
Vol.:(0123456789)

Foundations of Physics (2023) 53:7
https://doi.org/10.1007/s10701-022-00646-x

1 3

Heisenberg’s Uncertainty Principle and Particle Trajectories

Serj Aristarhov1

Received: 20 August 2022 / Accepted: 2 November 2022 / Published online: 26 November 2022 
© The Author(s) 2022

Abstract
In this paper we critically analyse W. Heisenberg’s arguments against the ontology 
of point particles following trajectories in quantum theory, presented in his famous 
1927 paper and in his Chicago lectures (1929). Along the way, we will clarify the 
meaning of Heisenberg’s uncertainty relation and help resolve some confusions 
related to it.
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1 Introduction

Heisenberg’s work on quantum mechanics, in particular, his well-known 1927 paper 
[1] and his 1929 Chicago lectures [2], led to the rejection of the ontology of point 
particles moving on trajectories in quantum theory. As M. Born put it in his 1954 
Nobel lecture [3]:

It was through this paper (Heisenberg’s 1927 [1]) that the revolutionary char-
acter of the new conception became clear. It showed that not only the deter-
minism of classical physics must be abandoned, but also the naive concept of 
reality which looked upon the particles of atomic physics as if they were very 
small grains of sand. At every instant a grain of sand has a definite position 
and velocity. This is not the case with an electron.

Ever since, this view has become deeply entrenched in many textbooks and lectures 
(see, e.g., [4]) and remains popular today.

At the same time, the existence and successes of trajectory-containing quantum 
theories (TCQTs), for instance, Bohmian mechanics (also known as the de Bro-
glie–Bohm or pilot-wave theory) [5–7], tell us that there must be something wrong 
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with the reasoning of Heisenberg and other advocates of the view that there are no 
point particles following trajectories in quantum physics.

In this paper, we will investigate Heisenberg’s arguments against the ontology of 
point particles in quantum mechanics, presented in his well-known 1927 paper [1] 
and his 1929 Chicago lectures [2]. In what follows, we will also clarify the meaning 
of Heisenberg’s uncertainty relation (UR) and help resolve some confusions related 
to it.

2  Heisenberg’s Arguments in 1927

It is often asserted [8, Chap. 10], [9, p. 100] that the impossibility of trajectories 
in the quantum world is a consequence of the Heisenberg UR [Eq. (1), Sect. 3.1]. 
Indeed, a relation similar in form to (1) appears for the first time in [1]. However, it 
seems Heisenberg’s argument against trajectories did not rely on it.

In [1] Heisenberg proposed to redefine the familiar physical notions of position, 
velocity, and trajectory:

When one wants to be clear about what is to be understood by the words ‘posi-
tion of the object,’ for example of the electron <...>, then one must specify 
definite experiments with whose help one plans to measure the ‘position of the 
electron’; otherwise this word has no meaning.

According to his new definitions, these words are mere place holders for certain 
laboratory operations. In the event that no suitable laboratory operations could be 
found, the corresponding notion was declared meaningless, and had to be banned 
from the very formulation of the theory.

Regarding the possibility of measuring the trajectories of the electrons, Heisen-
berg wrote:

By path we understand a series of points in space (in a given reference system) 
which the electron takes as ‘positions’ one after the other. As we already know 
what is to be understood by ‘position at a definite time,’ no new difficulties 
occur here. Nevertheless, it is easy to recognize that, for example, the often 
used expression, the ‘1s orbit of the electron in the hydrogen atom,’ from our 
point of view has no sense. In order to measure this 1s ‘path’ we have to illu-
minate the atom with light whose wavelength is considerably shorter than 10−8 
cm. However, a single photon of such light is enough to eject the electron com-
pletely from its ‘path’ <...>.

Thus he admits that it is possible to measure particle trajectories, at least in certain 
situations.1 It would require a series of consecutive position measurements and not 
the simultaneous determination of the position and momentum of the particle. So 
the UR is not what makes the measurement of the ‘1s orbit’ problematic, but rather 

1 For instance, in the debate with Einstein [8, Chap. 10], Heisenberg concedes that the trajectory of a 
free particle can be measured (say, approximately) via the Wilson cloud chamber.
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the assertion that a single measurement of the electron’s position via photons would 
ionize the atom. Therefore, from Heisenberg’s point of view, the notion of an elec-
tron’s trajectory in an atom makes no sense.

