − τ1. Let the difficulty function be

defined by δi (τ1) = δi1, δi (τ1 + �) = δ
(c�)
i1 to obtain

P(Ypi > τ1) = F(αi (θp − δi (τ1))), P(Ypi > τ1 + �) = F(αi (θp − δi (τ1 + �))),

Since this holds for any values τ1,� one obtains the thresholds model for continuous response
Ypi . ��
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