The operational principle used by Heisenberg, which we could call ‘measure-
ment = meaning’ following [10], was criticized for being inconsistent or circular 
[11, p. 73]. In order to show that a certain entity (e.g., a particle trajectory) cannot 
be observed in an experiment, one has to first specify what one means by the said 
entity. And Heisenberg does exactly that for the trajectory (or the ‘path’) of an elec-
tron at the beginning of the above quote. It is inconsistent with the claim that this 
word (in the narrower context of the hydrogen atom) has no meaning and has to be 
removed from the theory.

3  Heisenberg’s Arguments in 1929

Heisenberg’s Chicago lectures [2] contain an entire chapter devoted to the ‘critique 
of the corpuscular theory of matter’ (Ch. II). As we shall see, the argument against 
particle trajectories presented therein is significantly different from that of the 1927 
paper.

3.1  The Uncertainty Relation

Chapter II starts with a discussion of the inequality

where (Δq)2 = ∫ (q� − q̄)2|𝜓q(q
�)|2dq� with q̄ = ∫ q�|𝜓q(q

�)|2dq� , and analogously 
for Δp , where �q and �p are the wave function of the particle and its Fourier trans-
form, respectively.2 This inequality is a mathematical fact, which was first proven, 
notably, not by Heisenberg, but by Kennard [13] in 1927. In modern textbooks (see, 
e.g., [12]), it is called the Heisenberg position–momentum UR.3

The empirical import of this inequality is clear: Take two large ensembles of 
identically prepared single-particle systems. For the first ensemble, measure the par-
ticle position in each system. Then Δq approximates the standard deviation of the 
measured positions. For the second ensemble measure the momentum of the particle 
in each system. The resulting standard deviation then approaches Δp . The inequal-
ity (1) thus states that the product of those two standard deviations cannot be smaller 
than ℏ.

On page 15 of the Chicago lectures, Heisenberg writes:

(1)ΔqΔp ≥ ℏ,

2 Just like Heisenberg, we assume that the particle moves in one-dimensional space for brevity. The gen-
eralization to three-dimensional motion is straightforward.
3 The only difference is that Δa, a = p, q in [2] is equal to 

√
2 times the standard deviation and not the 

standard deviation itself. That is why in [2] the right-hand side of the inequality is ℏ and not the usual 
ℏ∕2.
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This UR [(1)] specifies the limits within which the particle picture may be 
applied. Any use of the words ‘position’ and ‘velocity’ with an accuracy 
exceeding that given by equation (I) [(1)] is just as meaningless as the use of 
words whose sense is not defined.

These words and the preceding heuristic derivation of (1) probably gave birth to the 
following argument against the ontology of point particles [8, Chap. 10], [9].4 Since 
quantum particles are known to be wave-like, we may ascribe a definite position to a 
particle only if the corresponding wave �(x)5 is sharply peaked. At the same time, it 
follows from (1) that, the narrower �(x) , the broader its Fourier transform F[�](k) . 
But according to the de Broglie relation, we have p = kℏ , so a matter wave which is 
well localized in space, thus resembling a particle with a definite position, cannot 
have a definite momentum, and vice versa.

As noted by Ballentine [14], this conclusion rests on the identification of the par-
ticle with the wave packet itself, which, he argues, is unjustified given the example 
of a particle incident on a beam splitter with detectors placed on either side. The 
particle is either reflected or transmitted, whereas the wave packet is separated into 
reflected and transmitted components.

Here, it is worth emphasizing that, even if it were somehow possible to formulate 
a version of quantum theory based on the identification of particles with wave pack-
ets, which would reject the notion of particle trajectories by the given reasoning, it is 
not at all certain that such a version would be in any way advantageous in compari-
son to TCQTs like Bohmian mechanics.

3.2  Heisenberg’s Argument

Although the Heisenberg quote from the previous subsection could be interpreted in 
the manner described above, it seems that Heisenberg’s own argument against parti-
cle trajectories was markedly different. On page 20, he states:

<...> if the velocity of the electron is at first known and the position then 
exactly measured, the position for times previous to the measurement may be 
calculated. Then for these past times ΔpΔx is smaller than the usual limiting 
value, but this knowledge of the past is of a purely speculative character, since 
it can never (because of the unknown change in momentum caused by the 
position measurement) be used as an initial condition in any calculation of the 
future progress of the electron and thus cannot be subject to experimental veri-
fication. It is a matter of personal belief whether such a calculation concerning 
the past history of the electron can be ascribed any physical reality or not.

Popper [15, p. 27] criticized Heisenberg’s conclusion here, pointing out that most 
measurements, especially in quantum physics, are retrodictive. It is a standard praxis 

4 This argument seems to be particularly widespread among laypersons and in the popular science 
media.
5 A one-dimensional picture is assumed for simplicity.
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to measure, say, the position of a particle to determine some of its past properties 
(energy or momentum) using the theory and knowledge of the experimental arrange-
ment. Thus, according to Popper, ‘To question whether the so ascertained “past his-
tory of the electron can be ascribed any physical reality or not” is to question the 
significance of an indispensable standard method of measurement’.

Popper was certainly right, but it seems that he missed Heisenberg’s point, espe-
cially if we take into account the footnote on page 15:6

In this connection one should particularly remember that the human language 
permits the construction of sentences which do not involve any consequences 
and which therefore have no content at all—in spite of the fact that these sen-
tences produce some kind of picture in our imagination; e.g., the statement 
that besides our world there exists another world, with which any connection 
is impossible in principle, does not lead to any experimental consequence, but 
does produce a kind of picture in the mind. Obviously such a statement can 
neither be proved nor disproved.

It becomes clear that Heisenberg did not question the possibility of reconstructing 
the trajectories once we assume their existence.7 He claimed that as a consequence 
of the UR we cannot ‘verify’ their existence. Hence, he claims, ‘it is a matter of 
personal belief’ to accept or to reject the results of retrodictive measurements per-
formed under the assumption of their existence.

By ‘experimental verification’ Heisenberg apparently meant the following: At 
time t = 0 we determine (set) the position of the particle to be q0 with an accuracy �q 
and determine other necessary initial data (for Heisenberg it is the momentum) to 
predict the future position of the particle. Let U0 be the region of space where the 
probability of finding the particle is close to one. This region can be thought of as a 
ball of radius �q around q0 . Let U� be the region of space where the trajectories deter-
mined by the alleged law of motion can end up at time 𝜏 > 0 , if they start in the 
region U0 and the (in)accuracy of other initial data is taken into account. The law of 
motion and the accuracy of the initial data have to be such that the volume of U� is 
still of order �q . At time � we measure the position of the particle q(�) with an accu-
racy �′

q
 . Let B��

q
(q(�)) be the ball of radius �′

q
 with center at q(�) . If, no matter how 

small we manage to make �q and �′
q
 , we have U� ∩ B��

q
(q(�)) ≠ ∅ , the ‘verification’ is 

complete. According to Heisenberg, because of the UR it is impossible to determine 
the initial data (the momentum) in such a way that U� is of the size �q , no matter how 
small the latter is, so the ‘verification’ is impossible.

It seems to us that the word ‘verification’ is not really appropriate here. In fact, if 
the volume of U� is large and we have U� ∩ B��

q
(q(�)) ≠ ∅ , we can still claim to have 

verified our trajectory-containing theory. Indeed, we fix the initial conditions in a 

6 It is worth mentioning that this footnote comes right after the words ‘This uncertainty relation...’, 
quoted in Sect. 3.1, which confirms that the argument against trajectories that Heisenberg had in mind in 
the Chicago lectures was not the one based on the identification of the electron with a wave.
7 This has in fact been done for photons [16]. A similar procedure may be possible for massive particles 
[17].
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certain way (prepare the system), then let it evolve for some time, and our observa-
tions match the predictions. Presumably, what Heisenberg meant was the verifica-
tion of the necessity of trajectories in the theory. He thought that, if his ‘verification’ 
could be carried out, the existence of trajectories would be the only possible expla-
nation of the observation. However, if U� can never be made small, at least one more 
possibility arises: To leave only the position distribution ( |�|2 ) in the description 
and banish the trajectories.8 According to Heisenberg it is ‘a matter of personal 
belief’ which possibility to opt for.

The preferences of Born, Heisenberg, and other members of the Copenhagen 
school were clearly not on the side of trajectories. Unfortunately, in the follow-
ing years they often passed their personal tastes off as the absolute truth. In 1958, 
instead of mentioning that having trajectories in a quantum theory was a real pos-
sibility, Heisenberg said something as radical as [19, p. 129]:

The idea of an objective real world whose smallest parts exist objectively in 
the same sense as stones or trees exist, independently of whether or not we 
observe them <...>, is impossible <...>.

3.3  The Role of the Uncertainty Relation

Let us summarize Heisenberg’s argument against trajectories in the Chicago lec-
tures: The UR (1) makes it impossible to ‘verify’ the existence of the particle trajec-
tories. Therefore it is not necessary to assume it. It is a matter of taste. In the previ-
ous subsection we discussed the second part of this argument. Now we are going to 
focus on the first part and answer the question of how, on the basis of the UR (1), 
Heisenberg concluded that the aforementioned ‘verification’ was impossible. We 
can then ask whether his conclusion was correct.

In order to prove this claim, it is necessary to assume the existence of the parti-
cle trajectories in the first place. Heisenberg does that implicitly. The law of motion 
Heisenberg implies has a lot in common with Newton’s second law.9 The initial data 
determining the trajectory are position and momentum (velocity), so the law has to 
be second order in time. Apart from that, Heisenberg assumes that the trajectories 
are straight lines for a free particle. This is clear, for instance, from the first quote 
given in Sect. 3.2. He also assumes that the distribution of the momentum, meaning 

9 Heisenberg may indeed have intended the law of motion of classical physics. See, for instance the fol-
lowing quote [1, p. 65]: ‘There must therefore exist for a definite state—for example, the 1s state—of the 
atom a probability function for the location of the electron which corresponds to the mean value for the 
classical orbit, averaged over all phases <...>.’

8 Strictly speaking, this is incorrect. Of course, in theory [18] it is possible to set the initial conditions 
for a classical particle exactly (with zero inaccuracy), but in practice we always have a distribution in 
phase space. This distribution may be propagated according to the Liouville equation. Thus the trajec-
tory-free description is not excluded even if Heisenberg’s ‘verification’ is possible. It is just that, for the 
center of mass of a large rigid body, the position support of the initially prepared distribution is much 
narrower than the size of the body. And, no matter how narrow the initially prepared distribution is, it is 
going to stay narrow with time. So the trajectory-based description feels more natural.
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the mass times the vector tangent to the trajectory at a given moment of time, of a 
particle with wave function � is given by the Fourier transform of �.

For Heisenberg, the wave function clearly has an epistemological character. For 
instance, he writes [2, p. 16]:

Any knowledge of the coordinate q of the electron can be expressed by a prob-
ability amplitude S(q�) , |S(q�)|2dq� being the probability of finding the numeri-
cal value of the coordinate of the electron between q′  and q� + dq�.

Since the wave function expresses our knowledge about the particle, it is obvious 
for Heisenberg (it follows from the mere definition of the wave function) that, if the 
particle’s position q is known to be q0 within a certain accuracy �q , its wave function 
will have ‘width’ Δq ≡ �q . In other words, the wave function of a particle right after 
a position measurement of accuracy �q will have ‘width’ Δq = �q.

How accurately can the momentum of the particle be determined at the same 
moment of time (from Heisenberg’s point of view)? Suppose it is possible to meas-
ure it infinitely accurately before we determine the position. Then the inaccuracy in 
our knowledge of the momentum is equal to the inaccuracy in the measurement of 
its disturbance �p due to the position measurement.10 Let us call this quantity ��p . 
But, according to Heisenberg’s view of the wave function, our knowledge of the 
momentum of the particle is expressed by the Fourier transform of � . Its ‘width’ is 
Δp . Thus ��p ≡ Δp and �q��p = ΔqΔp ≥ ℏ [20, p. 180]. Now we recall that the 
momentum in Heisenberg’s considerations is nothing but the vector tangent to the 
trajectory of the particle and that, if left alone, the particle will move in a straight 
line in the direction dictated by the initial momentum. Since the indeterminacy in 
the momentum (our lack of knowledge of the momentum) gets larger as �q gets 
smaller, the region U�—the set of points the trajectories may end up in at time � if 
they start from the ball B�q

(q0) , for the given possible values of the momentum—
will be large. This was how Heisenberg concluded that his ‘experimental verifica-
tion’ of the existence of the trajectories was impossible.

Note that, as already mentioned, the equalities �q = Δq and ��p = Δp are not even 
assumptions for Heisenberg; due to the assumed epistemological character of the 
wave function, �q , Δq and ��p , Δp are equivalent quantities in his view of things. 
This is why Heisenberg refers to the famous �-microscope thought experiment, and 
other experiments in which both the position and momentum of a particle are deter-
mined at the same time (see [2], §2), as ‘illustrations’ of the UR, even though the 
experimental situation relating to  (1), the one we described in Sect.  3.1, does not 
involve simultaneous measurements and is very different from the examples given 
by Heisenberg in [2]. For instance, he claimed that, in the case of the �-microscope, 
the position q of the electron can be measured with accuracy equal to the resolv-
ing power of the microscope: �q = �∕sin � , where � is the angular aperture of the 
objective. At the same time the change in momentum of the electron due to this 

10 Once again, Heisenberg assumes that the momentum, i.e., the mass times the vector tangent to the 
trajectory, does not change, when the particle is free. In particular, it does not change between the meas-
urements.
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measurement (the Compton recoil) �p can be found using the theory of the Compton 
effect and the momentum of the scattered photon. The latter can be measured in the 
same run of the experiment with accuracy ��p ∼

h

�
sin � . Thus we have �q��p ∼ h . 

The same relation is obtained in all other examples of the simultaneous measure-
ment of q and �p , although they are based on completely different ideas. This was 
no surprise for Heisenberg because for him it was bound to happen, since �q ≡ Δq , 
��p ≡ Δp and (1) holds.

Now, when we break down Heisenberg’s line of reasoning, our aim is to ana-
lyse it critically. In order to reach Heisenberg’s conclusion, namely the impossibility 
of ‘experimentally verifying’ the existence of trajectories of quantum particles, it is 
necessary to consider a generic empirically adequate TCQT. Heisenberg’s implicit 
trajectory-containing quantum theory is not only very special (not generic), but also 
empirically inadequate. Indeed, Heisenberg postulates that the probability density of 
the velocity of a particle with the wave function � is given by the Fourier transform 
of � . Such a velocity field would in general fail to satisfy the continuity equation. 
Thus the corresponding theory will not reproduce the Born rule. Apart from that, 
in any TCQT which reproduces the Born rule, the wave function has to be related 
to the law of motion and will thus have nomological rather than epistemological 
status. So, if the analysis requires the relations �q = Δq or ��p = Δp , which Heisen-
berg considered to be obvious, they will have to be proven. Thus Heisenberg’s anal-
ysis may be correct in itself, but it is irrelevant, as the TCQT he considered did not 
describe our world.

Although we do not know of any study in which the possibility of Heisenberg’s 
‘verification’ of the existence of particle trajectories has been checked for the whole 
class of empirically adequate TCQTs, the relevant analysis for one of those theories, 
Bohmian mechanics, has in fact been performed [18].11

According to [18], the spread of the particle wave function right after the position 
measurement12 cannot be greater than the inaccuracy in the measurement. In fact, 
we may know the position of the particle only as accurately as the |�after|

2-distribu-
tion allows, where �after is the wave function of the particle after the measurement. 
This result may be obtained either by analysing the generic process of the position 
measurement [18] or by statistical arguments (see, e.g., Chap. 11 of [5]).13 There-
fore, �q ∼ Δq does indeed hold. More precisely, if we determined the position of the 
particle to be q0 and defined the accuracy of our measurement to be the number �q 
such that the probability of finding the particle in the region B�q

(q0) is 1 − � , then 
∫
B�q

(q0)
|�after(q)|

2dq = 1 − �.14

14 We emphasize that this is not just the statement of the Born rule! The wave function after the meas-
urement is determined by the wave function before the measurement and the interaction Hamiltonian. 
The accuracy of our measurement is determined by the interaction between the particle and the measure-
ment device as well, but it is not obvious that we cannot infer the position of the particle from the output 
of the measurement device (‘position of the pointer’) more accurately than from �after . That would be 
necessarily the case only in a �-complete theory.

11 Since that analysis does not use the exact form of the law of motion, generalization seems to be easily 
attainable.
12 The conditional wave function for a certain configuration of the measurement device.
13 In Bohmian mechanics, this fact is referred to as absolute uncertainty.
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The smaller the spread of the wave function, the faster it broadens in time, and 
the faster the volume of the image U� of the region B�q

(q0) grows under the Bohmian 
flow Φt , as ∫

B�q
(q0)

|�after(q)|
2dq = 1 − � = ∫

Φ� (B�q
(q0))

|�(q, �)|2dq has to hold due to 
equivariance [5, p. 152]. So, even if we know the system–measurement device inter-
action Hamiltonian and can calculate the wave function of the system after the 
measurement, we will be able to predict the future position of the particle only with 
low accuracy, because U� is going to be much larger than �q . Heuristically, one could 
say that the rate of spread of the wave function corresponds to Δp—the spread of its 
Fourier transform. Thus, although Heisenberg’s analysis in his Chicago lectures was 
far from being correct, his intuition was right after all.

4  TCQT or a Ã ‑Complete Theory: A Matter of Taste?

So, at least for Bohmian mechanics, ‘verification’ of the presence of the trajecto-
ries in the sense of Heisenberg is indeed impossible. For a physicist who defines 
a physical theory as a set of rules allowing us to obtain numerical predictions for 
experiments, this is a convincing argument against TCQTs and, in particular, Bohm-
ian mechanics. In classical physics the accurate prediction of the future position of 
a particle using its trajectory is indeed possible, so the idea of using the distribu-
tion of particles in space instead does seem very unnatural. Apart from that, the 
corresponding formalism (Newtonian/Lagrangian/Hamiltonian) is simpler than the 
one based on the density in phase space and Liouville’s equation. In quantum phys-
ics, the accurate prediction of positions with trajectories is excluded and calcula-
tion of the trajectories (at least in Bohmian mechanics) requires the solution of the 
Schrödinger equation anyway, so for a physicist with an instrumentalist attitude, 
keeping only the wave function in the theory is preferable.

This is correct unless one takes into account that there is at least one big class of 
experiments for which standard quantum formalism, based on the wave function and 
self-adjoint operators, does not give unambiguous predictions: arrival time meas-
urements. The general scheme of such measurements can be described as follows. 
A particle is first trapped in a certain region of space and then released at a known 
time, which is set to zero. A detector of given geometry is placed at a certain dis-
tance from the region of initial confinement. At time 𝜏 > 0 , it clicks. This experi-
ment is repeated many times and the distribution of the arrival times is acquired.

The standard quantum formalism, it turns out, does not furnish definite predic-
tions for the described experiments (see, e.g., [21]). Indeed, in 1933 Pauli [22] 
already noticed that there is no canonical time-operator in QM. As a result, over 
the years, many add-ons to the standard formalism aiming to predict the arrival 
time distributions of a quantum particle have been suggested [21]. Not only is the 
adequacy of many of these proposals questionable, but also their range of applica-
bility is severely limited [23–28]. Arguably, a generally applicable and internally-
consistent recipe for describing quantum arrival-time experiments based solely on a 
�-complete theory is yet to be discovered.
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On the other hand, in any TCQT, prediction of the arrival time distribution is a 
problem with an almost obvious solution: if particles follow trajectories, the time 
when a given trajectory crosses a certain surface can be easily calculated. The 
arrival time distribution can thus be obtained if the distribution of the initial posi-
tions is known (see, e.g., [29]).

Thus even a physicist for whom a theory is solely a tool for obtaining numerical 
predictions for laboratory experiments may be willing to prefer a TCQT over a �
-complete theory.

5  Conclusion

Let us summarize our discussion. Heisenberg’s argument against particle trajectories 
in 1927 was not based on the uncertainty relation, but on his operationalist redefini-
tion of the familiar physical concepts. This argument has been criticized as circular.

In contrast to what is often stated, Heisenberg’s argument against trajectories was 
not related to the fact that the position and velocity cannot be defined simultane-
ously for a wave packet.

In his 1929 Chicago lectures, Heisenberg claimed that the existence of trajecto-
ries in the quantum world is impossible to ‘verify experimentally’. By that he meant 
that, because of his uncertainty relation (1), no matter how accurately we know the 
initial position of the particle, we will not be able to predict the future position with 
comparable accuracy. This is why, he claimed, to accept or to reject the trajectories 
is a matter of personal belief.

This argument may be appealing, but Heisenberg’s derivation of the impossibil-
ity of the ‘experimental verification’ is irrelevant, since the TCQT he used was not 
empirically adequate. Nevertheless the analysis in Bohmian mechanics confirms that 
the ‘verification’ in Heisenberg’s sense is indeed impossible, at least in this trajec-
tory-containing quantum theory.

If one defines the physical theory as a set of rules to obtain predictions for experi-
ments, this could be reason enough to discard Bohmian mechanics and opt for a �
-complete quantum formalism, unless one takes into account the difficulties that �
-complete theories encounter predicting the results of arrival time measurements. 
On the other hand, if one would like a physical theory to tell us about what there 
is, what the world consists of, how its constituents behave, and how this results 
in our observations, TCQTs and, in particular, Bohmian mechanics are definitely 
advantageous.
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